19 Organic Coatings Analysis by Scanning Electron Microscopy and Energy Dispersive x-Ray Analysis
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
RICHARD M. H O L S W O R T H Glidden Coatings and Resins, Strongsville, OH 44136
The use of the scanning energy dispersive ings/substrate Examples
defects
discussed
mental analysis chemical
problems
microscope
and problems
include
the
is
such as mildew
sure panel, interior
growth
can corrosion,
coatings on metal substrates are
the
demonstrated.
morphology and
and exposed to various
tests. Miscellaneous
and
in the study of coat-
of metal pretreatments
both unexposed and
electron
x-ray analyzer
and elesubstrates,
environments
coatings/substrate on an exterior
expo-
and defects in clear shown.
S C A N N I N G E L E C T R O N M I C R O S C O P Y ( S E M ) w a s f i r s t u s e d b y u s to s t u d y the surface of p a i n t f i l m s a n d substrates i n 1962. T h i s w o r k w a s p e r f o r m e d at t h e P u l p a n d P a p e r R e s e a r c h I n s t i t u t e o f C a n a d a , at t h a t time, one of the few locations w h e r e S E M e q u i p m e n t was available. Pigment volume concentration ladders and pigmentation were studied. Later, untreated a n d b o n d e r i z e d steel panels a n d electrocoated panels w e r e s t u d i e d . O n e of the first p u b l i c a t i o n s c o n c e r n i n g S E M i n v e s t i g a t i o n o f coatings a p p e a r e d i n 1967 (I). T h i s e x c e l l e n t w o r k
demon-
strated the usefulness of S E M i n coatings analysis a n d characterization. A symposium on " S c a n n i n g E l e c t r o n Microscopy of Polymers a n d C o a t i n g s " (2) w a s h e l d i n T o r o n t o , O n t a r i o , i n 1 9 7 0 u n d e r s p o n s o r s h i p of the C h e m i c a l Institute of C a n a d a a n d the A m e r i c a n C h e m i c a l Society. S i n c e that t i m e , m a n y articles have b e e n p u b l i s h e d c o n c e r n i n g either i n w h o l e o r i n p a r t S E M a n a l y s i s o f c o a t i n g s (3,4). T h e c o a t i n g s s e c t i o n o f Analytical
Chemistry's
" A p p l i c a t i o n R e v i e w s 1 9 7 9 " (5) l i s t e d 4 3
r e f e r e n c e s to t h e u s e o f m i c r o s c o p y , 2 7 r e f e r e n c e s t o t h e u s e o f s u r f a c e a n a l y s i s , a n d 18 r e f e r e n c e s to t h e u s e o f x - r a y s i n t h e a n a l y s i s a n d characterization of coatings. T h e r e have, of course, b e e n m a n y a d d i tional publications i n this area i n recent years. 0065-2393/83/0203-0363$06.00/0 © 1983 A m e r i c a n C h e m i c a l Society
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
364
POLYMER CHARACTERIZATION
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
T h e use of S E M has i n c r e a s e d d r a m a t i c a l l y i n the past several years, not only i n the coatings industry, but other surface-oriented d i s c i p l i n e s as w e l l . P r o b a b l y t h e m o s t s i g n i f i c a n t r e a s o n for t h i s i s t h e r e l a t i v e l y l o w p r i c e o f S E M t o d a y , c o m p a r e d to t h e c o s t s e v e r a l y e a r s a g o . S p e c i a l t y S E M s t h a t g i v e g o o d r e s o l u t i o n at l o w a n d i n t e r m e d i a t e magnification ranges have b e e n c o m m e r c i a l i z e d a n d , thereby, put S E M w i t h i n the r e a c h of m a n y i n d u s t r i a l labs. S u c h a specialty S E M is t h e M I N I - S E M - I I (6); i t has m a d e t h e S E M n o t o n l y a r e s e a r c h t o o l at t h e D w i g h t P . J o y c e R e s e a r c h C e n t e r , b u t a t o o l for r o u t i n e a n a l y s i s and problem solving.
Experimental T h e S E M used i n our lab is a M I N I - S E M M o d e l II (International S c i e n tific Instruments, Inc.) w i t h a 16-step magnification range of 3 0 x - 4 0 , 0 0 0 x and resolution of 250 A . T h e accelerating voltage is fixed at 15 k V . T h e samples are coated i n an A k a s h i v a c u u m evaporator w i t h p a l l a d i u m - g o l d (40—60) or carbon. A K E V E X 5100 x-ray energy spectrometer is used for the analysis of heavy elements found on surfaces, substrates, a n d i n organic coatings.
Results and
Discussion
P i g m e n t V o l u m e Concentration ( P V C ) Ladders. O n e of the e a r l y s t u d i e s u t i l i z i n g S E M w a s to o b s e r v e t h e m o r p h o l o g i c a l c h a n g e s t h a t o c c u r i n a p a i n t f i l m as t h e p i g m e n t v o l u m e c o n c e n t r a t i o n ( P V C ) is i n c r e a s e d t h r o u g h t h e c r i t i c a l p i g m e n t v o l u m e concentration ( C P V C ) . M a n y of the physical and mechanical properties of paint f i l m s s u c h as t e n s i l e s t r e n g t h , e l o n g a t i o n , a n d m o i s t u r e p e r m e a b i l i t y c h a n g e d r a m a t i c a l l y at t h e C P V C . T h e C P V C w a s d e f i n e d (7) as t h e P V C at w h i c h t h e b i n d e r o r r e s i n j u s t f i l l s t h e v o i d s b e t w e e n t h e p a c k e d p i g m e n t particles. W h e n the P V C lies b e l o w the C P V C , the f i l m is c o m p o s e d o f p i g m e n t d i s p e r s e d i n a c o n t i n u o u s r e s i n phase. A b o v e the C P V C there is i n s u f f i c i e n t b i n d e r to f i l l the spaces b e t w e e n the p a c k e d p i g m e n t p a r t i c l e s . T h e r e s u l t is a v o i d - f i l l e d f i l m . It w a s anticipated that this p h e n o m e n o n c o u l d be s t u d i e d b y S E M . S o m e r e s u l t s o f t h i s s t u d y are s h o w n i n F i g u r e s 1 - 4 . F i g u r e 1 at 7 7 0 x m a g n i f i c a t i o n s h o w s the surface of a 30 P V C latex paint. T h e surface a p p e a r s to b e b i n d e r r i c h i n t h i s c a s e . F i g u r e 2 at 7 5 0 x m a g n i f i c a t i o n s h o w s t h e s u r f a c e o f a 6 0 P V C l a t e x p a i n t . T h e s u r f a c e a p p e a r s to b e v e r y porous a n d b i n d e r d e f i c i e n t i n this case. T h e latex p a i n t is m o s t l i k e l y a b o v e t h e C P V C o r t h e p o i n t o f o p t i m u m p i g m e n t l o a d i n g to m a i n t a i n an o p t i m u m balance of properties. F i g u r e 3 shows the surf a c e o f a 5 0 P V C l a t e x p a i n t at 5 0 0 x m a g n i f i c a t i o n . T h e s u r f a c e l o o k s v e r y s i m i l a r to t h a t o f F i g u r e 2. F i g u r e 4 s h o w s t h i s p a i n t s u r f a c e at 25,000x magnification. T h e smooth b i n d e r matrix can be seen along w i t h s e v e r a l v o i d s . T h e p i g m e n t p a r t i c l e s t h a t are s e e n r e a d i l y are most likely single a n d agglomerated particles of T i 0 . 2
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
19.
HOLSWORTH
Organic
Figure
Coating
365
Analysis
1. 30 PVC Latex paint (770 x).
Figure 2. 60 PVC Latex paint
(750x).
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
366
POLYMER CHARACTERIZATION
Figure 3. 50 PVC Latex paint (500 x).
Figure 4. 50 PVC Latex paint (25,000 x).
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
19.
HOLSWORTH
Organic
Coating
367
Analysis
M i l d e w Defacement. D u r i n g a routine evaluation of exposure p a n e l s , a p a n e l f r o m t h e e x p o s u r e f e n c e a p p e a r e d to h a v e a v e r y h e a v y d i r t p i c k u p . T h e r e w e r e t i n y b l a c k spots o n t h e s u r f a c e t h a t a p p a r e n t l y d i d n o t w a s h off. T h e b l a c k spots d i d a n d d i d n o t b e h a v e l i k e d i r t , a n d u p o n visual observation, they d i d not look like m i l d e w . T h e S E M p h o t o m i c r o g r a p h at 4 0 0 X m a g n i f i c a t i o n , F i g u r e 5, s h o w s t h e s u r f a c e o f t h e f i l m to b e b r o k e n , a n d m i l d e w g r o w i n g out onto t h e surface o f t h e c o a t i n g . F i g u r e 6, at 7 0 0 X m a g n i f i c a t i o n , s h o w s t h i s e v e n b e t t e r . T h e c o a t i n g is b e i n g p u s h e d o f f o r b r o k e n b y t h e e r u p t i o n a n d g r o w t h of the m i l d e w f r o m b e n e a t h the top coat. F i g u r e 7 is a 1300 X m a g n i f i c a t i o n o f t h e s a m e p a n e l . T h e c o a t i n g c a n b e s e e n to b e f r a c t u r e d b y t h e e r u p t i o n o f t h e m i l d e w g r o w t h . F i g u r e 8, at 7 0 0 X m a g n i f i c a t i o n , i s o f a s i m i l a r s p o t t h a t has b e e n w a s h e d f r e e o f t h e m i l d e w . F i g u r e 9 at 3000X magnification, shows residual m i l d e w w i t h i n the defect i n the p a i n t film. W h e t h e r t h e s p o r e g o t i n t o t h e p r i m e r b y w a y o f s m a l l f o a m or a i r v o i d s t h r o u g h the top coat to the substrate, or w a s o n the p l y w o o d substrate before it w a s p a i n t e d is not k n o w n . T h e m i l d e w does not s e e m to b e starting its g r o w t h o n the surface b u t r a t h e r f r o m u n d e r neath the top coat of latex paint. A l u m i n u m S i d i n g C o m p l a i n t . F i g u r e 10 i s a m i c r o g r a p h at a m a g n i f i c a t i o n o f 1 0 0 x o f a l u m i n u m s i d i n g t h a t w a s i n v e s t i g a t e d as t h e result of a complaint. T h e siding had become very dirty. H e a v y dirt
Figure 5. Mildew
growth on panel surface
(400x).
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
POLYMER
Figure 6. Mildew
Figure
7. Mildew
growth on panel surface
CHARACTERIZATION
(700x).
growth on panel surface (1300 x).
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
HOLSWORTH
Organic
Coating
Figure 8. Scrubbed
Figure 9. Scrubbed
mildew
mildew
Analysis
covered panel
(700x).
covered panel (3000 x).
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
370
POLYMER CHARACTERIZATION
Figure
10. Aluminum
siding complaint
(lOOx).
p i c k u p a n d s m a l l p i m p l e s or b u m p s h a d d e v e l o p e d across the surface of the panel. T h i s micrograph shows several of these little b u m p s . A r o u n d the b u m p s c a n b e s e e n a p p a r e n t b o u n d a r y l i n e s that are r e a l l y d e f e c t s i n t h e film r e s u l t i n g f r o m s o l v e n t e v a p o r a t i o n a n d t h e f o r m a tion of B e n a r d cells. T h i s leaves a fairly regular pattern of resin-rich areas o n t h e s u r f a c e t h a t d e g r a d e at a r a p i d r a t e . I t i s a s s u m e d t h a t t h e b o u n d a r y l i n e s t h a t c a n b e s e e n a r e , i n s o m e a r e a s , o p e n t h r o u g h to t h e m e t a l o r are v e r y t h i n s p o t s i n t h e c o a t i n g t h a t a l l o w e a s i e r p e n e t r a t i o n o f m o i s t u r e o r o t h e r c o n t a m i n a n t s t h a t c a n l e a d to c o r r o s i o n o f t h e a l u m i n u m s u b s t r a t e . F i g u r e 11 i s a c l o s e - u p o f a c r o s s - s e c t i o n o f t h e b u m p s o n t h e p a n e l at 3 5 0 x m a g n i f i c a t i o n . It s h o w s t h a t u n d e r n e a t h the r a i s e d p o r t i o n o f the coating, a crystal or salt g r o w t h f o r m a t i o n has d e v e l o p e d b e t w e e n t h e a l u m i n u m s u b s t r a t e a n d t h e c o a t i n g . T h i s area was s t u d i e d b y e n e r g y d i s p e r s i v e x-ray analysis ( E D X R A ) , a n d t h e c r y s t a l s p r o v e d to b e a l u m i n u m salts i n c l u d i n g s u l f u r a n d chlorine. C l e a r Coatings o n Reflective M e t a l Substrates. T h e inspection o f c l e a r coatings o n h i g h l y r e f l e c t i v e m e t a l substrates is a n a n n o y i n g p r o b l e m i n optical microscopy. T h e reflection of the incident light from the m e t a l o b s c u r e s the fine d e t a i l o f the surface m o r p h o l o g y that n e e d s to b e s e e n . A s t y r e n e - a c r y l i c b a s e c o a t for a q u a l i t y as r e c e i v e d p l a t e w a s o b s e r v e d u n d e r t h e o p t i c a l l i g h t m i c r o s c o p e f r o m 10 x t o 200 X magnification. T h e o n l y defects that c o u l d be s e e n w e r e occas i o n a l gas b u b b l e s t h a t h a d b e e n t r a p p e d i n t h e f i l m . T h e r e w a s n o v i s i b l e s i g n o f t h e 2 % w a x t h a t h a d b e e n a d d e d t o t h e c o a t i n g as a l u b r i cant u n d e r the optical m i c r o s c o p e . A l t h o u g h the coating passed v i s u a l i n s p e c t i o n , w h e n the m a t e r i a l w a s p l a c e d i n a c o p p e r sulfate b a t h , m e t a l l i c c o p p e r w a s f o r m e d o n the i r o n substrate b y a d i s p l a c e m e n t r e a c t i o n , i n d i c a t i n g t h a t t h e d e f e c t s i n t h e c o a t i n g are o p e n to t h e i r o n substrate. F l o w e r - l i k e c o p p e r deposits c o u l d be seen o v e r a w i d e area o f t h e p a n e l . F i g u r e 12 s h o w s o n e o f t h e c o p p e r d e p o s i t s o n t h e p a n e l s u r f a c e at 5 0 X m a g n i f i c a t i o n . M a n y o t h e r d e f e c t s o n t h e s u r f a c e o f t h e
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
19.
HOLSWORTH
Figure
Organic
Coating
11. Cross-section
371
Analysis
of aluminum
siding defect (350 x).
p a n e l c a n b e s e e n i n t h e m i c r o g r a p h . A r e a A o f F i g u r e 12 i s s h o w n at 6 0 0 X m a g n i f i c a t i o n i n F i g u r e 13. T h r e e t y p e s o f d e f e c t s c a n b e s e e n i n F i g u r e 1 3 ; o p e n b u b b l e s f r o m e n t r a p p e d gas b u b b l e s ( B ) , craters p r o b a b l y r e s u l t i n g from the w a x l u b r i c a n t o n the surface (C), a n d craters from insufficient flow of a b r o k e n b u b b l e (F). T h e large crater i n the c e n t e r o f F i g u r e 13 i s s h o w n at 3 0 0 0 X m a g n i f i c a t i o n i n F i g u r e 14. T h e d e f e c t s are l a b e l e d t h e s a m e as i n F i g u r e 13. T h e m a t e r i a l i n t h e b o t t o m of the large crater is p r o b a b l y r e s i d u a l w a x or other r e s i d u e from the bath. A n a l y s i s of a similar type of structure b y E D X R A s h o w e d the m a t e r i a l t o b e i r o n salts. A v e r y s m a l l c o p p e r c r y s t a l f o r m a t i o n i s s e e n i n F i g u r e 15 at 3 0 0 0 x m a g n i f i c a t i o n . T o d e t e r m i n e w h i c h t y p e o f d e f e c t w a s o p e n to t h e s u b s t r a t e a n d a l l o w e d the c o p p e r crystals to g r o w , the c o p p e r d e p o s i t w a s d i s s o l v e d w i t h nitric a c i d a n d the resulting clear area studied i n the S E M . F i g u r e 16 at 5 6 0 X m a g n i f i c a t i o n s h o w s t h e d a r k i r r e g u l a r a r e a t h a t w a s
Figure
12. Metallic
copper deposit on panel surface (50 x).
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
372
POLYMER
Figure
CHARACTERIZATION
13. Surface defects in clear coating (600 x).
Figure 14. Surface defects in clear coating
(3000x).
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
19.
HOLSWORTH
Organic
Coating
373
Analysis
Figure 15. Copper deposit on panel surface
(3000x).
Figure 16. Area of copper deposit after acid treatment (560 x).
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
374
POLYMER CHARACTERIZATION
Figure 17. Area of copper deposit after acid treatment (2400 x). covered by the copper, residue from the a c i d dissolution of the copp e r , a n d a gas b u b b l e d e f e c t i n t h e c e n t e r o f w h a t w a s t h e c o p p e r . F i g u r e 17 at 2 4 0 0 x m a g n i f i c a t i o n s h o w s t h e gas b u b b l e d e f e c t a n d w h a t looks l i k e a crack or split i n the bottom of the crater. T h i s c o u l d b e t h e o p e n i n g to t h e s u b s t r a t e . M e t a l Substrate Pretreatment. W h e n r u n n i n g accelerated or natu r a l i n - u s e tests o n a c o a t i n g , i t is i m p o r t a n t to k n o w t h e s u b s t r a t e b e i n g u s e d . T h e f o l l o w i n g are s e v e r a l e x a m p l e s w h e r e c o n f u s i o n d e v e l o p e d somewhere between the initial pretreatment of the panels a n d t h e a n a l y s i s o f t h e s u r f a c e . F i g u r e s 18 a n d 19 s h o w t h e t w o
Figure 18. Zinc phosphate
with calcium
rinse pretreatment
(700 x).
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
19.
HOLSWORTH
Organic
Coating
Analysis
375
Figure 19. Zinc phosphate without calcium rinse pretreatment
(700 x).
phosphate-treated panels i n question. Physically they appear similar. T h e z i n c p h o s p h a t e a p p e a r s as s m a l l a l m o s t m i c r o c r y s t a l s a n d as l a r g e plate-like crystals, mostly w i t h a vertical orientation. T h e sample i n F i g u r e 18 w a s t o h a v e r e c e i v e d a c a l c i u m r i n s e , w h i l e t h e s a m p l e i n F i g u r e 19 d i d n o t . T h e E D X R A s p e c t r a i n F i g u r e s 2 0 a n d 2 1 s h o w t h e p a n e l s to b e s i m i l a r i n s u r f a c e t r e a t m e n t . I n fact, b o t h s a m p l e s s h o w t h e p r e s e n c e o f c a l c i u m . I n F i g u r e s 2 2 a n d 2 3 are t h e f a m i l i a r c r y s t a l s o f z i n c p h o s p h a t e p r e t r e a t m e n t . T h e s a m p l e i n F i g u r e 2 2 w a s to h a v e received a chrome rinse, w h i l e the sample i n F i g u r e 23 r e c e i v e d no rinse. T h e spectra of these t w o samples, s h o w n i n F i g u r e s 24 a n d 25, exhibit no c h r o m i u m . O n l y zinc, phosphorus, iron, and nickel from a n i c k e l f l u o r i d e r i n s e are p r e s e n t .
Figure 20. EDXRA
spectrum
of Figure
18.
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
376
POLYMER CHARACTERIZATION
Figure 21. EDXRA
Figure 22. Zinc phosphate
Figure 23. Zinc phosphate
spectrum
pretreatment
pretreatment
of Figure
19.
with chrome rinse (700 x).
without chrome rinse
(700x).
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
19.
HOLSWORTH
Organic
Coating
Figure 24. EDXRA
377
Analysis
spectrum
of Figure
22.
F i g u r e s 26 a n d 27 s h o w the surface of t w o samples w i t h a c a l c i u m z i n c phosphate surface treatment. T h e E D X R A spectra i n F i g u r e s 28 a n d 2 9 s h o w t h e o v e r a l l s u r f a c e s to b e c h e m i c a l l y s i m i l a r . H o w e v e r , w h e n the surfaces o f t h e t w o s a m p l e s are c o m p a r e d , t h e test p a n e l i n F i g u r e 26 shows s m a l l crystals tightly p a c k e d o n the surface, w h i l e the plant m e t a l substrate i n F i g u r e 27 shows crystals larger t h a n i n F i g u r e 26, plus some plate-like crystals w i t h mostly vertical orientation. O f m o r e i m p o r t a n c e i s t h e o b v i o u s fact t h a t t h e c r y s t a l s a r e so l o o s e l y p a c k e d o n the surface that the m e t a l substrate is e x p o s e d . T h i s is c o n f i r m e d b y E D X R A w h i c h s h o w s o n l y i r o n to b e p r e s e n t i n t h e e x p o s e d areas ( F i g u r e s 2 8 a n d 29).
Figure 25. EDXRA
spectrum
of Figure
23.
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
378
POLYMER CHARACTERIZATION
Figure 26. Calcium
Figure 27. Calcium
zinc phosphate
zinc phosphate
Figure 28. EDXRA
spectrum
pretreatment
pretreatment
of Figure
(700x).
(700x).
26.
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
19.
HOLSWORTH
Organic
Coating
Figure 29. EDXRA
379
Analysis
spectrum
of Figure
27,
C a n C o a t i n g Substrate C o r r o s i o n . T h e u s e o f w a t e r b o r n e c o a t i n g s f o r m e t a l s u b s t r a t e s , s u c h as c a n c o a t i n g s , h a s i n c r e a s e d t h e o c c u r r e n c e o f a p r o b l e m , n o t u n i q u e to w a t e r b o r n e systems. T h i s p r o b l e m o c c u r s as a r e s u l t o f e n t r a p p e d f o a m o r p o o r f l o w o u t o f f o a m o r b u b b l e i n d u c e d defects a n d is characterized b y b l i s t e r i n g a n d corros i o n . A film d e f e c t s u c h as s e e n p r e v i o u s l y i n F i g u r e 1 7 c a n , u p o n a c c e l e r a t e d l a b t e s t i n g , p r o d u c e a n a r e a s u c h as t h a t s e e n i n F i g u r e 3 0 . T h i s S E M p h o t o m i c r o g r a p h at 2 0 0 x m a g n i f i c a t i o n s h o w s a s m a l l crater-like defect i n t h e center o f w h a t appears to b e a b l i s t e r . U n d e r t h e o p t i c a l m i c r o s c o p e t h e b l i s t e r a p p e a r e d t o b e filled, i n p a r t , w i t h a
Figure 30. Coating
defect and blister
over tin-plated
steel (200 x).
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
380
POLYMER CHARACTERIZATION
Figure 31. Corroded
area under blister
in Figure 30 (400 x).
rust b r o w n l i q u i d over the still s h i n y t i n plate surface. After b e i n g e x p o s e d to r o o m c o n d i t i o n s for s e v e r a l d a y s , t h e b l i s t e r w a s t a p e d off, i . e . , r e m o v e d b y a d h e s i v e t a p e . T h e r e s u l t s are s h o w n i n F i g u r e s 3 1 a n d 3 2 at 4 0 0 X m a g n i f i c a t i o n . F i g u r e 3 1 i s t h e a r e a i m m e d i a t e l y u n d e r l y i n g the b l i s t e r . T h e m e t a l substrate is c o r r o d e d t h r o u g h a l m o s t completely. E D X R A indicates iron throughout the corroded area a n d h i g h l e v e l s of p h o s p h o r u s a n d c h l o r i n e . F i g u r e 32 is the t a p e d off material that consists o f the i r o n corrosion products, the t i n plate, a n d t h e organic top coat. A m e c h a n i s m for c o r r o s i o n o f t h i s t y p e has b e e n d e s c r i b e d e l s e w h e r e (8). F i g u r e 33 shows a l i n e of e n t r a p p e d blisters or b u b b l e s i n a clear coating on t i n p l a t e d steel substrate. T h e closed a n d partially o p e n blisters s h o w e d no corrosion w i t h i n the blister, although moisture h a d p e r m e a t e d t h e film a n d w a s t r a p p e d i n s i d e t h e b u b b l e s . T h e e x p o s e d area i n the center was f i l l e d w i t h a rusty l i q u i d . T h e top was carefully r e m o v e d , i n c l u d i n g corrosion products from the center, exposing the p i t a n d a c o v e r i n g of the clear coating over most of the surface. F i g u r e 34 shows a s i m i l a r b u b b l e w i t h the top r e m o v e d , e x p o s i n g the corrosion p l u g i n the center of the b u b b l e , plus corrosion products o n the interior w a l l . A p p a r e n t l y , a defect l i k e that i n F i g u r e 30 was present i n s i d e t h e b u b b l e a n d c o r r o s i o n started after p e r m e a t i o n o f l i q u i d t h r o u g h the b u b b l e w a l l .
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
HOLSWORTH
Organic
Figure 32. Backside
Figure 33. Corrosion
Coating
of taped off blister
area within
381
Analysis
blister,
in Figure 30 (400 x).
corrosion
removed (50 x).
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch019
382
POLYMER CHARACTERIZATION
Figure
34. Corrosion
area within
blister
(200x).
Conclusions S E M a n d S E M / E D X R A have b e e n demonstrated to b e extremely u s e f u l tools for c h a r a c t e r i z i n g coatings, substrates, a n d interfaces a n d for o r g a n i c coatings f a i l u r e a n a l y s i s . S a m p l e p r e p a r a t i o n i s m i n i m a l c o m p a r e d w i t h t h e w e a l t h o f i n f o r m a t i o n that c a n b e o b t a i n e d b y these methods. T h e S E M is a logical extension o f the l o w p o w e r stereomicroscope available
f o r coatings a n a l y s i s , a n d t h e great d e p t h o f f i e l d
is i n v a l u a b l e for coatings
problem
analysis. T h e S E M /
E D X R A s y s t e m i s a fast, e a s y m e t h o d f o r r a p i d i d e n t i f i c a t i o n o f s m a l l inclusions o r defects, a n d for the q u i c k c o m p a r i s o n o f coatings f o r m u lations. Literature 1. 2. 3. 4. 5. 6. 7. 8.
Cited
Brooks, L . E.; Sennett, P.; Morris, H . H. J. Paint Technol. 1967, 39, 472. Princen, L . H. Appl. Polym. Symp. 1971, 16. Princen, L. H.; Baker, F. L. Paint Varn. Prod. 1971, 16, 21. Princen, L . H. Appl. Polym. Symp. 1974, 23. Anderson, D. G.; Vandeberg, T. Anal. Chem. 1979, 31, 80R. Evins, D. J.; Engle, R. J. Am. Lab. (Fairfield, Conn.) 1974, 6, 51. Asbeck, W. K.; Van Loo, M. Ind. Eng. Chem. 1949, 41, 1470. Funke, W. Prog. Org. Coat. 1981, 9, 29.
RECEIVED for review October 14, 1981. ACCEPTED March 12, 1982.
Craver; Polymer Characterization Advances in Chemistry; American Chemical Society: Washington, DC, 1983.