Chapter 9
New Developments in Polymer Synthesis by Phase-Transfer Catalysis Virgil Percec
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH 44106
Some particularities of the extraction of ions from an aqueous organic phase, and of the phase catalyzed polyetherification will be summarized. These will represent the fundamentals of our work on the synthesis of some novel classes of functional polymers and sequential copolymers. Examples will be provided for the synthesis of: functional polymers containing only cyclic imino ethers or both cyclic imino ethers as well as their own cationic initiator attached to the same polymer backbone; ABA triblock copolymers and (AB)n alternating block copolymers; and a novel class of main chain thermotropic liquid crystalline polymers containing functional chain ends, i.e., polyethers. Phase transfer catalysis, a term which has been coined by Starks in 1 9 7 1 ( 1 ) , became, w i t h i n o n l y a s h o r t p e r i o d o f t i m e , an a c t i v e s u b j e c t o f r e s e a r c h w i t h deep i m p l i c a t i o n s e s p e c i a l l y i n p r e p a r a t i v e organic, organometallic and polymer c h e m i s t r y ( 2 - 7 ) . T r a d i t i o n a l f i e l d s o f polymer c h e m i s t r y l i k e r a d i c a l , a n i o n i c and c o n d e n s a t i o n p o l y m e r i z a t i o n s , as w e l l as c h e m i c a l m o d i f i c a t i o n o f p o l y m e r s , have s u b s t a n t i a l l y b e n e f i t e d from t h e use o f phase t r a n s f e r c a t a l y s i s . Some o f t h e most s i g n i f i c a n t p r o g r e s s made i n t h i s f i e l d by e x p l o i t i n g the phase t r a n s f e r c a t a l y s i s c o n c e p t has been the s u b j e c t o f a p r e v i o u s ACS meeting, and i t ' s p r o c e e d i n g s were p u b l i s h e d i n a r e c e n t b o o k ( 7 ) . Our r e s e a r c h group h a s become a c t i v e i n t h i s f i e l d o n l y r e c e n t l y , and i t i s t h e a i m o f t h i s paper t o s h o r t l y r e v i e w some o f the work a c c o m p l i s h e d , o r i n p r o g r e s s w i t h i n our l a b o r a t o r y . E x t r a c t i o n o f Ions from an Aqueous S o l u t i o n . I t s I m p l i c a t i o n s on the Mechanism o f Phase T r a n s f e r C a t a l y z e d P o l y e t h e r i f i c a t i o n s For a two phase system (water and a w a t e r n o n m i s c i b l e o r g a n i c s o l vent) containing a hydrophobic salt QX d i s s o l v e d i n water (Qk + X w ^ ^ Q X s ) » c o n d i t i o n a l e x t r a c t i o n c o n s t a n t e* i s d e f i n e d QXs Q X t Q ] w [X"]w> where C Q X i s the t o t a l c o n c e n t r a t i o n o f Q (quat) and X~ ( c o r r e s p o n d i n g a n i o n ) p r e s e n t i n the o r g a n i c phase i n the m o l a r r a t i o 1 t o 1; and [ Q ] and [ X " ] respective t
a s
c
=
e
n
e
+
s
+
a
w
r
e
t
n
e
w
0097-6156/87/0326-0096$06.00/0 © 1987 American Chemical Society
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
9. PERCEC
Polymer Synthesis by Phase-Transfer Catalysis
c o n c e n t r a t i o n s i n t h e water phase. S i n c e t h e Q p a r t o f t h e QX s a l t i s always h y d r o p h o b i c , i t i s t h e e n t r o p i e f a c t o r w h i c h w i l l t e n d t o d r i v e t h e QX compound o u t o f t h e aqueous l a y e r . T h e r e f o r e , t h e e x t r a c t i o n c o n s t a n t s a r e s t r o n g l y dependent on t h e s t r u c t u r e o f b o t h the a n i o n (X") and c a t i o n ( Q ) ( o r i n o t h e r words on t h e i r hydrop h o b i c i t y ) and on the s o l v e n t n a t u r e , b u t due t o t h e dominant i n f l u e n c e o f e n t r o p y f a c t o r , i t i s n o t v e r y dependent on t h e temperature. F o r a s p e c i f i c Q , t h e v a l u e o f t h e e* w i l l be c o n t r o l l e d by t h e h y d r o p h o b i c i t y o f t h e X", and t h e r e a r e q u a n t i t a t i v e examples i n t h e l i t e r a t u r e d e m o n s t r a t i n g t h i s ( 3 . ) . I t i s known f o r example t h a t t h e e x t r a c t i o n c o n s t a n t o f a s a l t h a v i n g PhO" as a n i o n i s h i g h e r by a f a c t o r o f about 10^ t h a n t h e e x t r a c t i o n c o n s t a n t o f a s a l t h a v i n g OH" as a n i o n . T h e r e f o r e , i t c a n be c e r t a i n l y assumed t h a t when t h e PhO" a n i o n becomes a polymer c h a i n end, t h e e x t r a c t i o n c o n s t a n t o f i t s s a l t w i t h Q s h o u l d be m o l e c u l a r w e i g h t dependent based on t h e f a c t t h a t t h e h y d r o p h o b i c i t y o f t h e phenoxy a n i o n i n c r e a s e s w i t h t h e i n c r e a s e o f t h e polymers m o l e c u l a r w e i g h t , i . e . , e*phO-(PhO)n-PhO"Q+ » *PhO"Q+c o n c l u s i o n has some i m p o r t a n t implications f o r t h e two-phase phase transfer c a t a l y z e d r e a c t i o n s e s p e c i a l l y when t h e t r a n s f e r o f t h e i o n - p a i r i n t o t h e o r g a n i c phase i s t h e r a t e d e t e r m i n i n g s t e p . Under these c o n d i t i o n s we c a n s p e c u l a t e t h a t t h e n u c l e o p h i l i c i t y o f a p h e n o l a t t a c h e d t o a polymer c h a i n end i s m o l e c u l a r w e i g h t dependent and i n c r e a s e s w i t h t h e i n c r e a s e o f t h e polymer m o l e c u l a r w e i g h t . T h i s b e h a v i o r c a n be c o n s i d e r e d as a unique s i t u a t i o n i n which t h e r e a c t i v i t y o f a f u n c t i o n a l group a t t a c h e d t o a polymer c h a i n end i n c r e a s e s w i t h t h e i n c r e a s e o f t h e polymer m o l e c u l a r w e i g h t . T h i s p a r t i c u l a r i t y , p e r m i t s us t o t a i l o r q u a n t i t a t i v e r e a c t i o n s o f ω-phenol o l i g o m e r s and a, ω-bisphenol o l i g o m e r s w i t h b o t h e l e c t r o p h i l i c low m o l e c u l a r w e i g h t compounds and w i t h α ,ω-di(electrophilic) o l i g o m e r s ( 8 - 1 4 ) . An i m p o r t a n t s i d e r e a c t i o n which has t o be a v o i d e d i n b o t h cases i s t h e d i s p l a c e m e n t o f t h e e l e c t r o p h i l e p r e s e n t i n t h e o r g a n i c phase w i t h t h e OH" t r a n s f e r r e d from t h e water phase i n t o t h e o r g a n i c phase. When w o r k i n g w i t h α ,ω - b i s p h e n o l o l i g o m e r s , t h i s s i d e r e a c t i o n c a n be a v o i d e d by u s i n g s o l v e n t s which w i l l u s u a l l y p r o v i d e a low e x t r a c t i o n c o n s t a n t f o r t h e t r a n s f e r o f t h e a n i o n s from water to o r g a n i c phase. S i n c e p o l y m e r i c onium p h e n o l a t e s have v e r y l a r g e e x t r a c t i o n c o n s t a n t s , t h e use o f a r o m a t i c s o l v e n t s w i l l depress t h e i r e x t r a c t i o n i n t o t h e o r g a n i c phase t o t h e l e v e l o f a low m o l e c u l a r w e i g h t p h e n o l , b u t a t t h e same time t h e t r a n s f e r o f t h e OH" i n t o o r g a n i c phase w i l l be d e c r e a s e d below t h e l e v e l i t c a n compete w i t h t h e o t h e r n u c l e o p h i l e . We have demonstrated t h a t t h i s s i t u a t i o n c a n be e a s i l y a c c o m p l i s h e d ( 1 5 ) . A s h o r t comparative d i s c u s s i o n o f c o n v e n t i o n a l and phase t r a n s f e r c a t a l y z e d s t e p p o l y m e r i z a t i o n s would l e t us p o i n t o u t some b a s i c d i f f e r e n c e s between these two r e a c t i o n s . C o n v e n t i o n a l s t e p p o l y m e r i z a t i o n i s a s t a t i s t i c a l r e a c t i o n whose k i n e t i c t r e a t m e n t i s b a s e d on the e q u a l r e a c t i v i t y o f f u n c t i o n a l groups p a r t i c i p a t i n g i n p o l y m e r i z a t i o n , i n d i f f e r e n t o f t h e m o l e c u l a r w e i g h t o f t h e polymer a t which c h a i n ends a r e a t t a c h e d . F o r an e q u i m o l a r r a t i o o f t h e two monomers, the p o l y m e r i z a t i o n degree c a n be c a l c u l a t e d from t h e " e x t e n t o f r e a c t i o n " p, i . e . , DP » l / ( l - p ) . Only a t v e r y h i g h c o n v e r s i o n s ( h i g h e r than 99.5%) and o n l y when s t o i c h i o m e t r i c monomer r a t i o s a r e u s e d ( i . e . , 1:1) c a n h i g h degrees o f p o l y m e r i z a t i o n be o b t a i n e d . F o r a 100 p e r c e n t c o n v e r s i o n , t h e t h e o r e t i c a l p o l y d i s p e r s i t y o f t h e +
+
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
97
+
e
T
h
i
s
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
98
PHASE-TRANSFER CATALYSIS
o b t a i n e d polymer i s e q u a l 2, i . e . , Mw/Mn - 2.0. When t h e r e a c t i o n i s p e r f o r m e d w i t h a 1:1 mole r a t i o o f t h e two monomers, a t any time i n c l u d i n g a t 100 p e r c e n t c o n v e r s i o n t h e polymer c h a i n ends w i l l have a s t a t i s t i c a l d i s t r i b u t i o n o f t h e f u n c t i o n a l groups a t t a c h e d t o them. S e v e r a l p a r t i c u l a r i t i e s o f phase t r a n s f e r c a t a l y z e d p o l y e t h e r i f i c a t i o n a r e as f o l l o w s . S t o i c h i o m e t r i c phase t r a n s f e r c a t a l y z e d p o l y m e r i z a t i o n s do n o t t a k e p l a c e between s t o i c h i o m e t r i c r a t i o o f monomers, s i n c e t h e n u c l e o p h i l i c monomer i s always t r a n s f e r r e d i n a s m a l l amount i n t o t h e o r g a n i c phase. C o n s e q u e n t l y , because t h e i r r e a c t i o n i s a n o n - s t o i c h i o m e t r i c one t h e r e i s no need f o r an e q u i m o l a r r a t i o between t h e two monomers t o g e t polymers w i t h h i g h molecular weights. High molecular w e i g h t polymers a r e u s u a l l y obtained a l s o a t low c o n v e r s i o n s . I n s e v e r a l cases, even a t 100 p e r c e n t c o n v e r s i o n t h e p o l y d i s p e r s i t y o f t h e o b t a i n e d polymers i s l o w , i . e . , E w / H h < L l . 3 . A t any c o n v e r s i o n , t h e o r g a n i c phase c o n t a i n s o n l y polymers w i t h e l e c t r o p h i l i c c h a i n ends, even when t h e n u c l e o p h i l i c monomer was used i n e x c e s s . A t t h i s t i m e , o n l y some o f these p a r t i c u l a r i t i e s c a n r e c e i v e an e x p l a n a t i o n . Onium b i s p h e n o l a t e s are nonsolvated ion-pairs with r e d u c e d c a t i o n - a n i o n i n t e r a c t i o n energy, and c o n s e q u e n t l y a r e v e r y r e a c t i v e . T h e i r low c o n c e n t r a t i o n i n t h e o r g a n i c phase e a s i l y e x p l a i n s t h e e l e c t r o p h i l i c n a t u r e o f t h e c h a i n ends, a t l e a s t when the r a t e d e t e r m i n i n g s t e p i s t h e i r t r a n s f e r from t h e w a t e r i n t o t h e o r g a n i c phase: E-E + "N-N" + E-E-
>
E-E-N-N-E-E Ε-Ε-Ν-Ν-Ε-Ε-Ν-Ν-Ε-Ε etc.
The s i d e r e a c t i o n p r e v i o u s l y d i s c u s s e d , i . e . , t h e d i s p l a c e m e n t o f the e l e c t r o p h i l i c c h a i n ends by OH", c a n g i v e r i s e t o a new n u c l e o p h i l e w i t h a d i f f e r e n t r e a c t i v i t y . T h i s r e a c t i o n c a n be a v o i d e d , b u t i t s p r e s e n c e o r absence a p p a r e n t l y c a n n o t e x p l a i n any o f t h e above p a r t i c u l a r i t i e s . A major p o i n t o f c o n c e r n r e f e r s t o t h e r e a c t i v i t y o f n u c l e o p h i l i c and e l e c t r o p h i l i c groups p r e s e n t i n t h e r e a c t i o n m i x t u r e a t d i f f e r e n t s t a g e s o f t h e p o l y m e r i z a t i o n . An o b v i o u s q u e s t i o n would be: i s t h e r e a c t i v i t y o f t h e n u c l e o p h i l i c and e l e c t r o p h i l i c polymeric c h a i n ends t h e same w i t h t h a t o f t h e monomeric ones? A p p a r e n t l y , as a r e s u l t o f t h e p r e v i o u s d i s c u s s i o n , the n u c l e o p h i l i c i t y depends upon and i n c r e a s e s w i t h t h e m o l e c u l a r w e i g h t . A t t h i s time we cannot say much about t h e r e a c t i v i t y o f t h e e l e c t r o p h i l i c groups, a l t h o u g h i n s e v e r a l cases we have s p e c u l a t e d a p o s s i b l e enhanced e l e c t r o p h i l i c i t y b a s e d on a n c h i m e r i c assis tance (16^17 ) . A f i n a l comment concerns t h e o v e r a l l p o l y m e r i z a t i o n behavior a t d i f f e r e n t stages o f the r e a c t i o n . U s u a l l y , the i n i t i a l c o n c e n t r a t i o n o f t h e phase t r a n s f e r c a t a l y s t , r e p r e s e n t s 5-10 mole % from t h e n u c l e o p h i l i c monomer, and, t h e r e f o r e , t h e r e a c t i o n proceeds under two phase c o n d i t i o n s . A t h i g h c o n v e r s i o n , t h e c o n c e n t r a t i o n o f the n u c l e o p h i l e d e c r e a s e s and t h e amount o f phase t r a n s f e r c a t a l y s t r e a c h e s and even exceeds 100 mole % from t h e c o n c e n t r a t i o n o f t h e n u c l e o p h i l e . Consequently, a t t h i s stage o f the r e a c t i o n the e n t i r e amount o f n u c l e o p h i l e w i l l be p r e s e n t i n s o l u t i o n , and t h e p o l y m e r i z a t i o n c a n be c o n s i d e r e d as e m p l o y i n g t h e o r g a n i c phase o n l y . I n o t h e r words, even i f we have a two-phase system, t h e w a t e r phase no
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
9.
PERCEC
Polymer Synthesis by Phase-Transfer Catalysis
99
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
l o n g e r p l a y s t h e same r o l e as b e f o r e and t h e r e a c t i o n c a n be con s i d e r e d as b e i n g a one-phase r e a c t i o n . A l l these p a r t i c u l a r i t i e s o f phase t r a n s f e r c a t a l y z e d p o l y e t h e r i f i c a t i o n were s t a y i n g b e h i n d o u r approach t o t h e d e s i g n o f new macromolecules. Three major t o p i c s o f r e s e a r c h w h i c h a r e b a s e d on phase t r a n s f e r c a t a l y z e d r e a c t i o n s w i l l be p r e s e n t e d w i t h examples. These r e f e r t o t h e s y n t h e s i s o f f u n c t i o n a l polymers c o n t a i n i n g f u n c t i o n a l groups ( i . e . , c y c l i c imino e t h e r s ) s e n s i t i v e b o t h t o e l e c t r o p h i l i c and n u c l e o p h i l i c r e a g e n t s ; a n o v e l method f o r t h e p r e p a r a t i o n o f r e g u l a r , segmented, ABA t r i b l o c k and (A-B)n a l t e r n a t i n g b l o c k copolymers, and t h e development o f a n o v e l c l a s s o f main c h a i n t h e r m o t r o p i c l i q u i d - c r y s t a l l i n e polymers, i . e . , p o l y e t h e r s . F u n c t i o n a l Polymers C o n t a i n i n g C y c l i c Imino E t h e r s Scheme 1 p r e s e n t s b o t h t h e s y n t h e s i s and t h e r i n g opening r e a c t i o n s of 2-(p-hydroxyphenyl)-2-oxazoline (HPO). HPO r e a c t s w i t h NaOH on h e a t i n g t o p r o v i d e N-(2-hydroxyethyl)-p-hydroxybenzamide, and w i t h weak e l e c t r o p h i l i c compounds l i k e b e n z y l bromide o r a l l y l c h l o r i d e t o p r o v i d e p o l y [N-(p-hydroxybenzoyl) e t h y l e n i m i n e ] . Consequently, the e t h e r i f i c a t i o n r e a c t i o n o f an α,ω-di(electrophilic) oligomer w i t h t h e sodium s a l t o f 2 - ( p - h y d r o x y p h e n y l ) - 2 - o x a z o l i n e i n an a p r o t i c d i p o l a r s o l v e n t l i k e DMSO o r DMF would be accompanied by these two s i d e r e a c t i o n s , even i f t h e n u c l e o p h i l i c i t y o f t h e phenol a t e i s h i g h e r than t h a t o f the o x a z o l i n e r i n g . A p h a s e - t r a n s f e r catalyzed Williamson etherification o f an α ,ω - d i ( e l e c t r o p h i l i c ) o l i g o m e r p e r f o r m e d i n chlorobenzene-aqueous NaOH and s t o i c h i o m e t r i c amount o f phase t r a n s f e r c a t a l y s t as d e t a i l e d elsewhere(18.20) g i v e s rise to perfectly b i f u n c t i o n a l α,ω-di[2-(p-phenoxy)-2-oxazoline] o l i g o m e r s . The same b i f u n c t i o n a l o l i g o m e r s c a n be p r e p a r e d through a c h a i n e x t e n s i o n o f an α, ω,-di(phenol) o l i g o m e r o r b i s p h e n o l monomer w i t h methylene c h l o r i d e as o u t l i n e d i n Scheme 2. The m e c h a n i s t i c reasons f o r t h i s l a s t s u c c e s s f u l r e a c t i o n a r e o u t l i n e d i n Scheme 3, w h i l e Scheme 4 p r e s e n t s t h e s y n t h e t i c r o u t e s f o r t h e p r e p a r a t i o n o f α , a > - d i ( e l e c t r o p h i l i c ) a r o m a t i c p o l y e t h e r s u l f o n e s . The d e t a i l e d s y n t h e s i s o f these l a s t o l i g o m e r s has been a l r e a d y d i s c u s s e d e l s e where ( 1 5 ) . F i g u r e 1 g i v e s an example o f 200 MHz ^H-NMR s p e c t r a o f the s t a r t i n g a, u > - d i ( e l e c t r o p h i l i c ) o l i g o m e r and the obtained α ,u)-di[2-(p-phenoxy)-2-oxazoline] oligomer to demonstrate the q u a n t i t a t i v e n a t u r e o f t h i s r e a c t i o n . A d d i t i o n a l examples c a n be obtained from other previous publications from our laboratory(18^_20) . The second case r e f e r s t o t h e s y n t h e s i s o f t h e f i r s t example o f a b i f u n c t i o n a l polymer c o n t a i n i n g n o t o n l y c a t i o n i c a l l y p o l y m e r i z a b l e h e t e r o c y c l e s , b u t a l s o t h e i r own c a t i o n i c i n i t i a t o r as pendant g r o u p s ( 1 9 ) . Scheme 5 p r e s e n t s t h e s y n t h e s i s o f a p o l y ( 2 , 6 - d i m e t h y l 1,4-phenylene o x i d e ) c o n t a i n i n g b o t h 2 - ( p - p h e n o x y ) - 2 - o x a z o l i n e and bromobenzylic pendant groups. Incomplete etherification of a poly(2,6-dimethyl-1,4-phenylene o x i d e ) c o n t a i n i n g 0.14 -CH2Br groups per s t r u c t u r a l u n i t w i t h HPO l e a d s t o a polymer c o n t a i n i n g 0.106 2 - ( p - p h e n o x y ) - 2 - o x a z o l i n e groups and 0.033 -CH2Br groups p e r s t r u c t u r a l u n i t , c o r r e s p o n d i n g t o a 3.21/1 mole r a t i o between t h e h e t e r o c y c l i c monomer and i t s i n i t i a t o r . A 200 MHz ^H-NMR spectrum o f t h i s polymer i s p r e s e n t e d i n F i g u r e 2. T h i s polymer i s s t a b l e a t
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
100
PHASE-TRANSFER CATALYSIS
Scheme 1.
S y n t h e s i s and r e a c t i o n s o f 2-(£-hydroxyphenyl)-2-oxazoline.
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
PERCEC
Polymer Synthesis by Phase-Transfer Catalysis
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
9.
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
101
PHASE-TRANSFER CATALYSIS
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
102
-PhO"
+
CH C1 9
*
9
,
-PhOCH Cl
+ OH"
-PhOCH Cl
+
-PhO"
-PhOCH Cl
+
"OPhOxz
2
2
2
Scheme 3·
-PhOCH Cl
9
LJ •
-PhO" *-
+
CH 0 2
-Ph0CH 0Ph2
».
-Ph0CH 0Ph0xz 2
Reactions occurring during the preparation of α ω-ά±[2(£-phenoxy)-2-oxazoline] o l i g o m e r s a c c o r d i n g t o t h e second and t h i r d s y n t h e t i c r o u t e s i n Scheme 2.
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
9
PERCEC
Polymer Synthesis by Phase-Transfer Catalysis
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
9.
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
103
PHASE-TRANSFER CATALYSIS
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
104
Figure l a .
200MHz
H-NMR
spectrum
(CDC1
3>
TMS)
of
«^-di(bromobenzyl )
aromatic polyether sulfone (PSU) from Scheme 4.
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
9.
PERCEC
Polymer Synthesis by Phase- Transfer Catalysis
Figure l b . 200 MHz
H-NMR
spectrum
α,ω-di[2-(p-phenoxy)-2-oxazoli ne] obtained from e,«-di(bromobenzyl)
(CDC1 aromati c
105
TMS)
3>
polyether
PSU.
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
of su!fone
PHASE-TRANSFER CATALYSIS
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
106
Scheme 5.
Synthetic routes used for the preparation of functional polymers containing pendant 2-oxazoline and bromobenzyl groups.
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
9.
PERCEC
Polymer Synthesis by Phase-Transfer Catalysis
107
room t e m p e r a t u r e , b u t upon h e a t i n g above i t s g l a s s transition t e m p e r a t u r e , t h e -CH2Br groups i n i t i a t e t h e c a t i o n i c r i n g opening p o l y m e r i z a t i o n o f t h e c y c l i c imino e t h e r g i v i n g r i s e t o a polymer network and a s u b s t a n t i a l i n c r e a s e i n t h e g l a s s t r a n s i t i o n tempera t u r e . T h i s i s i l l u s t r a t e d b y t h e F i g u r e 3. Phase T r a n s f e r C a t a l y z e d P o l y e t h e r i f i c a t i o n o f C h a i n Ended F u n c t i o n a l Polymers, a New Method f o r t h e S y n t h e s i s o f S e q u e n t i a l Copolymers We have r e c e n t l y demonstrated t h a t t h e phase t r a n s f e r c a t a l y z e d polyetherification o f an ,ω-di(electrophilic) o r α,ω-di(nucleo philic) oligomer with a bisphenol o r an a,ω-di(electrophilic) oligomer represents a new and v e r y e f f i c i e n t method f o r t h e s y n t h e s i s o f r e g u l a r c o p o l y m e r s ( 8 . 2 1 ) . The c h a i n e x t e n s i o n o f two d i f f e r e n t a,ω-di(phenol) o l i g o m e r s w i t h a d i e l e c t r o p h i l i c monomer a g a i n t h r o u g h a phase t r a n s f e r c a t a l y z e d e t h e r i f i c a t i o n g i v e s r i s e t o segmented copolymers(22.) . Under c a r e f u l l y s e l e c t e d r e a c t i o n c o n d i t i o n s , t h e p o l y e t h e r i f i c a t i o n o f an ω-phenol o l i g o m e r w i t h an α,ω-di(electrophilic) o l i g o mer produces u n e x p e c t e d l y pure ABA t r i b l o c k copolymers(11)» w h i l e the p o l y e t h e r i f i c a t i o n o f an a, a > - d i ( e l e c t r o p h i l i c ) o l i g o m e r w i t h an α,ω-di(nucleophilic) o l i g o m e r represents a new method f o r t h e s y n t h e s i s o f p e r f e c t l y a l t e r n a t i n g ( A B ) b l o c k copolymers(9-12.22). An example f o r t h e s y n t h e s i s o f p o l y ( 2 , 6 - d i m e t h y l - 1 , 4 - p h e n y l e n e oxide) - aromatic p o l y ( e t h e r - s u l f o n e ) - poly(2,6-dimethyl-1,4-pheny l e n e o x i d e ) ABA t r i b l o c k copolymer i s p r e s e n t e d i n Scheme 6. Q u a n t i t a t i v e e t h e r i f i c a t i o n o f t h e two polymer c h a i n ends has been accom p l i s h e d under m i l d r e a c t i o n c o n d i t i o n s d e t a i l e d elsewhere(11). F i g u r e 4 p r e s e n t s t h e 200 MHz T-H-NMR s p e c t r a o f t h e - ( 2 , 6 - d i m e t h y l phenol) poly(2,6-dimethyl-1,4-phenylene oxide), of the a, u ) - d i ( c h l o r o a l l y ) a r o m a t i c p o l y e t h e r s u l f o n e and o f t h e o b t a i n e d ABA t r i b l o c k copolymers as c o n v i n c i n g e v i d e n c e f o r t h e q u a n t i t a t i v e r e a c t i o n o f t h e p a r e n t polymers c h a i n ends. A d d i t i o n a l e v i d e n c e f o r the v e r y c l e a n s y n t h e t i c p r o c e d u r e comes from t h e g e l p e r m e a t i o n chromatograms o f t h e two s t a r t i n g o l i g o m e r s and o f t h e o b t a i n e d ABA t r i b l o c k copolymer p r e s e n t e d i n F i g u r e 5.
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
α
n
ω
Thermotropic Polyethers A New C l a s s o f M a i n C h a i n L i q u i d C r y s t a l l i n e Polymers R e c e n t l y we have d e v e l o p e d a new c l a s s o f t h e r m o t r o p i c liquid c r y s t a l l i n e (LC) m a i n - c h a i n p o l y m e r s , i . e . , p o l y e t h e r s o f mesogenic bis-phenols(16-17.23-26). Since the obtained polymers a r e n o t s o l u b l e i n d i p o l a r a p r o t i c s o l v e n t s , the only a v a i l a b l e s y n t h e t i c avenue f o r t h e i r p r e p a r a t i o n c o n s i s t s i n t h e phase t r a n s f e r catalyzed polyetherification. There a r e s e v e r a l v e r y i m p o r t a n t advantages we o b t a i n from t h i s n o v e l c l a s s o f LC p o l y m e r s . They c a n be p r e p a r e d w i t h w e l l d e f i n e d c h a i n ends and narrow m o l e c u l a r w e i g h t d i s t r i b u t i o n . T h e r e f o r e , we could provide important i n f o r m a t i o n concerning the i n f l u e n c e o f the nature of t h e polymer chain ends on their mesomorphic behavior(16.23-24). They a r e s o l u b l e i n c o n v e n t i o n a l s o l v e n t s , have lower m e l t i n g and i s o t r o p i z a t i o n t e m p e r a t u r e s and s t i l l b r o a d e r t h e r m a l s t a b i l i t y o f t h e mesophase t h a n t h e c o r r e s p o n d i n g poly-
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
108
PHASE-TRANSFER CATALYSIS
τ 8
1
1 6
1 6,Ρ
Figure 2.
200 MHz
1 4
1
1 2
1
Γ 0
Ρ Μ
*H-NMR
spectrum
poly(2,6-dimethyl-l,4-phenylene
(CDC1 ) 3
oxide)
containing
of
the 2-oxazo
l i n e and bromobenzyl pendant groups.
MO
180
220
260
300
340
T/°C
Figure 3.
DSC
heating scans
(20°C/min) of the
poly(2,6-dimethyl-2,4-pheny-
lene oxide) containing 2-oxazoline and bromobenzyl pendant groups. A) second heating scan ( f i r s t heating scan up to 200°C); B) t h i r d heating
scan; C) fourth heating scan (after annealing 30 min. at
270°C). In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Scheme 6.
Synthesis of poly(2,6-dimethyl-l,4-phenylene oxide)aromatic polyether sulfone-poly(2,6-dimethyl-l,4-phenylene oxide) (PPO-PSU-PPO) t r i b l o c k copolymer.
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
•Ό
ο ν©
m n m π
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
110
PHASE-TRANSFER CATALYSIS
8
Figure 4a.
200 MHz H-NMR
1
6
spectrum
2
0 δ in p p m
of ω-(2,6-dimethylphenol)
poly(2,6-di
methyl-1,4-phenylene oxide) (PPO) (M « 2,235. CC1 , TMS). p
τ
1
8
Figure 4b.
200 MHz
1
6
1
1
4
1
1
4
1
Γ
2 0 δ in p p m
H-NMR spectrum of a,ci>-di(chloro a l l y l ) aromatic poly
ether sulfone (PSU) from Scheme 4 (M * 1,930, CDC1 , TMS). R
3
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
PERCEC
Polymer Synthesis by Phase- Transfer Catalysis
111
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
9.
22 26 30 34 Elution volume in ml
Figure 5.
GPC
curves of:
Α) ω-(2,6-dimethylphenol ) PPO,
ο,ω-dKchloroallyl) PSU (M
n
(M
p
« 1.930); B)
« 3.900); and C) PP0-PSU-PP0 triblock
copolymer.
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
PHASE-TRANSFER CATALYSIS
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
112
e s t e r s ( 2 5 ) . The s y n t h e s i s o f LC c o p o l y e t h e r s a l l o w s us t o t a i l o r t h e i r t h e r m a l t r a n s i t i o n s over a v e r y b r o a d range o f tempera t u r e s (23_i25). A t t h e same time, they l e t us o b t a i n i n f o r m a t i o n concerning t h e i n f l u e n c e o f sequence distribution on t h e i r mesomorphic p r o p e r t i e s ( 2 6 ) . L a s t b u t n o t l e a s t , b y v a r y i n g t h e p r e v i o u s l y d i s c u s s e d methods f o r t h e s y n t h e s i s o f s e q u e n t i a l copolymers we c o u l d develop t h e f i r s t c l a s s e s o f b o t h segmented copolymers and a l t e r n a t i n g b l o c k copolymers c o n t a i n i n g t h e r m o t r o p i c LC segments i n one b l o c k and e i t h e r e l a s t o m e r i c o r t h e r m o p l a s t i c segments as t h e second block(27.). Scheme 7 o u t l i n e s an example f o r the s y n t h e s i s o f t h e t h e r m o t r o p i c p o l y e t h e r s and c o p o l y e t h e r s based on 4,4* - d i h y d r o x v b i p h e n y 1 (25). A c o m p a r i s o n between t h e t h e r m a l t r a n s i t i o n s o f a s e t o f p o l y e t h e r s and t h e c o r r e s p o n d i n g p o l y e s t e r s i s presented i n F i g u r e 6. F i g u r e 7 demonstrates t h e a b i l i t y t o tailor the thermal stability range o f t h e mesophase through copolyetherification. There a r e s e v e r a l o t h e r a c t i v e t o p i c s under e x a m i n a t i o n i n o u r l a b o r a t o r y , f o r example, s u r f a c e m o d i f i c a t i o n o f polymers under phase t r a n s f e r c a t a l y z e d r e a c t i o n s and s i n g l e e l e c t r o n t r a n s f e r phase transfer catalyzed polymerizations. The l i m i t e d space, however, p r e c l u d e s d i s c u s s i o n here. What w i l l phase t r a n s f e r c a t a l y s i s p r o v i d e polymer c h e m i s t r y w i t h i n the near future? I t i s apparently s t i l l t o e a r l y t o p r e d i c t t h i s . We a r e n o t y e t i n t h e p o s s e s s i o n o f many e l e m e n t a l m e c h a n i s t i c and k i n e t i c u n d e r s t a n d i n g s i n o r d e r t o answer q u e s t i o n s l i k e , f o r example, why n o t " l i v i n g p o l y e t h e r i f i c a t i o n ? " Br-(CH )-Br 2
+
Η0-^5^-^Ο^-0Η
TBAH Aqueous NaOH Nitrobenzene
Where: η « 5, 7, 9 o r 11
TBAH Aqueous NaOH Nitrobenzene
BHCH * [0-^o)--@ 2
7
Where: x/y = 0.1 - 9.0
Scheme 7.
mole/mole
S y n t h e t i c avenues used f o r t h e s y n t h e s i s o f A j A ' - d i h y d r o x y b i p h e n y l p o l y e t h e r s and c o p o l y e t h e r s .
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
9.
113
Polymer Synthesis by Phase- Transfer Catalysis
PERCEC
260 240 220 200 ο
g' 130
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
I
160 140 120
5
Figure
6.
Thermal versus
transition n,
the
(A)
T
m
number
,
9
temperatures of
(Δ)
for:
T.
(data
1)
11
(T^ = m e l t i n g ,
methylene
4,4'-dihydroxybiphenyl esters
7
units
in
polyethers
from
T.
the (t)
reference
=
isotropization)
polymers Τ
,
(ο)
T.;
containing 2)
poly
the
mole
% of
the
homo-
25).
230 210 190
°I-
£ 170 150 130 0
10
20
30
40
50
60
70
80
90
MOLE X
r
igure
7.
Thermal
transition
1,7-dibromoheptane copolymers and
based
temperatures in on
the
(Τ
reaction
,
T. )
100
-(CH ) 2
7
versus
mixture,
4,4'-dihydroxybiphenyl,
for
and
1,7-dibromoheptane,
1,4-dibromononane.
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
PHASE-TRANSFER CATALYSIS
114 Acknowledgments
Most o f t h i s work has been s u p p o r t e d by t h e Polymers Program o f the N a t i o n a l S c i e n c e F o u n d a t i o n under G r a n t N o . DMR 82-13895. I am d e e p l y g r a t e f u l t o my d e d i c a t e d coworkers l i s t e d as c o a u t h o r s i n the referenced papers.
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
References 1. C. M. Starks, J . Amer. Chem. Soc., 93, 195 (1971). 2. A. Brandstrom, "Preparative Ion Pair Extraction," an Introduction to Theory and Practice, Apotekarsocieteten, Hassle Lakemedel, First Ed., 1974; Second Ed., 1976. 3. A. Brandstrom, "Principles of Phase Transfer Catalysis by Quaternary Ammonium Salts," in "Advances in Physical Organic Chemistry," Vol. 15, V. Gold, Ed., Academic Press, London and New York, 1977, p. 267. 4. W. P. Weber and G. W. Gokel, "Phase Transfer Catalysis in Organic Synthesis," in Reactivity and Structure, Vol. 4, K. Hafner et a l . , Eds., Springer-Verlag, Berlin - Heidelberg, 1977. 5. C. M. Starks and C. Liotta, "Phase Transfer Catalysis. Principles and Techniques," Academic Press, London and New York, 1978. 6. Ε. V. Dehmlov and S. S. Dehmlov, "Phase Transfer Catalysis." First Ed., 1980; Second Revised Ed., Verlag Chemie, Weinheim, 1983. 7. L. J . Mathias and C. E. Carralier J r . , Eds., "Crown Ethers and Phase Transfer Catalysis in Polymer Science," Plenum Press, New York 1984. 8. V. Percec and B. C. Auman, Makromol. Chem., 185, 617 (1984). 9. V. Percec and B. C. Auman, Makromol. Chem., 185, 1867 (1984). 10. V. Percec, B. C. Auman and P. L. Rinaldi, Polym. Bull., 10, 391 (1983). 11. V. Percec and H. Nava, Makromol. Chem., Rapid Commun., 5, 319 (1984). 12. V. Percec, H. Nava and B. C. Auman, Polym. J., 16, 681 (1984). 13. V. Percec, P. L. Rinaldi and B. C. Auman, Polym. Bull., 10, 215 (1983). 14. V. Percec, P. L. Rinaldi and B. C. Auman, Polym. Bull., 10, 397 (1983). 15. V. Percec and B. C. Auman, Polym. Bull., 12, 253 (1984). 16. Percec, T. D. Shaffer and H. Nava, J . Polym. Sci., Polym. Let. Ed., 22, 637 (1984). 17. T. D. Shaffer and V. Percec, J . Polym Sci., Polym. Chem. Ed., 24, 451 (1986). 18. V. Percec, H. Nava and J . M. Rodriquez-Parada, J . Polym. Sci., Polym. Lett. Ed., 22, 523 (1984). 19. V. Percec, H. Nava and J . M. Rodriquez-Parada, Polym. Bull., 12, 261 (1984). 20. V. Percec, H. Nava and J . M. Rodriguez-Parada, in "Advances in Polymer Synthesis," J . E. McGrath and Β. M. Culbertson, Eds., Plenum Press, New York, 1985, p. 235. 21. V. Percec and B. C. Auman, Polym. Bull., 10, 385 (1983).
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
9. PERCEC 22. 23. 24. 25. 26.
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: December 19, 1987 | doi: 10.1021/bk-1987-0326.ch009
27.
Polymer Synthesis by Phase-Transfer Catalysis
115
V. Percec, i n "Cationic Polymerization and Related Processes." E. J . Goethals, Ed., Academic Press, London and New York, 1984, p. 347. V. Percec and T. D. Shaffer, i n "Advances in Polymer Synthesis," J . E. McGrath and Β. M. Culbertson, Eds., Plenum Press, New York, 1985, p. 133. T. D. Shaffer and V. Percec, Makromol. Chem. Rapid Commun., 6, 97 (1985). T. D. Shaffer and V. Percec, J . Polym. Sci., Polym. Lett. Ed., 23, 185 (1985). T. D. Shaffer, M. Jamaludin and V. Percec, J . Polym. Sci., Polym. Chem. Ed., 24, 15 (1986). T. D. Shaffer and V. Percec, J . Polym. Sci., Polym. Lett. Ed., 24, 185 (1985).
RECEIVED August 20, 1986
In Phase-Transfer Catalysis; Starks, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.