9 Polymeric Membranes for Artificial Lungs DON N. GRAY
Downloaded by IOWA STATE UNIV on October 14, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch009
Owens-Illinois, Inc., Corporate Technology, Toledo, OH 43666
Artificial membrane lungs are devices that perfuse c i r c u l a t i n g blood by membrane transport of gases. The development of membrane lungs was prompted by a need for an e f f i c i e n t device that could be used longer and that would damage the blood less than the d i r e c t blood-gas contact oxygenators. The evolution of the membrane lung during the last twenty-five years was dependent on advances made in permselective and microporous polymers with the required c h a r a c t e r i s t i c s for the critical membrane portion of the device. In most commercial membrane artificial lungs, the most s i g n i f i c a n t resistant to gas-transfer is the laminar boundary layer of blood near the membrane. Artificial lungs designed to improve the e f f i c i e n c y of gas transfer per unit area of membrane by minimizing the effect of the stagnant blood boundary layer are now a v a i l a b l e . These new designs take advantage of the inherently high permeability of new membrane materials. B r e a t h i n g i s s o m e t h i n g we do c o n t i n u a l l y from b i r t h t o d e a t h a b o u t t e n t i m e s a m i n u t e , 600 t i m e s an h o u r o r 1 4 , 0 0 0 t i m e s a day t o change t h e c o m p o s i t i o n o f t h e gaseous m i x t u r e i n c o n t a c t w i t h o u r l u n g s . The l u n g i s one o f t h e most c o m p l e x v i t a l o r g a n s and t h e one o f t e n a s s a u l t e d by p o l l u t e d a i r , b i o l o g i c a l enemies and i n d i v i d u a l s e l f - d e s t r u c t i v e h a b i t s and l a c k o f concern. C e r t a i n l y w i t h t h e modern e m p h a s i s on a r t i f i c i a l body r e p l a c e m e n t p a r t s and t h e s u c c e s s o f i m p l a n t e d b i t s o f h a r d w a r e and a s s i s t d e v i c e s f o r t h e h e a r t ( v a l v e s , h e a r t b y p a s s and p a c e makers) and k i d n e y s ( r e n a l d i a l y s i s ) , a s u b s t i t u t e d e v i c e f o r t h e n a t u r a l l u n g s h o u l d be c o n s i d e r e d . A r t i f i c i a l l u n g s a r e used d a i l y f o r s h o r t - t e r m ( 3 - 4 h o u r s ) h e a r t - l u n g bypas i n l a r g e , specialized health care centers. These a r e e x t r a c o r p o r e a l
0097-6156/ 84/ 0256-0151 $06.00/ 0 © 1984 American Chemical Society
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
152
POLYMERIC MATERIALS AND ARTIFICIAL ORGANS
d e v i c e s l i k e k i d n e y d i a l y s i s u n i t s r a t h e r than i m p l a n t s l i k e h e a r t a s s i s t d e v i c e s . These d e v i c e s f u n c t i o n l i k e f i s h " g i l l s " e x c h a n g i n g b l o o d g a s e s d i r e c t l y ( F i g u r e 1) r a t h e r t h a n a s s i s t i n g r e s p i r a t i o n l i k e a b e l l o w s o r r e s p i r a t o r . The t e c h n o l o g y o f t h e s e d e v i c e s i s now a t t h e s t a t e , many e x p e r t s b e l i e v e , t h a t a r t i f i c i a l k i d n e y s were t h i r t y y e a r s a g o . The w i d e s p r e a d use and a c c e p t a n c e o f t h i s t e c h n i q u e w i l l depend t o a l a r g e e x t e n t on t h e a v a i l a b i l i t y o f s i m p l e r , e a s i e r t o u s e , s a f e r and l o w e r cost devices. The p r i m a r y p u r p o s e o f t h e n a t u r a l l u n g i s t o b r i n g a i r i n t o c o n t a c t w i t h t h e l u n g membrane. B l o o d on t h e o t h e r s i d e o f t h e membrane r e l e a s e s c a r b o n d i o x i d e and t a k e s up o x y g e n . Two f l u i d movement s y s t e m s a r e i n v o l v e d i n t h i s dynamic p r o c e s s , one moving a i r and t h e o t h e r ( t h e h e a r t ) moving b l o o d . The s u r f a c e a r e a o f t h e n a t u r a l l u n g i s v e r y h i g h ( o v e r 70 s q u a r e m e t e r s ) , w h i l e t h e a r t i f i c i a l l u n g membrane s u r f a c e a r e a i s much lower (3~6 s q u a r e m e t e r s ) . F o r t u n a t e l y , a r t i f i c i a l membrane l u n g s c a n f u n c t i o n t o a c h i e v e a d e q u a t e gas exchange w i t h lower s u r f a c e a r e a s b e c a u s e , w h i l e the n a t u r a l lung r e c e i v e s i n s p i r e d a i r c o n t a i n i n g o n l y 21% o x y g e n , t h e membrane o f t h e a r t i f i c i a l l u n g s e e s 100% o x y g e n . The d e v e l o p m e n t o f a p p a r a t u s t o o x y g e n a t e b l o o d p r e c e d e d modern a d v a n c e s i n c a r d i a c and t h o r a c i c s u r g e r y and was a b s o l u t e l y n e c e s s a r y f o r open h e a r t s u r g e r y . Between t h e 1930's and 1950 s, s u r g e o n s e x p e r i m e n t e d w i t h b l o o d o x y g e n a t o r s by t a k i n g the s t r a i g h t f o r w a r d a p p r o a c h o f c o n t a c t i n g w h o l e venous b l o o d w i t h a i r o r oxygen and r e c i r c u l a t i n g t h e o x y g e n a t e d form i n t o t h e body's c i r c u l a t o r y s y s t e m . T h i s p r o c e d u r e gave t h e s u r g e o n what he needed most, t i m e f o r s u r g i c a l r e p a i r o f a s t i l l h e a r t . To i n c r e a s e t h e b l o o d - g a s c o n t a c t s u r f a c e a r e a i n t h e s e d e v i c e s , oxygen was b u b b l e d t h r o u g h t h e b l o o d ( b u b b l e o x y g e n a t o r s ) o r d i s c s were used t o c o n s t a n t l y e x p o s e t h e b l o o d s u r f a c e t o t h e gas phase ( d i s c o x y g e n a t o r s ) . D i r e c t c o n t a c t o f b l o o d and gas l e a d s t o p r o t e i n d e n a t u r a t i o n and b l o o d c e l l d e s t r u c t i o n w h i c h l i m i t s t h e u s e o f b u b b l e and d i s c o x y g e n a t o r s t o a maximum o f s i x h o u r s ; p e r f e c t l y s a t i s f a c t o r y f o r most s u r g i c a l p r o c e d u r e s . I t i s i n t e r e s t i n g t h a t o t h e r a p p r o a c h e s were a l s o t r i e d w i t h some s u c c e s s , s u c h as u s i n g a human donor t o c o n s t a n t l y "breathe" f o r a p a t i e n t v i a cross blood c i r c u l a t i o n °. Even more d a r i n g was s u c c e s s f u l e x - v i v o u s e o f d i s s e c t e d , s p e c i a l l y t r e a t e d a n i m a l l u n g s f o r b l o o d oxygénâtion ,an i n t e l l e c t u a l p r e c u r s o r i n t h e d e v e l o p m e n t o f t h e a r t i f i c i a l membrane l u n g . As e a r l y as 1955, K o l f f and B a l z e r d e s c r i b e d a d e v i c e p a t t e r n e d a f t e r an e a r l y r e n a l d i a l y s i s u n i t ( t h e Inouye a r t i f i c i a l k i d n e y ) w h e r e i n p o l y e t h y l e n e t u b i n g was used i n a c o i l configuration. W h i l e t h e c o n c e p t was s o u n d , t h e membrane m a t e r i a l c h o i c e s a v a i l a b l e a t t h a t t i m e were l i m i t e d . In 1956 Clowes and c o w o r k e r s d e s c r i b e d an o x y g e n a t o r u s i n g f l a t s h e e t s o f membrane t o s e p a r a t e t h e b l o o d and gas ( F i g u r e 2). Clowes examined T e f l o n , e t h y l c e l l u l o s e , p o l y e t h y l e n e , c e l l o -
Downloaded by IOWA STATE UNIV on October 14, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch009
1
1
2
3
1
9
,
2
21
H
5
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by IOWA STATE UNIV on October 14, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch009
9.
GRAY
Polymeric Membranes for Artificial Lungs
153
Blood i n l e t groove Gasket
P l a s t i c membranes Compressed a i r : 160mm Hg
Blood f i l m f l o w i n g ]' between p l a s t i c membranes
L o n g i t u d i n a l blood channel L o n g i t u d i n a l oxygen channel Oxygen f l o w i n g i n diagonal rubber grooves
Figure 2 . The Clowes membrane oxygenator. (Reproduced w i t h permission from Ref. 5 . Copyright 1 9 5 6 , J . Thoracic Surg.)
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by IOWA STATE UNIV on October 14, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch009
154
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
phane, PVC, p o l y s t y r e n e , M y l a r and c h l o r i n a t e d r u b b e r . Note t h a t some o f t h e s e m a t e r i a l s a r e c o n s i d e r e d b a r r i e r p o l y m e r s ( M y l a r and c h l o r i n a t e d r u b b e r ) . However, e t h y l c e l l u l o s e and Teflon gave p r o m i s i n g r e s u l t s . T h e s e e a r l y w o r k e r s were u s i n g t h e p e r m s e l e c t i v e p r o p e r t i e s o f p o l y m e r i c membranes f o r g a s , a l t h o u g h one m i g h t s u s p e c t t h a t a p o r t i o n o f t h e gas p a s s a g e was due t o d i f f u s i o n v i a m i c r o p o r o u s d e f e c t s i n t h e f i l m s . Table 1 i s a c o m p a r i s o n o f t h e p e r m e a b i l i t y one hundred t i m e s t h a t o f Teflon . It i s i n t e r e s t i n g t o compare t h e h i s t o r i c a l t i m e t a b l e f o r c l i n i c a l a d v a n c e s v e r s u s t h e c o m m e r c i a l s t a t u s o f membrane m a t e r i a l a t t h e same p o i n t i n t i m e . (Table 2 - S i g n i f i c a n t M i l e s t o n e s - Development o f A r t i f i c i a l Membrane L u n g s ) . Note t h a t t h e f i r s t s y n t h e t i c m a t e r i a l used f o r b l o o d o x y g e n a t i o n (albeit i n a d v e r t e n t l y ) was c e l l o p h a n e , and t h e mode o f oxygen t r a n s f e r must have been v i a s o l u b i l i t y i n t h e h y d r a t e d "aqueous p h a s e " o f t h e s w e l l e d p o l y m e r . By 1955, t h e c l i n i c i a n s had e x p e r i m e n t e d w i t h and c o n c e p t u a l l y o p t i m i z e d t h e b a s i c g e o m e t r i e s o f membrane oxygenators. However, t h e membrane m a t e r i a l s a v a i l a b l e t o them were t h o s e o f f e r e d by i n d u s t r y f o r o t h e r p u r p o s e s , u s u a l l y packaging. The c r i t e r i a f o r c h o o s i n g t h e m a t e r i a l s w e r e s t r e n g t h , c o n s i s t e n t q u a l i t y ( i . e . l a c k o f p i n - h o l e s ) and t h i n n e s s . If the m a t e r i a l s had some d e g r e e o f p e r m e a b i l i t y , a l l t h e b e t t e r . T h e p e r i o d 1955-1956 was i m p o r t a n t t o the e v e n t u a l d e v e l o p m e n t o f s u p e r i o r p e r m s e l e c t i v e membranes. P r o f e s s o r Kammermeyer d i d h i s f i r s t s t u d i e s on t h e p e r m e a b i l i t y o f s i l i c o n e f i l m s t o gases a b o u t t h i s t i m e and p u b l i s h e d h i s much r e f e r e n c e d a r t i c l e " S i l i c o n e Rubber a s a S e l e c t i v e B a r r i e r " i n I n d u s t r i a l and E n g i n e e r i n g C h e m i s t r y d u r i n g 1957. The v e r y h i g h p e r m e a b i l i t y o f t h e s i l i c o n e f i l m s , e s p e c i a l l y compared w i t h m a t e r i a l s p r e v i o u s l y a v a i l a b l e , c o u p l e d w i t h what was known a b o u t optimum g e o m e t r i e s r e s u l t e d i n a number o f l a s t i n g d e v i c e d e s i g n s i n t r o d u c e d i n t h e e a r l y 1960's. The c o m m e r c i a l a v a i l a b l i t y o f m i c r o p o r o u s p o l y o l e f i n s and p e r f 1 u o r o - p o l y o l e f i n s i n t h e 1970's f o l l o w e d w i t h t h e i n t r o d u c t i o n o f membrane o x y g e n a t o r d e v i c e s u s i n g t h e s e materials. Note t h a t w i t h p o s s i b l e e x c e p t i o n o f s i l i c o n e p a s s i v a t e d , microporous c e l l u l o s e a c e t a t e ( t h e Rhone-Poulenc l u n g ) , no p o l y m e r i c m a t e r i a l i n any c o m m e r c i a l a r t i f i c i a l l u n g was e s p e c i a l l y designed f o r t h e purpose o f blood oxygenation. Howe v e r , two p o l y m e r s , e t h y l - e e l 1ulose p e r f 1 u o r o b u t y r a t e (EFB) and t h e p o l y ( a l k y l s u l f o n e s ) have been e s p e c i a l l y d e v e l o p e d s i n c e t h e mid 1970's a s t h e base f o r membranes f o r b l o o d o x y g e n a t o r s . E t h y l c e l l u l o s e p e r f 1 u o r o b u t y r a t e was d e v e l o p e d by N o r t h s t a r Research. The p o l y ( a l k y l s u l f o n e s ) were d e v e l o p e d by OwensI l l i n o i s and a r e now o f f e r e d under t h e BIOBLAND name by Shenandoah R e s e a r c h , I n c . W h i l e t h e m a t e r i a l s have n o t y e t been used c o m m e r c i a l l y i n d e v i c e s , c o n s i d e r a b l e e v a l u a t i o n and t e s t i n g on t h e s e m a t e r i a l s has been r e p o r t e d ( R e f s . 7 and 9 and p e r t i n ent r e f e r e n c e s c i t e d t h e r e i n ) . The e a r l y e x p e r i m e n t a l d e v i c e s were g r a d u a l l y improved by 6
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
9.
GRAY
155
Polymeric Membranes for Artificial Lungs
Downloaded by IOWA STATE UNIV on October 14, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch009
Table I P e r m e a b i l i t y o f v a r i o u s polymers to oxygen and carbon d i o x i d e Polymer
p
Polydimethyl siloxane Silicone r u b b e r / p o l y c a r b o n a t e c o p o l y m e r ( M E M 213
160
970
60
250
50
250
Poly ( 4 - m e t h y l p e n t e n e - ï ) (TPX
30
90
5
13
2
9
0.4
1.8
0.08
0.016
Polyvinylchloride (unplasticized)
0.045
0.016
Polyethylene terephthalate-oriented
0.035
0.017
)
)
Poly (tetrafluoroethylene ) (Teflon
)
P o l y p r o p y l e n e (density 0.91) Polyethylene (density Pre
2
2700
Ethylcellulose perfluorobutyrate (EFB)
Poly ( a l p h a - h e x a d e c e n e sulfone) (Biobland-16 1955
)
co
500
Cellulose acetate
Units =
0.96)
(unplasticized)
cm
3
(STP), cm
n
2
,sec, cm H g
--i
Ο
73
π > r Ο
> 73 Η
α
>
GO
73
m
ο
73
m
Ο
9.
GRAY
157
Polymeric Membranes for Artificial Lungs
o p t i m i z i n g membrane m a t e r i a l a n d f l o w c h a r a c t e r i s t i c s , a n d by t h e e a r l y 1 9 7 0 ' s s u f f i c i e n t e x p e r i m e n t a l d a t a was a v a i l a b l e t o i n d i c a t e t h a t membrane o x y g e n a t o r s were l e s s damaging t o b l o o d t h a n the blood-gas d i r e c t c o n t a c t type ( d i s c and b u b b l e ) . Therefore, t h e newer b l o o d o x y g e n a t o r s c o u l d be used f o r l o n g e r p e r i o d s ' . The improvements made i n m a t e r i a l s a n d o x y g e n a t o r designs a l l o w e d c l i n i c i a n s t o c o n s i d e r l o n g - t e r m (days r a t h e r t h a n h o u r s ) oxygenation f o r the f i r s t time. Here a g a i n t h e hope was t o "buy t i m e " n o t f o r s u r g e r y , b u t f o r an i n j u r e d o r d i s e a s e d l u n g t o r e p a i r i t s e l f o r h e a l . The w o r k e r s d e v e l o p i n g t h e s e t e c h n i q u e s w e r e u s i n g a s a model a w e l l - p r o v e n e x t r a c o r p o r e a l t e c h n i q u e temporary d i a l y s i s w i t h the a r t i f i c i a l kidney. A distinct d i f f e r e n c e between r e n a l d i a l y s i s a n d l o n g - t e r m o x y g e n a t i o n i s t h a t r e n a l d i a l y s i s may be i n t e r m i t t e n t and s t i l l be e f f e c t i v e , w h i l e o x y g e n a t i o n must be c o n t i n u o u s i n o r d e r t o be e f f e c t i v e . T h i s r e q u i r e m e n t p u t s g r e a t e r demands on t h e r e l i a b i l i t y o f t h e s u p p o r t d e v i c e s . As n a t u r a l h e a l i n g o f t e n d i d n o t o c c u r d e s p i t e b u y i n g t i m e w i t h a r t i f i c i a l l u n g s , p h y s i c i a n s have now t u r n e d t h e i r thoughts t o u s i n g a r t i f i c i a l lungs as support o r r e p l a c e ment d e v i c e s f o r i n s u f f i c i e n t n a t u r a l l u n g s . M a t e r i a l s used f o r t h e g a s t r a n s f e r membrane i n a r t i f i c i a l l u n g s c a n be o f two t y p e s , p e r m s e l e c t i v e s u c h a s t h o s e p r e v i o u s l y discussed o r microporous. In e i t h e r c a s e , g a s p a s s a g e p r o p e r t i e s must be h i g h , b l o o d c o m p a t i b i l i t y must be o p t i m a l a n d t o x i c a g e n t s must n o t be r e l e a s e d f r o m t h e membranes. Z a p o l a n d Ketteringham g i v e the f o l l o w i n g c h a r a c t e r i s t i c s r e q u i r e d f o r membrane m a t e r i a l s f o r an a r t i f i c i a l l u n g : 1. They must have h i g h o x y g e n a n d c a r b o n d i o x i d e p e r m e a b i l i t y . 2. They s h o u l d be c h e m i c a l l y s t a b l e w i t h o u t l e a c h a b l e m o i e t i e s and be b l o o d c o m p a t i b l e , m i n i m i z i n g t h r o m b o s i s , p l a t e l e t a c t i v a t i o n and i n j u r y , and p r o t e i n d e n a t u r a t i o n . 3. They must be s t r o n g , p i n h o l e - f r e e a n d c a p a b l e o f w i t h s t a n d i n g a p r e s s u r e g r a d i e n t o f 15 p s i f r o m t h e b l o o d s i d e w i t h o u t l e a k i ng. k. They must be c a p a b l e o f s t e r i l i z a t i o n p r e f e r a b l y by e t h y l e n e o x i d e o r by a u t o c l a v i n g . 5. They s h o u l d be e a s i l y f a b r i c a t e d i n t o p i n h o l e - f r e e membranes ( c o n t a i n i n g a s u p p o r t i n g component i f n e c e s s a r y ) w i t h a s u r f a c e c o n f o r m a t i o n w h i c h can be d e s i g n e d t o augment s e c o n d a r y blood flow a g a i n s t the s u r f a c e . 6. T h e b a s i c c o s t o f t h e m a t e r i a l a n d e a s e o f f a b r i c a t i o n must p e r m i t e c o n o m i c a l d i s p o s a b l e d e v i c e s t o be c o n s t r u c t e d . A number o f c o n f i g u r a t i o n s a r e used f o r c o m m e r c i a l membrane l u n g s ; t h o s e b a s e d on f l a t s h e e t s a r e Bramson, G . E . - P i e r c e , Lande-Edwards and T r a v e n o l . A m o d i f i c a t i o n o f the f l a t sheet c o n f i g u r a t i o n i s t h e K o l o b o w / S c i - M e d s p i r a l c o i l membrane l u n g . H o l l o w f i b e r membrane l u n g s a r e r e p r e s e n t e d by t h e Dow and t h e Terumo a r t i f i c i a l l u n g s . B l o o d f l o w i n g p a s t a membrane, a t l e a s t a s t h e f l u i d v e l o c i t i e s p e r m i t t e d i n membrane l u n g s , f o r m s a l a m i n a r b o u n d a r y l a y e r
Downloaded by IOWA STATE UNIV on October 14, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch009
8
7
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
9
158
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
a d j a c e n t t o t h e membrane. T h i s phenomena l i m i t s t h e gas t r a n s f e r p r o p e r t i e s , e x p e c i a l l y oxygen, o f the device. To e x p l o i t t h e t r u e , h i g h p o t e n t i a l g a s t r a n s f e r c a p a b i l i t i e s o f t h e membrane m a t e r i a l i n modern membrane l u n g s , B e l l house and c o w o r k e r s have i n v e s t i g a t e d v o r t e x s h e d d i n g , s e c o n d a r y f l o w t e c h n i q u e s t o i n c r e a s e membrane t o b l o o d g a s t r a n s f e r . T h i s i s a c c o m p l i s h e d by i m p r e s s i n g a s e c o n d a r y p u l s i t i l e f l o w on t h e c i r c u l a t o r y f l o w t o d i s t u r b t h e l a m i n a r l a y e r . Examples o f d e v i c e s u s i n g t h i s t e c h n i q u e a r e t h e O x f o r d p u l s e d f l a t s h e e t l u n g and t h e d e v i c e o f f e r ed by E x t r a c o r p o r e a l . T h e s e d e v i c e s t h a t augment m i x i n g and i n c r e a s e gas t r a n s f e r p e r u n i t a r e a have c a u s e d a r e - e v a l u a t i o n o f t h e membrane m a t e r i a l s used i n a r t i f i c i a l lungs. 1 1
Downloaded by IOWA STATE UNIV on October 14, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch009
1 2
K e t t e r i n g h a m , d e F i l i p p i and B i r k e t t w o r k i n g w i t h a number o f p e r m s e l e c t i v e m a t e r i a l s f a b r i c a t e d i n t o u l t r a t h i n membranes have d e t e r m i n e d t h e CO2/O2 f l u x r a t i o f r o m i n v i t r o measurements u s i n g a s e r i e s o f a r t i f i c i a l l u n g s w i t h i n c r e a s i n g l y more e f f i c i e n t oxygen t r a n s f e r c h a r a c t e r i s t i c s . As c a n be seen f r o m T a b l e 1, f o r t h e p o l y m e r s t h a t a r e s e r i o u s c a n d i d a t e s a s memb r a n e s , t h e c a r b o n d i o x i d e p e r m e a b i l i t y i s much h i g h e r t h a n t h e oxygen p e r m e a b i l i t y . In d e v i c e s w i t h o u t i n d u c e d o r augmented s e c o n d a r y f l o w , t h e membrane a r e a r e q u i r e d t o m a i n t a i n a d e q u a t e oxygen t r a n s f e r t o t h e b l o o d was more t h a n a d e q u a t e f o r c a r b o n dioxide clearance. W i t h more e f f i c i e n t d e v i c e s t h a t e l i m i n a t e o r r e d u c e t h e d e l e t e r i o u s s t a g n a n t b l o o d l a y e r , t h e membrane area required f o r C 0 clearance i s a l s o o f concern. Figure 3 represents a s i m p l i f i e d presentation o f the information reported by K e t t e r i n g h a m . The r a t i o C 0 f l u x / 0 2 f l u x i s p l o t t e d v e r s u s the t o t a l oxygen f l u x . A t a f l u x r a t i o l e s s t h a n 0.82, insuffic i e n t C 0 i s c l e a r e d r e l a t i v e t o oxygen t r a n s f e r . T h e r e f o r e , any f u r t h e r improvement i n t o t a l o x y g e n t r a n s f e r i s o f no p h y s i o l o g i c a l advantage. The i n t e r c e p t o f t h e c u r v e d l i n e s w i t h t h e dotted l i n e y i e l d s the value f o r the highest usable 0 t r a n s f e r f o r a g i v e n m a t e r i a l . BIOBLAND 16 used i n t h e u l t r a t h i n memb r a n e c o n f i g u r a t i o n a p p r o a c h e s t h e gas t r a n s f e r c h a r a c t e r i s t i c s of t h e microporous m a t e r i a l s , but without the problems a s s o c i a t e d w i t h t h e m i c r o p o r o u s m a t e r i a l s . The p r o b l e m s most o f t e n a s s o c i a t e d w i t h t h e m i c r o p o r o u s membranes a r e p o s s i b l e b l o o d damage due t o gas m i c r o b u b b l e i n t r u s i o n , e x c e s s i v e w a t e r f l u x and p o s s i b l e seepage. 2
1 2
2
2
2
S i n c e membrane l u n g s a s e x t r a c o r p o r e a l d e v i c e s a r e i n w i d e u s e , t h o u g h t s have t u r n e d t o an i m p l a n t a b l e a r t i f i c i a l l u n g p r o s t h e s i s based on membrane t e c h n o l o g y . D e v e l o p i n g such a d e v i c e w i t h t h e a d e q u a t e c h a r a c t e r i s t i c s and l o n g - t e r m r e l i a b i l i t y i s a much more d i f f i c u l t t a s k t h a n e n c o u n t e r e d w i t h t h e e x t r a c o r p o r e a l d e v i c e d e v e l o p e d f o r i n t e r m i t t a n t u s e . However, a s m a l l p r o t o t y p e d e v i c e made o f p o r o u s T e f l o n has been f a b r i c a t e d and t e s t e d by R i c h a r d s o n a n d G a l l e t t i . The hopes f o r t h e use o f E x t r a c o r p o r e a l Membrane O x y g e n a t i o n (ECMO) f o r t r e a t i n g a c u t e r e s p i r a t o r y f a i l u r e went t h r o u g h a l o w p o i n t i n t h e mid 1970's a f t e r t h e r e s u l t s o f t h e N a t i o n a l I n s t i 1 3
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by IOWA STATE UNIV on October 14, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch009
GRAY
Polymeric Membranes for Artificial Lungs
Figure 3 . Membrane e f f i c i e n c i e s . Key: MEM 2 1 3 , p o l y s i l o x a n e / p o l y c a r b o n a t e ; SSR, standard s i l i c o n e rubber UTEFB, u l t r a t h i n e t h y l c e l l u l o s e p e r f l u o r o b u t y r a t e ; UTSR, u l t r a t h i n s i l i c o n e rubber; and BIOBLAND 1 6 , poly(a-hexadecene s u l f o n e ) . (Reproduced w i t h permission from Ref. 1 2 . Copyright 1 9 7 6 , Academic Press.)
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
160
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
t u t e s o f H e a l t h - E x t r a c o r p o r e a l Membrane O x y g e n a t i o n s t u d y became known \ T h i s work d e s c r i b e s t h e f i n d i n g s o f a c o o p e r a t i v e study i n v o l v i n g n i n e prominent medical c e n t e r s w e l l versed i n e x p n a c o r p o r e a l p e r f u s i o n . N i n e t y i n d i v i d u a l s were c h o s e n whose c o n d i t i o n ( r e s p i r a t o r y f a i l u r e ) o f f e r e d them o n l y a t e n p e r c e n t c h a n c e o f s u r v i v a l u s i n g s t a n d a r d r e s p i r a t o r y t h e r a p y management. T h i s g r o u p was r a n d o m l y d i v i d e d i n t o two s m a l l e r , e q u a l g r o u p s (45 e a c h ) , one g r o u p b e i n g g i v e n ECMO s t a t e - o f - t h e - a r t s u p p o r t and t h e o t h e r g i v e n s t a n d a r d t h e r a p y . T h e r e were f o u r (4) s u r v i v o r s i n e a c h g r o u p i n d i c a t i n g t h a t t h e more d i f f i c u l t and e x p e n s i v e ECMO t h e r a p y a p p a r e n t l y y i e l d e d no b e n e f i t s . However, t h e gloomy p r o s p e c t has b r i g h t e n e d i n t h e l a s t f i v e years. In 1979 B a r t l e t t r e p o r t e d on t h e s u r v i v a l o f o n e - h a l f o f a g r o u p o f 32 m o r i b u n d i n f a n t s u s i n g ECMO t e c h n i q u e s and s t a t e d as a r e s u l t o f h i s f i n d i n g s t h a t " r e c o v e r y and s u r v i v a l s h o u l d be r o u t i n e i f ECMO i s i n s t i t u t e d i n t h e f i r s t two days o f life". As e a r l y a s 1978, K o l o b o w r e p o r t e d c a r b o n d i o x i d e c o u l d be removed f r o m b l o o d (and hence b l o o d pH c o u l d be p r o p e r l y m a i n t a i n e d ) by s h u n t i n g o n l y 10-30% o f t h e c a r d i a c o u t p u t t h r o u g h a membrane l u n g . T h i s s t u d y has been f o l l o w e d by more c l i n i c a l work by Kolobow and h i s a s s o c i a t e s ' . In one s t u d y a 63% s u r v i v a l r a t e was o b t a i n e d by s i m u l t a n e o u s l y u s i n g ECMO f o r c a r b o n d i o x i d e removal c o u p l e d w i t h c l a s s i c a l v e n t i l a t o r t e c h niques f o r oxygenation. T h e s e s t u d i e s have prompted a r e a p p r a i s a l o f t h e u s e o f ECMO t h e r a p y w i t h renewed e m p h a s i s on p a t i e n t c h o i c e and m o d i f i e d treatment t e c h n i q u e s . It i s e x p e c t e d t h a t w i t h t h e g r e a t e r a v a i l a b i l i t y o f s i m p l e r , more d e p e n d a b l e and l o w e r c o s t d i s p o s a b l e membrane o x y g e n a t o r s i n s u r g i c a l p r o c e d u r e s o f t h e h e a r t , t h e i r u s e w i l l i n c r e a s e . In t h i s c o u n t r y , a b o u t 500 i n d i v i d u a l s e a c h d a y u n d e r g o r o u t i n e heart surgery that requires extracorporeal o x y g e n a t i o n . Bubble o x y g e n a t o r s s t i l l d o m i n a t e , b u t t h e number o f p e r f u s i o n teams t h a t a r e s h i f t i n g t o membrane u n i t s i s i n c r e a s i n g . The t o t a l p o t e n t i a l m a r k e t (U.S.) f a r membrane l u n g s i s a b o u t $20 m i l l i o n / y e a r ( a t t h e p r e s e n t p r i c e o f $ 2 0 0 / u n i t ) making i t a r e l a t i v e l y small market as compared, f o r example, t o t h e a r t i f i c i a l k i d n e y ( d i a l y s i s ) m a r k e t o f $225 m i l l i o n / y e a r . T h e r e f o r e , one w o u l d n o t e x p e c t t o s e e many new "me-too" membrane o x y g e n a t o r d e v i c e s i n t r o d u c e d . Any new p r o d u c t w o u l d have t o o f f e r a c l e a r b e n e f i t o r f i l l a r e c o g n i z e d need t o c a p t u r e m a r k e t s h a r e . 1
Downloaded by IOWA STATE UNIV on October 14, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch009
1 5
1 6
1 7
1 8
2 2
2 3
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
9.
GRAY
Polymeric Membranes for Artificial Lungs
161
Downloaded by IOWA STATE UNIV on October 14, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch009
Literature Cited 1. Galletti, P.M., Artificial Lungs for Acute Respiratory Failure, edited by Warren M. Zapol and Jesper Qvist, Academic Press (1976) 2. Lillehei, C.W., DeWall, R.A., Read, R.C., Warden, H.E. and Varco, R.L., Dis. Chest, 29, 1 (1956) 3. Kirklin, J.W., DuShane, J.W., Patrick, R.T., Donald, D.E., Hetzel, P.S., Harshbarger, H.G. and Wood, E.H., Proc. Staff Meet., Mayo Clin, 30, 201 (1955) 4. Kolff, W.J. and Balzer, R., Trans. Am.Soc.Artif. intern. Organs, 1, 39 (1955) 5. Clowes, G.H., Jr., Hopking, A.L. and Neville, W.E., J. Thoracic Surg., 32, 630 (1956) 6. Private Communication - Prof. Sun-Tak Hwang, University of Cincinnati 7. Kammermeyer, Κ., Ind. and Eng. Chem, 49, 1685-1686 (1957) 8. Lande, A.J., Fillmore, S.J., Subramanian, V., Tiedenamm, R.N., Carlson, R.G., Bloch, J.A. and Lillehei, C.W., Trans. Soc. Artif. Intern. Organs, 15, 181 (1969) 9. Kolobow, T. and Zapol, W.M., Adv. Cardiol., 6, 112 (1971) 10. Zapol, W.M. and Ketteringham, J.M., Polymers in Medicine and Surgery, Polymer Science and Technology, Volume 8, Plenum Press, N.Y. (1975) 11. Bellhouse, B.J., Bellhouse, F.M., Curl, C.M., MacMillan, T.I., Gunning, A.J., Spratt, E.M., MacMurray, S.B. and Nelems, J.M., Trans. Am. Soc. Artif. Intern. Organs, 19, 72 (1973) 12. Ketteringham, J.M., DeFillippi, R. and Birkett, J.D., Ultra thin Membranes for Membrane Lungs, in Artificial Lungs for Acute Respiratory Failure, Zapol, W.M. and J. Qvist, ed., Academis Press (1976) 13. Galletti, P.M., Richardson, P.D., Trudell, L.A., Parol, G., Tanishita, K. and Accinelli, D., Trans. Am. Soc. Artif. Intern. Organs, 26, 573 (1980) 14. Zapol, W., Snider, M.T., Hill, J.D., Fallat, R.J., Bartlett, R.H., Edmunds, L.H., Morris, A.H., Pierce, E.C.,II, Thomas, A.N., Drinker, P.Α., Pratt, P.C., Bagiewski, Α., Miller, R.G. Jr., Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA 242, 2193 (1979) 15. Bartlett, R.H., Gazzaniga, A.B., Huxtable, R.H., Rucker, R., Wetmore, N., Haiduc, N. Extracorporeal membrane oxygenation (EMCO) in newborn respiratory failure: Technical considera tions. Trans. Am. Soc. Artif. Intern. Organs, 25, 473 (1979) 16. Kolobow, T. Gattinoni, L., Tomlinson, T., Pierce, J.E., An alternative to breathing. J. Thorac. Cardiovasc. Surg., 75, 261 (1978) 17. Gattinoni, L., Pesenti, Α., Pelizzola, Α., Caspani, M.L., lapichino, G., Agostoni, Α., Damia, G., and Kolobow, T., Reversal of terminal acute respiratory failure by low
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
162
P O L Y M E R I C M A T E R I A L S AND A R T I F I C I A L O R G A N S
frequency positive pressure ventilation with extracorporeal removal of CO2(LFPPV-ECCO R).Trans. Am. Soc. Artif. Intern. Organs, 27, 289 (1981) Pesenti, Α., Pelizzola, Α., Mascheroni, D., Uziel, L, Pirovani, E., Fox, U., Gattinoni, L. and Kolobow, T., Low frequency positive pressure ventilation with extracorporeal CO removal(LFPPV-ECCO R)in acute respiratory failure (ARF); Technique. Trans. Am. Soc. Artif. Intern. Organs, 27, 263 (1981) Warden, H.E., Cohen, M., DeWall, R.A., Schultz, E.A., Buckley, J.J., Read, R.C., Lillehei, C.W. Experimental closure of intraventricular septal defects and further physiologic studies on controlled cross circulation. Surg. Forum, 5, 22 (1954) Warden, H.E., Cohen, M. Read, R.C., Lillehei, C.W. Controll ed cross circulation for open intracardiac surgery. J. Thorac. Surg., 28, 331 (1954) Campbell, G.S., Crisp, N.W., Brown, E.B. Total cardiac by pass in humans utilizing a pump and heterologous lung oxygen ator (dog lungs). Surgery, 40, 364 (1956) Gott, V.L., Extracorporeal Circulation: 1970-1982, Trans. Am. Soc. Artif. Inter. Organs, 28, 17 (1982) Galletti, P.M., Impact of the artificial lung on medical care, Int. J. of Artif. Organs, 3, 157 (1980) 2
18.
2
Downloaded by IOWA STATE UNIV on October 14, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch009
19.
20. 21. 22. 23.
RECEIVED
2
March
19, 1984
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.