8 The Current Status of Prosthetic Heart Valves AJIT P. YOGANATHAN, E. C. HARRISON, and R. H. FRANCH Bio Fluid Dynamics Laboratory, School of Chemical Engineering, Georgia Institute of
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
Technology, Atlanta, GA 30332
The main objective of the study is to correlate the i n v i t r o fluid dynamic performances o f prosthetic heart valves with t h e i r i n vivo clinical and pathological c h a r a c t e r i s t i c s . The aim is to c l e a r l y document any r e l a t i o n s h i p s between i n vitro f l u i d dynamic performance and potential clinical and/or pathological findings and complications. Heart valve prostheses have been used successfully since 1960. Of the nearly 50 d i f f e r e n t cardiac valves introduced over the past 22 years, many have been discarded due to t h e i r lack o f success, and o f those remaining, several modifications have been made. The most commonly used basic types of prosthetic valves are: (a) caged ball, (b) tilting d i s c , (c) caged d i s c , (d) bi-leaflet and (e) bioprostheses. The most serious problems and complications a s s o c i ated with valve prostheses are: (a) thromboembolism, (b) tissue overgrowth, (c) i n f e c t i o n , (d) tearing of sewing sutures, (e) hemolysis, (f) valve f a i l u r e due to material fatigue or chemical change, (g) damage to the endothelial tissue l i n i n g o f the vessel wall adjacent to the v a l v e , (h) large pressure gradients e s p e c i a l l y under exercise c o n d i t i o n s , and (i) excess r e g u r g i t a t i o n . Problems ( a ) , ( b ) , ( e ) , (g) - ( i ) are directly related to the fluid dynamics associated with the d i f f e r e n t prosthetic valve designs, and are discussed i n d e t a i l i n t h i s paper. H e a r t v a l v e p r o s t h e s e s have been used s u c c e s s f u l l y s i n c e 1 9 6 0 . A s s t a t e d b y R o b e r t s {Vj t h e d e c a d e o f 1 9 6 0 w i l l p r o b a b l y b e remembered most i n t h e a n n a l s o f c a r d i o l o g y as t h e decade d u r i n g w h i c h c a r d i a c v a l v e r e p l a c e m e n t became a s u c c e s s f u l r e a l i t y . O f t h e n e a r l y 50 d i f f e r e n t c a r d i a c v a l v e s i n t r o d u c e d o v e r t h e p a s t 2 2 y e a r s , many have b e e n d i s c a r d e d d u e t o t h e i r l a c k o f s u c c e s s , a n d o f t h o s e r e m a i n i n g , s e v e r a l m o d i f i c a t i o n s h a v e b e e n made o r 0097-6156/84/0256-0111$11.00/0
© 1984 American Chemical Society
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
112
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
a r e b e i n g made a t t h e t i m e o f t h i s w r i t i n g . The most commonly used b a s i c t y p e s o f p r o s t h e t i c v a l v e s a t p r e s e n t a r e (a) caged b a l l , (b) t i l t i n g d i s c , (c) caged d i s c , (d) b i - l e a f l e t and (e) bioprostheses. At present over 75,000 p r o s t h e t i c v a l v e s of d i f f e r e n t d e s i g n s are used a n n u a l l y throughout the w o r l d . Even a f t e r 20 y e a r s o f e x p e r i e n c e t h e p r o b l e m s a s s o c i a t e d w i t h h e a r t v a l v e p r o s t h e s e s have not been t o t a l l y e l i m i n a t e d . The most s e r i o u s problems and c o m p l i c a t i o n s a s s o c i a t e d w i t h h e a r t valve prostheses are: (a) t h r o m b o e m b o l i s m , (b) t i s s u e o v e r g r o w t h , (c) i n f e c t i o n , (d) t e a r i n g o f s e w i n g s u t u r e s , (e) r e d c e l l destruct i o n ( h e m o l y s i s ) , ( f ) v a l v e f a i l u r e due t o m a t e r i a l f a t i g u e o r c h e m i c a l c h a n g e , (g) damage t o t h e e n d o t h e l i a l t i s s u e l i n i n g o f t h e v e s s e l w a l l a d j a c e n t t o t h e v a l v e and (h) l e a k s c a u s e d by f a i l u r e of the valve to c l o s e p r o p e r l y . Problems ( a ) , (b), (e) and (g) a r e d i r e c t l y r e l a t e d t o t h e f l u i d d y n a m i c s a s s o c i a t e d w i t h t h e v a r i o u s p r o s t h e t i c h e a r t v a l v e s , a n d n e e d t o be a d d r e s s e d i n more d e t a i l by i n v e s t i g a t o r s s t u d y i n g b i o - f l u i d mechanics. The o t h e r p r o b l e m s a r e i n d i r e c t l y r e l a t e d t o t h e f l u i d mechanics. The p r o b l e m s r e l a t i n g t o v a l v e f a i l u r e due t o m a t e r i a l f a t i g u e o r c h e m i c a l c h a n g e a l s o n e e d t o be s t u d i e d e s p e c i a l l y as t h e y r e l a t e t o b i o p r o s t h e s e s . T i s s u e b i o p r o s t h e s e s g a i n e d w i d e s p r e a d use d u r i n g the m i d 1970' s . I t was e v e n n a i v e l y t h o u g h t by some o f t h e t i s s u e v a l v e m a n u f a c t u r e r s t h a t t h e i d e a l h e a r t v a l v e p r o s t h e s i s had been discovered. The m a j o r a d v a n t a g e o f t i s s u e b i o p r o s t h e s e s comp a r e d t o t h e i r m e c h a n i c a l c o u n t e r p a r t s i s t h a t t h e y have a l o w e r incidence of thromboembolic complications. Therefore, tissue v a l v e s f o r a l a r g e p a r t c a n be u s e d w i t h o u t anticoagulation therapy to e l i m i n a t e or reduce thromboembolic complications. U n f o r t u n a t e l y , the t i s s u e b i o p r o s t h e s e s c l i n i c a l l y used at p r e s e n t a l s o have major d i s a d v a n t a g e s such a s : (a) relatively l a r g e p r e s s u r e d r o p s c o m p a r e d t o some o f t h e m e c h a n i c a l v a l v e s , e s p e c i a l l y i n t h e s m a l l e r s i z e s , (b) j e t - l i k e f l o w t h r o u g h the v a l v e l e a f l e t s , (c) m a t e r i a l f a t i g u e and/or wear o f valve l e a f l e t s , (d) c a l c i f i c a t i o n o f v a l v e l e a f l e t s , e s p e c i a l l y i n c h i l d r e n and young a d u l t s . Because o f t h e s e and o t h e r d r a w b a c k s , v a l v e m a n u f a c t u r e r s a r e now d e v e l o p i n g new d e s i g n s o f m e c h a n i c a l v a l v e s s u c h as t h e S t . J u d e , H a l l - K a s t e r and O m n i - S c i e n c e p r o s t h e s e s , newer d e s i g n s o f b i o p r o s t h e s e s and t r i l e a f l e t v a l v e s made f r o m p o l y m e r i c m a t e r i a l s . The i d e a l h e a r t v a l v e p r o s t h e s i s has n o t y e t been d e s i g n e d and p r o b a b l y w i l l n e v e r e x i s t . An i d e a l v a l v e s h o u l d h a v e t h e following characteristics: 1. Be f u l l y s t e r i l e a t t h e t i m e o f i m p l a n t a t i o n a n d be n o n t o x i c . 2. Be s u r g i c a l l y c o n v e n i e n t t o i n s e r t a t o r n e a r t h e n o r m a l l o c a t i o n i n the heart. 3. Conform to the heart s t r u c t u r e r a t h e r than the heart s t r u c t u r e c o n f o r m i n g t o t h e v a l v e ( i . e . , t h e s i z e and shape of the p r o s t h e s i s should not i n t e r f e r e w i t h c a r d i a c f u n c t i o n ) .
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
8.
113
Prosthetic Heart Valves
4.
Show a m i n i m u m r e s i s t a n c e t o f l o w s o s i g n i f i c a n t pressure drop across the
5.
Have m i n i m a l r e v e r s e f l o w n e c e s s a r y f o r v a l v e c l o s u r e , so as t o keep t h e i n c o m p e t e n c e o f t h e v a l v e a t a low l e v e l . Show l o n g m e c h a n i c a l a n d s t r u c t u r a l w e a r o f t h e v a l v e . Be l o n g - l a s t i n g ( ^ 2 5 y e a r s ) , a n d m a i n t a i n i t s n o r m a l f u n c t i o n a l p e r f o r m a n c e ( i . e . , must not d e t e r i o r a t e w i t h time).
6. 7.
8.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
YOGANATHAN ET A L .
9. 10.
as t o p r e v e n t valve.
a
Cause minimum trauma t o b l o o d e l e m e n t s and t h e e n d o t h e l i a l t i s s u e of the c a r d i o v a s c u l a r s t r u c t u r e surrounding the valve. Show a l o w p r o b a b i l i t y f o r t h r o m b o e m b o l i c c o m p l i c a t i o n s w i t h o u t t h e use o f a n t i c o a g u l a n t s . S h o u l d n o t be n o i s y a n d d i s t u r b t h e patient.
11. 12.
S h o u l d be r a d i o g r a p h i c a l l y v i s i b l e . S h o u l d have a modest p r i c e . As s t a t e d p r e v i o u s l y t h e s e r i o u s p r o b l e m s o f thromboembolism, e x c e s s t i s s u e o v e r g r o w t h , r e d - c e l l and p l a t e l e t d a m a g e , and damage to the e n d o t h e l i a l l i n i n g of the vessel wall adjacent to the valve are d i r e c t l y r e l a t e d to the f l u i d dynamics a s s o c i a t e d w i t h the various types of valve prostheses. B l a c k s h e a r and h i s c o workers (2,3) suggest that the shear s t r e s s e s required i n the b u l k o f the "flow t o hemolyze r e d b l o o d c e l l s a r e about 4 0 , 0 0 0 dynes/cm2. N e v a r i l and h i s c o - w o r k e r s (4) c o n t e n d , however, t h a t t h i s v a l u e c o u l d be a s l o w a s 1500 d y n e s / c m 2 . In v i t r o experiments (5-7) have a l s o r e c e n t l y shown t h a t p l a t e l e t s c o u l d , , be d a m a g e d b y s h e a r s t r e s s e s o f t h e o r d e r o f 1 0 0 - 5 0 0 d y n e s / c m . A formed element such as a red blood c e l l which adheres to the v e s s e l w a l l o r t o a f o r e i g n s u r f a c e ( s u c h as t h e v a l v e s u p e r s t r u c t u r e ) may be d a m a g e d b y s h e a r s t r e s s e s o f t h e o r d e r o f 10-102 dynes/cm^ ( 2 , 3 , 8 ) . L l o y d e t a l . , (9) i n d i c a t e t h a t s u b l e t h a l damage t o r e d b l o o d c e l l s c o u l d o c c u r a t s h e a r s t r e s s e s on t h e o r d e r o f 500 d y n e s / c m 2 o r l e s s . A r e c e n t s t u d y by M c l n t y r e (10) i n d i c a t e s that the red blood c e l l s of heart valve p a t i e n t s a r e more f i l t e r a b l e i n m i c r o p o r e s t h a n compared t o n o r m a l s u b j e c t s , due t o s u b l e t h a l damage t o t h e r e d c e l l s of valve r e c i p i e n t s . L e t h a l damage t o r e d b l o o d c e l l s c a u s e s hemolysis which i n turn leads to anemia. Sublethal and/or l e t h a l damage t o r e d b l o o d c e l l s c o u l d a l s o l e a d t o p l a t e l e t a d h e s i o n , a g g r e g a t i o n and c o a g u l a t i o n , r e s u l t i n g i n thrombus formation. M e c h a n i c a l damage t o p l a t e l e t s ( l e t h a l a n d s u b l e t h a l ) w i l l eventually lead to thromboembolic complications. F r y ( 1 1 , 1 2 ) has c o n d u c t e d two s t u d i e s on t h e e f f e c t s of w a l l s h e a r on t h e e n d o t h e l i a l l i n i n g o f t h e a o r t i c w a l l . He f o u n d t h a t t h e e n d o t h e l i a l c e l l s o n t h e v e s s e l w a l l c o u l d be damaged a t w a l l - s h e a r s t r e s s e s o f a b o u t 400 d y n e s / c n r and c o u l d be e r o d e d o f f t h e v e s s e l w a l l a t s h e a r s t r e s s e s o f a b o u t 950 dynes/cm2. He o b s e r v e d t h a t w h e n t h e e n d o t h e l i a l s u r f a c e w a s e x p o s e d t o s h e a r i n g s t r e s s e s a b o v e some c r i t i c a l v a l u e (400 d y n e s / c m 2 ) t h e c e l l s began t o s u f f e r s t r u c t u r a l and c h e m i c a l changes. The c r i t i c a l s t r e s s i s known as t h e " y i e l d i n g " s t r e s s .
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
114
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
If a s h e a r i n g s t r e s s above the c r i t i c a l value i s a p p l i e d f o r a long time p e r i o d , the y i e l d i n g process continues u n t i l the c e l l s become m e c h a n i c a l l y u n s t a b l e and a r e washed away f r o m t h e i r m o o r i n g s t o t h e b a s e m e n t membrane i n t o t a l o r by p r o g r e s s i v e erosion of c e l l substance. As t h e e r o d e d s u r f a c e o f t h e v e s s e l w a l l i s exposed to the f l o w i n g b l o o d , d e p o s i t i o n of blood elements and t h r o m b o t i c m a t e r i a l s o c c u r . Fry found t h a t the d e p o s i t e d material consisted of fibrous t i s s u e , p l a t e l e t s , red blood c e l l s , and o t h e r u n i d e n t i f i e d d e b r i s . He s t a t e s t h a t s u c h d e p o s i t i o n could lead to intimai t h i c k e n i n g of the vessel w a l l . W o o l f and C a r s t a i r s (13) s t a t e t h a t t h e f i b r o u s t i s s u e o b s e r v e d on the a o r t i c w a l l as a r e s u l t o f i n t i a m a l t h i c k e n i n g owes i t s p r e s e n c e to e i t h e r i n f i l t r a t i o n o r thrombus f o r m a t i o n , or a combination o f t h e s e two f a c t o r s . P l a t e l e t s do n o t a d h e r e t o i n t a c t e n d o t h e l i a l c e l l s b u t t h e y do a d h e r e t o s u b e n d o t h e l i a l c o n n e c t i v e t i s s u e composed o f c o l l a g e n and o t h e r m a t e r i a l s . P l a t e l e t s , h o w e v e r , have a c c e s s to c o l l a g e n f i b e r s once the e n d o t h e l i a l l i n i n g o f a v e s s e l w a l l i s damaged o r e r o d e d o f f . The a d h e s i o n o f p l a t e l e t s t o t h e d a m a g e d v e s s e l l e a d s t o t h e s u b s e q u e n t r e l e a s e o f ADP a n d platelet factor 3 (PF-3). T h e s e s u b s t a n c e s p l a y an a c t i v e r o l e i n p l a t e l e t a g g r e g a t i o n a n d c o a g u l a t i o n , r e s p e c t i v e l y , a n d may lead to thrombus f o r m a t i o n . A red blood c e l l w i l l not s t i c k to the i n t a c t e n d o t h e l i a l l i n i n g of a vessel w a l l . If, however, the v e s s e l i n t i m a i s damaged r e s u l t i n g i n a l o s s o f e n d o t h e l i a l i n t e g r i t y , red blood c e l l s c o u l d adhere onto the v e s s e l w a l l . I f t h e adhered r e d b l o o d c e l l i s exposed t o s h e a r s on the o r d e r o f 10 t o 1 0 0 d y n e s / c m 2 i t w i l l p r o b a b l y be l e t h a l l y d a m a g e d a n d hemolyzed. R e d b l o o d c e l l s c o n t a i n ADP a n d a c l o t - p r o m o t i n g f a c t o r known a s e r y t h r o c i n . These substances are r e l e a s e d i n t o the plasma as a r e s u l t o f h e m o l y s i s , i n i t i a t i n g both p l a t e l e t a g g r e g a t i o n a n d c o a g u l a t i o n , w h i c h i n t u r n may l e a d t o thrombus formation. The m e c h a n i c a l damage t o t h e b l o o d e l e m e n t s , a s w e l l a s t o t h e e n d o t h e l i a l t i s s u e o f t h e a d j a c e n t v e s s e l w a l l , may i n a d d i t i o n t r i g g e r the complex b i o c h e m i c a l r e a c t i o n s which c o u l d l e a d t o t h e e x c e s s f i b r o u s t i s s u e o v e r g r o w t h o b s e r v e d o n some recovered heart valves. Therefore, l a r g e w a l l and b u l k turbulent s h e a r s t r e s s e s c o u l d c a u s e s e r i o u s p r o b l e m s and c o m p l i c a t i o n s in vivo. I t i s a l s o w e l l known t h a t r e g i o n s o f f l o w s t a g n a t i o n , flow s e p a r a t i o n and e x c e s s i v e l y low s h e a r , i n t h e i m m e d i a t e v i c i n i t y o f t h e v a l v e s u p e r s t r u c t u r e have been r e l a t e d t o thrombus f o r m a t i o n and/or e x c e s s t i s s u e o v e r g r o w t h on the p r o s t h e s i s . The f l o w v e l o c i t y , s h e a r s t r e s s and p r e s s u r e f i e l d s i n t h e immediate v i c i n i t y of a given heart valve p r o s t h e s i s design are d i r e c t l y r e l a t e d to the f l u i d dynamic c h a r a c t e r i s t i c s of the prosthesis. Therefore, d e t a i l e d i n v i t r o f l u i d dynamic s t u d i e s s h o u l d h e l p p r e d i c t p o t e n t i a l p r o b l e m s a n d c o m p l i c a t i o n s t h a t may a r i s e in vivo with d i f f e r e n t designs of prosthetic heart valves.
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
8.
Prosthetic Heart Valves
YOGANATHAN ET A L .
115
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
Methodology An e x t e n s i v e s t u d y o f t h e l i t e r a t u r e was u n d e r t a k e n , and r e s u l t s f r o m o v e r 450 a r t i c l e s i n b o t h t h e m e d i c a l and e n g i n e e r i n g l i t e r a t u r e were u t i l i z e d (140. The r e s u l t s f o r t h e f o l l o w i n g heart valve prostheses are summarized i n t h i s paper: (a) StarrEdwards b a l l v a l v e s , (b) K a y - S h i l e y d i s c v a l v e , ( c ) B e a l l d i s c v a l v e , (d) B j o r k - S h i l e y t i l t i n g d i s c v a l v e , (e) Hancock p o r c i n e v a l v e , and ( f ) S t . J u d e b i - l e a f l e t v a l v e . These valve p r o s t h e s e s shown i n F i g u r e s 1 t h r o u g h 6 were c h o s e n b e c a u s e o f t h e i r p a s t and/or present p o p u l a r i t y i n c l i n i c a l use. They a l s o encompass a l l the b a s i c d e s i g n s o f v a l v e p r o s t h e s e s used d u r i n g the p a s t two d e c a d e s . In v i v o p r e s s u r e d r o p , i n v i t r o p r e s s u r e d r o p and r e g u r g i t a t i o n ( r e f l u x and l e a k a g e ) , h e m o l y s i s , and t h r o m b o e m b o l i c c o m p l i c a t i o n (TEC) d a t a were o b t a i n e d and t a b u l a t e d f o r e a c h o f the above v a l v e s . The i n v i t r o p r e s s u r e d r o p r e s u l t s w e r e o b t a i n e d i n most i n s t a n c e s from p u l s a t i l e f l o w measurements. The i n v i v o p r e s s u r e d r o p r e s u l t s p r e s e n t e d f o c u s p r i m a r i l y on p a t i e n t s who w e r e e l e c t i v e l y c a t h e t e r i z e d a n d who d i d n o t h a v e any c l i n i c a l p r o b l e m s r e l a t e d t o the p r o s t h e s i s . The r e s u l t s s h o u l d t h e r e f o r e r e f l e c t t h e i n v i v o hemodynamic p e r f o r m a n c e of normally functioning prostheses. Valve areas (VA), or otherwise known a s t h e e f f e c t i v e o r i f i c e a r e a s , w e r e c a l c u l a t e d by t h e various i n v e s t i g a t o r s from the G o r l i n or modified G o r l i n formulae (15). The i n v i v o v a l v e a r e a s g i v e a good q u a l i t a t i v e and/or q u a n t i t a t i v e r a n k i n g f o r the i n vivo pressure drop c h a r a c t e r i s t i c s of the various valves. If d i f f e r e n t valve d e s i g n s a r e s t u d i e d by t h e same i n v e s t i g a t o r s a n d / o r a t t h e same m e d i c a l c e n t e r , t h e r e s u l t s h a v e more quantitative significance. E v e n t h o u g h t h e a b s o l u t e v a l u e s o f VA may v a r y from center to center f o r a given valve d e s i g n , the r a n k i n g o f d i f f e r e n t valve types according to i n vivo valve areas are generally consistent. The m a i n r e a s o n s f o r t h e v a r i a t i o n s i n the absolute values from center to center a r e : (i) inaccuracies i n o b t a i n i n g c a r d i a c c a t h e t e r i z a t i o n d a t a ( p r e s s u r e s and f l o w s ) , ( i i ) o b t a i n i n g a s t a t i s t i c a l l y l a r g e enough p a t i e n t population and ( i i i ) d i f f e r e n t f o r m u l a e u s e d t o e s t i m a t e VA. The i n v i v o r e s u l t s do n o t c o n t a i n r e g u r g i t a t i o n d a t a b e c a u s e t h i s p a r a m e t e r c a n n o t be q u a n t i t a t i v e l y m e a s u r e d d u r i n g c a t h e t e r i z a t i o n , or other i n vivo procedures, at the present time. In were i n articles orifice
v i t r o p r e s s u r e d r o p , f l o w r a t e , and r e g u r g i t a t i o n d a t a most cases o b t a i n e d d i r e c t l y from t h e i r r e s p e c t i v e . From t h e s e d a t a t h e v a l v e a r e a s (VA) (i.e.: effective area) were c a l c u l a t e d from the f o l l o w i n g f o r m u l a : VA
(cm2)
=
^r m s 51.6
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
116
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
where 3 Q r m s = r o o t m e a n s q u a r e s y s t o l i c o r d i a s t o l i c f l o w r a t e , cm / s Δρ = m e a n s y s t o l i c o r d i a s t o l i c p r e s s u r e d r o p , mmHg In v i t r o r e g u r g i t a t i o n v o l u m e (RV) d a t a i n t h e b i o - m e d i c a l engineering literature i s generally poorly reported. O n l y RV d a t a e x p r e s s e d i n c m 3 / s t r o k e o r d a t a t h a t c o u l d be c a l c u l a t e d (from the i n f o r m a t i o n p r o v i d e d ) i n t o such a form were u s e d . In m a n y i n s t a n c e s , RV w o u l d be e x p r e s s e d i n t h e l i t e r a t u r e a s a p e r c e n t a g e , w i t h no i n f o r m a t i o n o n c a r d i a c o u t p u t a n d / o r h e a r t rate. The w o r k o f D e l l s p e r g e r e t a l . , (16) and i n o u r l a b o r a t o r y tend to i n d i c a t e that for a given v a l v e , at a f i x e d heart rate t h e v a l u e o f RV i n c n v t y s t r o k e d o e s n o t v a r y ( e x c e p t w i t h i n experimental error) with cardiac output. The i n v i t r o p r e s s u r e d r o p and r e g u r g i t a t i o n r e s u l t s g i v e a v e r y good q u a l i t a t i v e a n d / o r q u a n t i t a t i v e r a n k i n g o f t h e s t e n o t i c and r e g u r g i t a n t c h a r a c t e r i s t i c s o f t h e v a r i o u s v a l v e d e s i g n s . I f d i f f e r e n t v a l v e t y p e s w e r e s t u d i e d by t h e same i n v e s t i g a t o r t h e r e s u l t s o b t a i n e d w i l l have more q u a n t i t a t i v e importance. Even t h o u g h t h e a b s o l u t e n u m e r i c a l v a l u e s o b t a i n e d by d i f f e r e n t i n v e s t i g a t o r s may v a r y f o r a g i v e n v a l v e d e s i g n , t h e r a n k i n g o f the d i f f e r e n t valve types are g e n e r a l l y c o n s i s t e n t . The m a j o r r e a s o n s f o r t h e v a r i a t i o n s i n t h e a b s o l u t e v a l u e s among t h e d i f f e r e n t i n v e s t i g a t o r s i s because d i f f e r e n t types of pulse d u p l i c a t o r s and f l o w chamber g e o m e t r i e s have been u s e d . It s h o u l d , h o w e v e r , be n o t e d t h a t t h e r e i s b e t t e r quantitative agreement i n t h e i n v i t r o p r e s s u r e d r o p and r e g u r g i t a t i o n d a t a between d i f f e r e n t i n v e s t i g a t o r s , t h a n w i t h t h e i n v i v o hemo dynamic data from d i f f e r e n t medical c e n t e r s . Information obtained from the i n v i t r o flow v i s u a l i z a t i o n , a n d v e l o c i t y a n d s h e a r s t r e s s m e a s u r e m e n t s t u d i e s w i l l be discussed i n the t e x t . A l l t h e h e m o l y s i s and t h r o m b o e m b o l i c c o m p l i c a t i o n (TEC) t a b l e s were c o n s t r u c t e d from i n f o r m a t i o n e x t r a c t e d from t h e i r respective articles. D u r i n g t h e s t u d y i t was n o t i c e d t h a t there i s no c o n s i s t e n t s c i e n t i f i c m a n n e r i n w h i c h d a t a o n h e m o l y s i s and T E C ' s a r e r e p o r t e d i n t h e m e d i c a l l i t e r a t u r e . Elevated LDH l e v e l s , and r e d u c e d a n d / o r a b s e n t h a p t a g l o b i n l e v e l s a r e good indicators of intravascular hemolysis. Reduced h a l f - l i f e s o f r e d c e l l s and p l a t e l e t s a r e i n o u r o p i n i o n one o f t h e b e s t ways o f m o n i t o r i n g m e c h a n i c a l ( s h e a r ) damage t o b l o o d e l e m e n t s . Such t e s t s a r e i n f r e q u e n t l y done i n a c l i n i c a l e n v i r o n m e n t . Early T E C ' s and d e a t h s a r e d e f i n e d as t h o s e o c c u r r i n g d u r i n g t h e f i r s t 30 d a y s a f t e r v a l v e r e p l a c e m e n t s u r g e r y . TEC e v e n t s a r e e x p r e s s e d w h e r e p o s s i b l e a s p a t i e n t r a t i o s a n d / o r a s a r a t e (% p e r p t . yr.). B a s e d o n t h e h e m o l y s i s a n d TEC d a t a a n d o t h e r p e r t i n e n t i n f o r m a t i o n i n t h e l i t e r a t u r e , we h a v e b e e n a b l e t o d r a w c e r t a i n c o n c l u s i o n s a b o u t t h e h e m o l y t i c and t h r o m b o e m b o l i c p o t e n t i a l of the d i f f e r e n t valve designs. The l o c a t i o n s o f t h r o m b u s formation, e x c e s s t i s s u e g r o w t h a n d r e l a t e d v a l v e d y s f u n c t i o n s w i l l be discussed i n the t e x t .
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
8.
Results
and
(1)
Starr
Edwards
Valve
Description
Starr-Edwards
closed a
which
cloth.
occluders. January
1966.
was
1260
valve mitral
Edwards models
model
2300
aortic cloth of
orifice
cloth
of
Starr-Edwards
They were Stellite
No.
15%
21
due
for
an
also
and
model
cage
the
the
model
interface
6120
mitral
the
1200
available
orifice
in
of
the
the
valves
in
1260.
valve
6310/6320
2310
in
composite
The model
model
has
a
which
four have
track ball
metallic
closure
are
of
made
seen
struts
has
rest
of
of
fabric
valve
and
prostheses
prostheses.
supports
on
the
No.
21
cloth
covering struts
polypropylene
cloth.
multi-filament
tissue 2320/6320
discontinued.
of
models, these
These
and
problems
in
1976.
Starr-Edwards
closed single-cage struts,
aspect
of
alloy aspect
hollow
poppets, the
No. of
base 21)
the
no m e t a l - c l o t h by
were
c l o t h wear
cage
inner
except
changes
models
to
For
2310
are
hence
The
model
problems.
covered
Dacron
of
Although
(Stellite
and
wear.
models
(mitral)
inner
to
cage-struts
The
The
are
and
86% cloth
autogenous
a duplicate
6400
about
orifice
of
be m a j o r
radiographically. the
from
close.
approxi-
1970,
2320/6320
to
1968.
orifice
by
clearance.
the
cage
siliconized
was
the
area
2310/6310 were
2320 of
In
in
orifice
ball
amounts
in
could
between
ball.
problem
ball
clearance small
a
2310/6310)
the
diameter
discontinuance
alloy
supports
which
and
1968.
excessive
cloth-covered
of
(aortic)
Haynes no
metal
to
of
available
problem
continued
valve
became
prostheses.
1967
(models
the
ball-strut
the
orifice
series
increased the
the
valve from
a problem
flow
valves
against
somewhat
model
to
2400
the first
exposed seat
and models
the
in
ball
of
Starr-
cloth-covered
available
because
The
seat
metallic
were
(mitral)
Dacron
a Teflon/Polypropylene
close
in
metallic
easily
tissue
allowed
overgrowth
totally
valves
with
motion
led
the
orifice-to-ball
the
increase
Models
porous
to
by
and
design
the
purposes,
eventually
The
1968
sewing
2-percent-by-
made
(aortic)
primarily
of
reduced
with
made
tissue
was
a
are of
polypropylene
some o f
aortic
composite
introduced,
all
cage w i t h
the
durability.
seat
also
interfere were
do
comprised
and
from
6300 m i t r a l
a composite
composite It
and
comprised
formed
the
model
it
covered
autogenous
Unfortunately, of
in
c l o t h metal
from
discontinued
overgrowth
90%.
21
prostheses
are
contain
as
valve
further
The
2310/2320 evolved
of
mately
the
distinguish
valves
They were
The
No.
poppets
aortic
slightly
resemble
to
6120
radiopacity
superseded
prosthesis.
totally
which
and 1200
was
alloy
Mitral
They
cages.
The
The
to
cage
3 strut
It
6120
(TFE-fluorocarbon)
for
model
extended
6120 strut
1260
and
valves.
Stellite
Teflon
sulfate
The
Aortic
S i l a s t i c ball
polished
Model
barium
Valves
1200/1260
combines
The
weight
cloth
Ball
single-cage
radio-opaque
ring
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
Discussion
Ta] The
117
Prosthetic Heart Valves
YOGANATHAN E T AL.
and ring
and
contact.
tubular-knitted
orifice
cloth
is
thread
which
together
made
are
cage
from with
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
118
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
Figure
1.
(a) (b)
Starr-Edwards Starr-Edwards
ball ball
valve, valve,
model model
1260 6120
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
8.
YOGANATHAN ET A L .
Prosthetic Heart Valves
119
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
the exposed m e t a l l i c supports produces a composite s e a t i n g surface which the b a l l impacts at c l o s u r e . The s e w i n g r i n g i s made o f T e f l o n a n d p o l y p r o p y l e n e c l o t h o v e r a s i l i c o n e f o a m padding. The model 2400 v a l v e has 3 - s t r u t c a g e w h i l e t h e model 6400 cage has 4 s t r u t s , (b) JTn V i v o R e s u l t s The S t a r r - E d w a r d s a o r t i c b a l l v a l v e p r o s t h e s e s had v a l v e a r e a s ( V A ' s ) o f 0 . 9 2 t o 1 . 9 c m 2 , f o r v a l v e s i z e s o f 21 t o 2 9 mm. For t h e m i t r a l p r o s t h e s e s i n t h e s i z e r a n g e o f 2 6 t o 3 4 mm, V A 1 s w e r e i n the range of 1.4 to 2.7 cm2. These v a l u e s are s i m i l a r t o t h o s e o b s e r v e d w i t h o t h e r b a l l v a l v e p r o s t h e s e s , s u c h as t h e Smeloff valve design. T h e r e a r e numerous a r t i c l e s on t h e h e m o l y s i s and t h r o m b o e m b o l i c c o m p l i c a t i o n s c r e a t e d by t h e d i f f e r e n t d e s i g n s o f Starr-Edwards ball valves. The r e s u l t s i n d i c a t e w i t h o u t a doubt that the c o m p l e t e l y c l o t h covered s t r u t models 2300, 2310, 2 3 2 0 , 6 3 0 0 , 6 3 1 0 a n d 6 3 2 0 c a u s e d m o d e r a t e a n d i n many c a s e s severe hemolysis (17-22). The m o d e l s 2400 and 6400 t e n d t o cause l e s s h e m o l y s i s compared to the o t h e r c l o t h covered StarrEdwards b a l l v a l v e s ( 1 8 , 2 3 - 2 5 ) . The m o d e l s 1 2 0 0 / 1 2 6 0 and 6120 n o n - c l o t h covered valves cause m i l d to moderate h e m o l y s i s . The t h r o m b o e m b o l i c c o m p l i c a t i o n s seem t o be g r e a t e r w i t h t h e n o n c l o t h c o v e r e d models ( 1 2 0 0 , 1 2 6 0 , 6 0 0 0 , 6120) compared t o t h e c l o t h covered models (2300, 2310, 2320, 2400, 6300, 6310, 6320, 6400). This fact i s substantiated i n c l i n i c a l studies conducted o n b o t h c l o t h a n d n o n - c l o t h c o v e r e d m o d e l s by t h e same g r o u p o f researchers (18,26-30). A c c o r d i n g t o L e f r a k and S t a r r ( 3 1 J , the c l o t h c o v e r e d v a l v e s have an e m b o l u s f r e e r a t e o f 95% a t 3 y e a r s v e r s u s 81% f o r t h e n o n - c l o t h c o v e r e d p r o s t h e s e s . The TEC rates for the Starr-Edwards b a l l v a l v e s s e e m t o be i n t h e r a n g e o f 3 t o 6 . 5 % p e r p t . y r . w i t h a n t i c o a g u l a t i o n t h e r a p y a n d a s h i g h a s 10% per pt. y r . without a n t i c o a g u l a t i o n therapy. The c l o t h c o v e r e d Starr-Edwards b a l l v a l v e s w e r e d e v e l o p e d i n an a t t e m p t t o r e d u c e t h r o m b o e m b o l i c c o m p l i c a t i o n s by e n c o u r a g i n g a t h i n l a y e r o f e n d o t h e l i a l i z a t i o n on the c l o t h c o v e r i n g . The c l o t h c o v e r e d v a l v e s , h o w e v e r , do r e q u i r e a n t i c o a g u l a t i o n t h e r a p y . T h i s was determined q u i t e c o n c l u s i v e l y from c l i n i c a l s t u d i e s where a n t i c o a g u l a t i o n t h e r a p y was n o t u s e d ( 1 8 , 3 2 , 3 3 , 3 4 ) . Thrombus f o r m a t i o n and t i s s u e o v e r g r o w t h on v a r i o u s p a r t s of the super s t r u c t u r e of the Starr-Edwards ball valves i s well documented ( 1 9 , 3 1 - 3 8 ) . R o b e r t s and h i s c o - w o r k e r s (18,35-37) g i v e d e t a i l e d p a t h o l o g i c d e s c r i p t i o n s o f the thrombus formation and t i s s u e o v e r g r o w t h o b s e r v e d on S t a r r - E d w a r d s ball valves. The examinations of recovered Starr-Edwards a o r t i c and m i t r a l ball v a l v e s have shown: ( i ) thrombus f o r m a t i o n a t the apex o f the c a g e , at t h e base o f t h e t h r e e s t r u t s and i n v a r y i n g degrees a l o n g t h e s t r u t s , and ( i i ) e x c e s s t i s s u e g r o w t h on t h e downstream s i d e o f the s e w i n g r i n g on a l l m o d e l s , a l o n g t h e s t r u t s (inside and o u t s i d e ) and a l o n g t h e f a b r i c on t h e i n s i d e s u r f a c e o f t h e
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
120
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
o r i f i c e of the c l o t h covered models. Thrombus has a l s o been observed on the i n f l o w s u r f a c e o f the o r i f i c e r i n g . S t u d i e s by R o b e r t s and h i s c o - w o r k e r s ( 1 , 1 9 , 3 5 - 3 7 ) have a l s o o b s e r v e d e n d o t h e l i a l damage a n d t i s s u e p r o l i f e r a t i o n o f t h e p r o x i m a l ascending aorta i n patients with a o r t i c prostheses. They have found i n t i m a i t h i c k e n i n g o f t h e a o r t i c r o o t including the area of the coronary a r t e r i a l o s t i a . The t h i c k e n i n g was p r o d u c e d by t h e d e p o s i t i o n o f f i b r o u s t i s s u e o n t h e i n t e r n a l e l a s t i c membrane o f t h e p r o x i m a l a s c e n d i n g a o r t a . The d e g r e e o f i n t i m a i p r o l i f e r a t i o n v a r i e d from minimal to extremely severe. I n some c a s e s t h e i n t i m a i t h i c k e n i n g i n v o l v e d n o t o n l y t h e ascending aorta but a l s o the proximal coronary a r t e r i e s . Roberts (1_) s t a t e s t h a t i n t i m a i f i b r o s i s i n t h e a o r t i c r o o t may b e a p r e v i o u s l y unrecognized consequence o f a o r t i c valve replacement, and i s a p o t e n t i a l p r o b l e m w i t h a l l p e r i p h e r a l f l o w t y p e a o r t i c prostheses. The c o m b i n a t i o n o f t h r o m b u s f o r m a t i o n and f i b r o u s t i s s u e o v e r g r o w t h c a n be a l e t h a l c o m b i n a t i o n , a s h a s b e e n l e a r n e d f r o m the recovered Starr-Edwards ball valves. The i d e a o f g r o w i n g a t h i n layer of neo-intima along the f a b r i c of the c l o t h covered valves d i d not uniformly succeed. With a l l the c l o t h covered models ( 2 3 0 0 - 1 0 - 2 0 , 2400, 6 3 0 0 - 1 0 - 2 0 , 6 4 0 0 ) , t i s s u e overgrowth o c c u r r e d on t h e f a b r i c w h i c h l i n e d t h e o r i f i c e and a t t i m e s c a u s e d t h e v a l v e s t o become s t e n o t i c . In a d d i t i o n , t h e models w i t h the completely f a b r i c covered cages (2300-10-20, 6300-10-20), c o u l d develop e x c e s s i v e f i b r o u s t i s s u e and thrombus growth on the inner aspects of the s t r u t s which could i n turn cause: e i t h e r ( i ) t h e p o p p e t t o s t i c k i n an open p o s i t i o n , o r ( i i ) a reduction i n the opening excursion of the poppet. If the stuck p o p p e t phenomena was n o t d i a g n o s e d i m m e d i a t e l y t h e c o n s e q u e n c e s were g e n e r a l l y f a t a l . The 2 3 0 0 - 1 0 - 2 0 and 6 3 0 0 - 1 0 - 2 0 models a l s o had v a r y i n g d e g r e e s o f c l o t h w e a r due t o a b r a s i o n between t h e metal poppet and t h e f a b r i c . C l o t h wear w i t h these p r o s t h e s e s often l e d to severe hemolytic anemia. The models 2400 and 6400 do n o t seem t o s u f f e r f r o m t h e p r o b l e m o f c l o t h w e a r a n d t h a t i s p r o b a b l y one o f t h e r e a s o n s why t h e y c a u s e l e s s h e m o l y s i s comp a r e d t o t h e 2300 and 6300 s e r i e s . T h e y d o , h o w e v e r , seem t o c a u s e more h e m o l y s i s compared t o t h e n o n - c l o t h c o v e r e d (1200/1260, 6120) p r o s t h e s e s . The f a c t t h a t t h e c l o t h c o v e r e d m o d e l s c a u s e d more h e m o l y s i s compared t o t h e n o n - c l o t h c o v e r e d models i s h i g h l i g h t e d im s t u d i e s where b o t h t y p e s o f v a l v e s were investigated (17-25). Hamby e t a l . , ( 3 9 ) i n a n e x c e l l e n t c l i n i c a l study, demonstrated the hydrodynamic i n s t a b i l i t y o f the Starr-Edwards a o r t i c b a l l v a l v e s i n 41 p a t i e n t s . The s t u d y combined c i n e f l u o r s c o p y , p h o n o c a r d i o g r a p h y and hemodynamic measurements. In 20 o f t h e p a t i e n t s t h e poppet r e m a i n e d i n a r e l a t i v e l y f i x e d p o s i t i o n (even though i t r o t a t e d ) a t t h e apex o f t h e cage d u r i n g systolic ejection. I n 11 p a t i e n t s t h e p o p p e t b o u n c e d a w a y f r o m the apex o f t h e cage d u r i n g e a r l y e j e c t i o n and p r o m p t l y returned
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
8.
YOGANATHAN ET A L .
Prosthetic Heart Valves
121
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
t o the apex d u r i n g the r e m a i n d e r o f the e j e c t i o n p e r i o d . I n 10 p a t i e n t s p r e m a t u r e p a r t i a l c l o s u r e o f t h e v a l v e was o b s e r v e d during ejection. A f t e r s t r i k i n g the apex o f the cage d u r i n g e a r l y e j e c t i o n the poppet descended almost h a l f the d i s t a n c e t o w a r d t h e base o f t h e v a l v e and r e m a i n e d i n a r e l a t i v e l y f i x e d , p a r t i a l l y closed p o s i t i o n during the remainder of the e j e c t i o n period. I n s t a b i l i t y of the poppets of the Starr-Edwards ball v a l v e s h a s a l s o b e e n o b s e r v e d i n some o f o u r p a t i e n t s a t t h e USC-LA County M e d i c a l C e n t e r . (c)
In
Vitro
Results
The i n v i t r o p r e s s u r e d r o p s t u d i e s i n d i c a t e c a l c u l a t e d V A ' s of 1 . 0 4 t o 2 . 1 2 c m 2 f o r a o r t i c a n d m i t r a l v a l v e s i n t h e 19 t o 3 2 mm size range. A s s t a t e d b y L e f r a k a n d S t a r r ( 3 1 ) t h e r e i s no d i f f e r e n c e i n t h e i n v i t r o p r e s s u r e d r o p and r e g u r g i t a n t c h a r a c t e r i s t i c s o f the n o n - c l o t h c o v e r e d (1200/1260, 6120) and t h e c l o t h c o v e r e d (2310/2320, 2400, 6 3 1 0 / 2 0 , 6400) p r o s t h e s e s . The i n v i t r o r e s u l t s a l s o i n d i c a t e l o w r e g u r g i t a n t v o l u m e s ( ^ 6 cm^/beat or l e s s ) , f o r the Starr-Edwards ball valves. The S t a r r - E d w a r d s b a l l v a l v e s h a v e no l e a k a g e b a c k f l o w . T h e r e have been a number o f f l o w v i s u a l i z a t i o n s t u d i e s c o n d u c t e d on t h e S t a r r - E d w a r d s b a l l v a l v e s i n the a o r t i c and mitral positions (40-44). W i e t i n g (44J o b s e r v e d the f l o w p a t t e r n s d o w n s t r e a m f r o m a 27 mm m o d e l 1 2 6 0 b a l l v a l v e , under pulsatile flow conditions. D u r i n g s y s t o l e he o b s e r v e d a l a r g e t u r b u l e n t wake d i s t a l t o t h e b a l l . He a l s o f o u n d t h a t t h e b a l l bounced a t t h e apex o f t h e cage and t h i s p r o b a b l y i n c r e a s e d s i z e of the t u r b u l e n t wake. The l a r g e a m p l i t u d e b o u n c e s i n c r e a s e d t h e r e l a t i v e v e l o c i t y between t h e s u r f a c e o f t h e b a l l and t h e f l u i d flowing past i t . Yoganathan e t a l . , ( 4 5 , 4 6 ) and F i g l i o l a (47) have a l s o o b s e r v e d t h e p o p p e t i n s t a b i l i t y phenomena w i t h t h e model 1260 valve. As o b s e r v e d by Y o g a n a t h a n e t a l . , i n t h e i r s t u d i e s t h e i n s t a b i l i t y of the poppet leads to l a r g e r pressure drops a c r o s s the p r o s t h e s i s . D e l l s p e r g e r and W i e t i n g (48) s t u d i e d a model 6400 v a l v e . In t h e m i t r a l p o s i t i o n t h e y o b s e r v e d boundary l a y e r s e p a r a t i o n r e s u l t i n g i n a s t a g n a t i o n p o i n t at t h e apex and a t o r o i d a l v o r t e x downstream from the v a l v e d u r i n g most o f diastole. S m e l o f f e t a l . , (40) under p u l s a t i l e f l o w o b s e r v e d an a r e a o f s t a s i s a t t h e apex o f t h e cage and a r e g i o n o f f l o w separation adjacent to the sewing r i n g . W r i g h t and Temple s t u d i e d f l o w p a t t e r n s a r o u n d a 2 4 mm a o r t i c ( m o d e l 2 4 0 0 ) a n d a 3 2 mm m i t r a l ( m o d e l 6 4 0 0 ) v a l v e s u n d e r p u l s a t i l e f l o w c o n d i t i o n s . In t h e a o r t i c p o s i t i o n t h e y o b s e r v e d a s m a l l d i s t u r b a n c e e x t e n d i n g about h a l f the b a l l d i a m e t e r i m m e d i a t e l y downstream from the apex of the cage. This region of flow gradually extended throughout s y s t o l e u n t i l a f t e r 2 5 0 ms ( 5 / 6 o f t h e w a y t h r o u g h s y s t o l e ) it was a b o u t 1 . 5 b a l l d i a m e t e r s i n l e n g t h . In t h e m i t r a l p o s i t i o n t h e y o b s e r v e d an a n n u l a r v o r t e x ( c a u s e d by f l o w s e p a r a t i o n ) in the v e n t r i c l e so t h a t f l o w o c c u r r e d r e t r o g r a d e l y towards the r e a r
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
122
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
o f t h e cage and p o p p e t . Flow i n f l o w chamber w a l l and t h e p o p p e t
the a n n u l a r r e g i o n between s u r f a c e was j e t like.
the
T i l l m a n n (49) has measured t h e " w a l l " ( i . e . s u r f a c e ) s h e a r stress along the i n s i d e of the o r i f i c e during s y s t o l e , using h o t - f i l m shear probes. He m e a s u r e d a m a x i m u m a v e r a g e s h e a r s t r e s s o f 850 d y n e s / c m 2 and a p e a k s h e a r s t r e s s o f 1800 d y n e s / c m 2 . The maximum v a l u e s o c c u r r e d a t p e a k s y s t o l e . In a r e c e n t s t u d y P h i l l i p s e t a l . , made v e l o c i t y m e a s u r e m e n t s d o w n s t r e a m f r o m a 2 7 mm m o d e l ( 1 2 6 0 v a l v e ) u n d e r p u l s a t i l e f l o w c o n d i t i o n s . M e a s u r e m e n t s w e r e made 2 5 mm ( a b o u t 5 mm d o w n s t r e a m f r o m t h e c a g e a p e x ) , a n d 3 0 mm d o w n s t r e a m f r o m t h e v a l v e . They observed a l a r g e t u r b u l e n t wake i n t h i s r e g i o n . Peak v e l o c i t i e s o f about 350 cm/s w e r e m e a s u r e d n e a r t h e w a l l s o f t h e f l o w c h a n n e l a t p e a k s y s t o l e ( p e a k f l o w o f a b o u t 45 1 / m i n ) . The f l o w n e a r t h e w a l l s was j e t l i k e . RMS a x i a l v e l o c i t i e s o n t h e o r d e r o f 1 2 5 c m / s were a l s o measured. Average t u r b u l e n t shear s t r e s s e s d u r i n g p e a k f l o w w e r e e s t i m a t e d t o be o n t h e o r d e r o f 3 0 0 0 d y n e s / c m 2 . I t i s e x p e c t e d t h a t l a r g e r t u r b u l e n t s h e a r s t r e s s e s w o u l d be observed closer to the valve. F i g l i o l a has measured v e l o c i t y and s h e a r s t r e s s e s downstream f r o m a 2 5 mm ( m o d e l 1 2 6 0 ) a o r t i c v a l v e a t a s t e a d y f l o w r a t e o f 25 1/min ( 4 7 ) . He o b s e r v e d r e g i o n s o f s e p a r a t e d f l o w i n t h e s i n u s r e g i o n a t t a c h e d to the sewing r i n g , along the cage s t r u t s , and d o w n s t r e a m f r o m t h e p o p p e t . Maximum w a l l s h e a r s t r e s s e s o n t h e o r d e r o f 500 t o 850 d y n e s / c m 2 were m e a s u r e d . Turbulence i n t e n s i t i e s a s h i g h a s 40% and b u l k t u r b u l e n t s h e a r s t r e s s e s o f a b o u t 6 0 0 d y n e s / c m 2 ( m a x i m u m v a l u e ) w e r e m e a s u r e d 2 2 mm d o w n s t r e a m ( a b o u t 4 mm d o w n s t r e a m f r o m c a g e a p e x ) f r o m t h e v a l v e . He a l s o was a b l e t o m e a s u r e a maximum o c c l u d e r w a l l s h e a r s t r e s s o f 3210 d y n e s / c m 2 . F i g l i o l a a l s o made v e l o c i t y a n d s h e a r m e a s u r e m e n t s d o w n s t r e a m o f a m o d e l 2 3 2 0 v a l v e ( 2 5 mm v a l v e s i z e ) a t a s t e a d y f l o w r a t e o f 25 1 / m i n . The v e l o c i t y m e a s u r e m e n t s r e v e a l e d regions of separated flow i n the sinus attached to the sewing r i n g , d i s t a l t o t h e b a l l , and a l o n g t h e cage s t r u t s , s i m i l a r t o t h o s e o b s e r v e d w i t h t h e model 1260 v a l v e . The maximum w a l l s h e a r s t r e s s m e a s u r e d was o n t h e o r d e r o f 1300 d y n e s / c m 2 . Turbulence i n t e n s i t i e s as h i g h as 40% and t u r b u l e n c e s h e a r s t r e s s e s as l a r g e a s 711 d y n e s / c m 2 w e r e m e a s u r e d 2 2 . 5 mm d o w n s t r e a m f r o m t h e v a l v e . O c c l u d e r w a l l s h e a r s t r e s s e s were on t h e o r d e r o f 2300 d y n e s / c m 2 . F i g l i o l a s t a t e s t h a t the s m a l l e r values of w a l l shear measured w i t h t h e model 1260 v a l v e as o p p o s e d t o t h e model 2320 v a l v e can be a t t r i b u t e d t o t h e s h o r t e r p r o f i l e o f t h e m o d e l 1260 v a l v e (47). The s h o r t e r p r o f i l e e n a b l e s t h e e n t i r e o c c l u d e r t o be p o s i t i o n e d w i t h i n the sinus r e g i o n . T h e r e f o r e , t h e b l o c k a g e due t o t h e o c c l u d e r i s l e s s as t h e c r o s s - s e c t i o n a l a r e a i s l a r g e r w i t h i n the sinus r e g i o n . Y o g a n a t h a n e t a l . , h a v e a l s o made v e l o c i t y a n d s h e a r s t r e s s m e a s u r e m e n t s d o w n s t r e a m f r o m a 2 7 mm ( m o d e l 1260) v a l v e i n an a o r t i c chamber under s t e a d y f l o w c o n d i t i o n s ( 4 5 , 4 6 ) . Experiments w e r e c o n d u c t e d a t s t e a d y f l o w r a t e s o f 10 a n d 2 5 1 / m i n . They
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
8.
YOGANATHAN ET A L .
Prosthetic Heart Valves
123
have i d e n t i f i e d a r e g i o n o f s t a s i s a t t h e apex o f t h e c a g e , and a r e g i o n o f f l o w s e p a r a t i o n w h i c h was a t t a c h e d t o t h e a o r t i c s i d e o f t h e sewing r i n g and t h e base o f t h e t h r e e s t r u t s and extended a b o u t 2 t o 5 mm d o w n s t r e a m f r o m t h e v a l v e a l o n g t h e w a l l s o f the flow chamber. At a f l o w r a t e o f 25 1/min t h e r e g i o n o f s t a s i s w a s a b o u t 7 t o 8 mm i n s i z e . Maximum w a l l s h e a r s m e a s u r e d were o n t h e o r d e r o f 1750 d y n e s / c m 2 , and p o p p e t w a l l s h e a r s were on t h e o r d e r o f 2500 t o 2800 d y n e s / c m 2 . Turbulence i n t e n s i t y l e v e l s a s h i g h as 50% were m e a s u r e d i n t h e wake r e g i o n i m m e d i a t e l y downstream from t h e p o p p e t , and i n t h e a n n u l a r r e g i o n between t h e poppet s u r f a c e . Maximum turbulent s h e a r s t r e s s e s on t h e o r d e r o f 2000 t o 5000 d y n e s / c m 2 (peak v a l u e s ) were measured i n t h e s e r e g i o n s , (d) Correlation The i n v i v o a n d i n v i t r o p r e s s u r e m e a s u r e m e n t s i n d i c a t e t h a t like o t h e r b a l l v a l v e s , due t o i t s c e n t r a l l y o c c l u d i n g d e s i g n , t h e Starr-Edwards b a l l v a l v e s a r e m o d e r a t e l y s t e n o t i c i n t h e medium to larger s i z e s . In the s m a l l e r s i z e s the v a l v e s a r e very stenotic. P a t i e n t s w i t h t h i s p r o s t h e s i s w o u l d n o t be a b l e t o lead very strenuous l i f e s t y l e s . The p r o s t h e s i s does have l o w r e g u r g i t a n t v o l u m e s , t h e l o w e s t among m e c h a n i c a l p r o s t h e s e s i n current clinical use. The i n v i v o and i n v i t r o d a t a seem t o indicate that the i n s t a b i l i t y of the s i l i c o n e rubber poppet (1200/1260, 6120) c o u l d lead t o l a r g e r pressure drops a c r o s s the prosthesis. The l a r g e w a l l s h e a r s t r e s s e s c r e a t e d by t h e Starr-Edwards b a l l v a l v e s c o u l d c a u s e l e t h a l damage t o t h e e n d o t h e l i a l lining of the vessel wall adjacent to the valve, e s p e c i a l l y i n the aortic position. The b u l k t u r b u l e n t s h e a r s t r e s s e s a r e l a r g e enough t o c a u s e s u b l e t h a l a n d / o r l e t h a l damage t o t h e r e d c e l l s and p l a t e l e t s . Damage t o t h e r e d c e l l s a n d p l a t e l e t s w i l l reduce t h e i r h a l f - l i f e s , as w e l l as cause hemolysis and thromboembolic complications. The s h e a r s t r e s s e s i m m e d i a t e l y a d j a c e n t t o t h e v a l v e cage ( i n t h e a n n u l a r r e g i o n ) a r e l a r g e enough t o l e t h a l l y damage a n y f o r m e d e l e m e n t s o f b l o o d w h i c h may a d h e r e t o t h e v a l v e cage o r poppet. The c l i n i c a l d a t a ( 1 7 , 1 8 - 2 5 ) i n d i c a t e very c l e a r l y t h a t t h e c l o t h covered models (2300-10-20, 2400, 6 3 0 0 - 1 0 - 2 0 , 6400) c r e a t e more h e m o l y s i s t h a n t h e n o n - c l o t h covered models (1200/1260, 6120). The most p r o b a b l e and l o g i c a l e x p l a n a t i o n f o r t h i s c l i n i c a l o b s e r v a t i o n i s that the porous c l o t h c o v e r i n g , w h i c h i s r o u g h , p r o v i d e s an i d e a l f o r e i g n s u r f a c e f o r t h e adhesion o f t h e r e d c e l l s as they f l o w past t h e v a l v e struts. Once a d h e r e d , t h e r e d c e l l s undergo s h e a r s t r e s s e s o n the order o f 1 0 2 - 1 0 3 dynes/cm2 which lead to t h e i r d e s t r u c t i o n and c a u s e h e m o l y s i s . The r e g i o n s o f s t a s i s a t t h e c a g e a p e x a n d f l o w s e p a r a t i o n immediately downstream from the b a l l c o u l d l e a d t o thrombus formation at the apex. The r e g i o n o f f l o w s e p a r a t i o n a t t h e base o f t h e t h r e e s t r u t s and a l o n g them c o u l d e n c o u r a g e thrombotic m a t e r i a l t o f o r m a t t h e base and t h e n grow a l o n g t h e s t r u t s . The
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
124
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
r e g i o n o f s e p a r a t i o n attached t o the downstream s i d e o f the sewing r i n g could lead to the excess growth o f f i b r o u s t i s s u e on t h a t p o r t i o n o f t h e s e w i n g r i n g . In a d d i t i o n , the flow separation along the s t r u t s of the completely c l o t h covered strut valves (2300-10-20, 6300-10-20) could encourage the growth o f excess t i s s u e , e s p e c i a l l y along the inner aspects, since the f l o w and shear a r e low i n t h o s e l o c a t i o n s . The f i b r o u s t i s s u e overgrowth problem observed with the completely f a b r i c covered s t r u t p r o s t h e s e s has m a i n l y o c c u r r e d on t h e i n n e r a s p e c t s o f the cage. The c l o t h c o v e r i n g a l o n g t h e i n s i d e o f t h e o r i f i c e p r o b a b l y a l s o causes f l o w s e p a r a t i o n , and i f so c o u l d l e a d t o e x c e s s t i s s u e growth a l o n g t h e f a b r i c i n t h e o r i f i c e and c a u s e t h e v a l v e t o become s t e n o t i c , a s o b s e r v e d clinically.
(2) Jà)
Kay-Shiley Valve
Disc
Valve
Description
The f i r s t K a y - S h i l e y M i t r a l v a l v e was i m p l a n t e d i n 1965 a n d underwent d e s i g n and m a t e r i a l changes u n t i l t h e f i n a l muscle guard s e r i e s i n 1969. T h e f i r s t ( s e r i e s K) v a l v e c o n s i s t e d o f a S i l i c o n e d i s c held i n a S t e l l i t e metal cage. The amount o f c l o t h c o v e r i n g was l a t e r i n c r e a s e d i n an a t t e m p t t o d e c r e a s e t h e p o t e n t i a l f o r thromboembolism ( s e r i e s T ) . The m a j o r d e s i g n c h a n g e made t h e r e a f t e r w a s d e v e l o p m e n t o f t h e m u s c l e g u a r d t o prevent i n f r i n g e m e n t o f the v e n t r i c u l a r muscle on the v a l v e . The m u s c l e g u a r d s e r i e s MG a n d TG (MG = M i t r a l G u a r d s a n d TG = T r i c u s p i d Guards) were i n t r o d u c e d i n 1968 and t h e e x t e n t o f c l o t h c o v e r i n g was i n c r e a s e d i n 1969 (MGC, T G C ) . The l a s t m o d i f i c a t i o n was c h a n g i n g t h e d i s c f r o m S i l i c o n e t o D e l r i n (MGCD, T G C D ) . (b) In V i v o R e s u l t s 9 The K a y - S h i l e y m i t r a l v a l v e had c a l c u l a t e d V A ' s o f 0 . 9 t o 2 . 1 c n r i n t h e 2 8 t o 3 3 mm s i z e r a n g e . These r e s u l t s i n d i c a t e t h i s p r o s t h e s i s i s more s t e n o t i c t h a n t h e c a g e d b a l l t y p e v a l v e s . Our s t u d y i n d i c a t e s t h e r e a r e v e r y few a r t i c l e s on h e m o l y s i s w i t h the Kay-Shiley valve. The v a l v e d i d n o t seem t o c a u s e c l i n i c a l l y s i g n i f i c a n t h e m o l y s i s , but probably caused m i l d hemolysis. One of the major problems w i t h t h i s p r o s t h e s i s was, however, thromboembolic complications. TEC r a t e s a s h i g h as 3 4 . 4 % p e r p t . y r . have been o b s e r v e d w i t h t h i s p r o s t h e s i s ( 5 2 ) . Thrombus f o r m a t i o n on t h e v a l v e s u p e r s t r u c t u r e c a u s i n g d y s f u n c t i o n s o f t h e K a y - S h i l e y v a l v e i s w e l l documented i n the l i t e r a t u r e (1,19,35,51-55,57). Thrombi were m a i n l y l o c a t e d a t t h e j u n c t i o n o f t h e c a g e s t r u t s w i t h t h e m e t a l o r i f i c e r i n g , up t h e v e r t i c a l s t r u t s f o r v a r i a b l e d i s t a n c e s , and o c c a s i o n a l l y c o m p l e t e l y c o v e r i n g the e n t i r e metal s u p e r s t r u c t u r e . C l o t s have a l s o been o b s e r v e d on t h e d i s c and on t h e sewing r i n g . The p r o s t h e s i s has o c c a s i o n a l l y been c o m p l e t e l y o c c l u d e d by t h r o m b o t i c m a t e r i a l . Excess t i s s u e growth on the sewing r i n g problem with t h i s prosthesis (38,55-58). In movement o f t h e d i s c was s e v e r e l y r e s t r i c t e d overgrowth between the d i s c and sewing r i n g .
has a l s o been a some c a s e s t h e because o f t i s s u e In o t h e r cases
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
8.
YOGANATHAN ET A L .
Prosthetic Heart Valves
125
p a r t o f t h e d i s c has been t r a p p e d by t i s s u e o v e r g r o w t h and thrombus f o r m a t i o n . Such e n t r a p m e n t has t r a n s f o r m e d t h e d i s c i n t o a hinged mechanism, t h e r e b y r e d u c i n g the f l o w o r i f i c e , as w e l l as l e a d i n g t o a c c e l e r a t e d edge w e a r o f t h e d i s c by t h e m e t a l struts (31). E x c e s s t i s s u e g r o w t h a l o n g t h e s e w i n g r i n g have on o c c a s i o n s i m p a i r e d t h e r o t a t i o n o f t h e d i s c . This impairment has l e d t o g r o o v i n g o f t h e downstream f a c e o f t h e d i s c f r o m mechanical contact with the horizontal struts (31,38,57). (c) In V i t r o R e s u l t s Very few i n v i t r o s t u d i e s e x i s t on t h e K a y - S h i l e y v a l v e . The l i m i t e d i n v i t r o pressure drop s t u d i e s i n d i c a t e VA's of about 1 . 9 0 c m ^ T o r t h e s i z e 31 mm v a l v e s i n t h e m i t r a l p o s i t i o n . Wei t i n g h a s o b s e r v e d t h e f l o w p a t t e r n s a r o u n d a 2 8 mm K a y - S h i l e y v a l v e i n an a o r t i c chamber ( 4 4 ) . He o b s e r v e d a s y m m e t r i c a l t o r o i d a l v o r t e x and a wake d o w n s t r e a m f r o m t h e d i s c c a u s e d by boundary l a y e r s e p a r a t i o n d u r i n g s y s t o l e . He a l s o o b s e r v e d a n area of s t a s i s at the center of the d i s t a l surface of the d i s c . The f l o w was j e t l i k e i n t h e r e g i o n s b e t w e e n t h e d i s c a n d t h e flow channel w a l l s . S i m i l a r f l o w v i s u a l i z a t i o n s t u d i e s and o b s e r v a t i o n s h a v e b e e n made b y D u f f ( 5 9 ) . F i g l i o l a (47J has made v e l o c i t y a n d s h e a r s t r e s s m e a s u r e m e n t s d o w n s t r e a m f r o m a 2 7 mm K a y - S h i l e y v a l v e (T s e r i e s ) i n a n a o r t i c c h a m b e r u n d e r steady flow conditions. He o b s e r v e d a j e t t y p e f l o w b e t w e e n t h e poppet and f l o w chamber w a l l . He a l s o o b s e r v e d f l o w s e p a r a t i o n a t t h e sewing r i n g , and a t t h e j u n c t i o n of the v e r t i c a l struts and t h e o r i f i c e r i n g . A l a r g e wake w i t h r e c i r c u l a t i n g f l o w was m o n i t o r e d d o w n s t r e a m f r o m t h e f a c e o f t h e d i s c . At a f l o w r a t e o f 2 5 1 / m i n he m e a s u r e d a m a x i m u m w a l l s h e a r s t r e s s o f 2 5 4 8 d y n e s / c m 2 , t u r b u l e n c e i n t e n s i t i e s o f 48% a n d R e y n o l d s s h e a r s t r e s s e s o f 800 dynes/cm2. He a l s o w a s a b l e t o m e a s u r e s h e a r s t r e s s o f a b o u t 775 d y n e s / c m 2 a t t h e o c c l u d e r w a l l s u r f a c e . The R e y n o l d s s t r e s s w a s m e a s u r e d a b o u t 2 5 mm d o w n s t r e a m f r o m t h e valve. F i g l i o l a s t a t e s t h a t even l a r g e r values o f Reynolds shear s t r e s s could occur c l o s e r to the valve o c c l u d e r . Yoganathan e t a l . , ( 4 5 , 6 0 , 6 1 ) conducted v e l o c i t y measurements d o w n s t r e a m o f a 2 6 mm S t a r r - E d w a r d s d i s c v a l v e i n a n a o r t i c chamber. The S t a r r - E d w a r d s d i s c v a l v e i s q u i t e s i m i l a r t o t h e Kay-Shiley valve. A l a r g e r e g i o n o f f l o w s t a g n a t i o n 2 0 mm w i d e was o b s e r v e d a c r o s s t h e f a c e o f t h e d i s c . At a flow rate o f 25 1/min a maximum w a l l s h e a r s t r e s s o f 3200 d y n e s / c m 2 , a n d t u r b u l e n t i n t e n s i t i e s o f 50% were m e a s u r e d . Turbulent shear s t r e s s e s on t h e o r d e r o f 2000 t o 5000 d y n e s / c m 2 were e s t i m a t e d . P r e s s u r e drop measurements (45) a c r o s s t h i s v a l v e i n d i c a t e d i t was t h e m o s t s t e n o t i c m e c h a n i c a l v a l v e d e s i g n ( i . e . : disc type valve). (d) Correlation The l i m i t e d i n v i v o and t h e v e r y l i m i t e d i n v i t r o p r e s s u r e d r o p results available for the Kay-Shiley disc valve indicate that i t i s more s t e n o t i c t h a n t h e b a l l t y p e v a l v e s . As s t a t e d by
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
126
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
R o b e r t s (1_) t h e d i s c t y p e v a l v e s a r e t h e l e a s t d e s i r a b l e p r o s t h e t i c c a r d i a c v a l v e s now i n u s e . They are a l s o the most obstructive. The w a l l s h e a r s t r e s s e s c r e a t e d by t h i s t y p e o f v a l v e c o u l d e a s i l y damage t h e e n d o t h e l i a l l i n i n g o f t h e v e s s e l w a l l s adjacent to the p r o s t h e s i s . The t u r b u l e n t s h e a r s t r e s s e s c o u l d c a u s e s u b l e t h a l a n d / o r l e t h a l damage t o r e d c e l l s and platelets. S u c h b l o o d e l e m e n t damage c o u l d c l i n i c a l l y c a u s e h e m o l y t i c and t h r o m b o e m b o l i c p r o b l e m s . The r e g i o n o f s t a s i s across the face of the d i s c could encourage thrombotic m a t e r i a l t o f o r m t h e r e as has been o b s e r v e d w i t h r e c o v e r e d v a l v e s . The regions of flow separation at the j u n c t i o n s of the v e r t i c a l s t r u t s and o r i f i c e r i n g and n e a r t h e s e w i n g r i n g c o u l d l e a d t o thrombus f o r m a t i o n and e x c e s s t i s s u e o v e r g r o w t h a t t h e s e locations. As s t a t e d p r e v i o u s l y , c l i n i c a l p a t h o l o g i c f i n d i n g s i n d i c a t e t h a t t h e s e r e g i o n s are the most prone to thrombus f o r m a t i o n and t i s s u e o v e r g r o w t h w i t h t h i s v a l v e . In a d d i t i o n , Roberts (1,62) s t a t e s that i n t i m a i p r o l i f e r a t i o n of the vessel wall adjacent to valve (mainly i n the a o r t i c p o s i t i o n ) is p r o b a b l y most s e v e r e w i t h the d i s c t y p e v a l v e s . The i n t i m a i p r o l i f e r a t i o n i s c a u s e d by l a r g e w a l l s h e a r s t r e s s e s .
(3) Ta]
Beall Valve
Disc Valve Description
The l o w - p r o f i l e B e a l l T e f l o n - d i s c m i t r a l v a l v e p r o s t h e s i s was i n t r o d u c e d f o r c l i n i c a l u s e i n 1967 (model 1 0 3 ) . The d i s c was made o f c o m p r e s s e d T e f l o n a n d t h e t i t a n i u m c a g e w a s c o v e r e d w i t h Teflon tubing. The v a l v e r i n g was t o t a l l y c o v e r e d w i t h D a c r o n v e l o u r i n an a t t e m p t t o a c h i e v e a low i n c i d e n c e o f thromboembolism. In 1968 because o f T e f l o n w e a r , t h e t h i c k n e s s and c o m p r e s s i o n o f t h e T e f l o n d i s c was i n c r e a s e d as was t h e thickness of the Teflon coating of the titanium cage. Later improvements o f t h e v a l v e d e s i g n (model 104) were d i r e c t e d toward i n c r e a s i n g i t s frustrum area without chaning i t s mounting d i a m e t e r , and on m a k i n g t h e m a t e r i a l s more d u r a b l e . The m o d e l 105 B e a l l v a l v e was i n t r o d u c e d i n 1 9 7 1 . In t h e model 105 t h e d i s c a n d s t r u t s w e r e c o v e r e d w i t h p y r o l i t i c c a r b o n . A f t e r problems o f s t r u t f r a c t u r e s were r e p o r t e d , the s t r u t s w e r e made s t r o n g e r a n d a new m e t h o d o f p a c k a g i n g w a s b e g u n . The model 106 v a l v e w i t h t h e t h i c k e r more d u r a b l e s t r u t s h a s been a v a i l a b l e s i n c e 1974 f o r a t r i o v e n t r i c u l a r v a l v e replacement, (b) Jji Vivo Results The c l i n i c a l p r e s s u r e d r o p r e s u l t s o b t a i n e d w i t h t h e B e a l l v a l v e i n d i c a t e t h a t i t i s e v e n more s t e n o t i c t h a n t h e K a y - S h i l e y d i s c valve. C a l c u l a t e d V A ' s v a r i e d between 1 . 4 and 2 . 3 c m 2 f o r valve s i z e s i n t h e 31 t o 41 mm r a n g e . One o f t h e m a j o r c l i n i c a l p r o b l e m s w i t h t h e B e a l l d i s c v a l v e was t h e e x c e s s i v e amount o f hemolysis i t caused ( 6 3 , 6 4 , 6 5 , 6 6 , 6 7 ) . I t has been s u g g e s t e d t h a t t h e D a c r o n v e l o u r c l o t h c o v e r i n g u s e d was t h e r e a s o n f o r the excessive hemolysis observed with t h i s valve (31). I t has
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
YOGANATHAN ET A L .
Prosthetic Heart Valves
Figure
Figure
3.
2.
Kay-Shiley
Beall
dise
dise
valve,
valve
model
106
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
128
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
a l s o been s u g g e s t e d t h a t d i s c wear o f t h e T e f l o n d i s c models exacerbated the native hemolysis of t h i s prosthesis (63). Nearly a l l p a t i e n t s who h a d t h i s v a l v e s u f f e r e d a t l e a s t m i l d i n t r a vascular hemolysis. A c o m p a r i s o n o f t h e TEC d a t a t e n d t o indicate that with anticoagulation therapy, thromboembolic c o m p l i c a t i o n s w i t h t h e B e a l l v a l v e were not as severe as those observed with the Kay-Shiley valve. But as s t a t e d by L e f r a k and S t a r r ( 4 1 2 ) , o n l y a few p u b l i c a t i o n s have a p p e a r e d i n w h i c h t i m e - r e l a t e d a n a l y s i s has been u t i l i z e d t o a n a l y z e t h e r a t e o f postoperative thromboemboli. Thrombus f o r m a t i o n c a u s i n g v a l v e d y s f u n c t i o n has a l s o been documented ( 5 3 , 6 3 , 6 7 - 7 0 ) . As s t a t e d by R o b e r t s e t a l . , ( 6 2 ) d i s c t y p e p r o s t h e s e s w i l l develop thrombotic material at the junctions of the v e r t i c a l struts and t h e o r i f i c e r i n g , a l o n g t h e v e r t i c a l s t r u t s and a c r o s s t h e face of the disc. U s u a l l y t h e amount o f t h r o m b u s on t h e s t r u t s or primary o r i f i c e i s not s u f f i c i e n t to i n t e r f e r e with the p r o p e r movement o f t h e d i s c , and c l i n i c a l e v i d e n c e o f s y s t e m i c e m b o l i c i n c i d e n t s a r e i n f r e q u e n t when t h e p r o s t h e t i c t h r o m b i are small. Large thrombi may, however, o b s t r u c t flow through t h e p r o s t h e s i s a n d may i m m o b i l i z e t h e d i s c . They a l s o s t a t e t h a t p r o s t h e s e s o f t h e d i s c t y p e may b e t i l t e d i n t h e c a g e b y t h r o b m u s o n o n e s i d e , o r t h r o m b u s may f i l l t h e e n t i r e s p a c e between t h e d i s c and t h e r i n g , c a u s i n g complete i m m o b i l i t y o f the poppet ( 6 2 ) . As o b s e r v e d w i t h t h e K a y - S h i l e y valve, t h r o m b u s f o r m a t i o n a n d e x c e s s t i s s u e o v e r g r o w t h may c a u s e i m p r o p e r m o t i o n o f t h e d i s c ( p r o p e r m o t i o n r e q u i r i n g movement up a n d d o w n t h e c a g e , a n d r o t a t i o n ) , t h e r e b y l e a d i n g t o g r o o v i n g and n o t c h i n g o f t h e d i s c (66,71,72). (c)
In V i t r o
Results
In v i t r o f l u i d dynamic s t u d i e s on t h e B e a l l d i s c v a l v e a r e v i r t u a l l y n o n e x i s t e n t i n t h e open l i t e r a t u r e . It i s doubtful i f a n y s u c h t e s t s were e v e n p e r f o r m e d by t h e v a l v e m a n u f a c t u r e r when t h e v a l v e s w e r e r e l e a s e d i n t h e m i d t o l a t e I 9 6 0 ' s . It i s , however, o u r o p i n i o n t h a t t h e v e l o c i t y and s h e a r f i e l d s downstream from t h i s valve a r e s i m i l a r t o those observed w i t h the K a y - S h i l e y and S t a r r - E d w a r d s d i s c v a l v e s . (d) Correlation The B e a l l d i s c v a l v e i s a v e r y s t e n o t i c valve design. If the assumptions about i t s i n v i t r o f l u i d dynamic c h a r a c t e r i s t i c s a r e c o r r e c t , t h e w a l l and t u r b u l e n t s h e a r s t r e s s c r e a t e d by t h i s v a l v e c o u l d e a s i l y damage t h e e n d o t h e l i a l l i n i n g o f t h e v e s s e l w a l l s , a n d c a u s e s u b l e t h a l a n d / o r l e t h a l damage t o b l o o d elements, respectively. In a d d i t i o n , i f t h e r e d c e l l s were to a t t a c h themselves t o the Dacron v e l o u r c l o t h c o v e r i n g , the s h e a r s t r e s s e s a d j a c e n t t o t h e v a l v e s u p e r s t r u c t u r e w o u l d be more t h a n s u f f i c i e n t t o c a u s e l e t h a l r e d c e l l damage (hemolysis). T h i s has been o b s e r v e d c l i n i c a l l y w i t h t h i s p r o s t h e s i s and t h e c l o t h covered S t a r r - E d w a r d s ball valves. The r e g i o n o f f l o w s t a s i s a d j a c e n t t o t h e d o w n s t r e a m f a c e o f t h e
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
8.
YOGANATHAN ET A L .
Prosthetic Heart Valves
129
d i s c and t h e r e g i o n s o f f l o w s e p a r a t i o n a t t h e j u n c t i o n s o f t h e v e r t i c a l s t r u t s and t h e o r i f i c e r i n g c o u l d l e a d t o a b u i l d u p o f t h r o m b o t i c m a t e r i a l and e x c e s s t i s s u e o v e r g r o w t h a t t h o s e l o c a t i o n s a s h a s b e e n o b s e r v e d o n some r e c o v e r e d B e a l l v a l v e s . The e a r l y model B e a l l v a l v e was b r i e f l y u t i l i z e d i n t h e a o r t i c p o s i t i o n b u t i t s use i n t h i s l o c a t i o n was a b a n d o n e d b e c a u s e o f o b s t r u c t i v e , t h r o m b o g e n i c and wear c h a r a c t e r i s t i c s ( 1 , 6 2 ) . Furthermore, Roberts i n his pathologic studies observed that d i s c valves i n the a o r t i c p o s i t i o n cause i n t i m a i p r o l i f e r a t i o n o f t h e a o r t i c r o o t , as a r e s u l t o f e x c e s s i v e w a l l s h e a r s t r e s s e s (1,62),
(4) B j o r k - S h i l e y T i l t i n g Disc Valve Taj valve Description The B j o r k - S h i l e y t i l t i n g d i s c p r o s t h e s i s has been i n c l i n i c a l use s i n c e J a n u a r y 1969. The p r o s t h e s i s has u n d e r g o n e various m o d i f i c a t i o n s i n d e s i g n and m a t e r i a l s s i n c e i t s i n i t i a l u s e . The o r i g i n a l B j o r k - S h i l e y v a l v e had a D e l r i n d i s c . Although Delrin had e x c e l l e n t w e a r c h a r a c t e r i s e s i t had a p r o p e n s i t y t o a b s o r b m o i s t u r e d u r i n g steam a u t o c l a v i n g , a p r o c e d u r e n o t recommended by t h e m a n u f a c t u r e r . Thus, the d i s c i f improperly s t e r i l i z e d by t h i s method c o u l d e n l a r g e and p r o d u c e t e m p o r a r y irregular valve function. S i n c e t h e s p r i n g o f 1971 t h e d i s c h a s b e e n made o f p y r o l y t i c c a r b o n w h i c h i s e x t r e m e l y d u r a b l e and does not absorb moisture d u r i n g steam a u t o c l a v i n g . In t h i s v a l v e d e s i g n a f r e e - f l o a t i n g d i s c i s s u s p e n d e d between two e c c e n t r i c a l l y situated Stellite struts. The v a l v e p r e s e n t l y t i l t s open t o an a n g l e o f 6 0 ° i n b o t h a o r t i c and m i t r a l models a l t h o u g h i n t h e e a r l i e r D e l r i n d i s c m o d e l t h e m i t r a l p r o s t h e s i s was d e s i g n e d t o t i l t o p e n t o an a n g l e o f o n l y 5 0 ° . The d i s c s i t s i n s i d e t h e base r i n g i n the c l o s e d p o s i t i o n thus p r e v e n t i n g over l a p p i n g and r e d u c i n g m e c h a n i c a l h e m o l y s i s . The S t e l l i t e b a s e r i n g i s p a r t i a l l y c o v e r e d by a t h i n T e f l o n s u t u r e r i n g . This valve d e s i g n has t h e a d v a n t a g e o f a l a r g e r a t i o o f o r i f i c e d i a m e t e r t o annulus diameter. When t h e B j o r k - S h i l e y v a l v e i s s u t u r e d i n p l a c e t h e c a g e c a n be r o t a t e d w i t h i n t h e s e w i n g r i n g b y m e a n s o f a v a l v e h o l d e r i n o r d e r t o e n s u r e f r e e movement o f t h e d i s c . In J u n e 1976 P r o f e s s o r V i k i n g 0 . B j o r k i m p l a n t e d t h e f i r s t modified B j o r k - S h i l e y valve with a convexo-concave ( C . C . ) d i s c . The m o d i f i e d v a l v e was d e s i g n e d a c c o r d i n g t o D r . B j o r k t o improve the conventional B j o r k - S h i l e y valve i n three r e s p e c t s : (1) p r o v i d e i n c r e a s e d s t r e n g t h o f t h e v a l v e by m a k i n g t h e i n l e t s t r u t an i n t e g r a l p a r t o f t h e o r i f i c e r i n g and d o u b l i n g i t s c r o s s - s e c t i o n a l a r e a (2) i m p r o v e t h e h y d r o d y n a m i c s (3) reduction i n t h e a r e a o f low f l o w and s t a g n a t i o n b e h i n d t h e d i s c . The d e s i g n change i n c l u d e s the convexo-concave c o n f i g u r a t i o n of the d i s c and a p i v o t p o i n t w h i c h has been moved s e v e r a l m i l l i m e t e r s d o w n s t r e a m so t h a t t h e d i s c i n t h e o p e n p o s i t i o n i s moved f u r t h e r out of the o r i f i c e r i n g . Valves manufactured a f t e r September 1975 have a r a d i o - o p a q u e t a n t a l u m l o o p i n c o r p o r a t e d i n t h e p y r o l y t i c carbon d i s c to allow evaluation of the opening angle of the d i s c .
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
130
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
(b)
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
lr± V i v o
Results
C l i n i c a l hemodynamic r e s u l t s i n d i c a t e t h a t t h e Bjork-Shiley v a l v e has i m p r o v e d p r e s s u r e d r o p c h a r a c t e r i s i t c s compared t o t h e c e n t r a l l y o c c l u d i n g ( b a l l and d i s c ) and p o r c i n e v a l v e prostheses. C a l c u l a t e d valve areas (VA's) varied from 1.06 to 2 . 5 6 c m 2 f o r a o r t i c v a l v e s i z e s o f 1 9 t o 31 mm, a n d 1 . 8 to 2 . 6 c m 2 f o r m i t r a l v a l v e s i z e s o f 2 7 a n d 2 9 mm. The l i m i t e d h e m o d y n a m i c d a t a t e n d t o i n d i c a t e no s i g n i f i c a n t d i f f e r e n c e s i n t h e p r e s s u r e d r o p c h a r a c t e r i s t i c s o f t h e s p h e r i c a l and convexo-concave d i s c a o r t i c valves. Due t o i t s w o r l d w i d e p o p u l a r i t y t h e r e i s a l a r g e amount o f l i t e r a t u r e i n t h e m e d i c a l f i e l d on t h i s p r o s t h e s i s . Hemolysis data i n d i c a t e that the B j o r k - S h i l e y p r o s t h e s i s can cause m i l d to moderate h e m o l y s i s . P a t i e n t s w i t h t h i s p r o s t h e s i s , however, r a r e l y develop anemia because t h e body u s u a l l y compensates adequately f o r the h e m o l y s i s c a u s e d by t h e v a l v e . The p r o s t h e s i s has a TEC rate o f a b o u t 4 t o 6% p e r p t . y r . The m a j o r p r o b l e m w i t h t h e B j o r k - S h i l e y valve i s i t s p o t e n t i a l to thrombose, sometimes c a t a s t r o p h i c a l l y , e s p e c i a l l y i n p a t i e n t s not on a n t i c o a g u l a t i o n therapy (53,55,73-83). In a d d i t i o n t o thrombus f o r m a t i o n , e x c e s s t i s s u e overgrowth has a l s o been o b s e r v e d on r e c o v e r e d B j o r k - S h i l e y v a l v e s . Please note t h a t the above r e f e r e n c e s a l l p e r t a i n t o the s t a n d a r d (i.e.: s p h e r i c a l d i s c ) B j o r k - S h i l e y model ( e x c e p t r e f . 73,83). T h e r e h a v e b e e n no l o n g t e r m s t u d i e s o n t h e c o n v e x o - c o n c a v e m o d e l , and thrombus f o r m a t i o n on t h i s model has so f a r o n l y been r e p o r t e d i n two a r t i c l e s ( 7 3 , 8 3 ) . Thrombus f o r m a t i o n m a i n l y o c c u r s on t h e o u t f l o w f a c e o f t h e d i s c e s p e c i a l l y i n the w e l l , and a l o n g t h e s t r u t s i n the m i n o r o u t f l o w r e g i o n . However, thrombus f o r m a t i o n on b o t h t h e i n f l o w and o u t f l o w f a c e s o f t h e d i s c h a s b e e n o b s e r v e d i n some r e c o v e r e d v a l v e s . Excess t i s s u e overgrowth i s observed mainly along the sewing r i n g of the minor outflow r e g i o n . The amounts o f t h r o m b u s f o r m a t i o n and/or t i s s u e o v e r g r o w t h o b s e r v e d on r e c o v e r e d B j o r k - S h i l e y a o r t i c and m i t r a l v a l v e s has v a r i e d f r o m t o t a l v a l v e o c c l u s i o n t o a thin layer. I n some i n s t a n c e s t h e c o m b i n a t i o n o f thrombus f o r m a t i o n and t i s s u e o v e r g r o w t h has grown i n s u c h a manner t o impede t h e c o m p l e t e o p e n i n g o f t h e t i l t i n g d i s c . In o t h e r i n s t a n c e s , t h e d i s c h a s b e e n f o u n d t o be h e l d i m m o b i l i z e d i n an o p e n p o s i t i o n by t h e v e g e t a t i o n . Therefore, i t i s of u t m o s t i m p o r t a n c e t h a t t h e p h y s i c i a n be a b l e t o m o n i t o r t h e motion of the d i s c using c i n e f l u o r o s c o p y . (c) In V i t r o Results The i n v i t r o p r e s s u r e d r o p r s u l t s i n d i c a t e t h a t t h e Bjork-Shiley v a l v e s have c a l c u l a t e d VA's o f 1.37 t o 3 . 4 0 c m 2 f o r a o r t i c and m i t r a l v a l v e s i n t h e 21 t o 31 mm s i z e r a n g e . There does not s e e m t o be a n y s i g n i f i c a n t d i f f e r e n c e i n t h e p r e s s u r e d r o p a n d r e g u r g i t a t i o n c h a r a c t e r i s t i c s between the s p h e r i c a l and convexoconcave d i s c v a l v e s . Regurgitation data tend to i n d i c a t e that
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
8.
YOGANATHAN ET A L .
Prosthetic Heart Valves
131
a t low h e a r t r a t e s and low c a r d i a c o u t p u t s t h e B j o r k - S h i l e y v a l v e does have a s i g n i f i c a n t r e g u r g i t a n t volume ( 1 6 ) . For e x a m p l e , t h e r e c e n t s t u d y by D e l l s p e r g e r e t a l . showed t h a t t h e 2 7 mm B j o r k - S h i l e y ( c - c ) a o r t i c v a l v e h a d a r e g u r g i t a n t volume as h i g h a s 1 3 . 0 c n r / b e a t a t a h e a r t r a t e o f 50 b e a t s / m i n (16). T h e r e have b e e n many f l o w v i s u a l i z a t i o n s t u d i e s c o n d u c t e d on t h e B j o r k - S h i l e y v a l v e i n b o t h t h e a o r t i c and m i t r a l p o s i t i o n s (41,42,48,84-87). W r i g h t h a s s t u d i e d t h e v a l v e ( s i z e 2 5 mm) under p u l s a t i l e flow i n a curved a o r t a ( 4 1 , 8 7 ) . When t h e v a l v e was o r i e n t e d so t h a t t h e d i s c o p e n e d t o w a r d s t h e o u t e r c u r v e o f t h e a o r t a , a c l o c k w i s e r o t a t i n g v o r t e x was f o r m e d i n t h e a s c e n d i n g a o r t a d u r i n g most o f s y s t o l e . O r i e n t a t i o n of the d i s c towards the i n s i d e curve produced a r e l a t i v e l y narrow, tangential jet. When t h e v a l v e w a s m o u n t e d t o o p e n t o w a r d s t h e n o n - c o r o n a r y s i n u s , a d o u b l e h e l i x s w i r l i n g f l o w s t r e a m was produced. I n t h e m i t r a l p o s i t i o n ( s i z e 2 9 mm v a l v e ) he o b s e r v e d t h a t a l a r g e two d i m e n s i o n a l v o r t e x formed w h i c h d o m i n a t e d t h e l e f t v e n t r i c l e f o r most o f d i a s t o l e . D e l l s p e r g e r and W i e t i n g s t u d i e d a 2 9 mm v a l v e i n t h e m i t r a l p o s i t i o n ( 4 8 ) . They observed a region of s t a s i s underneath the outflow face of the d i s c during a major portion of d i a s t o l e . A s i m i l a r region of s t a g n a t i o n c a n b e o b s e r v e d i n t h e r e s u l t s o b t a i n e d b y 01 i n i n an a o r t i c f l o w chamber ( 4 2 ) . Flow v i s u a l i z a t i o n s t u d i e s under p u l s a t i l e f l o w c o n d i t i o n s i n o u r l a b o r a t o r y have shown t h a t there i s a large region of s t a s i s underneath the outflow faces o f t h e a o r t i c and m i t r a l d i s c s d u r i n g t h e m a j o r p o r t i o n s o f s y s t o l e and d i a s t o l e , r e s p e c t i v e l y ( 8 8 ) . The s t u d i e s have a l s o shown q u a l i t a t i v e l y t h a t r e g i o n s o f s t a g n a t i o n o b s e r v e d with the convexo-concave valves are smaller than those observed with the s p e r i c a l d i s c valves. Schramm e t a l . , s t u d i e d a 2 5 mm s p h e r i c a l d i s c v a l v e i n a n a o r t i c c h a m b e r a t a s t e a d y f l o w r a t e o f 18 1 / m i n ( 8 5 ) . They have o b s e r v e d j e t type f l o w immediately downstream from the major o r i f i c e , which i s d i r e c t e d t a n g e n t i a l l y towards the w a l l . They have a l s o o b s e r v e d a large region of stagnation across the outflow face of the disc. M e a s u r e m e n t s o n a 2 5 mm c o n v e x o - c o n c a v e v a l v e u n d e r t h e same c o n d i t i o n s s h o w e d : ( i ) a more p r o n o u n c e d j e t t h r o u g h t h e m a j o r o r i f i c e and ( i i ) a s m a l l e r r e g i o n o f s t a g n a t i o n a c r o s s the o u t f l o w face of the d i s c . F i g l i o l a h a s made s t e a d y f l o w v e l o c i t y a n d s h e a r s t r e s s m e a s u r e m e n t s d o w n s t r e a m f r o m a 2 5 mm s p h e r i c a l d i s c a o r t i c v a l v e (47,89). A t a f l o w r a t e o f 2 5 1 / m i n he m e a s u r e d a m a x i m u m w a l l s h e a r s t r e s s o f 722 d y n e s / c m 2 and an o c c l u d e r w a l l s h e a r 2 s t r e s s ( r e s o l v e d on t h e u p p e r s i d e o f o c c l u d e r ) o f 440 d y n e s / c m . He a l s o m o n i t o r e d a m a x i m u m t u r b u l e n t s h e a r s t r e s s o f 5 4 5 d y n e s / c m 2 , a 2 5 mm d o w n s t r e a m f r o m t h e v a l v e . His v e l o c i t y measurements a l s o showed a l a r g e r e g i o n o f s t a g n a t i o n a c r o s s t h e o u t f l o w face of the d i s c . T i l l m a n has m e a s u r e d t h e " w a l l " (i.e.: s u r f a c e ) s h e a r s t r e s s e s a l o n g the o r i f i c e r i n g i n t h e m a j o r and m i n o r o u t f l o w r e g i o n s o f an a o r t i c v a l v e under p u l s a t i l e f l o w
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
132
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
(49,90). D u r i n g s y s t o l e he m e a s u r e d m a x i m u m s u r f a c e s h e a r s t r e s s e s o f 150 d y n e s / c m 2 a n d 50 d y n e s / c m 2 i n t h e m a j o r a n d minor o r i f i c e s , r e s p e c t i v e l y . D u r i n g d i a s t o l e he m e a s u r e d a maximum s h e a r s t r e s s o f a b o u t 250 d y n e s / c m 2 i n t h e m i n o r orifice. P h i l l i p s a n d h i s c o - w o r k e r s ( 8 6 , 9 1 ) made v e l o c i t y measurements under p u l s a t i l e f l o w c o n d i t i o n s downstream from a 2 5 mm c o n v e x o - c o n c a v e a o r t i c v a l v e . At peak s y s t o l e (peak f l o w o f 45 1/min) t h e y o b s e r v e d j e t t i n g t h r o u g h t h e m a j o r o r i f i c e w i t h v e l o c i t i e s o n t h e o r d e r o f 3 5 0 c m / s , 14 mm d o w n s t r e a m f r o m the valve. RMS m e a s u r e m e n t s o f t h e a x i a l v e l o c i t y s h o w e d l a r g e t u r b u l e n c e f l u c t u a t i o n s ( o n t h e o r d e r o f 140 c m / s ) . They e s t i m a t e d t h e maximum t u r b u l e n t s h e a r s t r e s s d u r i n g s y s t o l e t o be o n t h e o r d e r o f 2 0 0 0 t o 6 5 0 0 d y n e s / c m 2 . Yoganathan e t a l . , have measured v e l o c i t i e s and s h e a r s t r e s s e s d o w n s t r e a m f r o m a 2 7 mm s p h e r i c a l d i s c v a l v e a s w e l l as a c o n v e x o - c o n c a v e v a l v e i n t h e a o r t i c p o s i t i o n . Experiments w e r e c o n d u c t e d a t a s t e a d y f l o w r a t e o f 25 1 / m i n , (60,81,92). The measurements w i t h t h e s p h e r i c a l d i s c v a l v e i d e n t i f i e d a z o n e o f s t a g n a t i o n a b o u t 2 0 mm w i d e n e a r t h e a o r t i c f a c e o f the d i s c . The a v e r a g e v e l o c i t i e s i n t h e m a j o r and m i n o r o u t f l o w r e g i o n s w e r e a r o u n d 100 a n d 25 c m / s , r e s p e c t i v e l y , a n d t h e c o r r e s p o n d i n g peak shear s t r e s s e s a d j a c e n t to the sewing r i n g w e r e a p p r o x i m a t e l y 700 and 150 d y n e s / c m 2 . A maximum w a l l s h e a r s t r e s s o f 1390 d y n e s / c m 2 was m e a s u r e d . With the convexo-concave v a l v e t h e r e g i o n o f s t a g n a t i o n w a s o b s e r v e d t o b e 10 mm w i d e , a n d t h e a v e r a g e v e l o c i t i e s i n t h e m a j o r and m i n o r o u t f l o w r e g i o n s w e r e a r o u n d 90 a n d 40 c m / s e c , r e s p e c t i v e l y . Peak s h e a r s t r e s s e s on s u r f a c e s a d j a c e n t t o t h e s e w i n g r i n g i n t h e m a j o r and m i n o r o u t f l o w r e g i o n s were about 5 0 0 - 6 0 0 and 3 0 0 - 3 5 0 d y n e s / c m 2 , respectively. The c o n v e x o - c o n c a v e v a l v e d o e s , h o w e v e r , d i r e c t r e l a t i v e l y high flow from the major outflow r e g i o n towards one o f t h e s i n u s e s o f V a l s a l v a d e p e n d i n g on i t s o r i e n t a t i o n . W a l l s h e a r s t r e s s e s o n t h e o r d e r o f 1750 d y n e s / c m 2 w e r e o b s e r v e d o n t h e s i n u s w a l l t o w a r d s w h i c h t h e h i g h f l o w was directed. T u r b u l e n t measurements w i t h both models i n d i c a t e d t u r b u l e n t s h e a r s t r e s s e s on t h e o r d e r o f 500 t o 2000 d y n e s / c m i m m e d i a t e l y d o w n s t r e a m ( 3 t o 1 5 mm) f r o m t h e v a l v e , (d) Correlation The i n v i v o and i n v i t r o p r e s s u r e m e a s u r e m e n t s i n d i c a t e t h a t i n t h e l a r g e r s i z e s and under r e s t i n g c o n d i t i o n s t h e p r e s s u r e drop c h a r a c t e r i s t i c s of the B j o r k - S h i l e y valve are q u i t e satisfactory. However, under e x e r c i s e c o n d i t i o n s and/or i n t h e s m a l l e r s i z e s t h e v a l v e c o u l d become m i l d t o m o d e r a t e l y stenotic. This i s e s p e c i a l l y true i n the m i t r a l p o s i t i o n . The i n v i t r o s t u d y by D e l l s p e r g e r e t a l . , (16) s u g g e s t t h a t a t low h e a r t r a t e s and low c a r d i a c o u t p u t s t h e i n v i v o r e g u r g i t a t i o n v o l u m e s w i t h t h i s p r o s t h e s i s c o u l d become significant. The w a l l s h e a r s t r e s s e s c r e a t e d by t h i s v a l v e
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
8.
YOGANATHAN ET A L .
Prosthetic Heart Valves
133
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
c o u l d c a u s e s u b l e t h a l a n d / o r l e t h a l damage t o t h e e n d o t h e l i a l l i n i n g of vessel w a l l s e s p e c i a l l y i n the a o r t i c p o s i t i o n . T u r b u l e n t shear s t r e s s e s are l a r g e enough to cause s u b l e t h a l a n d / o r l e t h a l damage t o r e d c e l l s and p l a t e l e t s t h e r e b y r e d u c i n g their half-lifes. Therefore, i t i s not s u r p r i s i n g to observe c l i n i c a l l y , h e m o l y s i s and t h r o m b o e m b o l i c p r o b l e m s w i t h t h i s prosthesis. The i n v i t r o s t u d i e s have documented c o n c l u s i v e l y t h a t t h e B j o r k - S h i l e y v a l v e c r e a t e s two unequal r e g i o n s o f f l o w . There i s a region of s t a s i s underneath the outflow face of the d i s c and low f l o w t h r o u g h t h e m i n o r o u t f l o w r e g i o n . It i s therefore f a i r l y o b v i o u s t h a t thrombus f o r m a t i o n w i l l o c c u r on t h e o u t f l o w f a c e o f t h e d i s c and a l o n g t h e s t r u t s i n t h e m i n o r outflow region. As o b s e r v e d by Y o g a n a t h a n e t a l . , o n c e t h e thrombus f o r m a t i o n and t i s s u e o v e r g r o w t h b e g i n s on t h e downstream s i d e o f t h e v a l v e t h e f l o w f i e l d becomes e v e n more favorable f o r f u r t h e r t h r o m b u s f o r m a t i o n and t i s s u e o v e r g r o w t h on t h e valve superstructure (81). The r e c o v e r e d B j o r k - S h i l e y v a l v e s w h i c h have thrombus on b o t h t h e o u t f l o w and i n f l o w f a c e s o f t h e d i s c , p r o b a b l y had thrombus o c c u r on t h e o u t f l o w f a c e o f t h e disc first. The i n i t i a l t h r o m b u s f o r m a t i o n p r o b a b l y c a u s e s unfavorable flow c o n d i t i o n s immediately adjacent to the i n f l o w f a c e , t h e r e b y c a u s i n g thrombus f o r m a t i o n at t h a t l o c a t i o n as w e l l . The l o w f l o w and low s h e a r i n t h e m i n o r o u t f l o w r e g i o n would encourage the growth o f excess f i b r o u s t i s s u e along the sewing r i n g i n that r e g i o n . As has been o b s e r v e d i n t h e r e c o v e r e d v a l v e s , t h e c o m b i n a t i o n o f thrombus f o r m a t i o n and t i s s u e overgrowth can produce c a t a s t r o p h i c r e s u l t s . The s m a l l e r r e g i o n o f s t a g n a t i o n , and t h e b e t t e r d i s t r i b u t i o n o f f l o w between t h e m a j o r and m i n o r o r i f i c e s o b s e r v e d w i t h t h e c o n v e x o - c o n c a v e v a l v e , may h o p e f u l l y r e d u c e t h e p r o b l e m s o f thrombus f o r m a t i o n on t h e o u t f l o w f a c e o f t h e d i s c , and e x c e s s t i s s u e growth along the sewing r i n g of the minor o r i f i c e r e g i o n . (5) Hancock P o r c i n e Valve Ta") Valve D e s c r i p t i o n The H a n c o c k p r o c i n e b i o p r o s t h e s i s , p r e p a r e d by t h e S t a b i l i z e d G l u t a r a l d e h y d e P r o c e s s ( " S G P " ) has been i n c l i n i c a l use s i n c e 1970. P o r c i n e v a l v e s p r e s e r v e d by t h e "SGP" p r o c e s s a r e s u t u r e d to a Dacron c l o t h - c o v e r e d f l e x i b l e polypropylene s t e n t . It s h o u l d be n o t e d t h a t t h e p o r c i n e v a l v e l e a f l e t s a r e c o m p o s e d o f natural polymeric materials. A radio-opaque S t e l l i t e metal r i n g e n c i r c l e s t h e s t e n t and h e l p s m a i n t a i n o r i f i c e shape and proper l e a f l e t coaptation. Model 242 i s used f o r a o r t i c v a l v e r e p l a c e m e n t w h i l e model 342 i s used i n t h e m i t r a l and t r i c u s p i d valve areas. These models d i f f e r o n l y i n the shape o f t h e i r sewing r i n g s . The Hancock M o d i f i e d O r i f i c e a o r t i c b i o p r o s t h e s i s (HMO-250) d i f f e r s f r o m t h e o t h e r two m o d e l s by h a v i n g r e p l a c e d the r i g h t coronary l e a f l e t , and c o n t a i n s a p o r t i o n o f s e p t a l e n d o c a r d i u m w i t h a n o n - c o r o n a r y l e a f l e t o f an a p p r o p r i a t e s i z e . T h i s v a l v e m o d i f i c a t i o n was a c c o m p l i s h e d i n an a t t e m p t t o
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
134
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
Figure
Bjork-Shiley
4.
Figure
5.
Hancock
t i l t i n g disc
porcine
tissue
valve
valve
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
8.
YOGANATHAN ET A L .
Prosthetic Heart Valves
135
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
i n c r e a s e the e f f e c t i v e flow o r i f i c e f o r use i n p a t i e n t s w i t h a small a o r t i c annulus. The f i r s t c l i n i c a l i m p l a n t o f a HMO-250 b i o p r o s t h e s i s was i n O c t o b e r 1 9 7 6 . (b) In V i v o R e s u l t s S i n c e t h e Hancock v a l v e i s t h e g r a n d f a t h e r o f t h e t i s s u e v a l v e b i o p r o s t h e s e s , t h e r e a r e many a r t i c l e s i n t h e o p e n l i t e r a t u r e on i t s l o n g - t e r m c l i n i c a l p e r f o r m a n c e . This valve i s u t i l i z e d i n two d e s i g n s , t h e s t a n d a r d model and t h e m o d i f i e d . The s t a n d a r d model a o r t i c v a l v e has c a l c u l a t e d V A ' s o f 0 . 9 7 t o 1 . 8 c m 2 f o r v a l v e s i z e s o f 1 9 t o 2 7 mm. In the m i t r a l p o s i t i o n c a l c u l a t e d V A ' s ranged from 1 . 3 t o 2 . 9 c m 2 f o r valves size o f 2 3 t o 3 5 mm. T h e m o d i f i e d o r i f i c e a o r t i c v a l v e h a d V A ' s o f 0 . 8 9 t o 1 . 7 5 c m 2 f o r v a l v e s i z e s o f 1 9 t o 2 5 mm. From a comparison o f the i n vivo pressure drop r e s u l t s , i t i s not immediately obvious that the modified o r i f i c e valves are less s t e n o t i c t h a n t h e s t a n d a r d model v a l v e s . As s t a t e d by R o s s i t e r e t a l . , (93) t h e hemodynamic d i f f e r e n c e s between t h e two v a l v e types a r e s m a l l , and t h e p u t a t i v e c l i n i c a l advantages i n h e r e n t i n t h e u s e o f t h e m o d i f i e d o r i f i c e v a l v e r e m a i n t o be c o m p l e t e l y defined. Both d e s i g n s o f Hancock v a l v e s a r e , however, more s t e n o t i c compared t o t h e I o n e s c u - S h i l e y p e r i c a r d i a l v a l v e . C l i n i c a l l y s i g n i f i c a n t hemolysis i s not a major problem w i t h this valve. M i l d amounts o f h e m o l y s i s h a v e , h o w e v e r , been documented ( 9 4 , 9 5 ) . Thromboembolic c o m p l i c a t i o n s and thrombus f o r m a t i o n o n t h e v a l v e l e a f l e t s have a l s o been w e l l documented (93,96-100). The l i t e r a t u r e i n d i c a t e s t h a t p a t i e n t s w i t h H a n c o c k v a l v e s h a v e T E C r a t e s o f a b o u t 2 t o 5% p e r p t . y r . , the higher rates o c c u r r i n g i n m i t r a l valve patients with a t r i a l fibrillation. Thrombus f o r m a t i o n on t h e v a l v e s t r u c t u r e ( i . e . , sewing r i n g and l e a f l e t s ) and t h r o m b o s i s o f t h e Hancock v a l v e , i n both t h e a o r t i c and m i t r a l p o s i t i o n a r e w e l l documented i n t h e literature (96,99-107). In a m a j o r i t y o f t h e documented cases o f v a l v e t h r o m b o s i s , t h e t h r o m b o t i c m a t e r i a l was found a t t a c h e d t o t h e d o w n s t r e a m s e w i n g r i n g a n d up a l o n g t h e o u t f l o w s u r f a c e o f o n e o r more o f t h e l e a f l e t s . T h r o m b o t i c m a t e r i a l s have a l s o on o c c a s i o n s been o b s e r v e d on t h e i n f l o w o r i f i c e and i n f l o w surfaces of the l e a f l e t s , mainly i n the mitral position. On many o c c a s i o n s t h e t h r o m b o t i c m a t e r i a l i n i t i a l l y s t a r t e d o n the outlfow face o f the m u s c l e - s h e l f l e a f l e t s (102,105,108,109). Thrombus f o r m a t i o n on o n e o r more l e a f l e t s has a t t i m e s l e d to t h r o m b o t i c o c c l u s i o n o f t h e p r o s t h e s i s and demise o f t h e patient (102,104-107,109,110). Detailed pathologic studies on r e c o v e r e d Hancock p o r c i n e v a l v e s by F e r r a n s e t a l . , ( 1 0 1 , 1 0 3 , 1 1 1 ) , a n d S p r a y a n d R o b e r t s ( 1 0 6 ) h a v e r e v e a l e d some very i n t e r e s t i n g information. Thrombi a r e commonly o b s e r v e d on t h e o u t f l o w s u r f a c e s (more s o t h a n o n t h e i n f l o w s u r f a c e s ) o f Hancock p o r c i n e v a l v e s , i n s p i t e o f t h e low i n c i d e n c e o f c l i n i c a l l y apparent thromboembolic episodes. Subsequent s t u d i e s
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
136
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
by o t h e r s have c o n f i r m e d t h e s e f i n d i n g s ( 1 0 1 , 1 0 4 ) . Ferrans et a l . , (101) state that their ultra-structural observations p o i n t t o t h e p o s s i b i l i t y t h a t s m a l l f i b r i n d e p o s i t s and p l a t e l e t a g g r e g a t e s f o r m c o n t i n u o u s l y on t h e s u r f a c e s o f t h e l e a f l e t s and b e c a u s e o f t h e m e c h a n i c a l f o r c e s t o w h i c h t h e y a r e s u b j e c t e d , the m a j o r i t y of such d e p o s i t s o r aggregates are shed from the s u r f a c e s i n t o t h e b l o o d s t r e a m b e f o r e t h e y have had an o p p o r t u n i t y t o grow t o a l a r g e r s i z e . They a l s o s t a t e the f a c t that f i b r i n t h r o m b i d e p o s i t s and c e l l s were numerous on t h e outflow surfaces. T h i s f i n d i n g i s i n agreement w i t h the concept t h a t t h e f o r c e s o f f l o w ( s h e a r s t r e s s ) a r e g r e a t e r on t h e i n f l o w t h a n on the o u t f l o w s u r f a c e s o f p o r c i n e v a l v e s . Therefore fibrin a n d t h r o m b o t i c d e p o s i t s o n t h e o u t f l o w s u r f a c e s w o u l d be l e s s e a s i l y r e m o v e d a n d w o u l d be e x p e c t e d t o g r o w l a r g e r a n d s h o w e v i d e n c e o f o r g a n i z a t i o n as o b s e r v e d i n t h e i r s t u d y (101) and t h e s t u d y o f S p r a y and R o b e r t s (106). One o f t h e m a j o r c l i n i c a l p r o b l e m s o f H a n c o c k p o r c i n e v a l v e s i s the c a l c i f i c a t i o n of the valve l e a f l e t s . The d e v e l o p m e n t of c a l c i f i c a t i o n a p p e a r s t o be a c c e l e r a t e d i n c h i l d r e n a n d y o u n g adults (96,98,100,103,104,112-115). Ferrans et a l . , ( 1 0 3 ) in an e x c e l l e n t p a t h o l o g i c s t u d y o b s e r v e d t h a t t h e two m a i n s i t e s of d e p o s i t i o n of c a l c i u m phosphate i n porcine valves are i n the c o n n e c t i v e t i s s u e o f t h e c u s p s and i n t h e s m a l l t h r o m b i on t h e leaflet surfaces. C a l c i f i c d e p o s i t s on the v a l v e l e a f l e t s g e n e r a l l y lead to p r o s t h e t i c valve s t e n o s i s , because c a l c i f i c a t i o n causes impaired l e a f l e t m o b i l i t y . However, i t can a l s o l e a d to valve r e g u r g i t a t i o n . Examinations o f r e c o v e r e d Hancock v a l v e s i n d i c a t e t h a t c a l c i f i c a t i o n i s a s s o c i a t e d w i t h one ( g e n e r a l l y t h e m u s c l e - s h e l f l e a f l e t ) o r more o f t h e l e a f l e t s . It i s a l s o not unusual to f i n d that c a l c i f i c a t i o n of the l e a f l e t s t o be a s s o c i a t e d w i t h t h r o m b o t i c d e p o s i t s i n and a r o u n d t h e same l o c a t i o n s . F e r r a n s e t a l . , (103) o b s e r v e d t h a t calcific d e p o s i t s a s s o c i a t e d w i t h v e g e t a t i o n and t h r o m b i , contained remnants o f p l a t e l e t s and l e u k o c y t e s t h a t a p p e a r e d t o have been t r a p p e d w i t h i n a mesh o f f i b r i n s t a n d a r d s . Varying degrees o f f i b r o u s t i s s u e o v e r g r o w t h on r e c o v e r e d Hancock p o r c i n e v a l v e s have a l s o been o b s e r v e d d u r i n g g r o s s p a t h o l o g i c e x a m i n a t i o n s (97,100,102,104,113,116-119). Although the greatest amount o f f i b r o u s t i s s u e o v e r g r o w t h has been o b s e r v e d a r o u n d t h e downstream s e w i n g r i n g and t h e o u t f l o w b a s e s o f t h e v a l v e c u p s , t i s s u e o v e r g r o w t h on t h e i n l e t a s p e c t o f t h e s e w i n g r i n g and v a l v e c u s p s has a l s o been o b s e r v e d . The f i b r o u s t i s s u e g r o w t h may b e r e l a t e d t o t h e c a l c i f i c a t i o n p r o c e s s ( 1 0 3 ) . (c) In v i t r o R e s u l t s The s t a n d a r d Hancock v a l v e (model 242 and 342) has V A ' s i n t h e range o f 1.12 t o 1 . 9 3 cm2 f o r b o t h a o r t i c and m i t r a l v a l v e s i n t h e 1 9 a n d 3 3 mm s i z e r a n g e . The V A ' s f o r t h e m o d i f i e d o r i f i c e v a l v e s ( m o d e l 2 5 0 ) v a r i e d f r o m 1 . 0 2 t o 2 . 0 1 c n r f o r t h e 19 t o 2 5 mm v a l v e s i z e s . Gabbay e t a l . , (120) s t a t e t h a t t h e r e i s no
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
8.
YOGANATHAN ET A L .
Prosthetic Heart Valves
137
d i f f e r e n c e i n p r e s s u r e drop c h a r a c t e r i s t i c s between the Carpentier-Edwards and m o d i f i e d o r i f i c e Hancock v a l v e s o f corresponding sizes. Recent s t u d i e s i n our l a b o r a t o r y have confirmed these f i n d i n g s . R e g u r g i t a t i o n was a l m o s t nonexistent («* 1 c n r / b e a t ) f o r t h e Hancock v a l v e s . Flow v i s u a l i z a t i o n s t u d i e s ( 4 1 , 8 5 , 8 7 , 8 8 ) i n d i c a t e t h a t t h e f l o w t h a t emerges from t h e Hancock v a l v e s , s t a n d a r d and modified o r i f i c e , i s j e t - l i k e . Schramm e t a l . , (85) i n t h e i r s t u d y s h o w e d t h a t t h e r e was no r e a t t a c h m e n t o f t h e j e t . At a s t e a d y f l o w r a t e o f 181/min they observed a peak j e t velocity o f 180 cm/s w i t h a s i z e 25 m o d i f i e d o r i f i c e v a l v e . Wright (41,87) i n his studies observed a vortex swirl i n addition to the j e t . Y o g a n a t h a n e t a l . , i n t h e i r s t u d y w i t h a s i z e 2 7 mm s t a n d a r d v a l v e a n d a s i z e 2 5 mm m o d i f i e d o r i f i c e v a l v e , observed t h a t t h e j e t was n o t s y m m e t r i c and was s k e w e d t o w a r d s o n e s i d e (88). Flow s e p a r a t i o n o c c u r r e d at t h e downstream edge o f the leaflets. The a n n u l a r r e g i o n b e t w e e n t h e o u t f l o w s u r f a c e o f t h e l e a f l e t s and t h e f l o w c h a n n e l w a l l was r e l a t i v e l y s t a g n a n t . High s p e e d p h o t o g r a p h y by R a i n e r e t a l . , (121) showed t h a t t h e r e was high frequency f l u t t e r i n g of the muscle-shelf l e a f l e t during e n d - s y s t o l e i n the a o r t i c Hancock valve. V e l o c i t y and s h e a r s t r e s s measurements c o n d u c t e d w i t h a s i z e 2 7 mm H a n c o c k s t a n d a r d v a l v e i n o u r l a b o r a t o r y g i v e r e s u l t s s i m i l a r to those obtained w i t h the Carpentier-Edwards valve (122). The v e l o c i t y p r o f i l e s were j e t - l i k e w i t h t u r b u l e n t s h e a r s t r e s s e s on t h e o r d e r o f 1000-3000 d y n e s / c m 2 , and w a l l s h e a r s t r e s s e s on the order of 200-600 dynes/cm2. F l o w s e p a r a t i o n was o b s e r v e d i n the immediate downstream v i c i n i t y o f the v a l v e , t o g e t h e r w i t h a region of stagnation adjacent to the outflow surfaces of the leaflets. L e a f l e t p h o t o g r a p h y s t u d i e s c o n d u c t e d by Yoganathan e t a l . , o n s i z e 2 7 a n d 2 5 mm H a n c o c k v a l v e s s h o w e d t h a t the l e a f l e t o p e n i n g a n d c l o s i n g c h a r a c t e r i s t i c s l e a v e much t o be desired (88). The l e a f l e t s d i d n o t open s y m m e t r i c a l l y o r reproducibly. The l e a f l e t o p e n i n g a r e a s v a r i e d w i t h c a r d i a c output. In t h e s t a n d a r d model Hancock v a l v e s t h e m u s c l e - s h e l f l e a f l e t was t h e l a s t o p e n a n d f i r s t t o c l o s e . The above observations are s i m i l a r to those observed with the CarpentierEdwards p o r c i n e v a l v e s , (d) Correlation The i n v i v o a n d i n v i t r o p r e s s u r e g r a d i e n t i n f o r m a t i o n c l e a r l y show t h a t t h e H a n c o c k p o r c i n e v a l v e s a r e m o d e r a t e l y t o h i g h l y s t e n o t i c , e s p e c i a l l y i n the s m a l l e r s i z e s . Patients with these v a l v e s w i l l n o t be a b l e t o l e a d v e r y a c t i v e l i v e s d u e t o t h e l a r g e g r a d i e n t s a c r o s s these v a l v e s under e x e r c i s e c o n d i t i o n s . The s t e n o t i c n a t u r e o f t h e v a l v e i s i n p a r t due t o t h e a s y m m e t r i c and i n a d e q u a t e o p e n i n g o f t h e t h r e e l e a f l e t s . The j e t type flow observed i n the flow v i s u a l i z a t i o n s t u d i e s could cause damage t o t h e a o r t i c o r v e n t r i c u l a r w a l l i f t h e j e t i m p i n g e s o n these w a l l s . As s t a t e d p r e v i o u s l y t h e v e l o c i t y and s h e a r f i e l d s
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
138
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
downstream from the Hancock v a l v e s are q u i t e s i m i l a r t o those observed with Carpentier-Edwards valves (88,122). Therefore, s u b l e t h a l a n d / o r l e t h a l damage c o u l d o c c u r t o t h e e n d o t h e l i a l l i n i n g o f t h e v e s s e l w a l l s , r e d c e l l s , and p l a t e l e t s , w h i c h i n t u r n c o u l d l e a d t o h e m o l y t i c and t h r o m b o t i c p r o b l e m s . The o b s e r v a t i o n o f p l a t e l e t a g g r e g a t e s , f i b r i n t h r o m b i , and remnant p l a t e l e t s on t h e v a l v e l e a f l e t s s t r o n g l y s u p p o r t s the f a c t t h a t b l o o d e l e m e n t damage d o e s o c c u r . In a d d i t i o n , t h e f a c t t h a t p a t i e n t s w i t h H a n c o c k v a l v e s do e x p e r i e n c e t h r o m b o e m b o l i c and mild hemolytic problems a l s o s t r o n g l y suggests that red c e l l s and p l a t e l e t s a r e b e i n g damaged. The r e g i o n o f f l o w s e p a r a t i o n which e x i s t s a d j a c e n t to the downstream sewing r i n g , c o u l d l e a d t o t h e b u i l d up o f e x c e s s f i b r o u s t i s s u e a l o n g t h e downstream s e w i n g r i n g and t h e o u t f l o w bases o f t h e c u s p s . It could also l e a d t o t h e b u i l d up o f t h r o m b o t i c , f i b r o t i c a n d / o r calcific m a t e i r a l on t h e o u t f l o w s u r f a c e s o f t h e l e a f l e t s as o b s e r v e d by F e r r a n s e t a l . , ( 1 0 1 ) . We w o u l d a l s o l i k e t o p r o p o s e t h a t one o f t h e r e a s o n s f o r c a l c i f i c a t i o n i s the r e l a t i v e l y s t a g n a n t o r low v e l o c i t y r e g i o n o f f l o w t h a t e x i s t s between the outflow s u r f a c e s o f t h e l e a f l e t s and t h e v e s s e l w a l l s . The s t i f f n e s s o f t h e m u s c l e - s h e l f l e a f l e t makes i t s o u t f l o w s u r f a c e a p r i m e l o c a t i o n f o r the d e p o s i t i o n of thrombotic m a t e r i a l , f i b r o u s t i s s u e g r o w t h , and c a l c i u m b u i l d up.
6) St. Jude B i - L e a f l e t Valve i l Valve Description The S t . J u d e b i - l e a f l e t v a l v e i s a l o w p r o f i l e h e a r t valve prosthesis. T h e v a l v e i s made e n t i r e l y f r o m p y r o l y t i c c a r b o n w i t h a double v e l o u r Dacron sewing r i n g . The l e a f l e t s a r e p o s i t i o n e d w i t h i n t h e v a l v e h o u s i n g i n s u c h manner as t o p r o v i d e central flow. T h e l e a f l e t s p i v o t w i t h i n g r o o v e s made i n t h e v a l v e o r i f i c e housing. In the f u l l y open p o s i t i o n t h e l e a f l e t s a r e d e s i g n e d t o open an a n g l e o f 8 5 ° . The l e a f l e t s a r e i m p r e g n a t e d w i t h tungsten to improve t h e i r r a d i o - o p a c i t y , (b) In V i v o R e s u l t s The S t . J u d e p r o s t h e s i s has been o n c l i n i c a l t r i a l s and e v a l u a t i o n s s i n c e 1977, and was a p p r o v e d f o r g e n e r a l u s e i n D e c e m b e r , 1982. Over 2 0 , 0 0 0 o f t h e s e v a l v e s have been i m p l a n t e d t o date worldwide. The c l i n i c a l p r e s s u r e d r o p r e s u l t s i n d i c a t e t h a t t h i s v a l v e has p r o b a b l y t h e b e s t p r e s s u r e g r a d i e n t c h a r a c t e r i s t i c s o f any o f the p r o s t h e s e s i n c u r r e n t c l i n i c a l use. C a l c u l a t e c T V A ' s i n the a o r t i c p o s i t i o n have been i n the r a n g e o f 1 . 5 t o 3 . 6 c m 2 , and 2.1 t o 4 . 5 7 c m 2 i n t h e m i t r a l p o s i t i o n f o r s e w i n g r i n g s i z e s o f 21 t o 2 7 mm a n d 2 3 t o 31 mm, respectively. Even u n d e r e x e r c i s e c o n d i t i o n s t h e v a l v e has good pressure drop c h a r a c t e r i s t i c s . Blood d a t a on p a t i e n t s u s i n g t h i s p r o s t h e s i s i n d i c a t e t h a t the S t . Jude valve creates mild h e m o l y s i s i n most p a t i e n t s . Thromboembolic d a t a on the valve o v e r t h e p a s t t h r e e y e a r s t e n d t o i n d i c a t e a TEC r a t e o f a p p r o x i m a t e l y 1.0 to 2.0% per p t . y r . f o r p a t i e n t s on
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
YOGANATHAN ET AL.
Figure
Prosthetic Heart Valves
6.
St.
Jude
bi-leaflet
valve
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
140
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
anticoagulation therapy (123-125). Without anticoagulation t h e r a p y t h e v a l v e w o u l d p r o b a b l y have an u n a c c e p t a b l y h i g h r a t e o f TEC e v e n t s . Due t o t h e s h o r t p e r i o d o f u s e o f t h i s p r o s t h e s i s no d e t a i l e d p a t h o l o g i c a l s t u d i e s o n r e c o v e r e d S t . J u d e v a l v e s have been r e p o r t e d i n t h e open l i t e r a t u r e . Recently t h e r e was a c a s e o f e x c e s s t i s s u e g r o w t h on t h e s e w i n g r i n g w h i c h p r e v e n t e d t h e o p e n i n g o f one l e a f l e t and a l l o w e d t h e s e c o n d l e a f l e t t o o n l y o p e n a b o u t h a l f way ( 8 8 ) . The valve was u s e d i n t h e a o r t i c p o s i t i o n and was r e c o v e r e d a t r e - o p e r a t i o n . T h e r e have been a few r e p o r t s i n t h e l i t e r a t u r e o f t h r o m b o s i s o f t h e S t . Jude v a l v e i n t h e a o r t i c , m i t r a l and t r i c u s p i d positions (126-128). Nunez e t a l . , r e p o r t e d two c a s e s w h e r e one l e a f l e t o f t h e S t . J u d e v a l v e was jammed by a v e r y small thrombus t h a t f i x e d the l e a f l e t i n a s e m i c l o s e d p o s i t i o n . Both p a t i e n t s were not a n t i c o a g u l a t e d . R e c e n t l y , we r e c o v e r e d a S t . J u d e a o r t i c v a l v e i n w h i c h b o t h l e a f l e t s w e r e jammed i n s e m i o p e n p o s i t i o n due t o t h r o m b i i n t h e v a l v e p i v o t m e c h a n i s m . M o u l t o n e t a l . , r e p o r t e d a c a s e w h e r e t h e t h r o m b u s was a d h e r e n t a t t h e j u n c t i o n o f t h e t w o l e a f l e t s a n d w h i c h e x t e n d e d 1 cm i n t o t h e a o r t a and t o t a l y o c c l u d e d t h e r i g h t c o r o n a r y o r i f i c e . The p a t i e n t was on a n t i c o a g u l a t i o n t h e r a p y . Ziemer et a l . , reported a c a s e o f i n t e r m i t t e n t i n h i b i t i o n o f l e a f l e t m o t i o n due t o m i n i m a l d i s p r o p o r t i o n between t h e l e a f l e t s and v a l v e r i n g ( 1 2 9 ) . (c) In V i t r o Results In v i t r o f l o w s t u d i e s i n d i c a t e t h a t t h i s v a l v e has t h e l o w e s t p r e s s u r e d r o p s o f any o f t h e p r o s t h e s e s i n c u r r e n t c l i n i c a l use. C a l c u l a t e d VA's were i n the range o f 1.4 t o 4 . 4 5 cm2 f o r the s i z e 1 9 t o 31 mm v a l v e s , i n b o t h a o r t i c a n d m i t r a l t e s t c h a m b e r s . A r e c e n t s t u d y by D e l l s p e r g e r e t a l . , ( 1 6 ) , however, indicates t h a t t h i s v a l v e may h a v e s i g n i f i c a n t r e g u r g i t a n t v o l u m e s a t low h e a r t r a t e s and low c a r d i a c o u t p u t s . For example, at a h e a r t r a t e o f 5 0 b e a t s / m i η t h e s i z e 2 7 mm S t . J u d e a o r t i c v a l v e had a t o t a l r e g u r g i t a n t volume o f 1 3 . 2 cnr/beat. Flow v i s u a l i z a t i o n s t u d i e s i n a o r t i c and m i t r a l chambers under b o t h s t e a d y and p u l s a t i l e f l o w i n d i c a t e smooth c e n t r a l type f l o w downstream from the v a l v e ( 4 8 , 8 5 , 8 8 , 1 3 0 ) . Initial v e l o c i t y a n d s h e a r s t r e s s m e a s u r e m e n t s h a v e b e e n made b y Y o g a n a t h a n e t a l . , w i t h s i z e 27 a n d 2 5 a o r t i c v a l v e s (38,131). T h e m e a s u r e m e n t s w e r e made u n d e r s t e a d y f l o w r a t e s o f 10 a n d 2 5 1/min. The v e l o c i t y m e a s u r e m e n t s i n d i c a t e t h a t t h e f l o w f i e l d t h a t emerges from the v a l v e i s c e n t r a l i z e d w i t h low t u r b u l e n c e intensities. The m e a s u r e m e n t s showed a r e g i o n o f f l o w s e p a r a t i o n i m m e d i a t e l y downstream from t h e s e w i n g r i n g and adjacent to flow channel w a l l s . The r e g i o n o f f l o w s e p a r a t i o n i s l a r g e r a d j a c e n t t o t h e c e n t e r o r i f i c e , compared t o the s e p a r a t i o n r e g i o n s a d j a c e n t t o t h e two s i d e o r i f i c e s . I t was a l s o o b s e r v e d t h a t t h e r e was more ( v o l u m e t r i c ) f l o w t h r o u g h t h e s i d e o r i f i c e s compared t o the c e n t e r o r i f i c e (approximate ratio of 70:30). W a l l s h e a r s t r e s s e s on t h e o r d e r o f 50 t o 600
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
8.
YOGANATHAN ET A L .
Prosthetic Heart Valves
141
dynes/cm^ were measured t o g e t h e r w i t h e s t i m a t e d t u r b u l e n t shear s t r e s s e s of 100-600 dynes/cm2. V e l o c i t y measurements have n o t b e e n made c l o s e t o t h e p i v o t i n g m e c h a n i s m o f t h e v a l v e . Schramm e t a l . , u s i n g s t e a d y f l o w c o n d i t i o n s , have a l s o o b s e r v e d f l o w s e p a r a t i o n o c c u r r i n g from the downstream sewing r i n g (85). They s t a t e t h a t the f l o w s e p a r a t i o n g e n e r a t e s a c i r u c l a r dead water r e g i o n which surrounds the main f l o w . Studies i n our l a b o r a t o r y (88) and by R a i n e r e t a l . , (132) i n d i c a t e asynchronous c l o s i n g o f t h e two l e a f l e t s i n p u l s a t i l e f l o w . We h a v e a l s o observed that p a r t i c l e s of d i r t i n the blood analog f l u i d cause s t i c k i n g of the valve l e a f l e t s , (d) Correlation The i n v i v o and i n v i t r o r e s u l t s i n d i c a t e c l e a r l y t h e s u p e r i o r pressure drop c h a r a c t e r i s t i c s of the S t . Jude p r o s t h e s i s . T h i s i s a t r e m e n d o u s a d v a n t a g e f o r p a t i e n t s who l e a d a c t i v e l i v e s , as w e l l as f o r c h i l d r e n and a d u l t s w i t h s m a l l v a l v e a n n u l i (123-125). The r e g u r g i t a t i o n v o l u m e s o b s e r v e d J j i v i t r o a t low h e a r t r a t e s c o u l d be c l i n i c a l l y s i g n i f i c a n t a t l o w c a r d i a c outputs. One o f t h e r e a s o n s f o r t h i s r e s u l t c o u l d be t h e asynchronous c l o s i n g of the l e a f l e t s . The a s y n c h r o n o u s c l o s i n g o f t h e l e a f l e t s i s i n o u r o p i n i o n an i n h e r e n t p r o b l e m w i t h any bileaflet design, s i n c e o n e c a n n o t make b o t h l e a f l e t s identical. The c e n t r a l f l o w f i e l d c r e a t e d by t h e v a l v e i s an advantage. The w a l l s h e a r s c o u l d c a u s e s u b l e t h a l damage t o the e n d o t h e l i a l l i n i n g of the vessel w a l l s e s p e c i a l l y i n the a o r t i c p o s i t i o n , w h i l e the t u r b u l e n t shear s t r e s s e s could cause s u b l e t h a l a n d / o r l e t h a l damage t o b l o o d e l e m e n t s . It i s t h e r e f o r e n o t s u r p r i s i n g t o o b s e r v e m i l d h e m o l y s i s a n d TEC events, with this prosthesis. The r e g i o n o f f l o w s e p a r a t i o n c o u l d cause e x c e s s t i s s u e growth and/or thrombus f o r m a t i o n on the downstream sewing r i n g which i n t u r n c o u l d lead to valve d y s f u n c t i o n by i m p e d i n g movement o f t h e l e a f l e t s . This situation c o u l d be a g g r a v a t e d b y c e r t a i n s u r g i c a l t e c h n i q u e s s u c h a s u s i n g p l e d g e t s t o sew t h e v a l v e i n t o p l a c e . It is therefore of utmost i m p o r t a n c e t h a t t h e p h y s i c i a n be a b l e t o m o n i t o r t h e m o v e m e n t o f the l e a f l e t s under c i n e f l u o r o s c o p y . One o f t h e m a j o r c l i n i c a l disadvantages of the S t . Jude valve i s i t s poor r a d i o g r a p h i c v i s i b i l i t y , e s p e c i a l l y i f the p h y s i c i a n i s not f a m i l i a r w i t h the p r o s t h e s i s . The p r o b l e m o f s t i c k i n g l e a f l e t s as d o c u m e n t e d i n the medical l i t e r a t u r e , together w i t h our observations i n the p u l s e d u p l i c a t o r g i v e us c o n c e r n . A p o t e n t i a l f a i l u r e mode f o r t h i s p r o s t h e s i s c o u l d be damaged b l o o d e l e m e n t s c o l l e c t i n g i n t h e d i v e t s ( i . e . ears) of the hinge mechanism; forming small thrombi a n d c a u s i n g i m p a i r e d l e a f l e t m o b i l i t y , a s o b s e r v e d by us a n d other investigators.
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
142
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
Conclusions
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
F o l l o w i n g the c o l l e c t i o n , a n a l y s i s , and i n t e r p r e t a t i o n o f t h e i n v i v o and i n v i t r o i n f o r m a t i o n and d a t a p e r t a i n i n g t o the c u r r e n t s t a t e o f t h e a r t w i t h r e s p e c t t o t h e s a f e t y and p e r f o r m a n c e o f p r o s t h e t i c h e a r t v a l v e s ( m e c h a n i c a l and t i s s u e ) , we c o n c l u d e t h a t : 1.
A t p r e s e n t we d o n o t h a v e a n i d e a l p r o s t h e t i c h e a r t v a l v e . D u r i n g t h e p a s t 22 y e a r s , m a n u f a c t u r e r s h a v e d e v e l o p e d v a r i o u s d e s i g n s o f p r o s t h e t i c h e a r t v a l v e s , some o f w h i c h p e r f o r m s a t i s f a c t o r i l y when i m p l a n t e d s u r g i c a l l y i n p a t i e n t s s u f f e r i n g from v a l v u l a r heart d i s e a s e . O t h e r d e s i g n s have had t o be r e m o v e d f r o m t h e o p e n m a r k e t d u e t o l a c k o f adequate s a f e t y and e f f i c a c y .
2.
T h e r e i s a l a c k o f i n v i v o c l i n i c a l and i n v i t r o f l u i d d y n a m i c d a t a and i n f o r m a t i o n on a l l d e s i g n s o f p r o s t h e t i c heart valves in current c l i n i c a l use. The l a c k o f good q u a l i t y c l i n i c a l i n f o r m a t i o n and d a t a o n some o f t h e o l d e r valve types i s s u r p r i s i n g . Good, long term c l i n i c a l f o l l o w - u p data e x i s t s o n l y f o r the following valve types studied: (i) Starr-Edwards ball valves, (ii) Bjork-Shiley t i l t i n g disc valve, (iii) L i l l e h e i - K a s t e r t i l t i n g d i s c v a l v e , and ( i v ) Hancock p o r c i n e valve.
3.
4.
T h e r e i s a l a c k o f good d e t a i l e d p a t h o l o g i c s t u d i e s p e r f o r m e d on h e a r t v a l v e s p r o s t h e s e s r e c o v e r e d a t s u r g e r y and/or autopsy. The l a c k o f s u c h s t u d i e s w i l l h i n d e r t h e p r o g r e s s and d e v e l o p m e n t o f n o t o n l y b e t t e r h e a r t v a l v e p r o s t h e s e s , but a l s o o t h e r f u t u r e a r t i f i c i a l d e v i c e s such as l e f t v e n t r i c u l a r a s s i s t d e v i c e s and t h e t o t a l artificial heart.
5.
The c a l i b e r and q u a n t i t a t i v e n a t u r e o f t h e i n v i t r o f l u i d d y n a m i c s t u d i e s has i m p r o v e d a g r e a t d e a l d u r i n g t h e p a s t f i v e to s i x y e a r s . T h e r e a r e , h o w e v e r , many p i e c e s o f i n f o r m a t i o n m i s s i n g w h i c h w o u l d g i v e us a b e t t e r understanding o f some o f t h e c l i n i c a l p r o b l e m s o b s e r v e d w i t h p r o s t h e t i c heart valves. T h e r e s e e m s t o be a l a c k o f c o l l a b o r a t i o n b e t w e e n t h e i n v i t r o i n v e s t i g a t o r and t h e p h y s i c i a n ( c a r d i o l o g i s t a n d / o r cardiovascular surgeon). T h e r e f o r e , t h e r e a r e v e r y few a r t i c l e s that attempt to r e l a t e s p e c i f i c i n v i t r o flow c h a r a c t e r i s t i c s t o c l i n i c a l p e r f o r m a n c e and c o m p l i c a t i o n s . The l a c k o f s u c h i n f o r m a t i o n w i l l impede t h e p r o g r e s s o f p r o s t h e t i c h e a r t v a l v e s and s i m i l a r c a r d i o v a s c u l a r d e v i c e s . The a v a i l a b l e i n v i v o hemodynamic and i n v i t r o p r e s s u r e d r o p r e s u l t s f r o m aTT v a l v e s when a n a l y z e d i n a c o m b i n e d o v e r a l l m a n n e r i n d i c a t e t h a t t h e p r o s t h e s e s s t u d i e d c o u l d be arranged i n the f o l l o w i n g broad c a t e g o r i e s of d e c r e a s i n g s t e n o t i c i t y (The v a l v e s i n e a c h c a t e g o r y a r e l i s t e d i n alphabetical order): ( i ) caged d i s c v a l v e s ( i i ) caged
6.
7.
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
8.
YOGANATHAN ET A L .
Prosthetic Heart Valves
143
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
b a l l v a l v e s , L i l l e h e i K a s t e r t i l t i n g d i s c v a l v e and p o r c i n e v a l v e s ( i i i ) B j o r k - S h i l e y t i l t i n g d i s c v a l v e and I o n e s c u Shiley p e r i c a r d i a l valve (iv) Medtronic-Hall t i l t i n g disc v a l v e (v) S t . Jude b i l e a f l e t v a l v e . 8.
In terms o f r e g u r g i t a t i o n , i n v i t r o s t u d i e s i n d i c a t e t h a t t h e v a l v e s c a n be a r r a n g e d i n t h e f o l l o w i n g b r o a d c a t e g o r i e s o f i n c r e a s i n g r e g u r g i t a t i o n (The v a l v e s i n e a c h c a t e g o r y a r e listed in alphabetical order): (i) porcine valves (ii) Ionescu-Shiley p e r i c a r d i a l valve ( i i i ) Beall disc valve, B r a u n w a l d - C u t t e r b a l l v a l v e , K a y - S h i l e y d i s c v a l v e , and Starr-Edwards ball valve (iv) Bjork-Shiley, Medtronic-Hall, and L i l l e h e i - K a s t e r t i l t i n g d i s c v a l v e s , and t h e S t . Jude bileaflet valve.
9.
A l l p r o s t h e t i c v a l v e s ( m e c h a n i c a l and t i s s u e ) i n c u r r e n t c l i n i c a l u s e c a u s e s u b l e t h a l a n d / o r l e t h a l damage t o b l o o d e l e m e n t s s u c h as r e d c e l l s and p l a t e l e t s . The s h e a r f i e l d s c r e a t e d by t h e v a l v e s ( 1 θ 2 - 1 θ 3 d y n e s / c m 2 ) a r e a l l c a p a b l e o f c a u s i n g s u c h damage. S u b l e t h a l damage t o r e d c e l l s c o u l d i n time lead to mild hemolysis. S i m i l a r l y , s u b l e t h a l damage to p l a t e l e t s could over a period of time lead to thromboemboli and T E C ' s .
10.
A l l p e r i p h e r a l f l o w t y p e v a l v e s c a u s e damage t o t h e e n d o t h e l i a l l i n i n g of the proximal ascending a o r t a . This i s d i r e c t l y r e l a t e d to the elevated wall shear s t r e s s e s (103 dynes/cm2) i n the immediate downstream v i c i n i t y o f these valves. T h e y may a l s o c a u s e s u b l e t h a l a n d / o r l e t h a l damage t o t h e v e n t r i c u l a r w a l l . Other mechanical valve d e s i g n s and t i s s u e b i o p r o s t h e s e s c o u l d c a u s e s u b l e t h a l a n d / o r l e t h a l damage t o t h e e n d o t h e l i a l l i n i n g o f t h e a o r t i c wall. The j e t t y p e f l o w f r o m t h e t i s s u e v a l v e s i n t h e a o r t i c and m i t r a l p o s i t i o n s c o u l d c a u s e damage t o t h e w a l l s o f t h e a s c e n d i n g a o r t a and l e f t ventricle, respectively. Depending on the o r i e n t a t i o n o f the v a l v e , the f l o w i n the major orifice region of a t i l t i n g disc mitral valve could also c a u s e damage t o t h e v e n t r i c u l a r w a l l .
11.
All prosthetic v a l v e s i n c u r r e n t c l i n i c a l use cause h e m o l y s i s and T E C ' s , and a r e p r o n e t o t h e p r o b l e m s o f throbmus f o r m a t i o n and e x c e s s t i s s u e g r o w t h on t h e valve superstructure. I n many c a s e s t h e h e m o l y s i s c a u s e d by t h e p r o s t h e s i s i s m i l d o r m o d e r a t e , and i s g e n e r a l l y compensated f o r q u i t e adequately by n a t u r a l r e g e n e r a t i o n i n t h e b o n e - m a r r o w . Cloth covering on the v a l v e s u p e r s t r u c t u r e (such as w i t h t h e S t a r r - E d w a r d s and B e a l l v a l v e s ) w i l l l e a d t o an i n c r e a s e i n h e m o l y s i s d e p e n d i n g on t h e s t r u c t u r e and s u r f a c e c h a r a c t e r i s t i c s o f the f a b r i c . H e m o l y s i s , however m i l d , i s not i n n o c u o u s . It i s the f o r e r u n n e r i n one o f t h e p r o p o s e d mechanisms f o r p l a t e l e t a g g r e g a t i o n and c o a g u l a t i o n , w h i c h i n t u r n c o u l d lead to the formation of thromboemboli.
12.
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
144 13.
14.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
15.
16.
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
M e c h a n i c a l v a l v e s i n c u r r e n t c l i n i c a l u s e h a v e TEC r a t e s o f a b o u t 2 t o 8% p e r p t . y r . f o r p a t i e n t s o n a n t i c o a g u l a t i o n therapy. T i s s u e v a l v e s h a v e TEC r a t e s o f a b o u t 2 t o 5 . 5 % per p t . y r . w i t h o u t the use o f l o n g term a n t i c o a g u l a t i o n therapy. Thrombus f o r m a t i o n and t i s s u e o v e r g r o w t h on t h e v a l v e s u p e r s t r u c t u r e a r e most o f t e n found i n r e g i o n s o f f l o w s t a s i s , v e r y low f l o w and s h e a r , and f l o w s e p a r a t i o n . M e c h a n i c a l damage t o t h e b l o o d e l e m e n t s as w e l l as t o t h e e n d o t h e l i a l t i s s u e o f t h e a d j a c e n t v e s s e l w a l l , may i n a d d i t i o n t r i g g e r complex biochemical r e a c t i o n s which c o u l d l e a d t o the e x c e s s f i b r o u s t i s s u e o v e r g r o w t h o b s e r v e d on recovered valves. T i s s u e v a l v e s are prone to c a l c i f i c a t i o n , e s p e c i a l l y i n c h i l d r e n and young a d u l t s . C a l c i f i c a t i o n m a i n l y o c c u r s on the outflow surfaces of the l e a f l e t s . Therefore, it is very probable that the r e l a t i v e l y s t i f f nature of the current t i s s u e valve l e a f l e t s , together with the region of flow separation and/or flow stagnation which occurs between t h e o u t f l o w s u r f a c e s o f t h e l e a f l e t s and the v e s s e l w a l l , could lead to the deposition of c a l c i f i c , thrombotic and f i b r o t i c m a t e r i a l on t h e o u t f l o w s u r f a c e s .
Acknowledgments T h i s s t u d y was s u p p o r t e d (contract #223-81-5000).
by
the
Bureau
of
Medical
Devices,
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
FDA
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
8.
YOGANATHAN ET A L .
Prosthetic Heart Valves
145
Literature Cited 1. Roberts, W. C. Am. J. Cardiol. 1976, 38, 633. 2. Blackshear, P. L. Chemistry of Biosurfaces 1972, 2, 523. 3. Blackshear, P. L. "Mechanical Hemolysis in Flowing Blood"; Fung, Y. C.; Perrone, N.; Anliker, M., Eds.; BiomechanicsIts Foundations and Objectives, Prenctice-Hall: Englewood Cliffs, NJ, 1972; p. 501. 4. Nevaril, G. C.; Heliums, J D.; Alfrey, C. P., Jr.; Lynch, E. C. Am. Inst. Chem. Eng. J. 1969, 15, 707. 5. Hellums, J. D.; Brown, C. H. III. "Blood Cell Damage by Mechanical Forces"; Hwang, N. H. C.; Normann, Ν. Α., Eds.; Cardiovascular Flow Dynamics, University Park Press: Baltimore, MD, 1977; p. 799. 6. Hung, T. C.; Hochmuth, R. M.; Joist, J. H.; Sutera, S. P. Trans. Am. Soc. Int. Organs 1976, 12, 285. 7. Ranstack, J. M.; Zuckerman, L.; Mockros, L. F. J. Biomech. 1979, 12, 113. 8. Mohandas, N.; Hochmuth, R. M.; Spaeth, Ε. E. J. Biomech. Mat. Res. 1974, 8, 119. 9. Lloyd, J. R.; Mueller, T. J.; Johnson, P. C.; MacDonell, Ε. H. "Shear Induced Variations in Red Blood Cell Morphology"; Advances in Bioengineering, ASME, 1976, p. 30. 10. McIntyre, L . , private communication. 11. Fry, D. L. Circ. Res. 1968, 22, 165. 12. Fry, D. L. Circ. Res. 1969, 24, 93. 13. Woolf, Ν.; Path, M. C.; Carstairs, Κ. C. Am. J. Path. 1967, 51, 373. 14. Yoganathan, A. P. "Prosthetic Heart Valves: A Study of In Vitro Performance", Phase I Final Report, FDA Contract #223-81-5000, April 1982 (NTIS #PB 83-134478). 15. Cohen, M. V.; Gorlin, R. Am. Heart J. 1972, 84, 439. 16. Dellsperger, K. C.; Wieting, D. W.; Baehr, D. Α.; Bard, R. J.; Brugger, J-P; Harrison, E. C. Am. J. Cardiol. 1983. 17. Santinga, J. T.; Batsakis, J. T.; Flora, J. D.; Kirsh, M. M. Chest 1976, 69, 56. 18. Boncheck, L. I.; Starr, A. Am. J. Cardiol. 1975, 35, 843. 19. Roberts, W. C.; Bulkley, Β. H.; Morrow, A. G. Prog. Cardiovasc. Disc. 1973, 15, 539. 20. Crexells, C.; Aerichide, N.; Bonny, Y.; Lepage, G.; Campeau, L. Am. Heart J. 1970, 84, 161. 21. Walsh, J. R., Starr, Α.; Ritzmann, L. W. Circulation 1969, 39-40 (Suppl I), I-135. 22. Dale, J.; Myhre, E. Am. Heart J. 1978, 96, 24. 23. Ahmad, R.; Manohitharajah, S. M.; Deverall, P. B.; Watson, D. A. J. Thorac. Cardiovasc. Surg. 1976, 71, 212.
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
146
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
24. Starr, Α.; Bonchek, L. I.; Anderson, R. P.; Wood, J. Α.; Chapman, R. D. Ann. Thorac. Surg. 1975, 19, 289. 25. Rao, K. M. S.: Learoyd, P. Α.; Rao, R. S.; Rajah, S. M.; Watson, D. A. Thorax 1980, 35, 290. 26. Herri, R. H.; Starr, Α.; Pierie, W. R.; Wood, J. Α.; Bigelow, J. C. Ann. Thorac. Surg. 1968, 6, 199. 27. Isom, O. W.; Spencer, F. C.; Glassman, E.; Teiko, P., Boyd, A. D.; Cunningham, J. N.; Reed, G. E. Ann. Surg. 1979, 186, 310. 28. Starr, Α.; Grunkemeier, G.; Lambert, L.; Okies, J. E.; Thomas, D. Circulation 1975, 54 (Suppl III), III-47. 29. Behrendt, D. M.; Austen, W. G. Prog. Cardiovasc. Pis. 1979, 15, 369. 30. Starr, Α.; Grunkemier, G. L.; Lambert, L. E.; Thomas, D. R.; Sugimara, S.; Lefrak, E. A. Circulation 1977, 56, (Suppl II), II-133. 31. Lefrak, Ε. Α.; Starr, A. Cardiac Valve Prostheses 1979, Appleton-Century-Crofts, New York. 32. Stein, D. W.; Rahimtoola, S. H.; Kloster, F. E.; Seldon, R.; Starr, A. Surgery 1976, 71, 680. 33. Smithwick, W.; Kouchoukos, N. T.; Karp, R. B.; Pacifico, A. D.; Kirklin, J. W. Ann. Thorac. Surg.1975, 20, 249. 34. Limet, R.; Lepage, G.; Grondin, C. M. Ann. Thorac. Surg. 1977, 23, 529. 35. Roberts, W. C.; Morrow, A. G. Adv. Cardiol. 1972, 7, 226. 36. Roberts, W. C.; Morrow, A. G. Circulation 1967, 48,(Suppl I), 1-48. 37. Roberts, W. C.; Morrow, A. G. Johns Hopkins Med. J. 1967, 121, 271. 38. Yoganathan, A. P.; Harrison, E. C. Proc. NBS Conference on Implant Retrieval 1980, p. 175. 39. Hamby, R.; Lee, R. L.; Aintablain, A. Am. J. Cardiol. 1974, 34, 276. 40. Smeloff, Ε. Α.; Huntley, A. C.; Davey, T. B.; Kaufmann, B.; Gerbode, F. J. Thorac. Cardiovasc. Surg. 1966, 52, 841. 41. Wright, J. T. M.; Temple, L. J. Engineering in Med. 1977, 6, 31. 42. Olin, C. Scan. J. Thor. Cardiovasc. Surg. 1971, 5, 1. 43. Duff, W. R.; Fox, R. W. J. Thorac. Cardiovasc. Surg. 1972, 63, 131. 44. Weiting, D. Ph.D. Thesis, University of Texas at Austin, Texas, 1969. 45. Yoganathan, A. P. Ph.D. Thesis, California Institute of Technology, California, 1978. 46. Yoganathan, A. P.; Reamer, Η. H.; Corcoran, W. H.; Harrison, E. C.; Shulman, I. Α.; Parnassus, W. Artif. Organs 1981, 5, 6. 47. Figliola, R. S. Ph.D. Thesis, University of Notre Dame, Indiana, 1979.
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
8.
YOGANATHAN
ET
AL.
Prosthetic Heart Valves
147
48. Dellsperger, Κ. C.; Wieting, D. W. Adv. Bio. Eng. 1978, p. 31. 49. Tillmann, W. Proc. 1st Int. Conf. Mechanics in Med, and Biol. 1978, p. 233. 50. Brown, J. W.; Myerowitz, P. D.; Cann, M. S.; Colvin, S. B.; McIntosh, C. L . ; Morrow, A. G. Surgery 1974, 76, 983. 51. Bjork, V. O.; Olin, C.; Astrom, H. Scan. J. Thor. Cardiovasc. Surg. 1969, 3, 93. 52. Bowen, T. E.; Zajtchuk, R.; Brott, W. H.; deCastro, C. M. J. Thorac. Cardiovasc. Surg. 1980, 80, 45. 53. Messmer, B. J.; Okies, J. E.; Hallman, G. L . ; Cooley, D. A. Ann. Thorac. Surg. 1971, 13, 268. 54. Lee, S. J. K.; Lees, G.; Callaghan, J. C.; Couves, C. M.; Sterns, L. P.; Rossall, R. E. J. Thorac. Cardiovasc. Surg. 1974, 67, 970. 55. Yoganathan, A. P.; Harrison, E. C.; Corcoran, W. Η., Ed. Procceedings of a Symposium of the 14th Annual Meeting of the Association for the Advancement of Medical Instrumenta tion, Prosthetic Heart Valves, 1980. 56. Wukash, D. C.: Sandiford, F. M., Reul, G. J., Jr.; Hallman, G. L . , Cooley, D. A. J. Thorac. Cardiovas. Surg. 1975, 69, 107. 57. Edmiston, W. Α.; Harrison, E. C.; Batista, E.; Sarma, R.; Kay, J. H.; Lau, F. Y. K. Scan. J. Thor. Cardiovasc. Surg. 1980, 14, 241. 58. Vogel, J. H. K.; Paton, B. C.; Overy, H. R.; Blount, S. G., Jr. Circulation 1969, 39-40, (Suppl I), I-141. 59. Duff, W. R. Ph.D. Thesis, Purdue University, Indiana, 1969. 60. Yoganathan, A. P.; Corcoran, W. H.; Harrison, E. C. J. Bio. Eng. 1978, 2, 369. 61. Yoganathan, A. P.; Corcoran, W. H.; Harrison, E. C. J. Biomech. 1979, 12, 135. 62. Roberts, W. C.; Fishbein, M. C.; Golden, A. Am. J. Cardiol. 1975, 35, 740. 63. Clark, R. E.; Pavlovic, Τ. Α.; Knight, Β. E.; Joist, J. H.; Burrows, S. D.; McKnight, R. C.; Brown, Ε. B. Circulation 1977, 56, (Suppl II), II-140. 64. Henderson, B. J.; Mitha, A. S.; leRoux, B. T.; Gotsman, M. S. Thorax 1973, 28, 488. 65. Williams, J. C., Jr.; Vernon, C. R.; Caicoff, G. R.; Bradley, T. D.; Wheat, M. W., Jr.; Ramsey, H. W. J. Thorac. Cardiovasc. Surg. 1971, 61, 393. 66. Kalmanson, D., ed. The Mitral Valve: A Pluridisciplinary Approach, Publishing Sciences Group, Inc.; Acton, MA, 1976, 67. Rossi, N. P.; Kongtahworn, C.; Ehrenhaft, J. L. J. Thorac. Cardiovasc. Surg. 1974, 67, 83. 68. Fernandez, J . ; Morse, D.; Spagna, P.; Lemole, G.; Gooch, Α.; Yang, S. S.; Maranhao, V. J. Thorac. Cardiovasc. Surg. 1976, 71, 218.
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
148
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
69. Nichols, H. T.; Fernandez, J.; Morse, D.; Gooch, A. S. Chest 1972, 62, 277. 70. Beall, A. C., Jr.; Morris, G. C., Jr.; Howell, J, F., Jr.; Guinn, G. Α.; Noon, G. P.; Reul, G. J., Jr.; Greenberg, J. J.; Ankeney, J. L. Ann. Thorac. Surg. 1979, 15, 601. 71. Silver, M. D.; Wilson, G. J. Circulation 1977, 56, 617. 72. Smiley, W. H.; Gilbert, C. Α.; Symbas, P. N. Southern Med. J. 1977, 70, 801. 73. Bjork, V. O.; Henze, A. J. Thorac. Cardiovasc. Surg. 1979, 78, 331. 74. Chandraratna, P. A. N.; Lopez, J. M.; Hildner, F. J.; Samet, P.; Ben-Zvi, J. Am. Heart J. 1976, 91, 318. 75. Shoen, F. J.; Braunwald, N. S. J. Biomed. Mater. Res. 1983, 17, 715. 76. Ben-Zvi, J.; Hildner, F. J.; Chandrarathana, P. Α.; Samet, P. Am. J. Cardiol. 1974, 34, 538. 77. Dale, J. AmTHTeart J. 1977, 93, 715. 78. Aberg, B.: Henze, Α.; Bjork, V. O. San. J. Thor. Cardiovasc. Surg. 1977, 11, 1. 79. Roberts, W. C.; Hammer, W. J. Am. J. Cardiol. 1976, 37, 1024. 80. Moreno-Cabral, R. J.; McNamara, J. J.; Mamiya, R. T.; Brainard, S. C.; Chung, G. T. J. Thorac. Cardiovasc. Surg. 1978, 75, 321. 81. Yoganathan, A. P.; Corcoran, W. H.; Harrison, E. C.; Carl, J. R. Circulation 1978, 58, 70. 82. Karp, R. B.; Cyrus, R. J.; Blackstone, E. H.; Kirklin, J. W.; Kouchoukos, N. T. J. Thorac. Cardiovasc. Surg. 1981, 81., 602. 83. Aberg, Β. Scan. J. Thor. Cardiovasc. Surg. Suppl. 1980, 25, 1. 84. Bjork, V. O. J. Thorac. Cardiovasc. Surg. 1970, 60, 335. 85. Schramm, D.; Baldauf, W.; Meisner, H. Thorac. Cardiovasc. Surg. 1980, 28, 133. 86. Alchas, P. G.; Snyder, A. J.; Phillips, W. M. in "Pulsatile Prosthetic Valve Flows: Laser Doppler Studies"; Schneck, D. J., Ed.; Bio Fluid Mecahnics, Pergamon Press: New York, 1980; p. 243. 87. Wright, J. T. M. Trans. Am. Soc. Artif. Intern. Organs. 1977, 23, 89. 88. Yoganathan, A. P., unpublished data. 89. Figliola, R. S., Mueller, T. J. J. Bio. Mech. Eng. 1977, 99, 173. 90. Tillmann, W.; Runge, J.; Reul, H. Proc. ESAO:IV 1977, p. 246. 91. Phillips, W. M.; Snyder, Α.; Alchas, P.; Rosenberg, G.; Pierce, W. S. Trans. Am. Soc. Artif. Inter. Organs 1980, 26, 43. 92. Yoganathan, A. P.; Reamer, Η. H.; Corcoran, W. H.; Harrison, E. C. Scan. J. Thor. Cardiovasc. Surg. 1980, 14, 1.
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
8.
YOGANATHAN ET AL.
Prosthetic Heart Valves
149
93. Rossiter, S. J.; Miller, D. C.; Stinson, Ε. B.; Oyer, P. E.; Reitz, Β. Α.; Moreno-Cabral, R. J.; Mace, J. G.; Robert, E. W.; Tsagaris, T. J.; Sutton, R. B.; Alderman, E. L.; Shumway, Ν. E. J. Thorac. Cardiovasc. Surg. 1980, 80, 54. 94. Magilligan, D. J., Jr.; Fisher, E.; Alam, M. J. Thorac. Cardiovasc. Surg. 1980, 79, 628. 95. Rhodes, G. R., Mcintosh, C. L. J. Thorac. Cardiovasc. Surg. 1977, 73, 312. 96. Sade, R. M.; Greene, W. B.; Kurtz, S. M. Am. J. Cardiol. 1979, 44, 761. 97. Stinson, E. B.; Griepp, R. B.; Oyer, P. E.; Shumway, Ν. E. J. Thorac. Cardiovasc. Surg. 1977, 73, 54. 98. Oyer, P. E.; Stinson, Ε. B.; Reitz, Β. Α.; Miller, D. C.; Rossiter, S. J.; Shumway, Ν. E. J. Thorac. Cardiovasc. Surg. 1979, 78, 343. 99. Duran, C. G.; Pomar, J. L.; Revuelta, J. M.; Gallo, I.; Poveda, J.; Ochoteco, Α.; Ubago, J. L. J. Thorac. Cardio vasc. Surg. 1980, 79, 326. 100. Lakier, J. B.; Khaja, F.; Magilligan, D. J., Jr., Goldstein, S. Circulation 1980, 62, 313. 101. Ferrans, V. J.; Spray, T. L.; Billingham, M. E.; Roberts, W. C. Am. J. Cardiol. 1978, 41, 1159. 102. Hetzer, R.; Hill, J. D.; Kerth, W. J.; Wilson, A. J.; Adappa, M. G.; Gerbode, F. Ann. Thorac. Surg. 1978, 2, 317. 103. Ferrans, V. J.; Boyce, S. W.; Billingham, M. E.; Jones, M.; Ishihara, T.; Roberts, W. C. Am. J. Cardiol. 1980, 46, 721. 104. Magilligan, D. J., Jr.; Lewis, J. W., Jr.; Jara, F. M.; Lee, M. W.; Riddle, J. M. Ann. Thorac. Surg. 1980, 30. 105. McComb, R. D.; Stahmann, F. D.; O'Connor, W. N.; Todd, E. P. Ann. Thorac. Surg. 1979, 27, 191. 106. Spray, T. L.; Roberts, W. C. Am. J. Cardiol. 1977, 40, 319. 107. Fishbein, M. C.; Gissen, S. Α.; Collins, J. J., Jr.; Barsamian, E. M.; Cohn, L. W. Am. J. Cardiol. 1977, 40, 331. 108. Cohn, L. H.; Koster, J. K.; Mee, R. Β. B.; Collins, J. J. Circulation 1979, 60 (Suppl I), I-93. 109. Hetzer, R.; H i l l , J. D.; Kerth, W. J.; Ansbro, J.; Adappa, M. G.; Rodvien, R.; Kamm, B.; Gerbode, F. J. Thorac. Cardiovasc. Surg. 1978, 75, 651. 110. Edmiston, W. Α.; Harrison, E. C.; Duick, G. F.; Parnassus, W., Lau, F. Y. K. Am. J. Cardiol. 1978, 41., 508. 111. Ferrans, V. J.; Boyce, S. W.; Billingham, M. E.; Spray, T. L.; Roberts, W. C. Am. J. Cardiol. 1979, 43, 1123. 112. Sanders, S. P.; Levy, R. J.; Freed, M. D.; Norwood, W. I.; Castaneda, A.R. Am. J. Cardiol. 1980, 46, 429. 113. Silver, M. M.; Pollock, J.; Silver, M. D.; Williams, W. G.; Trusler, G. A. Am. J. Cardiol. 1980, 46, 429.
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on December 25, 2017 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch008
150
POLYMERIC MATERIALS A N D ARTIFICIAL O R G A N S
114. Thandroyen, F. T.; Whitton, I. N.; Pirie, D.; Rogers, Μ. Α.; Mitha, A. S. Am. J. Cardiol. 1980, 45, 690. 115. Geha, A. S.; Laks, H.; Stansel, H. C., Jr.; Cornhill, J. F.; Kilman, J. W.; Buckley, M. J.; Roberts, W. C. J. Thorac. Cardiovasc. Surg. 1979, 78, 351. 116. Johnson, A. D.; Peterson, K. L.; LeWinter, M.; DiDonna, G. J.; Blair, G.; Niwayama, G. Circulation 1975, 51, (Suppl I), I-40. 117. Johnson, Α.; Thompson, S.; Vieweg, W. V. R.; Daily, P., Oury, J.; Peterson, K. J. Thorac. Cardiovasc. Surg. 1978, 75, 599. 118. Mcintosh, C. L.; Michaelis, L. L.; Morrow, A. G.; Itscoitz, S. B.; Redwood, D. R.; Epstein, S. E. Surgery 1975, 78, 768. 119. Pipkin, R. D.; Buch, W. S.; Fogarty, T. J. J. Thorac. Cardiovasc. Surg. 1976, 71, 179. 120. Gabbay, S.; McQueen, D. M.; Yellin, E. L.; Frater, R. W. M. Circulation 1979, 60, (Suppl I), I-62. 121. Rainer, W. G.; Christopher, R. Α.; Sadler, T. R., Jr.; Hilgenberg, A. D. Ann. Thorac. Surg. 1979, 28, 274. 122. Yoganathan, A. P.; Woo, Y-R.; Williams, F. P.; Stevenson, D. M.; Franch, R. H.; Harrison, E. C. To be published in Artificial Organs 1983. 123. St. Jude Medical, Inc., 1980, International Valve Symposium, March 5-8, 1980, Scottsdale, Arizona. 124. St. Jude Medical, Inc., First European Symposium, June 21, 1980, Paris, France. 125. Chaux, Α.; Gray, R. J.; Matloff, J. M.; Feldman, H.; Sustaita, H. J. Thorac. Cardiovas. Surg. 1981, 81, 202. 126. Nunez, L . , M.D.; Iglesias, Α., M.D.; Sotillo, J., M.D. Ann. Thorac. Surg. 1979, 29, 567. 127. Commerford, P. J., M.B., Ch.B.; Lloyd, Ε. Α., Β.M.; De Nobrega, J. Α., M.B., Ch.B. Chest, 1981, 80, 326. 128. Moulton, A. L., M.D., Singleton, R. T., M. D., Oster, W. F., M.D. J. Thorac. Cardiovasc. Surg. 1982, 83, 472. 129. Ziemer, G., M.d., Luhmer, I., M.D., Oelert, H., M.D., Borst, H. G., M.D. Ann. Thorac. Surg. 1982, 33, 391. 130. Emery, R. W., Palmquist, W. E., Mettler, E., Nicoloff, D. M. Trans. Am. Soc. Artif. Intern. Organs 1978, 24, 550. 131. Yoganathan, A. P.; Chaux, Α.; Gray, R. J.; De Robertis, M.; Matloff, J. M. Artif. Organs 1982, 6, 288. 132. Rainer, W. G. J. Thorac. Cardiovasc. Surg. 1981, 82, 462. RECEIVED March
19, 1984
Gebelein; Polymeric Materials and Artificial Organs ACS Symposium Series; American Chemical Society: Washington, DC, 1984.