4 Application of Electrochemical Noise Measurements to Coated Systems Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2016 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch004
1
1
2
D. A. Eden , M . Hoffman , and B. S. Skerry 1
Corrosion and Protection Centre, University of Manchester Institute of Science and Technology, Sackville Street, Manchester, M60 1QD, England Sherwin Williams Company Research Center, 10909 South Cottage Grove Avenue, Chicago, IL 60628
2
This paper describes the application of novel electrochemical techniques to studies of paint films on steel substrates exposed to aqueous environments. Simultaneous monitoring of the self-generated electrochemical potential and current noise using analogue and digital techniques has been evaluated as a tool for monitoring coating performance. These data obtained have been compared with those from a.c. impedance techniques. Laboratory measurement procedures used for electrochemical data acquisition and analysis during the monitoring exercise are outlined, and particular emphasis is placed on the electrochemical noise techniques. Electrochemical current noise has been monitored between two identical electrodes and the potential noise between the 'working' electrodes and a reference electrode. Digital noise measurements have been obtained by use of a microcomputer controlling the sampling rate of a sensitive digital voltmeter employed to measure the potential or current fluctuations. The subsequent analysis of the derived time records is described. Analogue noise measurements have been made using high gain amplifier/ filter circuits which permit examination of low frequency fluctuations on a 'real-time' basis. Electrochemical noise monitoring techniques have been used p r e v i o u s l y i n studies of c o r r o s i o n processes o c c u r r i n g on metals i n a v a r i e t y o f environments. I n i t i a l l y , work was d i r e c t e d towards t h e m o n i t o r i n g of p o t e n t i a l noise f l u c t u a -
0097-6156/ 86/ 0322-0036S06.00/ 0 © 1986 American Chemical Society
Dickie and Floyd; Polymeric Materials for Corrosion Control ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2016 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch004
EDEN ET AL.
Application of Electrochemical Noise Measurements
t i o n s , and was u s e d p a r t i c u l a r l y i n t h e i d e n t i f i c a t i o n o f t h e o n s e t o f l o c a l i s e d a t t a c k ( i . e . p i t t i n g o r c r e v i c e type a t t a c k ) Q-.3] . C u r r e n t n o i s e measurements have been u s e d i n t h e s t u d i e s o f e l e c t r o c r y s t a l l i s a t i o n [4] and p i t t i n g [5] w i t h t h e specimens b e i n g h e l d under p o t e n t i o s t a t i c c o n t r o l . Recent work [ 6 ,_7 ] has been d i r e c t e d towards t h e s i m u l t a neous m o n i t o r i n g o f p o t e n t i a l and c u r r e n t n o i s e , where t h e c u r r e n t n o i s e s i g n a l i s g e n e r a t e d by c o u p l i n g two n o m i n a l l y i d e n t i c a l e l e c t r o d e s w i t h a z e r o r e s i s t a n c e ammeter (ZRA), and the p o t e n t i a l n o i s e of the couple i s monitored with r e s p e c t t o a reference electrode. In t h i s manner no e x t e r n a l l y a p p l i e d signal i s required. The potential n o i s e s i g n a l provides i n f o r m a t i o n pert a i n i n g t o t h e t y p e o f a t t a c k , whereas t h e c u r r e n t n o i s e p r o v i d e s d a t a which i n d i c a t e t h e r a t e o f c o r r o s i o n and t h e t y p e of attack. When used i n p a r a l l e l , t h e two n o i s e measurements may be used t o e s t i m a t e t h e p o l a r i s a t i o n r e s i s t a n c e o f t h e i n t e r f a c e b e i n g examined. When a p p l i e d t o c o a t e d m e t a l s , t h e f l u c t u a t i o n s o b s e r v e d i n the c u r r e n t n o i s e s i g n a l are g e n e r a l l y low i n magnitude w i t h t h e b a s e l i n e o f d e t e c t i o n e s s e n t i a l l y b e i n g l i m i t e d by the s e n s i t i v i t y o f t h e e l e c t r o n i c i n t e r f a c e . For t h e s t u d i e s c i t e d , t h e lower l i m i t o f t h e c u r r e n t n o i s e s i g n a l i s some 10 pico-amps. F o r t h e p u r p o s e s o f t h i s study t h e r e s p o n s e s o f a v a r i e t y o f i n t a c t and d e f e c t i v e c o a t i n g s were m o n i t o r e d and the r e s u l t s a r e compared w i t h a.c. impedance d a t a . The a.c. impedance t e c h n i q u e i s u s e f u l f o r m o n i t o r i n g changes o c c u r r i n g i n c o a t e d systems, and t h e v a r i o u s t y p e s o f response may be summarised b r i e f l y as f o l l o w s : a)
b) c) d)
I n t a c t c o a t i n g s (no pores) v e r y h i g h impedance p r o d u c e s almost p u r e l y c a p a c i t i v e r e s p o n s e , d i f f i c u l t y i n e s t i m a t i n g d.c. component o f r e s i s t a n c e . I n t a c t c o a t i n g s (as ( a ) ) , w i t h water uptake c a p a c i t a n c e i n c r e a s e s due t o d i e l e c t r i c c o n s t a n t changes. C o a t i n g s w i t h minor d e f e c t s u s u a l l y produce w e l l d e f i n e d r e s p o n s e w i t h r e s i s t i v e as w e l l as c a p a c i t i v e components. C o a t i n g s w i t h major d e f e c t s show response i n which comp l e x b e h a v i o u r i s observed, t h e c o a t i n g r e s p o n s e moving t o h i g h e r f r e q u e n c i e s due t o s m a l l e r v a l u e s o f r e s i s t a n c e , and i n a d d i t i o n , charge t r a n s f e r and diffusion e f f e c t s may become e v i d e n t .
Instrumentation D i g i t a l electrochemical noise. The d i g i t a l i n s t r u m e n t a t i o n used f o r t h e n o i s e s t u d i e s comprised t h e f o l l o w i n g : A H e w l e t t P a c k a r d HP85 Microcomputer A Hewlett Packard 3478A D i g i t a l V o l t m e t e r A "custom b u i l t " m u l t i p l e x e r A schematic diagram f o r t h e e x p e r i m e n t a l i n F i g u r e 1.
s e t up
is illustrated
Dickie and Floyd; Polymeric Materials for Corrosion Control ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
38
POLYMERIC M A T E R I A L S FOR CORROSION
Multiplexer and Zero Resistance Ammeter
CONTROL
Microprocessor
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2016 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch004
8 sets of inputs
To working electrodes
*To reference
electrode
F i g u r e 1. S c h e m a t i c diagram using multiplexed electrodes.
for digital
noise
measurements
The i n p u t m u l t i p l e x e r was d e s i g n e d t o a l l o w m u l t i - c h a n n e l c a p a b i l i t y and was c o n f i g u r e d t o m o n i t o r b o t h p o t e n t i a l and c u r r e n t n o i s e f l u c t u a t i o n s s e q u e n t i a l l y on a maximum o f e i g h t p a i r s o f samples. The s a m p l i n g r a t e o f t h e d i g i t a l v o l t m e t e r (DVM) was cont r o l l e d by t h e m i c r o p r o c e s s o r and c h a n n e l s e l e c t i o n f o r monit o r i n g was o b t a i n e d by u t i l i s i n g a p u l s e o u t p u t from t h e DVM. Time r e c o r d s o f t h e c o u p l i n g c u r r e n t and p o t e n t i a l f o r t h e r e s p e c t i v e samples were o b t a i n e d and s t o r e d f o r f u r t h e r analysis. Analogue electrochemical noise. Analogue instrumentation m o n i t o r i n g low f r e q u e n c y n o i s e i n a s p e c i f i e d bandwidth was u s e d f o r t h e a n a l o g u e measurements. The s c h e m a t i c diagram ( F i g u r e 2) i l l u s t r a t e s t h e b a s i c c o n f i g u r a t i o n o f t h e i n s t r u mentation. The rms v a l u e s o f t h e n o i s e s i g n a l s were l o g g e d and s e n t as a 0 - 10V s i g n a l t o a c o n v e n t i o n a l c h a r t r e c o r der. The s i g n a l s e n s i t i v i t y c o r r e s p o n d i n g t o t h e f u l l s c a l e
To workina electrodes
Zero Resistance Ammeter
High Impedance Buffer
To reference
F i g u r e 2. monitoring.
Recorder
Filter
electrode
System
f o r analogue
current
and
potential
Dickie and Floyd; Polymeric Materials for Corrosion Control ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
noise
EDEN ET AL.
Application of Electrochemical Noise Measurements
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2016 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch004
response o f the c h a r t r e c o r d e r was 1uV minimum (OV o u t p u t ) t o 10mV (10V output) c o v e r i n g f o u r decades a t 2.5V p e r decade. The c u r r e n t n o i s e s i g n a l was m o n i t o r e d by u s i n g a s e n s i t i v e , low n o i s e z e r o r e s i s t a n c e ammeter (ZRA) t o c o u p l e p a i r s o f i d e n t i c a l e l e c t r o d e s ; the ZRA a c t i n g as a c u r r e n t t o v o l tage converter. T h i s d e r i v e d p o t e n t i a l s i g n a l was t h e n f e d i n t o a p o t e n t i a l noise monitor. A.c. impedance. Impedance measurements were made u s i n g a S o l a r t r o n 1250 f r e q u e n c y r e s p o n s e a n a l y s e r under computer con t r o l u s i n g a Hewlett Packard HP85 microcomputer and commer c i a l l y a v a i l a b l e software. The c o a t i n g s were s t u d i e d i n t h e t h r e e e l e c t r o d e mode u s i n g a Thompson M i n i s t a t . Figure 3 i l l u s t r a t e s s c h e m a t i c a l l y t h e e x p e r i m e n t a l arrangement.
F i g u r e 3. Working arrangement f o r 3 e l e c t r o d e e l e c t r o c h e m i c a l impedance s t u d i e s .
Ssmple p r e p a r a t i o n F o r t h e p u r p o s e s o f t h i s study a v a r i e t y o f c o a t i n g s a p p l i e d t o m i l d s t e e l s u b s t r a t e s were u s e d . The c o a t i n g s were chosen t o p r o v i d e a range o f p r o t e c t i o n from p o o r t o e x c e l l e n t . The c o a t i n g s s t u d i e d were: 1.
Polyurethane
(unpigmented)
2.
Polyurethane
(pigmented)
3. 3.
Bitumen Bitumen o v e r z i n c r i c h
paint
1 2 1 2 1 1
c o a t ~ 40μπι c o a t s ~ 80urn c o a t ~ 45um c o a t s ~ 90μπι c o a t ~ 20um c o a t ~ 20μπι
Expérimental P l a s t i c c e l l s o f d i m e n s i o n s 5 χ 5 χ 7.5cms were f i x e d t o t h e c o a t e d specimens u s i n g s i l i c o n e r u b b e r s e a l a n t . The s i l i c o n e
Dickie and Floyd; Polymeric Materials for Corrosion Control ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
P O L Y M E R I C M A T E R I A L S FOR CORROSION C O N T R O L
40
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2016 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch004
r u b b e r was a l l o w e d t o c u r e f o r a t l e a s t two days p r i o r t o f i l l i n g with e l e c t r o l y t e . Three p e r c e n t sodium c h l o r i d e s o l u t i o n i n d e m i n e r a l i s e d water was added t o t h e c e l l s which were p r e p a r e d as i d e n t i c a l p a i r s . C o u p l i n g between t h e p a i r s o f e l e c t r o d e s was a c h i e v e d u s i n g a sodium c h l o r i d e / a g a r salt bridge. P o t e n t i a l s o f t h e specimens were m o n i t o r e d u s i n g silver/silver chloride reference electrodes. A platinum c o u n t e r e l e c t r o d e was i n t r o d u c e d i n t o i n d i v i d u a l c e l l s when m o n i t o r i n g t h e a.c. impedance r e s p o n s e . A typical c e l l ar rangement i s shown i n F i g u r e 4. Platinum Reference
electrode
electrode NaCl/Agar s a l t
bridge
Cell
— Coated specimen
F i g u r e 4.
C e l l arrangement f o r e l e c t r o c h e m i c a l s t u d i e s .
D u r i n g t h e p e r i o d o f immersion o f t h e samples i n sodium c h l o r i d e e l e c t r o l y t e , e l e c t r o c h e m i c a l n o i s e measurements were made u s i n g t h e e l e c t r o n i c a p p a r a t u s p r e v i o u s l y d e s c r i b e d . The time r e c o r d s o b t a i n e d were a n a l y s e d u s i n g s t a t i s t i c a l t e c h n i q u e s t o d e r i v e mean, s t a n d a r d d e v i a t i o n and c o e f f i c i e n t o f variance. The d e r i v e d v a l u e o f p o l a r i s a t i o n r e s i s t a n c e was e v a l u a t e d from t h e r a t i o o f t h e s t a n d a r d d e v i a t i o n o f t h e p o t e n t i a l noise s i g n a l t o the standard d e v i a t i o n of the current noise signal, i.e. :
OV oi Data i s presented g r a p h i c a l l y t o i l l u s t r a t e the v a r i a t i o n i n d.c. potential ^Figure 5) mean d.c. c o u p l i n g c u r r e n t , i ( F i g u r e 6) and — τ « Rp ( F i g u r e 7) w i t h t i m e . T y p i c a l anaîogue n o i s e t r a c e s a r e i l l u s t r a t e d i n F i g u r e s
Dickie and Floyd; Polymeric Materials for Corrosion Control ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Application of Electrochemical Noise Measurements
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2016 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch004
EDEN ET AL.
-0.5
15 Time (days) Figure 5. Potential vs time for coated specimens in 37 NaCl. Key: · , bitumen;A> Zn r i c h + bitumen;Q , polyurethane, one coat (unpigmented); ψ , polyurethane, two coats (unpigmented); 0, polyurethane, one coat (pigmented); and X, polyurethane, two coats (pigmented). c
-5
Time (days) Figure 6. Log i vs time for coated specimens in 3% Key: same as for Figure 5.
Dickie and Floyd; Polymeric Materials for Corrosion Control ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2016 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch004
42
POLYMERIC M A T E R I A L S FOR CORROSION C O N T R O L
8 and 9. Impedance d a t a F i g u r e s 10, 11 and 12.
for typical
cells
are
presented
in
Discussion From t h e d a t a o b t a i n e d f o r t h e d i f f e r e n t specimens i t can be seen t h a t t h e r e i s s i g n i f i c a n t l y d i f f e r e n t b e h a v i o u r between t h e p o o r , p o r o u s c o a t i n g s (bitumen) and t h e p o l y u r e t h a n e p a i n t samples. Of t h e p o l y u r e t h a n e samples o n l y one showed any e v i dence o f c o r r o s i o n b e n e a t h t h e c o a t i n g d u r i n g t h e d u r a t i o n o f the t e s t and t h i s was an unpigmented s i n g l e c o a t specimen.
Potential (rms)
L
1mV
Current (rms)
1uA
.
L 100nA
I IOOuV J"
10nA
10pV
ο Time
F i g u r e 8. Analogue p o t e n t i a l bitumen on m i l d s t e e l . Day 1.
and
current
(hours)
noise
traces
Dickie and Floyd; Polymeric Materials for Corrosion Control ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
for
.
4.
EDEN ET AL.
Application of Electrochemical Noise Measurements
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2016 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch004
potential (rms)
Current (rms)
-
1mV
-
-
1nA
-
-
100μν
-
- 100pA
-
.
10μν
.
.
3 Time
(hours)
Figure 9. Analogue p o t e n t i a l and c u r r e n t p o l y u r e t h a n e 2 c o a t s unpigmented. Day 2.
noise
2
10pA .
traces f o r
Z Imaginary (ohms)
15000 Ζ Real (ohms)
Ζ Imagi nary (ohms) 500 r -
1000 Ζ Real (ohms)
Figure 10. Nyquist Day 0 and Day 50.
plots
f o r bitumen
coated
mild
steel.
Dickie and Floyd; Polymeric Materials for Corrosion Control ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
44
P O L Y M E R I C M A T E R I A L S FOR CORROSION C O N T R O L
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2016 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch004
Z Imoglnory (ohms)
150000 Ζ Real (ohme) Ζ Imaginary (ohms)
300
Figure steel.
11. Day
Nyquist p l o t s 0 and Day 50.
for zinc
rich
400 Ζ Real (ohme)
and
bitumen
on
mild
Even so, t h e low f r e q u e n c y impedance as d e r i v e d from t h e n o i s e measurements was s t i l l two t o t h r e e o r d e r s o f magnitude h i g h e r t h a n t h e bitumen c o a t e d system. The b e t t e r c o a t i n g s e x h i b i t e d low f r e q u e n c y impedances some f o u r t o f i v e o r d e r s o f magnitude h i g h e r t h a n t h e bitumen. The d.c. p o t e n t i a l s , however, o n l y i n d i c a t e d whether t h e m a t e r i a l b e i n g s t u d i e d was i n a c o r r o s i o n regime, both t h e b i t u m e n and unpigmented s i n g l e c o a t p o l y u r e t h a n e assumed v e r y s i m i l a r p o t e n t i a l s o v e r the p e r i o d o f the t e s t , even though t h e c o r r o s i o n r a t e s were g r o s s l y d i f f e r e n t . The impedance d a t a i l l u s t r a t e d i n F i g u r e s 10, 11 and 12 have been chosen t o i l l u s t r a t e t h e w i d e l y d i f f e r i n g b e h a v i o u r o f the d i f f e r e n t c o a t i n g systems. In F i g u r e 10, which shows t h e impedance b e h a v i o u r o f t h e bitumen c o a t i n g on m i l d s t e e l , i t i s a p p a r e n t t h a t a t day 0, t h e c o a t i n g i s immediately showing s i g n s o f major d e f e c t i v e a r e a s , w i t h the impedance response b e i n g governed by what ap p e a r t o be d i f f u s i v e e f f e c t s . The response a t high fre q u e n c i e s p r o b a b l y b e i n g due t o t h e c o a t i n g i t s e l f . The r e s i s tance o f t h e system a t t h i s s t a g e i s g r e a t e r t h a n 15000 ohms. A f t e r 50 days' exposure, the impedance response has changed t o one i n d i c a t i n g charge t r a n s f e r and d i f f u s i o n e f f e c t s w i t h a r e s i s t a n c e g r e a t e r than 1000 ohms. In c o m p a r i son, t h e b e h a v i o u r o f t h e bitumen c o a t i n g on z i n c r i c h p a i n t ( F i g u r e 11) i n d i c a t e s t h a t a t day 0, the c o a t i n g i s showing
Dickie and Floyd; Polymeric Materials for Corrosion Control ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
EDEN ET AL.
Application of Electrochemical Noise Measurements
2 Imaginary (ohms)
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2016 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch004
100000 r
50000
50000
200000 Ζ Real (ohme)
2 Imaginary (ohme) 50000
50000
100000 Ζ Real (ohme)
F i g u r e 12. N y q u i s t p l o t s f o r p o l y u r e t h a n e (1 coat) u n p i g mented system a f t e r 50 d a y s , i l l u s t r a t i n g c o a t i n g breakdown on P a n e l B. m i n o r d e f e c t s w i t h an impedance o f some 150,000 ohms t y p i c a l of a c o a t i n g response, although e x h i b i t i n g a f r e e c o r r o s i o n p o t e n t i a l (-806mV), which i s i n d i c a t i v e o f a porous c o a t i n g . A f t e r exposure f o r 50 days t h i s system i s showing t o t a l l y d i f f e r e n t b e h a v i o u r w i t h charge t r a n s f e r and d i f f u s i o n e f f e c t s becoming much more e v i d e n t . Figure 12 i l l u s t r a t e s t h e d i f f e r e n c e i n impedance be h a v i o u r between t h e two samples o f unpigmented p o l y u r e t h a n e ( a p p l i e d a t ~ 40um) a f t e r 50 days exposure. P a n e l A gave a r e s p o n s e i n d i c a t i v e o f a good, i n t a c t c o a t i n g (almost p u r e l y
Dickie and Floyd; Polymeric Materials for Corrosion Control ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2016 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch004
46
P O L Y M E R I C M A T E R I A L S FOR CORROSION
CONTROL
c a p a c i t i v e ) , whereas p a n e l Β was showing s i g n s o f breakdown, w i t h an e s t i m a t e d r e s i s t a n c e o f some 75,000 ohms. W i t h t h e n o i s e t e c h n i q u e s , b o t h a n a l o g u e and d i g i t a l , no e x t e r n a l l y a p p l i e d s i g n a l i s r e q u i r e d , and measurement o f t h e f l u c t u a t i o n s around t h e f r e e c o r r o s i o n p o t e n t i a l p r o v i d e s a l l the i n f o r m a t i o n . Hie n o i s e t e c h n i q u e i s u s e f u l i n t h a t i t a l l o w s a f a i r l y r a p i d e s t i m a t i o n o f t h e e l e c t r o c h e m i c a l im pedance o f t h e system b e i n g s t u d i e d , whereas, w i t h f o r i n s t a n c e , a.c. impedance t e c h n i q u e s , v e r y o f t e n t h e minimum f r e quency s t u d i e d i s s t i l l n o t low enough t o p r o v i d e s u f f i c i e n t i n f o r m a t i o n t o a l l o w an a c c u r a t e e s t i m a t i o n o f t h e impedance. With e l e c t r o c h e m i c a l n o i s e measurements t h e d.c. p o t e n t i a l o f two c o u p l e d i d e n t i c a l e l e c t r o d e s i s governed by t h e sample w i t h t h e l o w e s t impedance. I t i s t h i s lower v a l u e o f impedance w h i c h i s m o n i t o r e d by t h e n o i s e t e c h n i q u e , i . e . t h a t o f t h e worst c o a t i n g o f t h e p a i r . F o r t h e systems s t u d i e d , i t i s i n t e r e s t i n g t o note t h a t the mean l e v e l o f c o u p l i n g c u r r e n t a l s o appears t o be v e r y u s e f u l a s a means o f s t u d y i n g h i g h impedance systems, b u t t h i s can cause problems i f t h e c u r r e n t f l u c t u a t e s around z e r o and changes p o l a r i t y . G e n e r a l l y , i t would appear t o be a b e t t e r approach t o u t i l i s e t h e v a l u e o f s t a n d a r d d e v i a t i o n o f t h e c u r r e n t s i g n a l as a measure o f c o r r o s i o n r a t e . The c o e f f i c i e n t o f v a r i a n c e f o r t h e c u r r e n t s i g n a l g i v e s some i n d i c a t i o n o f t h e s t a b i l i t y o f t h e d.c. c o u p l i n g c u r r e n t . I f we c o n s i d e r t h e a n a l a g o u s n o i s e e q u a t i o n s d e r i v e d f o r e l e c t r o n i c components a t t h e low f r e q u e n c y end o f t h e spec trum, one o f t h e e q u a t i o n s u s e d t o d e s c r i b e t h e n o i s e i s :
1 V where : l"d.c. Rs Kl f
η
= Κχ/— . I . Rs r d.c.
= d.c. c u r r e n t f l o w i n g t h r o u g h = source r e s i s t a n c e = constant = frequency
Correspondingly I
n
(1)
device
the equation f o r the current noise i s : = Ki/J . I. „ f d.c. A
(2)
I f we u t i l i s e t h e above e q u a t i o n s t o d e s c r i b e t h e low f r e quency n o i s e s i g n a l s o b s e r v e d w i t h e l e c t r o c h e m i c a l systems, i t i s apparent t h a t t h e p o t e n t i a l n o i s e s i g n a l w i l l p r o v i d e i n f o r m a t i o n p e r t a i n i n g t o t h e v a l u e o f t h e S t e r n Geary c o n s t a n t since: =r
corr where: i corr Β
—
R Ρ
corrosion current S t e r n Geary c o n s t a n t polarisation resistance
Dickie and Floyd; Polymeric Materials for Corrosion Control ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
4.
EDEN ET AL.
and hence:
Application of Electrochemical Noise Measurements
Vn = K^/*
. Β
whereas t h e c u r r e n t n o i s e s i g n a l w i l l p r o v i d e i n f o r m a t i o n r e l a t i n g to the c o r r o s i o n r a t e . I t i s t h e r e f o r e , not s u r p r i s i n g t h a t t h e low f r e q u e n c y p o t e n t i a l n o i s e s i g n a l s o n l y t e n d t o v a r y o v e r a few d e c a d e s , whereas t h e c u r r e n t n o i s e s i g n a l s may v a r y o v e r many o r d e r s o f magnitude.
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2016 | http://pubs.acs.org Publication Date: October 14, 1986 | doi: 10.1021/bk-1986-0322.ch004
Conclusions 1.
2.
3.
E l e c t r o c h e m i c a l n o i s e measurements have shown g r e a t p r o mise as a m o n i t o r i n g t o o l i n s t u d i e s o f c o r r o d i n g m e t a l s i n a v a r i e t y of environments. The a p p l i c a t i o n o f t h e s e s e n s i t i v e t e c h n i q u e s t o e v a l u a t e t h e p e r f o r m a n c e o f c o a t e d specimens would appear t o be a p p r o p r i a t e f o r t h e s t u d y o f slow c o r r o s i o n p r o c e s s e s and also f o r t h e m o n i t o r i n g o f c o a t i n g breakdown/degrada tion. S i n c e the n o i s e s i g n a l s a r e g e n e r a t e d by the specimens t h e m s e l v e s c o a t i n g f a i l u r e i s accompanied by a change i n t h e e l e c t r o c h e m i c a l n o i s e s i g n a l which g i v e s a r a p i d i n d i c a t i o n o f the s t a t e of the c o a t i n g . Statis t i c a l a n a l y s i s o f t h e d a t a p r o v i d e s a r a p i d method o f a s s e s s i n g the noise levels without the n e c e s s i t y f o r t r a n s p o s i t i o n o f t h e d a t a i n t o t h e f r e q u e n c y domain by, f o r i n s t a n c e , FFT t e c h n i q u e s . Simultaneous m o n i t o r i n g o f c u r r e n t and p o t e n t i a l n o i s e and d e r i v a t i o n o f low f r e q u e n c y v a l u e s o f impedance a l lows, i n some i n s t a n c e s , d i r e c t comparison w i t h p o l a r i s a t i o n r e s i s t a n c e v a l u e s d e r i v e d from, f o r example, a.c. impedance t e c h n i q u e s .
Literature Cited 1. 2. 3. 4. 5. 6. 7.
Hladky, Κ., and Dawson, J.L., Corr. Sci 22, p317 (1981). Hladky, Κ., and Dawson, J.L., ibid, 23, p231 (1982). Dawson, J.L, Hladky, Κ., and Eden, D.A., Paper presented at "On line Monitoring of Continuous Process Plant", London, June 1983. Bindra, P., Fleischmann, Μ., Oldfield, J.W. and Singleton, D., Discussion of Faraday Soc. 56 (1974). Williams, D.E., Westcott, C., Fleischmann, Μ., Passivity of Metals and Semi Conductors, p217-228, Elsevier Science publishers, Ed. M. Froment. Farrell, D.M., Cox, W.M., Stott, F.H., Eden, D.A., Dawson, J.L., and Wood, G.C., High Temperature Technology Vol. 3, No. 1, February 1985. John, D.G., Hladky, Κ., Eden, D.A., and Dawson, J.L., Paper presented at Research Sciences Symposium NACE/Corrosion 84, New Orleans, April 1984.
RECEIVED March 6,
1986
Dickie and Floyd; Polymeric Materials for Corrosion Control ACS Symposium Series; American Chemical Society: Washington, DC, 1986.