Pilot for Validation of Online Pretreatments for Analyses of Organics

Université Paris—Est-Créteil, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, 61 avenue du General de Gaulle, ...
0 downloads 0 Views 690KB Size
Subscriber access provided by The Libraries of the | University of North Dakota

Article

Pilot for validation of online pretreatments for analyses of organics by gas chromatography-mass spectrometry: application to space researches Marc David, Neil-Yohan Musadji, Jérôme Labanowski, Robert Sternberg, and Claude Geffroy-Rodier Anal. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.analchem.6b00052 • Publication Date (Web): 24 Apr 2016 Downloaded from http://pubs.acs.org on April 27, 2016

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Analytical Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Analytical Chemistry

Pilot for validation of online pretreatments for analyses of organics by gas chromatography-mass spectrometry: application to space researches M. David,† N.-Y. Musadji,‡ J. Labanowsky,‡ R. Sternberg,† and C. Geffroy-Rodier,*,‡ †Université Paris –Est-Créteil, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, 61 avenue du General de Gaulle, 94010 Créteil, France ‡ Université de Poitiers, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR CNRS 7285, Equipe Eau Géochimie Santé, 4 rue Michel Brunet, 86073 Poitiers, France The search for complex organic molecules in extraterrestrial environments, including important biomolecules such as amino and fatty acids, will require a space compatible sample handling system to enable their detection by gas chromatography-mass spectrometry (GC-MS). For the future Mars exploratory mission Exomars 2018 aimed at organic molecules detection, a dedicated laboratory pilot, called Device for Pretreatment of Sample (DPS), reproducing representative space operating conditions has been developed. After its optimization, it aimed at validating under development protocols and interpreting forthcoming in situ resulting data. The DPS, dedicated to organic compounds’ analysis, is discussed in terms of its technical features. The derivatization is carried out on a 50 to 100 mg mineral sample in a 4 mL reactor coupled with a GC-MS injector to simulate on line in situ derivatization-volatilization-transfer steps. Three derivatization reactions have been carried out with N-Methyl-N-(tert-Butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) as silylating reagent, N,N-Dimethylformamide Dimethylacetal (DMF-DMA) and tetramethylammonium hydroxide (TMAH) as methylating agents. The performances are illustrated by comparison of conventional and in situ silylation, developed for space research applications, using terrestrial mineral matrix and Mars analog materials enriched with 25 nmol of each targeted organic molecule. The work presented in this rationale has established that the use of derivatization reactions widens the scope of targeted molecules but also clearly points out mineral matrix effect. Decreasing mineral influence on pretreatment will be the next scientific challenge in in situ analysis.

Within the perspective of the current and next imminent space missions, the detection of organic molecules is mandatory as it is becoming elemental for the search of traces of life and the evaluation of habitability in space.1 Because of its similar history with Earth at the beginning of the solar system, at least for the first billion years, Mars appears as the main target for the search for extraterrestrial life form, past or present. This search requires "in situ" exploration of the surface and sub-surface with dedicated analytical instrumentation withstanding the severe requirements imposed by flight operating conditions. Gas chromatography (GC) is a powerful and flight qualified technique which was used successively in the past for several space missions to Venus, 2 Titan, 3 Comet 4 and in particular to Mars with the 1975 Viking first landing mission. 5 Although the Viking pyrolyser-GC-MS experiment failed to detect any prebiotic or biological activity in the sub surface, it helped to highlight that life may have existed or still exist on Mars, maybe in ecological niches in the form of bacteria. For that reason, two additional Mars exploration missions were scheduled during the last decade, with Gas Chromatography-Mass Spectrometry (GC-MS) based on board experiment for in situ analysis of the Martian soil: the Mars Science Laboratory (MSL) of the US space agency (NASA) launched in

2011 and currently on Mars and the Exomars of the European Space Agency (ESA) and Russian Federal Space Agency (Roscosmos) to be launched in 2018. Among the possible life indicators, amino acids (the monomer building blocks of proteins), organic compounds such as fatty acids and n-alkanes, are chosen as the main targets. 6 As such, in their unmodified state, none of these organic biomarkers, except n-alkanes, would be directly detected by Gas Chromatography-Mass Spectrometry. To volatilize compounds, pyrolysis (already used in Viking mission) is possible and easily coupled with GC-MS analysis, but it is poorly suited for thermally fragile organic molecules of exobiological interest. 7–9 Therefore to achieve the analysis of these compounds within the space constraints, mild transformation procedures such as chemical derivatization prior to GC analysis are required 9–13. Silylation and alkylation reactions were implemented in the Rosetta and Mars Science Laboratory missions currently exploring the comet Tchourioumov-Guerassimenko 14 and the red planet, 11 respectively. DMF-DMA, the first derivatizing agent ever selected in space for the COmetary Sampling And Composition (COSAC) experiment onboard Rosetta12, and MTBSTFA, chosen to be part of the Sample Analysis at Mars

ACS Paragon Plus Environment

Analytical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(SAM) experiment onboard MSL, 13 were first evaluated with laboratory instruments, 9,14,15 and validated for the latest in an offline laboratory pilot. 16 However up to now, there have been no dedicated wet chemistry devices to mimic the on board instrumentation to test new material such as derivatization agent tank, to evaluate new wet chemistry protocols or to interpret in situ resulting data. In this paper we present, in the frame of the nextcoming Mars exploratory mission Exomars 2018, a dedicated on line sample preparation device, the Device for Pretreatment of Sample (DPS), coupled with a GC-MS instrumentation. It has been developed to provide an accurate and representative pilot allowing the preparation and the study of the Mars Organic Molecule Analyzer (MOMA) Gas Chromatography Mass Spectrometry (GC-MS) experiment, designed for the in situ analysis of the Martian soil (Figure 1). The main scientific aim of this experiment is to search for signs of extant or extinct life in the near subsurface of Mars by acquiring samples from as deep as 2 m below the surface with particular focus on the characterization of organic content. The MOMA investigation is led by the Max Planck Institute for Solar System Research (MPS, Göttingen) and by LISA (Paris University, Paris) which provides the GC subsystem equipped with 4 different chromatographic column types. MOMA carries also a sample processing system able to volatilize refractory molecules by pyrolysis, thermochemolysis or chemical derivatisation. The laboratory pilot allows in a single crucible within the operational constraints imposed by spaceflight experiments conditions the derivatization (or thermochemolysis), (one pot-one step), the volatilization and the transfer for analysis of the organic compounds trapped in a solid matrixs.

Figure 1 Schematic of the Mars Organic molecule Analyzer (MOMA) experiment of the Exomars 2018 space mission: Pyrolysis (600 to 1000°C); Derivatization (DMF-DMA and MTBSTFA); Thermochemolysis (TMAH); Traps (tenax); GC (4 GC columns); AP-MALDI and ITMS (Atmospheric PressureMatrix Assisted Laser Desorption/Ionization and Ion Trap Mass Spectrometer). The DPS is designed to address the following space constraints: simplicity of construction, small size and minimum weight, low energy consumption, with space and chemical compatible materials. 17 This dedicated on line laboratory pilot enables experiments within a wide range of temperatures, pressures, with several inlets and outlets so as to mimic each possible spatialized device operating conditions. Steps before derivatization such as handling of samples and chemicals, or transport of the reactor to the heating block are not automated. To validate the DPS, three sample processing reactions with MTBSTFA, DMF-DMA and TMAH directly mixed into soil samples have been studied. 18 To mimic in situ analysis several samples comprising terrestrial mineral matrix and Mars analog materials have been selected. Analyses of sedimentary rocks

Page 2 of 8

examined by the Curiosity rover confirmed that they are composed of magnesium-iron-chlorine–rich components, and hydrated calcium sulphates 19 and that mudstone also contains trioctahedral smectites. 20 As hydrous sulfates and phyllosilicates have been found in large quantities and with wide spreading, components such as Mg, Fe, Ca, SiO2 and SiO4 will comprise the majority of the evaporate mineralogy present on the martian surface. In this rationale we have studied the influence of Fe, SiO2 and SiO4 on in situ derivatization reactions. EXPERIMENTAL SECTION Chemicals. Equimolar solutions of protein amino acids in 0.1 M hydrochloric acid (2.5 mM each), methanol, iron sulfate, magnetite, N,N-dimethylformamide dimethyl acetal (DMF-DMA), tetramethylammonium hydroxide (TMAH) and N-methyl-N(tert.butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) were purchased from Sigma-Aldrich-Fluka (Buchs, Switzerland). Silica was purchased from BDHProlabo (Radnor, USA). Helium (5.0) was supplied by Linde (purity 99.999%, Linde, Monterau, France). For the laboratory model soil, we have chosen pure SiO2 sample spiked with Fe2O3, Fe3O4 or FeSO4 to mimic Fe rich martian samples provided by Sigma-Aldrich-Fluka (Buchs, Switzerland).21 Atacama Desert soil sample from Chile was collected in 2006 from site n°3 (27° 20.200 S 70° 42.373 W) using a sterile metal scoop (personal communication K.Snook), sampled at 0-1 cm depth, powdered with mortal and pestle and sieved at 150 µm. Major mineral compounds were 37% SiO2, plagioclase minerals (27% NaAlSi3O8, 24% CaAl2Si2O8), 4% CaCO3, 4% Fe2O3 corresponding to Mars soil elemental composition. 19–22 Pseudomonas fluorescens strain (CIP 69.13; Pasteur Institut, France) was cultured on nutrient agar culture medium (Plate count Agar-PCA, Merck, Germany). After a 48 h incubation at 25°C, colonies were carefully scraped off and then suspended in ultrapure water prior to lyophilisation (CRIOS 50, Cryotec, France). Derivatization-volatilization-transfer. MTBSTFA and DMF-DMA derivatizations were performed for 30 min at 80°C and 120°C, respectively (Figure S-1). 9 MTBSTFA and TMAH thermochemolyses were performed at 300°C. Off line derivatization was performed in vial and resulting derivatives were injected into the GC or on a 50 mg sample in the DPS (protocols 0 and 1, respectively). Online derivatization was performed on 50 mg of mineral matrix doped with 2.5 to 250 nmol of each amino acid with 30µl of derivatization agent (MTBSFTA or DMF-DMA) within the DPS (protocol 2). The MTBSTFA protocols are summarized in Table 1. Inlet, outlet lines and DPS were heated to 200°C and transfer of the generated gaseous phase into the injector of the GCMS was performed with a helium flow (16 mL/min for 3 min). Silica and Atacama Desert soil from Chile were taken as mineral matrix. The Atacama soil is coming from the driest part of the desert in Norther Chile and represents one of the best earthen analogue of Mars for the organic matter. 18 laboratory

in situ

Protocol

0

1

Reaction

Vial

X

X

Transfer

Reactor Direct

X

Reactor

X

2 (80°C)

3 (300°C)

X

X

X

X

Table 1. Protocols of offline and online derivatization.

ACS Paragon Plus Environment

Page 3 of 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Analytical Chemistry Procedure. After a careful cleaning and drying of the upper and lower part of the DPS (6), 50 mg of spiked sand is placed in the crucible. The lid is closed with the 6 clamping screws (7) and the DPS is tightened on the heating plate (5) by the tightener lever (4). Then derivatization agent is added through the septum (10) and the temperature of DPS is raised to optimized derivatization temperature. The needle of the outlet transfer line (3) is then inserted directly into the septum of the GC injector and the temperature of the the DPS and the inlet and outlet lines are increased to 200 ° C (volatilization step). As soon as they reached this temperature, the inlet line valve is opened , the GC-MS acquisition is started and the DPS is flushed with pure helium at a flow rate of 16ml / min (transfer step). After 3 minutes the helium flush is stopped, the needle transfer line is removed from the GC injector and the DPS is cooled down by removing the DPS from the heating plate. GC/MS. For quantitative analysis, a Shimadzu QP5050 GC–MS instrument operating with a quadrupole detection mode was coupled with the pilot with a 20 cm transfer line heated to 200°C. Carrier gas, Helium (5.0), was supplied by Linde (purity 99.999%, Linde, Monterau, France). The temperature of the split/splitless (1/100) injector was 250°C. The column used was a Restek RXi-5Sil of 30 m length, 0.25 mm ID, 0.25µm stationary phase. Column flow was fixed at 0.9 ml/min. The GC oven was set as follows: from 80 °C up to 125°C at 4 °C/min, to 300 °C at a rate of 30 °C/min and held at 300°C for 25 min. Ionization mode is electronic impact (EI, 70 eV).

Figure 2 The Device for Pretreatment of Sample (DPS) (not to scale). (1) temperature gauge, (2) pressure gauge, (3) outlet transfer line, (4) tightener lever, (5) heating and cooling plate, (6) DPS, (7) 6 titanium screws + Kalrez O-ring, (8) heating cartridge, (9) 2 gas inlets and outlets (10) septum location. Pilot. Figure 2 represents the Device for Pretreatment of Sample (DPS). It was designed following space compatible specifications.17 Briefly, the system, composed of two titanium parts (6) clamped by 6 titanium screws (7), has an internal volume of 4 mL and a removable crucible with a perfluoroelastomer O-ring in a rabbet and a lid. The upper part of the DPS exhibits all the inlets and outlets (8). The system can be regulated at +/- 0.1°C within the 20-500°C range, scanned up and down in less than 15 s. The crucible included in its stand is heated with a removable metallic lump equipped with heating cartridges (5) and the lid is directly heated with 2 heating cylindrical cartridges (10). The inlet and outlet lines (3) (1/16 inch tubing) are surrounded with a resistance heating wire. The pressure inside is measured by a pressure gauge (2) from Meiri/Celians (Montauban, France) and helium flow is regulated by a mass flow meter (0-50 mL/min) purchased from Bronkhost (AK Ruurlo, Netherland). The inlet line has a valve, and a pressure gauge (2). The outlet line is equipped with a 26 gauge needle. Inlet and outlet lines, DPS top and bottom part, are outfitted with K-type thermocouple (1) from TCSA (Dardilly, France). DPS, heating cartridges, temperature probes, and pressure gauge are controlled thanks to a Labview software via National instrument analog input modules.

RESULTS AND DISCUSSION Optimization and Validation of the pilot with MTBSTFA. For imminent and current martian space missions such as the MSL, the derivatization of the target molecules are performed directly onto the rock or sedimentary sample. The DPS was first used to evaluate silylation on 50 mg SiO2 samples spiked with 25 nmol of each target molecule. Many factors, such as the temperature, time and flow rate, influence the compounds transfer and separation (see supporting information). Parameters of the compounds transfer from the DPS to GC were optimized by comparing the responses of offline derivatives, spiked on silica after the DPS transfer, to offline derivative responses resulting from direct liquid injection into the GC (protocol 1 vs 0). Detection of silylated compounds transferred by the DPS occurred as soon as the crucible was coated (Silicosteel®). To prevent the deactivation of the derivatizing agent or catalytic reactions with the derivatives, the coating of wet chemistry derivatization devices will be thus mandatory for future space missions. After optimization using protocol 1 (see supporting information, Figures S-2 and S-3), parameters such as temperature, flow rate and time of transfer were settled: 200°C in the crucible, with 16 mL/min He flow rate for 6 min. The DPS analytical performances were then evaluated with protocol 1 performed on a ten-component amino acid solution, by six identical runs (Table S-1). Reproducibility of each peak area was less than 6.4% RSD (except for tyrosine, 19.2%). Linearity of peak area was also evaluated using different solutions from 0.5 to 25 nmol of each derivative. Correlation factors (r) were from 0.988 to 0.997. The detection limits, obtained from the signal-tonoise level (S/N) at 3, ranged from 0.5 nmol for phenylalanine (F) and serine (S) to 1 nmol for the others.

ACS Paragon Plus Environment

Analytical Chemistry

effects of the matrix and 4) low thermal stability of amino acids when submitted to temperature higher than 200°C.

M

3.3

T

0.8

S

1.9

2.5 1.3

P

1.6 1.0

I

2.0

L

0.6

1.2

2.4 V

F

E

Figure 5 Recoveries of silylated Amino acids, % recoveries achieved with on line protocols 2 (80°C, blue) and 3 (300°C, red) compared to off line 1 (80°C) on SiO2. Detection of amino acid derivatives failed when derivatization was performed on the Atacama sample. This result could be attributed to the iron composition of Atacama sample that could inhibit the reaction. 23 Additional tests on 1% ferric or ferrous (Fe3+, Fe2+) silica samples confirmed this assumption as a total inhibition with both protocols 2 and 3 occurred. Derivatization on iron (Fe) rich samples occurred with both protocols but with an additional average 10% loss in recovery of the overall amino acids (Figure 6). Further investigations are conducted in DPS to decrease or prevent this inhibition. Since in situ derivatization has to be performed directly on the matrix (one pot/one step), decreasing its influence is then becoming a key challenge for future missions. First of all, the temperature of derivatization has to be lower than 300°C.

The influence of the mineral matrix is magnified when using MTBSTFA as thermochemolysis agent, i.e protocol 3 on line derivatization, 300°C). Figure 5 gives the recovery of each amino acid derivatives with on line derivatization on mineral matrix (protocol 2 and 3) compared to off line derivatization (protocol 1). Protocol 2 and 3 recoveries show that all amino acids are derivatized on silica matrix but drastic loss of high molecular weight amino acids occurred, from 60 to 70% at 80°C and 80 to 93% at 300°C. For derivatization at 80°C, the loss could be attributed to partial adsorption on silica. 22 At 300°C, the high temperature enables the reaction to occur in a very short time but induces some drawbacks such as: 1) incomplete silylation of tri substituted amino acids (i.e the two diacids, serine or threonine), 2) potential release of water from minerals and 3) enhancement of catalytic

1.6 0.0 0.1

M

S

T

F

0.4

0.4 0.1

P

0.4 0.3

I

0.5 0.3

L

1.1 0.8

1.7

1.5

1.9 0.8 V

0.6

G

0.5

A

Figure 4 Total ionic current of silylated Amino (AA; A, G, V, I, L with associated fragmentogram) and Fatty acids, (FA; C16 to C22), from 1 mg of lyophilized pseudomonas mixed with silica. (80°C on line derivatization, Protocol 2).

1.3 1.4

5.0

Figure 3 Total ionic current of Amino acids derivatized on SiO2 (letters referred to conventional amino acid labelling, Protocol 2). Recoveries from protocol 2 compared to protocol 0 are given in Table S-1. 30.0 to 86.8% of the derivatives are recovered when online derivatization is performed directly onto the SiO2 matrix. This result should be due to less accessibility of the amino acids preserved by the matrix and/or potential deactivation of the reagent with the matrix. Low recovery of tyrosine (19.9%) is not further investigated as it did not exhibit good online reproducibility (36% RSD). The reproducibility of protocol 2 for the other amino acids was from 10.2 to 25.0%. It decreased significantly when compared to protocol 1. Those results point out the influence of the matrix. Protocol 2 was, however, successfully performed on a pseudomonas sample mixed with silica that could mimic potential Mars living organism response (Figure 4). Among detected molecules, five amino acids and seven fatty acids were detected in current single run.

G

1.4

A

2.5

1.5

3.9

5.4

5.8

6.1

8.1

9.0

9.0

10.6

Future in situ experiments. For imminent space missions online derivatization was tested on SiO2 (protocol 2, Figure 3).

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 8

E

Figure 6 Recoveries of silylated amino acids, % recoveries achieved with protocols 2 (80°C, blue) and 3 (300°C, red) compared to off line 1 (80°C) on iron/SiO2. This mineral effect was also significant when performing DMFDMA derivatization within the DPS as only 12.1 to 67.8% derivatives recoveries were achieved on silica and 1.0 to 4.1% on Atacama sample (Table S-2). To overcome such matrix effect future missions should include an extraction cell coupled with the derivatization cell or implement new protocols less sensitive to matrix. One of this protocol, thermochemolysis, will be used in MOMA to detect carboxylic acids, esters and alkanes. Figure 7 shows the thermochemolysis of an Atacama and a pseudomonas samples. Several carboxylic acids and alkanes were detected in the samples, whatever the composition of mineral matrix. However thermochemolysis did not allow amino acids detection.

ACS Paragon Plus Environment

Page 5 of 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Analytical Chemistry

CONCLUSION The future ExoMars rover mission (ESA/Roscosmos), to be launched in 2018, will investigate the habitability of the Martian surface and near subsurface, and search for traces of past life in the form of textural biosignatures and organic molecules. In support of this mission a selection of relevant derivatization agents and the corresponding experimental conditions have been evaluated. The work presented in this rationale has established that the developed laboratory device DPS, in addition to its intrinsic qualities, such as the large range of temperature and flow rate, and great versatility for the derivatization, has indeed facilitated simple validation for future wet chemistry experiments suitable for in situ space analysis. In addition the main results of this study point out that the coating of the pretreatment cell will be mandatory, and to decrease the matrix effect, extraction or low derivatization temperatures will have to be used despite longer analysis times and higher energy consumption. To conclude, this pilot has helped not only to develop the sampling processing system which will be performed on Mars Organic Molecule Analyzer (MOMA) instrument but also to prepare and to ease, by generating chromatographic data banks, the interpretation of the future complex chromatograms . Finally, by covering the analysis of a wide range of organics under representative space operating conditions, the DPS developed in this work can be a good basis for future generations of instruments to be coupled with current CG or future LC analyses and dedicated to the search of organics in extra-terrestrial environments. Figure 7 Total ionic current and fragmentogram m/z 74 of TMAH methylated carboxylic acids and n alkanes. a) on Mars regolith analogue (Atacama) b) on pseudomonas (C8 to C19 FA). For amino acids a new protocol decreasing inhibition of silylation in presence of ferrous/ferric sample is under development. With this protocol, not yet validated, a derivatization of 25 nmol amino acids occurred but with an average recovery of 5%, on nontronite and Atacama samples. Using DPS could then help to find and optimize key parameters for future wet chemistry instrumentation. In addition to its exobiological interest, the DPS could also be used for all scientific areas needing an online pretreament before GCMS analyses. An evident trend in present day instrument making, is the miniaturization of analytical devices for particular types of analysis. The DPS was developed for space research but could also be used as laboratory microdevice regarding its small dimensions and weight and the rapidity of on-line pretreatment. Benchtop derivatization is a time-consuming procedure requiring the use of toxic reagents. The alternative to carry out the reaction in the inlet of the gas chromatograph is not suitable for many derivatization procedures. The automatization of derivatization has thus many advantages, including less manipulation and increased productivity. DPS enables to derivatize from 1 second to several hours, from room temperature to 300°C. DPS could also be used to perform structural studies. Thus, the gas flow-through cell system which is used to transfer molecules to GC-MS could also be used to exchange the gas phase in the cell prior to pretreatment. For examples, Maillard reactions can be evaluated. Oxidative reactions can be compared to those under an inert gas by replacing helium by oxygen. This technique might result in a significant fraction of oxygenated compounds needing further in situ derivatization. For these laboratory experiments a modified DPS with a sample focusing system prior to injection (labelled DPIS) currently under study has been developed 24

ASSOCIATED CONTENT Supporting Information Figure S-1 Schemes of chemical derivatization. Figure S-2. Mean peak area of silylated amino acid derivatives after transfer at different temperatures (letters referred to conventional amino acid labelling). Figure S-3. Peak area of 25 nmol silylated amino acid derivatives according to transfer flow rate (mLmin-1) and time of transfer studied at 1 mLmin-1. (letters referred to conventional amino acid labelling). Table S-1. Performance hallmarks of the DPS offline derivatized compounds transfer system vs DPS derivatizaton transfer system on sand matrix. Table S-2. Recoveries of DMF-DMA on sand and Atacama matrixes (PDF). The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION Corresponding Author * Phone: +33-5-49-45-35-90 E-mail address: [email protected]

ACKNOWLEDGMENT This research was carried out within an exobiology technology program with the financial support of the French National Space Agency (CNES) and National French Council (CNRS). We gratefully acknowledge Pascale Chazalnoel and Romain Candela for their implication in this program.

ACS Paragon Plus Environment

Analytical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

REFERENCES (1) ESA. ExoMars Science Management Plan. Doc. No.: EXMMS-PL-ESA-00002, 2013, 6, 66 p. (2) Oyama, V. I.; Berdahl, B. J. J. Geophys. Res. 1977, 82 (28), 4669–4676. (3) Israël, G.; Szopa, C.; Raulin, F.; Cabane, M.; Niemann, H. B.; Atreya, S. K.; Bauer, S. J.; Brun, J.-F.; Chassefière, E.; Coll, P.; Condé, E.; Coscia, D.; Hauchecorne, A.; Millian, P.; Nguyen, M.J.; Owen, T.; Riedler, W.; Samuelson, R. E.; Siguier, J.-M.; Steller, M.; Sternberg, R.; Vidal-Madjar, C. Nature 2005, 438 (7069), 796–799. (4) Goesmann, F.; Raulin, F.; Bredehöft, J. H.; Cabane, M.; Ehrenfreund, P.; MacDermott, A. J.; McKenna-Lawlor, S.; Meierhenrich, U. J.; Muñoz Caro, G. M.; Szopa, C.; Sternberg, R.; Roll, R.; Thiemann, W. H.-P.; Ulamec, S. Planet. Space Sci. 2014, 103, 318–330. (5) Biemann, K.; Oro, J.; Toulmin, P.; Orgel, L. E.; Nier, A. O.; Anderson, D. M.; Simmonds, P. G.; Flory, D.; Diaz, A. V.; Rushneck, D. R.; Biller, J. A. Science 1976, 194 (4260), 72–76. (6) Simoneit, B. R. T. Adv. Space Res. 2004, 33 (8), 1255–1261. (7) Kaal, E.; Janssen, H.-G. J. Chromatogr. A 2008, 1184 (1-2), 43–60. (8) Geffroy-Rodier, C.; Buch, A.; Sternberg, R.; Papot, S. J. Chromatogr. A 2012, 1245 (0), 158–166. (9) Rodier, C.; Sternberg, R.; Raulin, F.; Vidal-Madjar, C. J. Chromatogr. A 2001, 915 (1), 199–207. (10) Goesmann, F.; Rosenbauer, H.; Bredehoft, J. H.; Cabane, M.; Ehrenfreund, P.; Gautier, T.; Giri, C.; Kruger, H.; Le Roy, L.; MacDermott, A. J.; McKenna-Lawlor, S.; Meierhenrich, U. J.; Caro, G. M. M.; Raulin, F.; Roll, R.; Steele, A.; Steininger, H.; Sternberg, R.; Szopa, C.; Thiemann, W.; Ulamec, S. Science 2015, 349 (6247), aab0689–aab0689. (11) Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; Franz, H. B.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Conrad, P. G.; Des Marais, D. J.; Dworkin, J. P.; Fairén, A. G.; François, P.; Grotzinger, J. P.; Kashyap, S.; ten Kate, I. L.; Leshin, L. A.; Malespin, C. A.; Martin, M. G.; Martin-Torres, F. J.; McAdam, A. C.; Ming, D. W.; Navarro-González, R.; Pavlov, A. A.; Prats, B. D.; Squyres, S. W.; Steele, A.; Stern, J. C.; Sumner, D. Y.; Sutter, B.; Zorzano, M.-P.; the MSL Science Team. J. Geophys. Res. Planets 2015, 120 (3), 495–514. (12) Meierhenrich, U.; Thiemann, W. H.-P.; Rosenbauer, H. J. Anal. Appl. Pyrolysis 2001, 60 (1), 13–26. (13) Mahaffy, P. R.; Webster, C. R.; Cabane, M.; Conrad, P. G.; Coll, P.; Atreya, S. K.; Arvey, R.; Barciniak, M.; Benna, M.; Bleacher, L.; Brinckerhoff, W. B.; Eigenbrode, J. L.; Carignan, D.; Cascia, M.; Chalmers, R. A.; Dworkin, J. P.; Errigo, T.; Everson, P.; Franz, H.; Farley, R.; Feng, S.; Frazier, G.; Freissinet, C.; Glavin, D. P.; Harpold, D. N.; Hawk, D.; Holmes, V.; Johnson, C. S.; Jones, A.; Jordan, P.; Kellogg, J.; Lewis, J.; Lyness, E.; Malespin, C. A.; Martin, D. K.; Maurer, J.; McAdam, A. C.; McLennan, D.; Nolan, T. J.; Noriega, M.; Pavlov, A. A.; Prats, B.; Raaen, E.; Sheinman, O.; Sheppard, D.; Smith, J.; Stern, J. C.; Tan, F.; Trainer, M.; Ming, D. W.; Morris, R. V.; Jones, J.; Gundersen, C.; Steele, A.; Wray, J.; Botta, O.; Leshin, L. A.; Owen, T.; Battel, S.; Jakosky, B. M.; Manning, H.; Squyres, S.; Navarro-González, R.; McKay, C. P.; Raulin, F.; Sternberg, R.; Buch, A.; Sorensen, P.; Kline-Schoder, R.; Coscia, D.; Szopa, C.; Teinturier, S.; Baffes, C.; Feldman, J.; Flesch, G.; Forouhar, S.; Garcia, R.; Keymeulen, D.; Woodward, S.; Block, B. P.; Arnett, K.; Miller, R.; Edmonson, C.; Gorevan, S.; Mumm, E. Space Sci. Rev. 2012, 170 (1-4), 401–478.

Page 6 of 8

(14) Freissinet, C.; Buch, A.; Sternberg, R.; Szopa, C.; Geffroy-Rodier, C.; Jelinek, C.; Stambouli, M. J. Chromatogr. A 2010, 1217 (5), 731–740. (15) Geffroy-Rodier, C.; Grasset, L.; Sternberg, R.; Buch, A.; Amblès, A. J. Anal. Appl. Pyrolysis 2009, 85 (1-2), 454–459. (16) Meunier, D.; Sternberg, R.; Mettetal, F.; Buch, A.; Coscia, D.; Szopa, C.; Rodier, C.; Coll, P.; Cabanec, M.; Raulin, F. Adv. Space Res. 2007, 39 (3), 337–344. (17) Sternberg, R.; Buch, A.; Correa, J. .; Chazalnoel, P. Device for preparing a sample. 2,260,287 A2. (18) Sternberg, R.; Buch, A.; Correa, J. .; Chazalnoel, P. Method for the extractive functionalizing of organic compounds. 2,252,886 A1. (19) McLennan, S. M.; Anderson, R. B.; Bell, J. F.; Bridges, J. C.; Calef, F.; Campbell, J. L.; Clark, B. C.; Clegg, S.; Conrad, P.; Cousin, A.; Des Marais, D. J.; Dromart, G.; Dyar, M. D.; Edgar, L. A.; Ehlmann, B. L.; Fabre, C.; Forni, O.; Gasnault, O.; Gellert, R.; Gordon, S.; Grant, J. A.; Grotzinger, J. P.; Gupta, S.; Herkenhoff, K. E.; Hurowitz, J. A.; King, P. L.; Le Mouelic, S.; Leshin, L. A.; Leveille, R.; Lewis, K. W.; Mangold, N.; Maurice, S.; Ming, D. W.; Morris, R. V.; Nachon, M.; Newsom, H. E.; Ollila, A. M.; Perrett, G. M.; Rice, M. S.; Schmidt, M. E.; Schwenzer, S. P.; Stack, K.; Stolper, E. M.; Sumner, D. Y.; Treiman, A. H.; VanBommel, S.; Vaniman, D. T.; Vasavada, A.; Wiens, R. C.; Yingst, R. A.; MSL Science Team; Kemppinen, O.; Bridges, N.; Johnson, J. R.; Minitti, M.; Cremers, D.; Farmer, J.; Godber, A.; Wadhwa, M.; Wellington, D.; McEwan, I.; Newman, C.; Richardson, M.; Charpentier, A.; Peret, L.; Blank, J.; Weigle, G.; Li, S.; Milliken, R.; Robertson, K.; Sun, V.; Baker, M.; Edwards, C.; Farley, K.; Griffes, J.; Miller, H.; Newcombe, M.; Pilorget, C.; Siebach, K.; Brunet, C.; Hipkin, V.; Marchand, G.; Sanchez, P. S.; Favot, L.; Cody, G.; Steele, A.; Fluckiger, L.; Lees, D.; Nefian, A.; Martin, M.; Gailhanou, M.; Westall, F.; Israel, G.; Agard, C.; Baroukh, J.; Donny, C.; Gaboriaud, A.; Guillemot, P.; Lafaille, V.; Lorigny, E.; Paillet, A.; Perez, R.; Saccoccio, M.; Yana, C.; Armiens-Aparicio, C.; Rodriguez, J. C.; Blazquez, I. C.; Gomez, F. G.; Gomez-Elvira, J.; Hettrich, S.; Malvitte, A. L.; Jimenez, M. M.; Martinez-Frias, J.; Martin-Soler, J.; Martin-Torres, F. J.; Jurado, A. M.; Mora-Sotomayor, L.; Caro, G. M.; Lopez, S. N.; Peinado-Gonzalez, V.; Pla-Garcia, J.; Manfredi, J. A. R.; Romeral-Planello, J. J.; Fuentes, S. A. S.; Martinez, E. S.; Redondo, J. T.; Urqui-O’Callaghan, R.; Mier, M.-P. Z.; Chipera, S.; Lacour, J.-L.; Mauchien, P.; Sirven, J.-B.; Manning, H.; Fairen, A.; Hayes, A.; Joseph, J.; Squyres, S.; Sullivan, R.; Thomas, P.; Dupont, A.; Lundberg, A.; Melikechi, N.; Mezzacappa, A.; DeMarines, J.; Grinspoon, D.; Reitz, G.; Prats, B.; Atlaskin, E.; Genzer, M.; Harri, A.-M.; Haukka, H.; Kahanpaa, H.; Kauhanen, J.; Kemppinen, O.; Paton, M.; Polkko, J.; Schmidt, W.; Siili, T.; Wray, J.; Wilhelm, M. B.; Poitrasson, F.; Patel, K.; Gorevan, S.; Indyk, S.; Paulsen, G.; Bish, D.; Schieber, J.; Gondet, B.; Langevin, Y.; Geffroy, C.; Baratoux, D.; Berger, G.; Cros, A.; d’Uston, C.; Lasue, J.; Lee, Q.-M.; Meslin, P.-Y.; Pallier, E.; Parot, Y.; Pinet, P.; Schroder, S.; Toplis, M.; Lewin, E.; Brunner, W.; Heydari, E.; Achilles, C.; Oehler, D.; Sutter, B.; Cabane, M.; Coscia, D.; Israel, G.; Szopa, C.; Robert, F.; Sautter, V.; Buch, A.; Stalport, F.; Coll, P.; Francois, P.; Raulin, F.; Teinturier, S.; Cameron, J.; DeLapp, D.; Dingler, R.; Jackson, R. S.; Johnstone, S.; Lanza, N.; Little, C.; Nelson, T.; Williams, R. B.; Jones, A.; Kirkland, L.; Baker, B.; Cantor, B.; Caplinger, M.; Davis, S.; Duston, B.; Edgett, K.; Fay, D.; Hardgrove, C.; Harker, D.; Herrera, P.; Jensen, E.; Kennedy, M. R.; Krezoski, G.; Krysak, D.; Lipkaman, L.; Malin, M.; McCartney, E.; McNair, S.; Nixon, B.; Posiolova, L.; Ravine, M.; Salamon, A.; Saper, L.; Stoiber, K.; Supulver, K.; Van Beek, J.; Van Beek, T.; Zimdar, R.; French, K. L.; Iagnemma, K.; Miller, K.; Summons, R.; Goesmann, F.; Goetz, W.; Hviid, S.; Johnson, M.; Lefavor, M.; Lyness, E.; Breves, E.; Fassett, C.; Blake, D. F.; Bristow, T.; Edwards, L.; Haberle, R.;

ACS Paragon Plus Environment

Page 7 of 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Analytical Chemistry

Hoehler, T.; Hollingsworth, J.; Kahre, M.; Keely, L.; McKay, C.; Wilhelm, M. B.; Bleacher, L.; Brinckerhoff, W.; Choi, D.; Dworkin, J. P.; Eigenbrode, J.; Floyd, M.; Freissinet, C.; Garvin, J.; Glavin, D.; Harpold, D.; Jones, A.; Mahaffy, P.; Martin, D. K.; McAdam, A.; Pavlov, A.; Raaen, E.; Smith, M. D.; Stern, J.; Tan, F.; Trainer, M.; Meyer, M.; Posner, A.; Voytek, M.; Anderson, R. C.; Aubrey, A.; Beegle, L. W.; Behar, A.; Blaney, D.; Brinza, D.; Christensen, L.; Crisp, J. A.; DeFlores, L.; Ehlmann, B.; Feldman, J.; Feldman, S.; Flesch, G.; Jun, I.; Keymeulen, D.; Maki, J.; Mischna, M.; Morookian, J. M.; Parker, T.; Pavri, B.; Schoppers, M.; Sengstacken, A.; Simmonds, J. J.; Spanovich, N.; Juarez, M. d. l. T.; Webster, C. R.; Yen, A.; Archer, P. D.; Cucinotta, F.; Jones, J. H.; Niles, P.; Rampe, E.; Nolan, T.; Fisk, M.; Radziemski, L.; Barraclough, B.; Bender, S.; Berman, D.; Dobrea, E. N.; Tokar, R.; Williams, R. M. E.; Cleghorn, T.; Huntress, W.; Manhes, G.; Hudgins, J.; Olson, T.; Stewart, N.; Sarrazin, P.; Vicenzi, E.; Wilson, S. A.; Bullock, M.; Ehresmann, B.; Hamilton, V.; Hassler, D.; Peterson, J.; Rafkin, S.; Zeitlin, C.; Fedosov, F.; Golovin, D.; Karpushkina, N.; Kozyrev, A.; Litvak, M.; Malakhov, A.; Mitrofanov, I.; Mokrousov, M.; Nikiforov, S.; Prokhorov, V.; Sanin, A.; Tretyakov, V.; Varenikov, A.; Vostrukhin, A.; Kuzmin, R.; Wolff, M.; Botta, O.; Drake, D.; Bean, K.; Lemmon, M.; Lee, E. M.; Sucharski, R.; Hernandez, M. A. d. P.; Avalos, J. J. B.; Ramos, M.; Kim, M.-H.; Malespin, C.; Plante, I.; Muller, J.P.; Navarro-Gonzalez, R.; Ewing, R.; Boynton, W.; Downs, R.; Fitzgibbon, M.; Harshman, K.; Morrison, S.; Dietrich, W.; Kortmann, O.; Palucis, M.; Williams, A.; Lugmair, G.; Wilson, M. A.; Rubin, D.; Jakosky, B.; Balic-Zunic, T.; Frydenvang, J.; Jensen, J. K.; Kinch, K.; Koefoed, A.; Madsen, M. B.; Stipp, S. L. S.; Boyd, N.; Pradler, I.; Jacob, S.; Owen, T.; Rowland, S.; Atlaskin, E.; Savijarvi, H.; Boehm, E.; Bottcher, S.; Burmeister, S.; Guo, J.; Kohler, J.; Garcia, C. M.; Mueller-Mellin, R.; WimmerSchweingruber, R.; McConnochie, T.; Benna, M.; Franz, H.; Bower, H.; Brunner, A.; Blau, H.; Boucher, T.; Carmosino, M.; Atreya, S.; Elliott, H.; Halleaux, D.; Renno, N.; Wong, M.; Pepin, R.; Elliott, B.; Spray, J.; Thompson, L.; Williams, J.; Vasconcelos, P.; Bentz, J.; Nealson, K.; Popa, R.; Kah, L. C.; Moersch, J.; Tate, C.; Day, M.; Kocurek, G.; Hallet, B.; Sletten, R.; Francis, R.; McCullough, E.; Cloutis, E.; ten Kate, I. L.; Kuzmin, R.; Arvidson, R.; Fraeman, A.; Scholes, D.; Slavney, S.; Stein, T.; Ward, J.; Berger, J.; Moores, J. E. Science 2014, 343 (6169), 1244734–1244734. (20) Vaniman, D. T.; Bish, D. L.; Ming, D. W.; Bristow, T. F.; Morris, R. V.; Blake, D. F.; Chipera, S. J.; Morrison, S. M.; Treiman, A. H.; Rampe, E. B.; Rice, M.; Achilles, C. N.; Grotzinger, J. P.; McLennan, S. M.; Williams, J.; Bell, J. F.; Newsom, H. E.; Downs, R. T.; Maurice, S.; Sarrazin, P.; Yen, A. S.; Morookian, J. M.; Farmer, J. D.; Stack, K.; Milliken, R. E.; Ehlmann, B. L.; Sumner, D. Y.; Berger, G.; Crisp, J. A.; Hurowitz, J. A.; Anderson, R.; Des Marais, D. J.; Stolper, E. M.; Edgett, K. S.; Gupta, S.; Spanovich, N.; MSL Science Team; Agard, C.; Alves Verdasca, J. A.; Anderson, R.; Archer, D.; Armiens-Aparicio, C.; Arvidson, R.; Atlaskin, E.; Atreya, S.; Aubrey, A.; Baker, B.; Baker, M.; Balic-Zunic, T.; Baratoux, D.; Baroukh, J.; Barraclough, B.; Bean, K.; Beegle, L.; Behar, A.; Bender, S.; Benna, M.; Bentz, J.; Berger, J.; Berman, D.; Blanco Avalos, J. J.; Blaney, D.; Blank, J.; Blau, H.; Bleacher, L.; Boehm, E.; Botta, O.; Bottcher, S.; Boucher, T.; Bower, H.; Boyd, N.; Boynton, B.; Breves, E.; Bridges, J.; Bridges, N.; Brinckerhoff, W.; Brinza, D.; Brunet, C.; Brunner, A.; Brunner, W.; Buch, A.; Bullock, M.; Burmeister, S.; Cabane, M.; Calef, F.; Cameron, J.; Campbell, J. I.; Cantor, B.; Caplinger, M.; Caride Rodriguez, J.; Carmosino, M.; Carrasco Blazquez, I.; Charpentier, A.; Choi, D.; Clark, B.; Clegg, S.; Cleghorn, T.; Cloutis, E.; Cody, G.; Coll, P.; Conrad, P.; Coscia, D.; Cousin, A.; Cremers, D.; Cros, A.; Cucinotta, F.; d’Uston, C.; Davis, S.; Day, M. K.; de la Torre Juarez, M.; DeFlores, L.; DeLapp, D.; DeMarines, J.; Dietrich,

W.; Dingler, R.; Donny, C.; Drake, D.; Dromart, G.; Dupont, A.; Duston, B.; Dworkin, J.; Dyar, M. D.; Edgar, L.; Edwards, C.; Edwards, L.; Ehresmann, B.; Eigenbrode, J.; Elliott, B.; Elliott, H.; Ewing, R.; Fabre, C.; Fairen, A.; Farley, K.; Fassett, C.; Favot, L.; Fay, D.; Fedosov, F.; Feldman, J.; Feldman, S.; Fisk, M.; Fitzgibbon, M.; Flesch, G.; Floyd, M.; Fluckiger, L.; Forni, O.; Fraeman, A.; Francis, R.; Francois, P.; Franz, H.; Freissinet, C.; French, K. L.; Frydenvang, J.; Gaboriaud, A.; Gailhanou, M.; Garvin, J.; Gasnault, O.; Geffroy, C.; Gellert, R.; Genzer, M.; Glavin, D.; Godber, A.; Goesmann, F.; Goetz, W.; Golovin, D.; Gomez Gomez, F.; Gomez-Elvira, J.; Gondet, B.; Gordon, S.; Gorevan, S.; Grant, J.; Griffes, J.; Grinspoon, D.; Guillemot, P.; Guo, J.; Guzewich, S.; Haberle, R.; Halleaux, D.; Hallet, B.; Hamilton, V.; Hardgrove, C.; Harker, D.; Harpold, D.; Harri, A.M.; Harshman, K.; Hassler, D.; Haukka, H.; Hayes, A.; Herkenhoff, K.; Herrera, P.; Hettrich, S.; Heydari, E.; Hipkin, V.; Hoehler, T.; Hollingsworth, J.; Hudgins, J.; Huntress, W.; Hviid, S.; Iagnemma, K.; Indyk, S.; Israel, G.; Jackson, R.; Jacob, S.; Jakosky, B.; Jensen, E.; Jensen, J. K.; Johnson, J.; Johnson, M.; Johnstone, S.; Jones, A.; Jones, J.; Joseph, J.; Jun, I.; Kah, L.; Kahanpaa, H.; Kahre, M.; Karpushkina, N.; Kasprzak, W.; Kauhanen, J.; Keely, L.; Kemppinen, O.; Keymeulen, D.; Kim, M.-H.; Kinch, K.; King, P.; Kirkland, L.; Kocurek, G.; Koefoed, A.; Kohler, J.; Kortmann, O.; Kozyrev, A.; Krezoski, J.; Krysak, D.; Kuzmin, R.; Lacour, J. L.; Lafaille, V.; Langevin, Y.; Lanza, N.; Lasue, J.; Le Mouelic, S.; Lee, E. M.; Lee, Q.-M.; Lees, D.; Lefavor, M.; Lemmon, M.; Malvitte, A. L.; Leshin, L.; Leveille, R.; Lewin-Carpintier, E.; Lewis, K.; Li, S.; Lipkaman, L.; Little, C.; Litvak, M.; Lorigny, E.; Lugmair, G.; Lundberg, A.; Lyness, E.; Madsen, M.; Mahaffy, P.; Maki, J.; Malakhov, A.; Malespin, C.; Malin, M.; Mangold, N.; Manhes, G.; Manning, H.; Marchand, G.; Marin Jimenez, M.; Martin Garcia, C.; Martin, D.; Martin, M.; Martinez-Frias, J.; Martin-Soler, J.; Martin-Torres, F. J.; Mauchien, P.; McAdam, A.; McCartney, E.; McConnochie, T.; McCullough, E.; McEwan, I.; McKay, C.; McNair, S.; Melikechi, N.; Meslin, P.-Y.; Meyer, M.; Mezzacappa, A.; Miller, H.; Miller, K.; Minitti, M.; Mischna, M.; Mitrofanov, I.; Moersch, J.; Mokrousov, M.; Molina Jurado, A.; Moores, J.; Mora-Sotomayor, L.; Mueller-Mellin, R.; Muller, J.-P.; Munoz Caro, G.; Nachon, M.; Navarro Lopez, S.; Navarro-Gonzalez, R.; Nealson, K.; Nefian, A.; Nelson, T.; Newcombe, M.; Newman, C.; Nikiforov, S.; Niles, P.; Nixon, B.; Noe Dobrea, E.; Nolan, T.; Oehler, D.; Ollila, A.; Olson, T.; Owen, T.; de Pablo Hernandez, M. A.; Paillet, A.; Pallier, E.; Palucis, M.; Parker, T.; Parot, Y.; Patel, K.; Paton, M.; Paulsen, G.; Pavlov, A.; Pavri, B.; Peinado-Gonzalez, V.; Pepin, R.; Peret, L.; Perez, R.; Perrett, G.; Peterson, J.; Pilorget, C.; Pinet, P.; Pla-Garcia, J.; Plante, I.; Poitrasson, F.; Polkko, J.; Popa, R.; Posiolova, L.; Posner, A.; Pradler, I.; Prats, B.; Prokhorov, V.; Purdy, S. W.; Raaen, E.; Radziemski, L.; Rafkin, S.; Ramos, M.; Raulin, F.; Ravine, M.; Reitz, G.; Renno, N.; Richardson, M.; Robert, F.; Robertson, K.; Rodriguez Manfredi, J. A.; Romeral-Planello, J. J.; Rowland, S.; Rubin, D.; Saccoccio, M.; Salamon, A.; Sandoval, J.; Sanin, A.; Sans Fuentes, S. A.; Saper, L.; Sautter, V.; Savijarvi, H.; Schieber, J.; Schmidt, M.; Schmidt, W.; Scholes, D. D.; Schoppers, M.; Schroder, S.; Schwenzer, S.; Sebastian Martinez, E.; Sengstacken, A.; Shterts, R.; Siebach, K.; Siili, T.; Simmonds, J.; Sirven, J.-B.; Slavney, S.; Sletten, R.; Smith, M.; Sobron Sanchez, P.; Spray, J.; Squyres, S.; Stalport, F.; Steele, A.; Stein, T.; Stern, J.; Stewart, N.; Stipp, S. L. S.; Stoiber, K.; Sucharski, B.; Sullivan, R.; Summons, R.; Sun, V.; Supulver, K.; Sutter, B.; Szopa, C.; Tan, F.; Tate, C.; Teinturier, S.; ten Kate, I.; Thomas, P.; Thompson, L.; Tokar, R.; Toplis, M.; Torres Redondo, J.; Trainer, M.; Tretyakov, V.; UrquiO’Callaghan, R.; Van Beek, J.; Van Beek, T.; VanBommel, S.; Varenikov, A.; Vasavada, A.; Vasconcelos, P.; Vicenzi, E.; Vostrukhin, A.; Voytek, M.; Wadhwa, M.; Ward, J.; Webster, C.; Weigle, E.; Wellington, D.; Westall, F.; Wiens, R. C.; Wilhelm,

ACS Paragon Plus Environment

Analytical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

M. B.; Williams, A.; Williams, R.; Williams, R. B. M.; Wilson, M.; Wimmer-Schweingruber, R.; Wolff, M.; Wong, M.; Wray, J.; Wu, M.; Yana, C.; Yingst, A.; Zeitlin, C.; Zimdar, R.; Zorzano Mier, M.-P. Science 2014, 343 (6169), 1243480–1243480. (21) Bost, N.; Westall, F.; Ramboz, C.; Foucher, F.; Pullan, D.; Meunier, A.; Petit, S.; Fleischer, I.; Klingelhöfer, G.; Vago, J. L. Planet. Space Sci. 2013, 82-83, 113–127.

Page 8 of 8

(22) Navarro-Gonzalez, R. Science 2003, 302 (5647), 1018– 1021. (23) Stalport, F.; Glavin, D. P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; Mahaffy, P. R. Planet. Space Sci. 2012, 67 (1), 1–13. (24) Buch, A.; Sternberg, R.; Chazalnoel, P. Device for preparing and injecting a sample. 2,295,961 A1, March 16, 2011.

Insert Table of Contents artwork here

ACS Paragon Plus Environment