Phase-Transfer Catalysis - ACS Publications - American Chemical

We are not yet i n the possession of many elemental mechanistic and k i n e t i c understandings i n order to answer questions l i k e , f o r example...
1 downloads 0 Views 1MB Size
Chapter 9

New Developments in Polymer Synthesis by Phase-Transfer Catalysis Virgil Percec

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH 44106

Some particularities of the extraction of ions from an aqueous organic phase, and of the phase catalyzed polyetherification will be summarized. These will represent the fundamentals of our work on the synthesis of some novel classes of functional polymers and sequential copolymers. Examples will be provided for the synthesis of: functional polymers containing only cyclic imino ethers or both cyclic imino ethers as well as their own cationic initiator attached to the same polymer backbone; ABA triblock copolymers and (AB)n alternating block copolymers; and a novel class of main chain thermotropic liquid crystalline polymers containing functional chain ends, i.e., polyethers. Phase transfer catalysis, a term which has been coined by Starks in 1 9 7 1 ( 1 ) , became, w i t h i n o n l y a s h o r t p e r i o d o f t i m e , an a c t i v e s u b j e c t o f r e s e a r c h w i t h deep i m p l i c a t i o n s e s p e c i a l l y i n p r e p a r a t i v e organic, organometallic and polymer c h e m i s t r y ( 2 - 7 ) . T r a d i t i o n a l f i e l d s o f polymer c h e m i s t r y l i k e r a d i c a l , a n i o n i c and c o n d e n s a t i o n p o l y m e r i z a t i o n s , as w e l l as c h e m i c a l m o d i f i c a t i o n o f p o l y m e r s , have s u b s t a n t i a l l y b e n e f i t e d from t h e use o f phase t r a n s f e r c a t a l y s i s . Some o f t h e most s i g n i f i c a n t p r o g r e s s made i n t h i s f i e l d by e x p l o i t i n g the phase t r a n s f e r c a t a l y s i s c o n c e p t has been the s u b j e c t o f a p r e v i o u s ACS meeting, and i t ' s p r o c e e d i n g s were p u b l i s h e d i n a r e c e n t b o o k ( 7 ) . Our r e s e a r c h group h a s become a c t i v e i n t h i s f i e l d o n l y r e c e n t l y , and i t i s t h e a i m o f t h i s paper t o s h o r t l y r e v i e w some o f the work a c c o m p l i s h e d , o r i n p r o g r e s s w i t h i n our l a b o r a t o r y . E x t r a c t i o n o f Ions from an Aqueous S o l u t i o n . I t s I m p l i c a t i o n s on the Mechanism o f Phase T r a n s f e r C a t a l y z e d P o l y e t h e r i f i c a t i o n s For a two phase system (water and a w a t e r n o n m i s c i b l e o r g a n i c s o l vent) containing a hydrophobic salt QX d i s s o l v e d i n water (Qk + X w ^ ^ Q X s ) » c o n d i t i o n a l e x t r a c t i o n c o n s t a n t e* i s d e f i n e d QXs Q X t Q ] w [X"]w> where C Q X i s the t o t a l c o n c e n t r a t i o n o f Q (quat) and X~ ( c o r r e s p o n d i n g a n i o n ) p r e s e n t i n the o r g a n i c phase i n the m o l a r r a t i o 1 t o 1; and [ Q ] and [ X " ] respective t

a s

c

=

e

n

e

+

s

+

a

w

r

e

t

n

e

w

0097-6156/87/0326-0096$06.00/0 © 1987 American Chemical Society

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

9. PERCEC

Polymer Synthesis by Phase-Transfer Catalysis

c o n c e n t r a t i o n s i n t h e water phase. S i n c e t h e Q p a r t o f t h e QX s a l t i s always h y d r o p h o b i c , i t i s t h e e n t r o p i e f a c t o r w h i c h w i l l t e n d t o d r i v e t h e QX compound o u t o f t h e aqueous l a y e r . T h e r e f o r e , t h e e x t r a c t i o n c o n s t a n t s a r e s t r o n g l y dependent on t h e s t r u c t u r e o f b o t h the a n i o n (X") and c a t i o n ( Q ) ( o r i n o t h e r words on t h e i r hydrop h o b i c i t y ) and on the s o l v e n t n a t u r e , b u t due t o t h e dominant i n f l u e n c e o f e n t r o p y f a c t o r , i t i s n o t v e r y dependent on t h e temperature. F o r a s p e c i f i c Q , t h e v a l u e o f t h e e* w i l l be c o n t r o l l e d by t h e h y d r o p h o b i c i t y o f t h e X", and t h e r e a r e q u a n t i t a ­ t i v e examples i n t h e l i t e r a t u r e d e m o n s t r a t i n g t h i s ( 3 . ) . I t i s known f o r example t h a t t h e e x t r a c t i o n c o n s t a n t o f a s a l t h a v i n g PhO" as a n i o n i s h i g h e r by a f a c t o r o f about 10^ t h a n t h e e x t r a c t i o n c o n s t a n t o f a s a l t h a v i n g OH" as a n i o n . T h e r e f o r e , i t c a n be c e r t a i n l y assumed t h a t when t h e PhO" a n i o n becomes a polymer c h a i n end, t h e e x t r a c t i o n c o n s t a n t o f i t s s a l t w i t h Q s h o u l d be m o l e c u l a r w e i g h t dependent based on t h e f a c t t h a t t h e h y d r o p h o b i c i t y o f t h e phenoxy a n i o n i n c r e a s e s w i t h t h e i n c r e a s e o f t h e polymers m o l e c u l a r w e i g h t , i . e . , e*phO-(PhO)n-PhO"Q+ » *PhO"Q+c o n c l u s i o n has some i m p o r t a n t implications f o r t h e two-phase phase transfer c a t a l y z e d r e a c t i o n s e s p e c i a l l y when t h e t r a n s f e r o f t h e i o n - p a i r i n t o t h e o r g a n i c phase i s t h e r a t e d e t e r m i n i n g s t e p . Under these c o n d i t i o n s we c a n s p e c u l a t e t h a t t h e n u c l e o p h i l i c i t y o f a p h e n o l a t t a c h e d t o a polymer c h a i n end i s m o l e c u l a r w e i g h t dependent and i n c r e a s e s w i t h t h e i n c r e a s e o f t h e polymer m o l e c u l a r w e i g h t . T h i s b e h a v i o r c a n be c o n s i d e r e d as a unique s i t u a t i o n i n which t h e r e a c t i v i t y o f a f u n c t i o n a l group a t t a c h e d t o a polymer c h a i n end i n c r e a s e s w i t h t h e i n c r e a s e o f t h e polymer m o l e c u l a r w e i g h t . T h i s p a r t i c u l a r i t y , p e r m i t s us t o t a i l o r q u a n t i t a t i v e r e a c t i o n s o f ω-phenol o l i g o m e r s and a, ω-bisphenol o l i g o m e r s w i t h b o t h e l e c t r o p h i l i c low m o l e c u l a r w e i g h t compounds and w i t h α ,ω-di(electrophilic) o l i g o m e r s ( 8 - 1 4 ) . An i m p o r t a n t s i d e r e a c t i o n which has t o be a v o i d e d i n b o t h cases i s t h e d i s p l a c e m e n t o f t h e e l e c t r o p h i l e p r e s e n t i n t h e o r g a n i c phase w i t h t h e OH" t r a n s f e r r e d from t h e water phase i n t o t h e o r g a n i c phase. When w o r k i n g w i t h α ,ω - b i s p h e n o l o l i g o m e r s , t h i s s i d e r e a c t i o n c a n be a v o i d e d by u s i n g s o l v e n t s which w i l l u s u a l l y p r o v i d e a low e x t r a c t i o n c o n s t a n t f o r t h e t r a n s f e r o f t h e a n i o n s from water to o r g a n i c phase. S i n c e p o l y m e r i c onium p h e n o l a t e s have v e r y l a r g e e x t r a c t i o n c o n s t a n t s , t h e use o f a r o m a t i c s o l v e n t s w i l l depress t h e i r e x t r a c t i o n i n t o t h e o r g a n i c phase t o t h e l e v e l o f a low m o l e c u l a r w e i g h t p h e n o l , b u t a t t h e same time t h e t r a n s f e r o f t h e OH" i n t o o r g a n i c phase w i l l be d e c r e a s e d below t h e l e v e l i t c a n compete w i t h t h e o t h e r n u c l e o p h i l e . We have demonstrated t h a t t h i s s i t u a t i o n c a n be e a s i l y a c c o m p l i s h e d ( 1 5 ) . A s h o r t comparative d i s c u s s i o n o f c o n v e n t i o n a l and phase t r a n s ­ f e r c a t a l y z e d s t e p p o l y m e r i z a t i o n s would l e t us p o i n t o u t some b a s i c d i f f e r e n c e s between these two r e a c t i o n s . C o n v e n t i o n a l s t e p p o l y m e r i ­ z a t i o n i s a s t a t i s t i c a l r e a c t i o n whose k i n e t i c t r e a t m e n t i s b a s e d on the e q u a l r e a c t i v i t y o f f u n c t i o n a l groups p a r t i c i p a t i n g i n p o l y m e r i ­ z a t i o n , i n d i f f e r e n t o f t h e m o l e c u l a r w e i g h t o f t h e polymer a t which c h a i n ends a r e a t t a c h e d . F o r an e q u i m o l a r r a t i o o f t h e two monomers, the p o l y m e r i z a t i o n degree c a n be c a l c u l a t e d from t h e " e x t e n t o f r e a c t i o n " p, i . e . , DP » l / ( l - p ) . Only a t v e r y h i g h c o n v e r s i o n s ( h i g h e r than 99.5%) and o n l y when s t o i c h i o m e t r i c monomer r a t i o s a r e u s e d ( i . e . , 1:1) c a n h i g h degrees o f p o l y m e r i z a t i o n be o b t a i n e d . F o r a 100 p e r c e n t c o n v e r s i o n , t h e t h e o r e t i c a l p o l y d i s p e r s i t y o f t h e +

+

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

97

+

e

T

h

i

s

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

98

PHASE-TRANSFER CATALYSIS

o b t a i n e d polymer i s e q u a l 2, i . e . , Mw/Mn - 2.0. When t h e r e a c t i o n i s p e r f o r m e d w i t h a 1:1 mole r a t i o o f t h e two monomers, a t any time i n c l u d i n g a t 100 p e r c e n t c o n v e r s i o n t h e polymer c h a i n ends w i l l have a s t a t i s t i c a l d i s t r i b u t i o n o f t h e f u n c t i o n a l groups a t t a c h e d t o them. S e v e r a l p a r t i c u l a r i t i e s o f phase t r a n s f e r c a t a l y z e d p o l y e t h e r i f i c a t i o n a r e as f o l l o w s . S t o i c h i o m e t r i c phase t r a n s f e r c a t a l y z e d p o l y m e r i z a t i o n s do n o t t a k e p l a c e between s t o i c h i o m e t r i c r a t i o o f monomers, s i n c e t h e n u c l e o p h i l i c monomer i s always t r a n s f e r r e d i n a s m a l l amount i n t o t h e o r g a n i c phase. C o n s e q u e n t l y , because t h e i r r e a c t i o n i s a n o n - s t o i c h i o m e t r i c one t h e r e i s no need f o r an e q u i m o l a r r a t i o between t h e two monomers t o g e t polymers w i t h h i g h molecular weights. High molecular w e i g h t polymers a r e u s u a l l y obtained a l s o a t low c o n v e r s i o n s . I n s e v e r a l cases, even a t 100 p e r c e n t c o n v e r s i o n t h e p o l y d i s p e r s i t y o f t h e o b t a i n e d polymers i s l o w , i . e . , E w / H h < L l . 3 . A t any c o n v e r s i o n , t h e o r g a n i c phase c o n t a i n s o n l y polymers w i t h e l e c t r o p h i l i c c h a i n ends, even when t h e n u c l e o p h i l i c monomer was used i n e x c e s s . A t t h i s t i m e , o n l y some o f these p a r t i c u l a r i t i e s c a n r e c e i v e an e x p l a n a t i o n . Onium b i s p h e n o l a t e s are nonsolvated ion-pairs with r e d u c e d c a t i o n - a n i o n i n t e r a c t i o n energy, and c o n s e q u e n t l y a r e v e r y r e a c t i v e . T h e i r low c o n c e n t r a t i o n i n t h e o r g a n i c phase e a s i l y e x p l a i n s t h e e l e c t r o p h i l i c n a t u r e o f t h e c h a i n ends, a t l e a s t when the r a t e d e t e r m i n i n g s t e p i s t h e i r t r a n s f e r from t h e w a t e r i n t o t h e o r g a n i c phase: E-E + "N-N" + E-E-

>

E-E-N-N-E-E Ε-Ε-Ν-Ν-Ε-Ε-Ν-Ν-Ε-Ε etc.

The s i d e r e a c t i o n p r e v i o u s l y d i s c u s s e d , i . e . , t h e d i s p l a c e m e n t o f the e l e c t r o p h i l i c c h a i n ends by OH", c a n g i v e r i s e t o a new n u c l e o p h i l e w i t h a d i f f e r e n t r e a c t i v i t y . T h i s r e a c t i o n c a n be a v o i d e d , b u t i t s p r e s e n c e o r absence a p p a r e n t l y c a n n o t e x p l a i n any o f t h e above p a r t i c u l a r i t i e s . A major p o i n t o f c o n c e r n r e f e r s t o t h e r e a c t i v i t y o f n u c l e o p h i l i c and e l e c t r o p h i l i c groups p r e s e n t i n t h e r e a c t i o n m i x t u r e a t d i f f e r e n t s t a g e s o f t h e p o l y m e r i z a t i o n . An o b v i o u s q u e s t i o n would be: i s t h e r e a c t i v i t y o f t h e n u c l e o p h i l i c and e l e c t r o p h i l i c polymeric c h a i n ends t h e same w i t h t h a t o f t h e monomeric ones? A p p a r e n t l y , as a r e s u l t o f t h e p r e v i o u s d i s c u s s i o n , the n u c l e o p h i l i c i t y depends upon and i n c r e a s e s w i t h t h e m o l e c u l a r w e i g h t . A t t h i s time we cannot say much about t h e r e a c t i v i t y o f t h e e l e c t r o p h i l i c groups, a l t h o u g h i n s e v e r a l cases we have s p e c u l a t e d a p o s s i b l e enhanced e l e c t r o p h i l i c i t y b a s e d on a n c h i m e r i c assis­ tance (16^17 ) . A f i n a l comment concerns t h e o v e r a l l p o l y m e r i z a t i o n behavior a t d i f f e r e n t stages o f the r e a c t i o n . U s u a l l y , the i n i t i a l c o n c e n t r a t i o n o f t h e phase t r a n s f e r c a t a l y s t , r e p r e s e n t s 5-10 mole % from t h e n u c l e o p h i l i c monomer, and, t h e r e f o r e , t h e r e a c t i o n proceeds under two phase c o n d i t i o n s . A t h i g h c o n v e r s i o n , t h e c o n c e n t r a t i o n o f the n u c l e o p h i l e d e c r e a s e s and t h e amount o f phase t r a n s f e r c a t a l y s t r e a c h e s and even exceeds 100 mole % from t h e c o n c e n t r a t i o n o f t h e n u c l e o p h i l e . Consequently, a t t h i s stage o f the r e a c t i o n the e n t i r e amount o f n u c l e o p h i l e w i l l be p r e s e n t i n s o l u t i o n , and t h e p o l y m e r i ­ z a t i o n c a n be c o n s i d e r e d as e m p l o y i n g t h e o r g a n i c phase o n l y . I n o t h e r words, even i f we have a two-phase system, t h e w a t e r phase no

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

9.

PERCEC

Polymer Synthesis by Phase-Transfer Catalysis

99

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

l o n g e r p l a y s t h e same r o l e as b e f o r e and t h e r e a c t i o n c a n be con­ s i d e r e d as b e i n g a one-phase r e a c t i o n . A l l these p a r t i c u l a r i t i e s o f phase t r a n s f e r c a t a l y z e d p o l y e t h e r i f i c a t i o n were s t a y i n g b e h i n d o u r approach t o t h e d e s i g n o f new macromolecules. Three major t o p i c s o f r e s e a r c h w h i c h a r e b a s e d on phase t r a n s f e r c a t a l y z e d r e a c t i o n s w i l l be p r e s e n t e d w i t h examples. These r e f e r t o t h e s y n t h e s i s o f f u n c t i o n a l polymers c o n t a i n i n g f u n c t i o n a l groups ( i . e . , c y c l i c imino e t h e r s ) s e n s i t i v e b o t h t o e l e c t r o p h i l i c and n u c l e o p h i l i c r e a g e n t s ; a n o v e l method f o r t h e p r e p a r a t i o n o f r e g u l a r , segmented, ABA t r i b l o c k and (A-B)n a l t e r n a t i n g b l o c k copolymers, and t h e development o f a n o v e l c l a s s o f main c h a i n t h e r m o t r o p i c l i q u i d - c r y s t a l l i n e polymers, i . e . , p o l y e t h e r s . F u n c t i o n a l Polymers C o n t a i n i n g C y c l i c Imino E t h e r s Scheme 1 p r e s e n t s b o t h t h e s y n t h e s i s and t h e r i n g opening r e a c t i o n s of 2-(p-hydroxyphenyl)-2-oxazoline (HPO). HPO r e a c t s w i t h NaOH on h e a t i n g t o p r o v i d e N-(2-hydroxyethyl)-p-hydroxybenzamide, and w i t h weak e l e c t r o p h i l i c compounds l i k e b e n z y l bromide o r a l l y l c h l o r i d e t o p r o v i d e p o l y [N-(p-hydroxybenzoyl) e t h y l e n i m i n e ] . Consequently, the e t h e r i f i c a t i o n r e a c t i o n o f an α,ω-di(electrophilic) oligomer w i t h t h e sodium s a l t o f 2 - ( p - h y d r o x y p h e n y l ) - 2 - o x a z o l i n e i n an a p r o t i c d i p o l a r s o l v e n t l i k e DMSO o r DMF would be accompanied by these two s i d e r e a c t i o n s , even i f t h e n u c l e o p h i l i c i t y o f t h e phenol a t e i s h i g h e r than t h a t o f the o x a z o l i n e r i n g . A p h a s e - t r a n s f e r catalyzed Williamson etherification o f an α ,ω - d i ( e l e c t r o p h i l i c ) o l i g o m e r p e r f o r m e d i n chlorobenzene-aqueous NaOH and s t o i c h i o m e t r i c amount o f phase t r a n s f e r c a t a l y s t as d e t a i l e d elsewhere(18.20) g i v e s rise to perfectly b i f u n c t i o n a l α,ω-di[2-(p-phenoxy)-2-oxazoline] o l i g o m e r s . The same b i f u n c t i o n a l o l i g o m e r s c a n be p r e p a r e d through a c h a i n e x t e n s i o n o f an α, ω,-di(phenol) o l i g o m e r o r b i s p h e n o l monomer w i t h methylene c h l o r i d e as o u t l i n e d i n Scheme 2. The m e c h a n i s t i c reasons f o r t h i s l a s t s u c c e s s f u l r e a c t i o n a r e o u t l i n e d i n Scheme 3, w h i l e Scheme 4 p r e s e n t s t h e s y n t h e t i c r o u t e s f o r t h e p r e p a r a t i o n o f α , a > - d i ( e l e c t r o p h i l i c ) a r o m a t i c p o l y e t h e r s u l f o n e s . The d e t a i l e d s y n t h e s i s o f these l a s t o l i g o m e r s has been a l r e a d y d i s c u s s e d e l s e ­ where ( 1 5 ) . F i g u r e 1 g i v e s an example o f 200 MHz ^H-NMR s p e c t r a o f the s t a r t i n g a, u > - d i ( e l e c t r o p h i l i c ) o l i g o m e r and the obtained α ,u)-di[2-(p-phenoxy)-2-oxazoline] oligomer to demonstrate the q u a n t i t a t i v e n a t u r e o f t h i s r e a c t i o n . A d d i t i o n a l examples c a n be obtained from other previous publications from our laboratory(18^_20) . The second case r e f e r s t o t h e s y n t h e s i s o f t h e f i r s t example o f a b i f u n c t i o n a l polymer c o n t a i n i n g n o t o n l y c a t i o n i c a l l y p o l y m e r i z a b l e h e t e r o c y c l e s , b u t a l s o t h e i r own c a t i o n i c i n i t i a t o r as pendant g r o u p s ( 1 9 ) . Scheme 5 p r e s e n t s t h e s y n t h e s i s o f a p o l y ( 2 , 6 - d i m e t h y l 1,4-phenylene o x i d e ) c o n t a i n i n g b o t h 2 - ( p - p h e n o x y ) - 2 - o x a z o l i n e and bromobenzylic pendant groups. Incomplete etherification of a poly(2,6-dimethyl-1,4-phenylene o x i d e ) c o n t a i n i n g 0.14 -CH2Br groups per s t r u c t u r a l u n i t w i t h HPO l e a d s t o a polymer c o n t a i n i n g 0.106 2 - ( p - p h e n o x y ) - 2 - o x a z o l i n e groups and 0.033 -CH2Br groups p e r s t r u c t u r a l u n i t , c o r r e s p o n d i n g t o a 3.21/1 mole r a t i o between t h e h e t e r o c y c l i c monomer and i t s i n i t i a t o r . A 200 MHz ^H-NMR spectrum o f t h i s polymer i s p r e s e n t e d i n F i g u r e 2. T h i s polymer i s s t a b l e a t

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

100

PHASE-TRANSFER CATALYSIS

Scheme 1.

S y n t h e s i s and r e a c t i o n s o f 2-(£-hydroxyphenyl)-2-oxazoline.

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

PERCEC

Polymer Synthesis by Phase-Transfer Catalysis

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

9.

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

101

PHASE-TRANSFER CATALYSIS

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

102

-PhO"

+

CH C1 9

*

9

,

-PhOCH Cl

+ OH"

-PhOCH Cl

+

-PhO"

-PhOCH Cl

+

"OPhOxz

2

2

2

Scheme 3·

-PhOCH Cl

9

LJ •

-PhO" *-

+

CH 0 2

-Ph0CH 0Ph2

».

-Ph0CH 0Ph0xz 2

Reactions occurring during the preparation of α ω-ά±[2(£-phenoxy)-2-oxazoline] o l i g o m e r s a c c o r d i n g t o t h e second and t h i r d s y n t h e t i c r o u t e s i n Scheme 2.

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

9

PERCEC

Polymer Synthesis by Phase-Transfer Catalysis

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

9.

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

103

PHASE-TRANSFER CATALYSIS

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

104

Figure l a .

200MHz

H-NMR

spectrum

(CDC1

3>

TMS)

of

«^-di(bromobenzyl )

aromatic polyether sulfone (PSU) from Scheme 4.

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

9.

PERCEC

Polymer Synthesis by Phase- Transfer Catalysis

Figure l b . 200 MHz

H-NMR

spectrum

α,ω-di[2-(p-phenoxy)-2-oxazoli ne] obtained from e,«-di(bromobenzyl)

(CDC1 aromati c

105

TMS)

3>

polyether

PSU.

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

of su!fone

PHASE-TRANSFER CATALYSIS

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

106

Scheme 5.

Synthetic routes used for the preparation of functional polymers containing pendant 2-oxazoline and bromobenzyl groups.

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

9.

PERCEC

Polymer Synthesis by Phase-Transfer Catalysis

107

room t e m p e r a t u r e , b u t upon h e a t i n g above i t s g l a s s transition t e m p e r a t u r e , t h e -CH2Br groups i n i t i a t e t h e c a t i o n i c r i n g opening p o l y m e r i z a t i o n o f t h e c y c l i c imino e t h e r g i v i n g r i s e t o a polymer network and a s u b s t a n t i a l i n c r e a s e i n t h e g l a s s t r a n s i t i o n tempera­ t u r e . T h i s i s i l l u s t r a t e d b y t h e F i g u r e 3. Phase T r a n s f e r C a t a l y z e d P o l y e t h e r i f i c a t i o n o f C h a i n Ended F u n c t i o n a l Polymers, a New Method f o r t h e S y n t h e s i s o f S e q u e n t i a l Copolymers We have r e c e n t l y demonstrated t h a t t h e phase t r a n s f e r c a t a l y z e d polyetherification o f an ,ω-di(electrophilic) o r α,ω-di(nucleo­ philic) oligomer with a bisphenol o r an a,ω-di(electrophilic) oligomer represents a new and v e r y e f f i c i e n t method f o r t h e s y n t h e s i s o f r e g u l a r c o p o l y m e r s ( 8 . 2 1 ) . The c h a i n e x t e n s i o n o f two d i f f e r e n t a,ω-di(phenol) o l i g o m e r s w i t h a d i e l e c t r o p h i l i c monomer a g a i n t h r o u g h a phase t r a n s f e r c a t a l y z e d e t h e r i f i c a t i o n g i v e s r i s e t o segmented copolymers(22.) . Under c a r e f u l l y s e l e c t e d r e a c t i o n c o n d i t i o n s , t h e p o l y e t h e r i f i c a t i o n o f an ω-phenol o l i g o m e r w i t h an α,ω-di(electrophilic) o l i g o ­ mer produces u n e x p e c t e d l y pure ABA t r i b l o c k copolymers(11)» w h i l e the p o l y e t h e r i f i c a t i o n o f an a, a > - d i ( e l e c t r o p h i l i c ) o l i g o m e r w i t h an α,ω-di(nucleophilic) o l i g o m e r represents a new method f o r t h e s y n t h e s i s o f p e r f e c t l y a l t e r n a t i n g ( A B ) b l o c k copolymers(9-12.22). An example f o r t h e s y n t h e s i s o f p o l y ( 2 , 6 - d i m e t h y l - 1 , 4 - p h e n y l e n e oxide) - aromatic p o l y ( e t h e r - s u l f o n e ) - poly(2,6-dimethyl-1,4-pheny­ l e n e o x i d e ) ABA t r i b l o c k copolymer i s p r e s e n t e d i n Scheme 6. Q u a n t i ­ t a t i v e e t h e r i f i c a t i o n o f t h e two polymer c h a i n ends has been accom­ p l i s h e d under m i l d r e a c t i o n c o n d i t i o n s d e t a i l e d elsewhere(11). F i g u r e 4 p r e s e n t s t h e 200 MHz T-H-NMR s p e c t r a o f t h e - ( 2 , 6 - d i m e t h y l phenol) poly(2,6-dimethyl-1,4-phenylene oxide), of the a, u ) - d i ( c h l o r o a l l y ) a r o m a t i c p o l y e t h e r s u l f o n e and o f t h e o b t a i n e d ABA t r i b l o c k copolymers as c o n v i n c i n g e v i d e n c e f o r t h e q u a n t i t a t i v e r e a c t i o n o f t h e p a r e n t polymers c h a i n ends. A d d i t i o n a l e v i d e n c e f o r the v e r y c l e a n s y n t h e t i c p r o c e d u r e comes from t h e g e l p e r m e a t i o n chromatograms o f t h e two s t a r t i n g o l i g o m e r s and o f t h e o b t a i n e d ABA t r i b l o c k copolymer p r e s e n t e d i n F i g u r e 5.

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

α

n

ω

Thermotropic Polyethers A New C l a s s o f M a i n C h a i n L i q u i d C r y s t a l l i n e Polymers R e c e n t l y we have d e v e l o p e d a new c l a s s o f t h e r m o t r o p i c liquid c r y s t a l l i n e (LC) m a i n - c h a i n p o l y m e r s , i . e . , p o l y e t h e r s o f mesogenic bis-phenols(16-17.23-26). Since the obtained polymers a r e n o t s o l u b l e i n d i p o l a r a p r o t i c s o l v e n t s , the only a v a i l a b l e s y n t h e t i c avenue f o r t h e i r p r e p a r a t i o n c o n s i s t s i n t h e phase t r a n s f e r catalyzed polyetherification. There a r e s e v e r a l v e r y i m p o r t a n t advantages we o b t a i n from t h i s n o v e l c l a s s o f LC p o l y m e r s . They c a n be p r e p a r e d w i t h w e l l d e f i n e d c h a i n ends and narrow m o l e c u l a r w e i g h t d i s t r i b u t i o n . T h e r e f o r e , we could provide important i n f o r m a t i o n concerning the i n f l u e n c e o f the nature of t h e polymer chain ends on their mesomorphic behavior(16.23-24). They a r e s o l u b l e i n c o n v e n t i o n a l s o l v e n t s , have lower m e l t i n g and i s o t r o p i z a t i o n t e m p e r a t u r e s and s t i l l b r o a d e r t h e r m a l s t a b i l i t y o f t h e mesophase t h a n t h e c o r r e s p o n d i n g poly-

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

108

PHASE-TRANSFER CATALYSIS

τ 8

1

1 6

1 6,Ρ

Figure 2.

200 MHz

1 4

1

1 2

1

Γ 0

Ρ Μ

*H-NMR

spectrum

poly(2,6-dimethyl-l,4-phenylene

(CDC1 ) 3

oxide)

containing

of

the 2-oxazo­

l i n e and bromobenzyl pendant groups.

MO

180

220

260

300

340

T/°C

Figure 3.

DSC

heating scans

(20°C/min) of the

poly(2,6-dimethyl-2,4-pheny-

lene oxide) containing 2-oxazoline and bromobenzyl pendant groups. A) second heating scan ( f i r s t heating scan up to 200°C); B) t h i r d heating

scan; C) fourth heating scan (after annealing 30 min. at

270°C). In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Scheme 6.

Synthesis of poly(2,6-dimethyl-l,4-phenylene oxide)aromatic polyether sulfone-poly(2,6-dimethyl-l,4-phenylene oxide) (PPO-PSU-PPO) t r i b l o c k copolymer.

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

•Ό

ο ν©

m n m π

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

110

PHASE-TRANSFER CATALYSIS

8

Figure 4a.

200 MHz H-NMR

1

6

spectrum

2

0 δ in p p m

of ω-(2,6-dimethylphenol)

poly(2,6-di

methyl-1,4-phenylene oxide) (PPO) (M « 2,235. CC1 , TMS). p

τ

1

8

Figure 4b.

200 MHz

1

6

1

1

4

1

1

4

1

Γ

2 0 δ in p p m

H-NMR spectrum of a,ci>-di(chloro a l l y l ) aromatic poly

ether sulfone (PSU) from Scheme 4 (M * 1,930, CDC1 , TMS). R

3

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

PERCEC

Polymer Synthesis by Phase- Transfer Catalysis

111

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

9.

22 26 30 34 Elution volume in ml

Figure 5.

GPC

curves of:

Α) ω-(2,6-dimethylphenol ) PPO,

ο,ω-dKchloroallyl) PSU (M

n

(M

p

« 1.930); B)

« 3.900); and C) PP0-PSU-PP0 triblock

copolymer.

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

PHASE-TRANSFER CATALYSIS

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

112

e s t e r s ( 2 5 ) . The s y n t h e s i s o f LC c o p o l y e t h e r s a l l o w s us t o t a i l o r t h e i r t h e r m a l t r a n s i t i o n s over a v e r y b r o a d range o f tempera­ t u r e s (23_i25). A t t h e same time, they l e t us o b t a i n i n f o r m a t i o n concerning t h e i n f l u e n c e o f sequence distribution on t h e i r mesomorphic p r o p e r t i e s ( 2 6 ) . L a s t b u t n o t l e a s t , b y v a r y i n g t h e p r e v i o u s l y d i s c u s s e d methods f o r t h e s y n t h e s i s o f s e q u e n t i a l copolymers we c o u l d develop t h e f i r s t c l a s s e s o f b o t h segmented copolymers and a l t e r n a t i n g b l o c k copolymers c o n t a i n i n g t h e r m o t r o p i c LC segments i n one b l o c k and e i t h e r e l a s t o m e r i c o r t h e r m o p l a s t i c segments as t h e second block(27.). Scheme 7 o u t l i n e s an example f o r the s y n t h e s i s o f t h e t h e r m o t r o p i c p o l y e t h e r s and c o p o l y e t h e r s based on 4,4* - d i h y d r o x v b i p h e n y 1 (25). A c o m p a r i s o n between t h e t h e r m a l t r a n s i t i o n s o f a s e t o f p o l y e t h e r s and t h e c o r r e s p o n d i n g p o l y e s t e r s i s presented i n F i g u r e 6. F i g u r e 7 demonstrates t h e a b i l i t y t o tailor the thermal stability range o f t h e mesophase through copolyetherification. There a r e s e v e r a l o t h e r a c t i v e t o p i c s under e x a m i n a t i o n i n o u r l a b o r a t o r y , f o r example, s u r f a c e m o d i f i c a t i o n o f polymers under phase t r a n s f e r c a t a l y z e d r e a c t i o n s and s i n g l e e l e c t r o n t r a n s f e r phase transfer catalyzed polymerizations. The l i m i t e d space, however, p r e c l u d e s d i s c u s s i o n here. What w i l l phase t r a n s f e r c a t a l y s i s p r o v i d e polymer c h e m i s t r y w i t h i n the near future? I t i s apparently s t i l l t o e a r l y t o p r e d i c t t h i s . We a r e n o t y e t i n t h e p o s s e s s i o n o f many e l e m e n t a l m e c h a n i s t i c and k i n e t i c u n d e r s t a n d i n g s i n o r d e r t o answer q u e s t i o n s l i k e , f o r example, why n o t " l i v i n g p o l y e t h e r i f i c a t i o n ? " Br-(CH )-Br 2

+

Η0-^5^-^Ο^-0Η

TBAH Aqueous NaOH Nitrobenzene

Where: η « 5, 7, 9 o r 11

TBAH Aqueous NaOH Nitrobenzene

BHCH * [0-^o)--@ 2

7

Where: x/y = 0.1 - 9.0

Scheme 7.

mole/mole

S y n t h e t i c avenues used f o r t h e s y n t h e s i s o f A j A ' - d i h y d r o x y b i p h e n y l p o l y e t h e r s and c o p o l y e t h e r s .

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

9.

113

Polymer Synthesis by Phase- Transfer Catalysis

PERCEC

260 240 220 200 ο

g' 130

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

I

160 140 120

5

Figure

6.

Thermal versus

transition n,

the

(A)

T

m

number

,

9

temperatures of

(Δ)

for:

T.

(data

1)

11

(T^ = m e l t i n g ,

methylene

4,4'-dihydroxybiphenyl esters

7

units

in

polyethers

from

T.

the (t)

reference

=

isotropization)

polymers Τ

,

(ο)

T.;

containing 2)

poly­

the

mole

% of

the

homo-

25).

230 210 190

°I-

£ 170 150 130 0

10

20

30

40

50

60

70

80

90

MOLE X

r

igure

7.

Thermal

transition

1,7-dibromoheptane copolymers and

based

temperatures in on

the



reaction

,

T. )

100

-(CH ) 2

7

versus

mixture,

4,4'-dihydroxybiphenyl,

for

and

1,7-dibromoheptane,

1,4-dibromononane.

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

PHASE-TRANSFER CATALYSIS

114 Acknowledgments

Most o f t h i s work has been s u p p o r t e d by t h e Polymers Program o f the N a t i o n a l S c i e n c e F o u n d a t i o n under G r a n t N o . DMR 82-13895. I am d e e p l y g r a t e f u l t o my d e d i c a t e d coworkers l i s t e d as c o a u t h o r s i n the referenced papers.

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

References 1. C. M. Starks, J . Amer. Chem. Soc., 93, 195 (1971). 2. A. Brandstrom, "Preparative Ion Pair Extraction," an Introduction to Theory and Practice, Apotekarsocieteten, Hassle Lakemedel, First Ed., 1974; Second Ed., 1976. 3. A. Brandstrom, "Principles of Phase Transfer Catalysis by Quaternary Ammonium Salts," in "Advances in Physical Organic Chemistry," Vol. 15, V. Gold, Ed., Academic Press, London and New York, 1977, p. 267. 4. W. P. Weber and G. W. Gokel, "Phase Transfer Catalysis in Organic Synthesis," in Reactivity and Structure, Vol. 4, K. Hafner et a l . , Eds., Springer-Verlag, Berlin - Heidelberg, 1977. 5. C. M. Starks and C. Liotta, "Phase Transfer Catalysis. Principles and Techniques," Academic Press, London and New York, 1978. 6. Ε. V. Dehmlov and S. S. Dehmlov, "Phase Transfer Catalysis." First Ed., 1980; Second Revised Ed., Verlag Chemie, Weinheim, 1983. 7. L. J . Mathias and C. E. Carralier J r . , Eds., "Crown Ethers and Phase Transfer Catalysis in Polymer Science," Plenum Press, New York 1984. 8. V. Percec and B. C. Auman, Makromol. Chem., 185, 617 (1984). 9. V. Percec and B. C. Auman, Makromol. Chem., 185, 1867 (1984). 10. V. Percec, B. C. Auman and P. L. Rinaldi, Polym. Bull., 10, 391 (1983). 11. V. Percec and H. Nava, Makromol. Chem., Rapid Commun., 5, 319 (1984). 12. V. Percec, H. Nava and B. C. Auman, Polym. J., 16, 681 (1984). 13. V. Percec, P. L. Rinaldi and B. C. Auman, Polym. Bull., 10, 215 (1983). 14. V. Percec, P. L. Rinaldi and B. C. Auman, Polym. Bull., 10, 397 (1983). 15. V. Percec and B. C. Auman, Polym. Bull., 12, 253 (1984). 16. Percec, T. D. Shaffer and H. Nava, J . Polym. Sci., Polym. Let. Ed., 22, 637 (1984). 17. T. D. Shaffer and V. Percec, J . Polym Sci., Polym. Chem. Ed., 24, 451 (1986). 18. V. Percec, H. Nava and J . M. Rodriquez-Parada, J . Polym. Sci., Polym. Lett. Ed., 22, 523 (1984). 19. V. Percec, H. Nava and J . M. Rodriquez-Parada, Polym. Bull., 12, 261 (1984). 20. V. Percec, H. Nava and J . M. Rodriguez-Parada, in "Advances in Polymer Synthesis," J . E. McGrath and Β. M. Culbertson, Eds., Plenum Press, New York, 1985, p. 235. 21. V. Percec and B. C. Auman, Polym. Bull., 10, 385 (1983).

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

9. PERCEC 22. 23. 24. 25. 26.

Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009

27.

Polymer Synthesis by Phase-Transfer Catalysis

115

V. Percec, i n "Cationic Polymerization and Related Processes." E. J . Goethals, Ed., Academic Press, London and New York, 1984, p. 347. V. Percec and T. D. Shaffer, i n "Advances in Polymer Synthesis," J . E. McGrath and Β. M. Culbertson, Eds., Plenum Press, New York, 1985, p. 133. T. D. Shaffer and V. Percec, Makromol. Chem. Rapid Commun., 6, 97 (1985). T. D. Shaffer and V. Percec, J . Polym. Sci., Polym. Lett. Ed., 23, 185 (1985). T. D. Shaffer, M. Jamaludin and V. Percec, J . Polym. Sci., Polym. Chem. Ed., 24, 15 (1986). T. D. Shaffer and V. Percec, J . Polym. Sci., Polym. Lett. Ed., 24, 185 (1985).

RECEIVED August 20, 1986

In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.