Photovoltaic Performance Improvement in Vacuum ... - ACS Publications

1. INTRODUCTION. Organic-inorganic lead halide perovskite solar cells with the basic perovskite formula of ABX3, where A+ is CH3NH3 (MA+), CH5N2 (FA+)...
0 downloads 0 Views 4MB Size
Subscriber access provided by Imperial College London | Library

Article

Photovoltaic Performance Improvement in Vacuum-Assisted Meniscus Printed Triple-Cation Mixed-Halide Perovskite Films by Surfactant Engineering Ershad Parvazian, Amir Abdollah-zadeh, Mehdi Dehghani, and Nima Taghavinia ACS Appl. Energy Mater., Just Accepted Manuscript • DOI: 10.1021/acsaem.9b00707 • Publication Date (Web): 05 Aug 2019 Downloaded from pubs.acs.org on August 6, 2019

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Energy Materials

Photovoltaic Performance Improvement in Vacuum-Assisted Meniscus Printed Triple-Cation Mixed-Halide Perovskite Films by Surfactant Engineering Ershad Parvazian†, Amir Abdollah-zadeh†,* , Mehdi Dehghani‡ and Nima Taghavinia‡ † Department

of Materials Eng., Tarbiat Modares University, 14115-143, Tehran, Iran.

‡ Department

of Physics, Sharif University of Technology, 11155-9161, Tehran, Iran.

Keywords: meniscus printing, surfactant, perovskite, vacuum process, solar cell,

ACS Paragon Plus Environment

1

ACS Applied Energy Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 41

ABSTRACT: Scalable coating methods have recently emerged as practical alternative deposition

techniques to the conventional spin-coating, in spite of their lower yielding power conversion efficiencies (PCEs). The most important barrier acting against the use of scalable deposition methods to get a highly absorbing (>95%) film with controlled morphology in the high crystallinity of perovskite particles is the impossibility of anti-solvent dripping during the deposition. Here, we demonstrate the positive role of both surfactant-engineering and the vacuum-annealing ( 1 cm2. physica status solidi (a) 2018, 215 (21), 1800419. (30) Rong, Y.; Venkatesan, S.; Guo, R.; Wang, Y.; Bao, J.; Li, W.; Fan, Z.; Yao, Y. Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells. Nanoscale 2016, 8 (26), 12892-12899.

ACS Paragon Plus Environment

26

Page 27 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Energy Materials

(31) Li, X.; Bi, D.; Yi, C.; Décoppet, J.-D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 2016, 353 (6294), 58-62. (32) Parvazian, E.; Abdollah-zadeh, A.; Akbari, H. R.; Taghavinia, N. Fabrication of perovskite solar cells based on vacuum-assisted linear meniscus printing of MAPbI3. Solar Energy Materials and Solar Cells 2019, 191, 148-156. (33) Dai, X.; Deng, Y.; Van Brackle, C. H.; Huang, J. Meniscus Fabrication of Halide Perovskite Thin Films at High Throughput for Large Area and Low-cost Solar Panels. International Journal of Extreme Manufacturing 2019, in press. (34) Mallajosyula, A. T.; Fernando, K.; Bhatt, S.; Singh, A.; Alphenaar, B. W.; Blancon, J.-C.; Nie, W.; Gupta, G.; Mohite, A. D. Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Applied Materials Today 2016, 3, 96-102. (35) Deng, Y.; Zheng, X.; Bai, Y.; Wang, Q.; Zhao, J.; Huang, J. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy 2018, 3 (7), 560. (36) Gil‐Escrig, L.; Momblona, C.; La‐Placa, M. G.; Boix, P. P.; Sessolo, M.; Bolink, H. J. Vacuum Deposited Triple‐Cation Mixed‐Halide Perovskite Solar Cells. Advanced Energy Materials 2018, 8 (14), 1703506. (37) Saki, Z.; Aitola, K.; Sveinbjörnsson, K.; Yang, W.; Svanström, S.; Cappel, U. B.; Rensmo, H.; Johansson, E. M.; Taghavinia, N.; Boschloo, G. The synergistic effect of dimethyl sulfoxide vapor treatment and C60 electron transporting layer towards enhancing current collection in mixed-ion inverted perovskite solar cells. Journal of Power Sources 2018, 405, 70-79.

ACS Paragon Plus Environment

27

ACS Applied Energy Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 41

(38) Xiao, S.; Bai, Y.; Meng, X.; Zhang, T.; Chen, H.; Zheng, X.; Hu, C.; Qu, Y.; Yang, S. Unveiling a key intermediate in solvent vapor postannealing to enlarge crystalline domains of organometal halide perovskite films. Advanced Functional Materials 2017, 27 (12), 1604944. (39) Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348 (6240), 1234-1237. (40) Bai, Y.; Xiao, S.; Hu, C.; Zhang, T.; Meng, X.; Li, Q.; Yang, Y.; Wong, K. S.; Chen, H.; Yang, S. A pure and stable intermediate phase is key to growing aligned and vertically monolithic perovskite crystals for efficient PIN planar perovskite solar cells with high processibility and stability. Nano Energy 2017, 34, 58-68. (41) Chen, H.; Ding, X.; Xu, P.; Hayat, T.; Alsaedi, A.; Yao, J.; Ding, Y.; Dai, S. Forming Intermediate Phase on the Surface of PbI2 Precursor Films by Short-Time DMSO Treatment for High-Efficiency Planar Perovskite Solar Cells via Vapor-Assisted Solution Process. ACS applied materials & interfaces 2018, 10 (2), 1781-1791. (42) Ye, F.; Tang, W.; Xie, F.; Yin, M.; He, J.; Wang, Y.; Chen, H.; Qiang, Y.; Yang, X.; Han, L. Low‐Temperature Soft‐Cover Deposition of Uniform Large‐Scale Perovskite Films for High‐Performance Solar Cells. Advanced Materials 2017, 29 (35), 1701440. (43) Deng, Y.; Peng, E.; Shao, Y.; Xiao, Z.; Dong, Q.; Huang, J. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science 2015, 8 (5), 1544-1550. (44) Deng, Y.; Zheng, X.; Bai, Y.; Wang, Q.; Zhao, J.; Huang, J. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy 2018, 3, 560-566.

ACS Paragon Plus Environment

28

Page 29 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Energy Materials

(45) Liu, S.; Huang, W.; Liao, P.; Pootrakulchote, N.; Li, H.; Lu, J.; Li, J.; Huang, F.; Shai, X.; Zhao, X. Correction: 17% efficient printable mesoscopic PIN metal oxide framework perovskite solar cells using cesium-containing triple cation perovskite. Journal of Materials Chemistry A 2018, 6 (9), 4220-4220. (46) Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & environmental science 2016, 9 (6), 1989-1997. (47) Rai, M.; Rahmany, S.; Lim, S. S.; Magdassi, S.; Wong, L. H.; Etgar, L. Hot dipping post treatment for improved efficiency in micro patterned semi-transparent perovskite solar cells. Journal of Materials Chemistry A 2018, 6 (46), 23787-23796. (48) Correa‐Baena, J. P.; Anaya, M.; Lozano, G.; Tress, W.; Domanski, K.; Saliba, M.; Matsui, T.; Jacobsson, T. J.; Calvo, M. E.; Abate, A. Unbroken Perovskite: Interplay of Morphology, Electro‐optical Properties, and Ionic Movement. Advanced materials 2016, 28 (25), 5031-5037. (49) Yao, Z.; Wang, W.; Shen, H.; Zhang, Y.; Luo, Q.; Yin, X.; Dai, X.; Li, J.; Lin, H. CH3NH3PbI3 grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition. Science and Technology of advanced MaTerialS 2017, 18 (1), 253-262.

ACS Paragon Plus Environment

29

ACS Applied Energy Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 30 of 41

Table of Contents Graphic

ACS Paragon Plus Environment

30

Page 31 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

ACS Applied Energy Materials

Perovskite ink W/O Triton X-100 surfactant Perovskite ink with Triton X-100 surfactant

Hydrophobic functional group

Hydrophilic functional group ACS Paragon Plus Environment

ACS Applied Energy Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Page 32 of 41

(b)

(a)

Hydrophilic functional group

Hydrophobic functional group Perovskite ink With surfactant

(c)

(d) Printer blade

Printer blade

After printing

During the printing

Perovskite ink Without surfactant

ACS Paragon Plus Environment

After printing

During the printing

Page 33 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

ACS Applied Energy Materials

ACS Paragon Plus Environment

ACS Applied Energy Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Glass substrate without heat-treatment

Glass substrate with 500 ℃ heat-treatment

Perovskite precursor with no surfactant

Perovskite Precursor with 12.5 mM X-100

ACS Paragon Plus Environment

Page 34 of 41

Page 35 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

ACS Applied Energy Materials

(a)

(b)

(C)

ACS Paragon Plus Environment

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

(a)

ACS Applied Energy Materials

500 nm

500 nm

(c)

500 nm

(b)

(d)

ACS Paragon Plus Environment

500 nm

Page 36 of 41

Page 37 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

ACS Applied Energy Materials

ACS Paragon Plus Environment

ACS Applied Energy Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

ACS Paragon Plus Environment

Page 38 of 41

Page 39 of 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

ACS Applied Energy Materials

(a) (b)

ACS Paragon Plus Environment

ACS Applied Energy Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

ACS Paragon Plus Environment

Page 40 of 41

Page 41 of 41

2 4

C u r r e n t D e n s ity (m A /C m 2 )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

ACS Applied Energy Materials

2 2 2 0 1 8 1 6 1 4 1 2 1 0 8 6 4 2 0

R e fe 0 .2 5 1 .7 5 1 2 .5

0 .0

0 .1

0 .2

r e m m m

0 .3

n c M M M

e c e ll T r ito n X -1 0 0 T r ito n X -1 0 0 T r ito n X -1 0 0

0 .4

0 .5

0 .6

ACS Paragon Plus Environment

0 .7

V o lta g e (V )

0 .8

0 .9

1 .0

1 .1