PHYSICAL PROPERTIES OF Ce TO CI6HYDROCARBONS
Nov., 1955
1173
PHYSICAL PROPERTIES OF 14 AMERICAN PETROLEUM INSTITUTE RESEARCH HYDROCARBONS, C g TO C1: BY DAVID L. CAMINAND FREDERICK D. ROSS;NI Petroleum Research Laboratory, Carnegie Institute of Technology, Pittsburgh, Pennsylvania Received June 10, 1066
For n-undecane, n-tridecane, n-tetradecane, n-pentadecane, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-methylnaphthalene, cis-decahydronaphthalene, trans-decahydronaphthalene, cis-hexahydroindan and trans-hexahydroindan, highly pur!fi,ed hydrocarbons of the American Petroleum Institute (API) Research series, the following properties were measured: densities at 20,25 and 30°,refractive indices a t seven wave lengths a t 20,25 and 30’; and boiling points and vapor pressures from 40 to 790 mm. For naphthalene and 2-methylnaphthalene, also of the API Research series, boiling points and vapor pressures from 40 t o 770 mm., were measured. The data on refractive indices were correlated by means of modified Cauchy and Hartmann equations, and values of the constants are given for each compound, to permit precise evaluation of the refractive index aa a function of wave length, The data on vapor pressures were correlated with the Antoine equation and values of the three constants are given for each compound. Also included are calculated values of the specific dispersions, ( n ~nc)/d and (n, nD)/d.
-
-
Introduction The American Petroleum Institute Research Project 6 has so far reported data on the densities, refractive indices, and boiling points and vapor pressures for 81 different ApI Research hydrocarbons.2-s In this paper are reported similar data for an additional 14 API Research hydrocarbons.
Compounds Measured These API Research hydrocarbons were made available by the American Petroleum Institute through the American Petroleum Institute Research Project 44 at the Carnegie Institute of Technology. The ‘samples were purified by the American Petroleum Institute Research Project 6 from material supplied by the following laboratories: n-undecane, n-tetradecane, 1-tetradecene, 1-methyl-
naphthalene, 2-methylnaphthalene, cis-decahydronaphthalene and trans-decahydronaphtharene, by the American Petroleum Institute Research PrOjeCt 6, Carnegie Institute of Technology, Pittsburgh, Pennsylvania; n-tridecane, 1-tridecene, n-pentadecane and 1-pentadecene, by the American Petroleum Institute Research Project 42, Pennsylvania State University, University Park, Pennsylvania; cis-hexahydroindan and trans-hexahydroindan, by the American Petroleum Institute Research Project 45, Ohio State University, Columbus, Ohio; and naphthalene by the American Cyanamid Company, Bound Brook, New Jersey. The purification and determination of purity and freezing point of these compounds, have been or are being reported in other pa~ers.~JO The purity of the samples measured was as follows, in mole per cent.g*iO:n-un-
TABLE I VALUEBOB DENSITY Compound
Formula
n-Undecane CiiHzd n-Tridecane CisHes n-Tetradecane CirHao n-Pent adecane CisHn 1-Tridecene ClSHZ6 1-Tetradecene CiaHz8 1-Pentadecene CISHIO 1-Methylnaphthalene CiiHio cis-Decahydronaphthalene CioHis trans-Decahydronaphthalene Ci0Hi8 cis-Hexahydroindan CoHi, trans-Hexahydroindan CoHie a For air-saturated material a t 1 atmosphere.
Temp. coefficient
200
Density,“ g./mI. 250
30 O
0.74024 .75622 .76275 .76830 .76527 .77127 .77641 1.02031 0.89671 .86971 .88445 .86268
0.73652 .75270 .75917 .76488 .76168 .76767 .77290 1.01664 0.89291 .86592 .88031 .85850
0.73284 ,74907 ,75566 ,76140 .75801 .76416 .76939 1.01304 0.88911 .86222 .87623 ,85449
( 1 ) This investigation was performed aa part of the work of the American Petroleum Institute Research Project 6 in the Petroleum Research Laboratory of the Carnegie Institute of Technology, Pittsburgh, Pennsylvania. (2) C. B. Willingham, W. J. Taylor, J. M. Pignocco and F. D. Rossini, J . Ressorch Natl. Bur. Standards, 86, 219 (1945). (3) A. F. Forziati and F. D. Rossini, ibid., 43, 473 (1849). (4) A. F. Foreiati, W. R. Norris and F. D. Rossini, ibid.. 43, 555 (1949). (5) A. F. Forziati, ibid., 44, 373 (1950). (6) A. F. Foreiati, D. L. Camin and F. D. Rossini, ibid., 46, 406 (1950). (7) F. D. Rossini, B. J. Main and A. J. Streiff, “Hydrocarbons from Petroleum,” Reinhold Publ. Corp., New York, N. Y., 1953. ( 8 ) D. L. Camin, A. F. Forziati and F. D. Rossini, Tnrs JOURNAL, 68, 440 (1954).
of densit at 25O, g./ml‘ OC.
0,000740 ,000715 .000709 .000690 ,000726 .0007 11 .000702 ,000727 .000760 .000749 ,000822 ,000819
decane, 99.97 f 0.03; n-tridecane, 99.92 i 0.06; n-tetradecane, 99.93 =t0.06; n-pentadecane, 99.93 f 0.05; 1-tridecene, 99.85 f 0.09; 1-tetradecene, 99.73 f 0.13; 1-pentadecene, 99.89 f: 0.05; naphthalene, 99.96 Q 0.03; 1-methylnaphthalene, 99.98 f 0.02; 2-methylnaphthalene, 99.92 f 0.06; cis-decahydronaphthalene, 99.93 f 0.05; trans-decahydronaphthalene, 99.97 f 0.03 ; cis(9) A. J . S t r e i f f , L. F. & d e , C. M. Kennedy, M. E. Jsnea, V. A. Sedlak, C. B. Willingham and F. D. Rossini, J . Reeeorch Nall. Bur. Standards, 46, 173 (1950). (IO) A. J. Streiff, A. B. Hulme, P. A. Cowie, N. C. Krouskop and F. D. Rossini, Anal. Clrem., 27, 411 (1955).
1174
DAVID L. CAMINAND FREDERICK D. ROSSINI VALUESOF fi
x 0.150
.151 .152 .153 .154 .155 .156 .157 .158 .159 .160 .161 .162 .163 .164 .165 .166 .167 .168 .169 ,170 .171 .172 .173 .174 .175
=
1/(X
- X*)l.E
FOR
0.6878149
0.6562793
@He (red)
Bo
2.866295 8879 2.875174 8923 2.884097 8968 2.893065 9014 2.902079 9060 2.911139 9106 2.920245 9153 2.929398 9199 2.938597 9246 2.947843 9294 2.957137 9341 2.966478 9389 2.975867 9438 2.985305 9486 2.994791 9535 3.004326 9586 3.013912 9636 3.023548 9684 3.033232 9735 3.042967 9784 3 .052751 9828 3.062579 9879 3.072458 9932 3.082390 9985 3.092375 10040 3.102415
2.971500 9415 2.9809 15 9463 2.990378 9513 2.999891 9562 3.009453 9611 3.019064 9661 3.028725 9712 3.038437 9762 3.048199 9814 3.058013 9865 3.067878 9917 3.077795 9969 3.087764 10021 3.097785 10075 3.107860 10128 3.117988 10181 3.128169 10236 3.138405 10290 3.148695 10345 3.159040 10401 3.169441 10456 3.179897 10513 3.190410 10569 3.200979 10626 3.211605 10684 3.222289
TABLEI1 EACHOF SEVENWAVELENGTHS, . X,. FOR Wave length, X in P 0.5892620 0.5460740 p = i/(x - x*)1.4
THE
Vol. 59
RANGE A* = 0.1500 T O 0.1750
0.5015675
0.4861327
bi,DI
A
pH0 (blue)
BF
3.72943 1362 3.74305 1371 3.75676 1379 3.77055 1387 3.78442 1395 3.79837 1404 3.81241 1412 3.82653 1421 3.84074 1429 3.85503 1438 3.86941 1446 3.88387 1456 3 * 89843 1464 3.91307 1473 3.92780 1482 3.94262 1491 3.95753 1501 3.97254 1510 3.98764 1519 4.00283 1529 4.01812 1538 4.03350 1548 4.04898 1558 4.06456 1567 4.08023 1577 4.09600
4.401066 17838 4.418904 17955 4.436859 18074 4.454933 18194 4.473127 18315 4.491442 18436 4.509878 18560 4.528438 18684 4,547122 18810 4.565932 18937 4.584869 19065 4.603934 19195 4.623129 19326 4.642455 19457 4.661912 19590 4.681502 19723 4.701225 19858 4.721083 19995 4.741078 20133 4.76121 1 20273 4.781484 20413 4.801897 20556 4.822453 20698 4.84315 1 20844 4.863995 20990 4.884985
5.325815 24328 5.350143 24509 5.374652 24692 5.399344 24877 5.424221 25064 5.449285 25252 5.474537 25443 5.499980 25636 5.525616 25830 5.551446 26028 5.577474 26226 5.603700 26427 5.630127 26631 5.656758 26835 5.683593 27044 5.710637 27253 5.737890 27465 5.765355 27679 5.793034 27896 5.820930 28115 5.849045 28335 5.877380 28559 5.905939 28786 5.934725 29014 5.963739 29246 5.992985
hexahydroindan, 99.95 f 0.02; trans-hexahydroindan, 99.71 f 0.11. It is believed that in each case the impurity was of such nature and present in such small amount that the properties measured were not affected beyond the indicated limits of uncertainty. Measurements Made The measurements of densitv were made a t 20. 25 and 30°, with a density bdance previously deI
5.722459 27345 5.749804 27558 5.777362 27773 5.805135 27992 5.833127 28211 5.861338 28432 5.889770 28658 5.918428 28884 5.947312 29115 5.976427 29347 G .005774 29582 6.035356 29819 6.065175 30060 6.095235 30303 6.125538 30549 6.156087 30796 6.186883 31048 6.217931 31301 6.249232 31559 6.280791 31819 6.312610 32081 6.344691 32346 6.377037 32616 6.409653 32888 6.442541 33163 6.475704
0.4358342 BB
7.416812 41706 7.458518 42088 7,500606 42477 7.543083 42869 7.585952 43266 7.629218 43667 7.672885 44075 7.716960 44489 7.761449 44907 7,806356 4533 1 7.851687 45759 7.897446 46194 7.943640 46636 7.990276 47082 8.037358 47536 8.084894 47993 8,132887 48457 8.181344 48930 8.230274 48407 8.279681 49891 8.329572 50379 8.379951 50877 8.430828 51381 8.482209 51892 9,534101 52411 8.586512
scribed.'l The experimental values of density are given in Table I. Individual measurements were reproducible within 0.00003 g./ml. The accuracy of the tabulated values is estimated to be f0.00005 t o =kO.OOOlO g./ml. The refractive index was measured by means of the apparatus and procedure previously described .s The calculations and correlations were similarly (11) A. F. Foreiati, B. J. Mair and F. D. Rossini, J . Research Nall. B , , ~ .Standards, 36, 613 (1046).
PHYSICAL PROPERTIES OF C9TO C15HYDROCARBONS
Nov., 1955
1.44
TABLEI11 VALUESO F ' ? = (P0.435m VALUESOF ;h* Intervala of
0.14000
x* 0.000
Y =
((60.48688
1.483368 920 1.482448 923 1.481525 926 1.480599 929 1.479670 932 1.478738 935 I.477803 937 1.476866 940 1.475926 945 1.474981 947
.OOl .002 .003 .004 .005 .006 .007 .008 .009
- Po.m28)/(80.48ms
0.140 TO x* 0.15000 0.16000 - @D.66628)/(@0.48088 - (60.61607) 1.474034 1.464363 986 951 1,473083 1.463377 989 955 1,472128 1.462388 992 959 1.471169 1,461396 997 961 1.470208 1.460399 1000 965 1,469243 1.459399 969 1004 1.468274 1.458395 973 1008 1.467301 1.457387 1012 975 1.466326 1.456375 1015 980 1.465346 1.455360 1019 983 FROM
nm
+ C/(X -
0 :
61.40 e 2 1.38 1.36 -
0.1700
1,454341 1022 1,453319 1026 1,452293 1030 1.451263 1033 1.450230 1038 1.449192
X X
53
Y =
(~o.tr5aa
= 1/(X
-
1.42
i 1.40
e
*
X
-
$
- ~o.saso7)
(1) (2)
x x 6 eel
o
n -PARAFFINS
-X 0
I
2
$ 0
0
0
.
0
0
I
I
I
I
I
I
- 0.0045 .
I
T
- 0.0040
I
I
I
I
I
I
I
I
I
>0.0035
4
'
230
- 0.0040 - 0.0035 - 0.0°30 -0.0025
X X 0
-
X e
-
'
LI
e
g15003
X
$
1400
-
X
- 200 G
X
- 190 ; u
e
2
- 180$
e
X
1300
0
X
1200
-
1100
-
- 220
- 210
X X
0
- 170 0
- 160
n-PARAFFINS X
e
-
150 l l l l l l l l l 8 10 12 14 16 No. of carbon atoms. Fig. 3.-Plot of the constants B and C of the Antoine equation for vapor pressure for the normal paraffin hydrocarbons.
y
X
1.36 -
$
0
1700
X
3 1.38 -
e
X
m
2
I -ALKENES
1800 -
x = n,
-
ccl
19oot
- X*)*J
- e = c
6
X
I
T o facilitate the calculations, values of /3 and y were calculated over certain ranges. Table I1 of this report gives values of j3 at each of the seven wave lengths for values of X * from 0.1500 to 0.1750 p . Table I11 of this report gives values of y for values of X * from 0.140 to 0.175 p . These tables 1.44
x x
X
X
0
X*)'*6
~o.sse.za)/(~o.tsas3
X
x X X
X
The constants in the equation were adjusted by means of a modification of the interpolation method of Gurewitz and Tilton.12 The following l6Oo 6 abbreviations were used p
c
1.42
made as described previously, wherein the data obtained were correlated by means of the Hartmann equation as modified by Tilton and Gurewitz. l 2 nh =
X = n,
-
- rBn.s4~07), FOR 0.175~
1175
l 6
l
The value of y was determined from the relation (n0.43563
- n0.65628)/(n0.48583
- 120.14607)
(3)
Using Table 111, the corresponding value of A * was interpolated, Further interpolation in Table I1 yielded values for /3 for each of the seven wave lengths used. The constant C was then readily
DAVIDL. CAMINAND FREDERICK D. ROSSINI
1176
Vol. 59
TABLE IV VAL LJES OF REFRACTIVE INDEX Temp., OC.
Compd.
n-Undecane
20 25 30 20 25 30 20 25 30 20 25 30 20 25 30 20 25 30 20 25 30 20 25 30 20 25 30 20 25 30 20 25 30 20 25 30
n-Tridecane
n-Tetradecane
n-Pen tadecane
1-Tridecene
1-Tetradecene
1-Pentadecene
1-Methylnaphthalene
cis-Decahydronaphthalene
trans-Decahydronaphthalene
cis-Hexahydroindan
trans-Hexahydoindan
6678.1
6562.8
Refractive index Wave length in Bngstrom units 5892.6
5460.7
5015.7
4861.3
Hge
Heblue
1.41906 1.41687 1.41468 1.42744 1.42530 1.42316 1,43078 1.42870 1.42662 1.43375 1.43165 1.42955 1,43544 1.43325 1.43106 1.43839 1.43622 1.43405 1 .44089 1,43875 1.43661 1.62488 1,62240 1,62005 1.48309 1.48087 1.47865 1.47141 1.46923 1.46705 1.47417 1.47182 1.46947 1.46567 1.46333 1.46099
1.42144 1.41924 1.41704 1,42987 1.42773 1.42559 1.43324 1.43115 1.42906 1.43623 1.43412 1.43201 1.43820 1.43599 1.43378 1.44116 1.43897 1.43678 1.44365 1.44150 1.43935 1.63513 1.63259 1.63022 1.48950 1.48365 1.48140 1.47420 1.47200 1.46980 1.47690 1.47453 1.47216 1.46839 1.46604 1.46369
HF 1.42244 1.42023 1.41801 1.43088 1.42874 1.42660 1.43427 1.43217 1.43007 1.43726 1.43515 1.43304 1,43936 1,43714 1.43492 1.44232 1.44012 1.43792 1.44481 1.44265 1.44049 1.63958 1.63701 1.63463 1.48707 1.48481 1.48255 1.4?535 1.47315 1.47095 1.47803 1.47566 1.47329 1.46953 1.46717 1.46481
4358.3
Bpectral line Hered
1.41483 1.41266 1.41049 1.42314 1.42100 1.41886 1.42644 1.42439 1 .42234 1.42940 1.42732 1.42524 1.43060 1.42843 1.42626, 1.43354 1.43140 1.42926 1.43607 1.43395 1.43183 1.60828 1.60592 1.60360 1.47819 1.47601 1.47383 1.46654 1.46438 1.46222 1.46932 1,46700 1.46468 1.46092 1.45860 1.45628
Hc
1.41513 1.41296 1.41079 1.42345 1.42131 1.41917 1.42676 1.42470 1.42264 1.42971 1.42736 1.42555 1,43094 1.42877 1.42660 1.43388 1,43174 1.42960 1.43642 1.43429 1.43216 1.60940 1.60703 1,60471 1,47853 1.47635 1.47417 1.46688 1.46472 1.46256 1.46968 1.46735 1,46502 1.46126 1.45893 1,45660
N ~ D
1.41725 1.41507 1.41289 1.42560 1.42346 1.42132 1.42892 1.42685 1.42478 1.43188 1.42979 1.42770 1.43336 1,43118 1.42900 1.43631 1.43415 1.43199 1.43883 1.43669 1,43455 1.61755 1.61512 1.61278 1.48098 1.47878 1.47658 1.46932 1.46715 1.46498 1,47210 1.46976 1.46742 1.46363 1.46130 1,45897
Hgk!
1.42647 1.42424 1.42201 1.43501 1.43287 1,43073 1.43849 1,.43637 1.43425 1.44153 1.43940 1.43727 1.44409 1.44185 1.43961 1.44707 1.44484 1.44261 1.44957 1.44739 1.44521
I I
1.65627 1.65386 1.49189 1.48959 1.48729 1.48011 1.47789 1.47567 1.48265 1.48025 1.47785 1.47419 1.47182 1.46945
TABLE V VALUE0 OF THE
Compound
n-Undecane n-Tridecane n-Tetradecane n-Pentadecane 1-Tridecene 1-Tetradecene 1-Pentadecene 1-Methylnaphthalene cis-Decahydronaphthalene trans-Decahydronaphthalene cis-Hexahydroindan trans-Hexahydroindan
Formula
CONSTANTS OF THE MODIFIEDCAUCHY EQUATION Constants in the equation An = a -!- b / V a X 10: b X 10: 20 to 25O 25 to 30° 20 t o 25O 25 to 30°
2.120 2.135 2.004 2.049 2.110 2.074 2.087 2.126 2.084 2.116 2,272 2.288
computed by inserting the observed values of the refractive index at X = 0.65628,0.54607 and 0.43583 p ) the numerical value of C, and appropriate values of PA, successively into the above equation and solving three times for n,. Table IV gives the
2.120 2.135 2.004 2.049 2.110 2.074 2.087 2.245 2.084 2.115 2.272 2.288
0.0202 .0011 ,0224 .0146 ,0249 .0295 .0167 .lo43 .0410 .0203 .0234 .0158
0.0202 .0011 .0224 .0146 .0249 .0295 .0167 .0311 ,0410 .0203 .0234 ,0158
L POX 10' 20 to 25 25 t o 30'
6.92 3.84 3.68 3.64 2.17 5.39 4.91 2.45 9.15 3.98 6.80 8.84
5.72 '4.00 3.32 4.36 2.20 5.13 4.84 4.09 9.48 4.31 6.41 3.89
values of refractive index a t 7 wave lengths a t 20, 25 and 30". Table V gives the values of the constants ofjthe modified Cauchy equation. Table VI gives the values of the constants of the modified Hartmann equation. The last columns of Tables
k
Nov., 1955
PHYSICAL PROPERTIES OF Cs TO C I HYDROCARBONS ~
V and VI give the root mean square values of the deviations of the observed from the calculated points. Individual measurements were reproducible within 10.00002 to ~0.00003. The accuracy of the tabulated values is estimated to be =k0.00005 to j=0.00008. Table VI1 gives the values of the specific dispersions, l O * ( n ~- nc)/d and 104(n, - n ~ ) / d calcu, lated from the values of refractive index in Table IV and of density in Table I. The measurements and calculations of vapor pressures and boiling points were made as previously d e s ~ r i b e d ,with ~ ~ ~the . ~ ~samples ~ being introduced into the apparatus without contact with the air of the atmosphere.6 Table VI11 gives the experimental data on the temperature and pressures of the liquid-vapor equilibrium for the compounds measured. Using the experimental data and the method of least squares, calculations were made to yield constants for the Antoine equation for vapor pressure log10 P = A - B / ( C + t ) (6) Table IX gives the values of the three constants of the Antoine equation, the normal boiling point a t 760 mm., the pressure coefficient of the boiling point a t 760 mm., and the range of measurement in pressure and in temperature. The last column of Table IX gives the root mean-square value of the ratios of the deviations of the observed points from
1800
X
X=B
-e
X
e.C
-
1600
-
0
1500
% m1400
3 s
a
- 210
X
-
x
- 200
x
e
G
X
-
%
- 190 8 0
-s
e
1
* 1300 -
X
e
- 180 e
X
1200
- 220
X
e
4
- 230
X
0
l7Oo
1177
-
- 170
0
X
1100 -
I
- ALKENES
e 0
- 160
150 1 1 1 1 1 1 1 1 1 1 1 4 6 8 10 12 14 No. of carbon atoms in the normal alkyl radical. Fig. 4.-PIot of the constants B and C of the Antoine equation for vapor pressure for the monoolefin hydrocarbons (1-alkenes).
1
1178
DAVIDL. CAMINAND FREDERICK D. ROSSINI
the Antoine equation to the expected standard deviation. Individual measurements of boiling points were reproducible within Zt0.002 to =!~0.003~. The accuracy of the tabulated values of the normal boiling point is estimated to be Zt0.008 to ~k0.015".
2-Methylnaphthalene
241.760 240.957 240.336 239.613
772.03 758.42 748.07 736.00
TABLEVI11 223.026 EXPERIMENTAL DATAO N THE TEMPERATURES AND PRES213.963 SURES O F THE LIQUID-VAPOR EQUILIBRIUM P,mm. t , 'C. P, mrn. t, O C . P, mm. n-Undecane n-Tridecane n-Tetradecane
1, 'C.
197.272 196.511 195.794 195.242 194.595 188.431 179.802 171.724 164.039 156.841 150.437 143.585 138.713 132.757 127.467 122.607 118.963 115.522 110.962 104.458
786.23 771.68 758.17 747.91 736.05 630.45 503.12 403.38 322.76 261.22 214.14 171.68 145.87 118.79 98.29 82.16 71.54 62.53 52.16 41.55
n-Pentadecane
270.499 269.164 262.310 252.703 235.150 219.982 206.886 188.905 180.919 169.686
266.940 260.094 250.494 241.504 232.940
I
173.613
234.052 227.524 218,367 209.788 201.634
735.86 630.35 503.00 403.29 323.69
252.104 735.86 245.408 630.36 236.013 503.00 218.840 323.71
187.176 214.10 204.019 214.11 174.699 145.63 191.234 145.64 162.749 157.603
98.10 82.01 173.637
150.011 145.160 139.300
62.45 165.911 51.99 41.48 154.860
I-Tridecene
81.97 62.44 41.49
I-Tetradecene
251.750 771.36 758.08 232.663 758.08 250.984 758.09 735.86 231.393 735.83 249.689 735.82 630.36 224.865 630.35 242.996 630.35 503.00 207.152 403.30 224.822 403.31 323.72 198;998 323.78 216.455 323.78 214.11 184.559 214.16 201.642'214.15 145.64 188.869I145.81 160.170 98.22 81.96 62.44 147.442 62.44 163.516 62.44 142.603 51.91 158.464 51.91 41.49
1-Pentadecene
268.273
236.065 771.28 254.165 771.44 235.316 757.97 253.401 758.02
Naphthalene
218.638 758.10 217.848 217.237 735.79 216.539 630.35 503.04 200.471 403,34 191.702 323.78 183.336 175.526 168.540 161.104 155.766 143.930 138.677 134.548 130.836 51.91 126.325
772.00 758.40 748.03 736.00 503.08 403.34 323.72 261.16 214.14 171.60 145.78 98.26 82.12 71.53 62.54 52.12
I-Methylnaphthalene
245.326 244.555 243.949 243.177 236.243 226.498 217.375 208.677 200.536 193.280 185.505 179.971 167.212 161.689 157.539 153.600
770.74 757.79 747.48 735.67 630.25 502.97 403.25 323.74 261.26 214.08 171.62 145.83 98.17 82.07 71.33 62.36
142 140
41.43
I
503.21 403.40 205,329 323.75 197.234 261.17 190.033 214.15 182.322 171.63 176.722 145.76
164.155 158.689 154.576 150.665 145.431 139.193
98.26 82.07 71.55 62.55 52.14 41.52
cis-Decahydronaphthalene
196.376 195.635 195.055 194.370 187.823 178.629 170.056 161.885 154.245 147.456 140.176 135.021 128.731 123.132 118.004 114.152 110.490 105.685 99.883
cis-Hexahydroindan
168.407 167.718 167.170 166.527 160.350 151.698 143.611 135,917 128.708 122.308 115.466 110.605 99.401 94.583 90.961 87.511 82.973 77.497
VOl. 59
770.57 757.63 747.63 735.68 630.29 503,06 403.32 323.76 261.15 214.15 171.62 145.76 98.16 82.08 71.43 62.48 52.03 41.49
770.52 757.57 747.50 735.66 630.29 503.05 403.33 323.76 261.15 214.11 171,62 145.76 118.71 98.17 82.08 71.43 62.49 52.06 41.47
trans-Decahydronaphthalene
187.867 187.140 186.563 185.885 179.395 170.297 161.801 153.719 146.156 139.441 132.255 127.140 120 918 115.358 110.316 106.500 102.891 98.129 92.360
770.55 757,60 747.55 735.67 630.29 503.06 403.33 323.75 261.15 214.13 171.62 145.77 118.72 98.15 82.10 71.42 62.49 52.07 41.48
trans-Hexahydroindan
161.642 160.955 160.413 159.779 153.673 145.118 137.115 129.500 122.378 116.059 109.299 104.486 93.415 88.648 85.066 81.651 77.171 71.756
770.58 757.63 747.64 735.68 630.29 503.07 403.33 323.76 261.15 214.13 171.61 145.76 98.19 82.06 71.45 62.48 51.99 41.49
Discussion I n previous reports,5'6p8 it was indicated that some correlation exists between the values of the constants n mand C of the Hartmann equation and the number of carbon atoms in the normal alkyl radical for the normal paraffins and the 1-alkenes. The new data confirm and extend this correlation. Figures 1 and 2 are plots, relative t o the number of carbon atoms in the normal alkyl radicals, of the values of n mand C of the Hartmann equation for nundecane, n-tridecane, n-tetradecane, n-pentadecane, 1-tridecene, 1-tetradecene and 1-pentadecene from the present investigation, plus those values previously reported for other members of these series.5,6~* Also in earlier r e p 0 r t s , ~ ~ ~it~ 6was J pointed out that some correlation exists between the values of the constants B and C of the Antoine equation for vapor pressures and the number of carbon atoms in the normal alkyl side chain for the n-paraffins and the 1-alkenes. The new data confirm and extend this correlation also. Figures 3 and 4 are plots, relative to the number of carbon atoms in the normal alkyl radicals, of the values of B and C of the Antoine equation for n-undecane, n-tridecane, n-
i
8
NOTES
Nov., 1955 SUMMARY OF
THE
RESULTSOF
THE
TABLE IX CORRELATION OF THE EXPERIMENTAL DATAWITH
PRESSURE Constants of the Antoine equation B/(C t ) or logmP = A t = B / ( A - logid') C P in mm., t i n OC. Formula A B C
-
Compound
n-Undecane n-Tridecane n-Tetradecane n-Pentadecane 1-Tridecene 1-Tetradecene 1-Pentadecene Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene cis-Decahydronaphthalene trans-Decahydronaphthalene cis-Hexahydroindan trans-Hexahydroindan
1179
CiiHir CiaHz8 CidHSo Cir& CiaHza Ci4Hg8 CiaHao CioHs CiiHio CiiHio CIOHi8 CioHis CpHis CaHis
6.97674 7.00339 7.01245 7.02445 6.98563 7 ,02005 7.01555 6.84577 7.03592 7.06850 6.87529 6.85681 6,86932 6.85971
+-
1572.477 1689.093 1739.623 1789.658 1674.741 1745,001 1781.974 1606.529 1826.948 1840,268 1594.460 1564.683 1498.076 1474.620
188.022 174.284 167.534 161.291 175.214 170,475 162.582 187.227 195,002 198.395 203.392 206,259 207.752 209.527
tetradecane, n-pentadecane, 1-tridecene, 1-tetradecene and 1-pentadecene from the present investigation, plus those values previously reported for other members of these ~ e r i e s . ~ ~ ~ , ~ ~ s
Normal b.p. at 760 mm., "C.
THE
ANTOINEEQUATION FOR VAPOR
Pressure coefficient dt/dP at Range of measurement T60 mm., Pressure, Temp., C./mm. mm. "C.
195.890 0.05356 41-787 .05679 52-771 235.434 253.515 ,05824 62-77 1 270.614 .05956 41-760 ,05680 52-760 232.780 ,05820 52-770 251.100 268.394 ,05956 52-760 ,05840 52-772 217.955 244,685 ,06047 41 -771 ,05997 41-772 241.052 ,05710 41-771 195.774 187.273 ,05656 41-770 .05381 41-771 167.846 161.083 .05323 40-771
105.4-197.3 145.1-236.1 165.9-254.2 169.6-270.6 142.6-232.7 158.4-251.7 173.6-268.4 126.3-218.6 142.1-245.4 139.1-241.8 99 .&196.4 92.3-187.9 77.4-168.5 71.7-161.7
Measure of precrslon, P
0.43 1.05 1.62 1.30 1.05 1.19 0.89 6.30 1.58 2.32 0.66 .51 .73 .81
The foregoing correlations may be used, by appropriate interpolation or extrapolation, to obtain values for those compounds not yet actually measured.
NOTES THE SOLUBILITY OF UOzHP04.4H20 IN PERCHLORIC ACID SOLUTIONS BY JAMES M. SCHREYER AND C. F. BAES,JR. Contribution from Oak Ridge National Laboratory, Carbide and Carbon Chemical Company, Oak Ridge, Tenn. Received March & 1966
I. Introduction.-In a previous reportl1the solubility behavior of three uranium(V1) orthophosphates, (UOz)~(P04)z~6Hz0, UOzHP04.4Hz0 and U02(HzP04)z-3Hz0,in phosphoric acid solutions at 25" was described. Little information is available on complex ion formation in the uranium(V1) orthophosphate system. G. R. Leaderz has reported that solubility measurements of UOzHP04.4Hz0in H N 0 3 and H3P04 indicate UOzHzP04+is formed in solutions of moderate phosphoric acid concentrations and that, in excess of phosphoric acid, higher complexes are formed. Baes, Schreyer and Lesser3 reported a spectrophotometric investigation of uranium(V1) orthophosphate solutions using the method of continuous variation which indicated the presence of complex species in which the ratio of P04-3/UOz++ is unity. From additional spectrophotometric measurement^,^ Baes has estimated formation quotients for 1:1 and 2 : 1, phosphate to uranium, (1) J. M. Sohreyer and C. F.Baes, Jr., J . Am. Chem. SOC.,76, 354 (1954). (2) G . R. Leader, CN-2195, Chemistry Division, Clinton Laboratories, 1844. (3) C. F. Baes, Jr., J. M. Schreyer and J. M. Lesser, ORNL-1577, Oak Ridge National Laboratory, June 1953. (4) To be aubmitted for publication.
complexes which are consistent with spectrophotometric results at 0.001 and 0.04 M uranium(V1) concentrations. This indicates that polynuclear complex formation was not appreciable. While the present results involve higher uranium levels, it will be assumed that only mononuclear uranium complexes are formed. I n the following investigation, solubility measurements of UOzHP044Hz0have been extended to perchloric acid solution in order to study complex ion formation in a non-complexing solvent. Solubilities have been determined as a function of the phosphate, uranium(V1) and hydrogen ion concentrations. Measuremeiits have been confined to fairly concentrated solutions, and since the control of ionic strength is of doubtful value in such solutions, these studies were not limited to constant ionic strength except in the measurements of acidity dependence of solubility.
11. Experimental A. Solubility of UOzHP04.4Hz0at Constant Acidity.The solubility of UOzHP04.4Hz0 was yeasured in two series of 1 M perchloric acid solutions a t 25 ; the first series contained 0-0.5 M U( VI) before equilibration while the second initially contained 0-3.1 M phosphate. The preparation of UO2HPO4.4Hz0and the apparatus employed have been described previously.' Various experiments covering the entire range of compositions indicated that equilibrium was established in less than three days. T o ensure equilibrium in all the measurements, the samples were shaken from 11 t o 21 days. The mother liquors were sampled by means of calibrated pipets or pycnometers de ending on the viscosity of the solutions, They were an$sed for uranium and phosphate