3
Novel Heat Resistant Plastics from Hydrogenation of Styrene Polymers
Downloaded by COLUMBIA UNIV on September 19, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch003
J. F . P E N D L E T O N and D . F . H O E G Roy C. Ingersoll Research Center, Borg-Warner Corp., Des Plaines, Ill. 60018 E . P. G O L D B E R G Xerox Corp., Rochester Research Center, Webster, N.Y.
The
combination of polymer preparation by anionic tech-
niques and hydrogenation
technology
based
on soluble
transition metal catalysts has allowed the facile hydrogenation of polystyrene
and styrene-diene
block
copolymers.
Problems encountered in hydrogenation of polymers using conventional techniques have been avoided.
Polystyrene is
hydrogenated to poly(vinylcyclohexane) (PVCH) a heat distortion temperature 60°C PVCH, ing
however, has low impact strength.
styrene-diene
in the diene
hydrogenation
By hydrogenat-
block copolymers, materials with heat
and impact resistance resulted. polystyrene
which has
higher than polystyrene.
By varying the level of
block copolymers
products of
ranged from rubbery to rigid materials all
of which were clear, tough, and heat resistant.
/ ^ h e m i c a l m o d i f i c a t i o n of p o l y m e r s ( I ) , s u c h as h a l o g e n a t i o n , e p o x i d a t i o n , a n d c h l o r o s u l f o n a t i o n , has g i v e n the i n d u s t r y u s e f u l p r o d u c t s w h i c h i n most cases c o u l d n o t b e m a d e d i r e c t l y f r o m m o n o m e r merization.
poly
H y d r o g e n a t i o n , a m o r e esoteric f o r m of p o l y m e r m o d i f i c a
t i o n , w h i l e b e i n g as o l d as p o l y m e r c h e m i s t r y , has n o t g i v e n c o m m e r cially useful polymers until recently.
S t a u d i n g e r , i n t h e 1920's, u s e d
the h y d r o g e n a t i o n o f r u b b e r ( 2 ) a n d l o w m o l e c u l a r w e i g h t p o l y s t y r e n e (3)
t o p r o v e that t h e m a c r o m o l e c u l e s
were composed
of long chains
w i t h p r i m a r y v a l e n c e b o n d s as o p p o s e d t o the c u r r e n t theories a t t h a t t i m e w h i c h c o n s i d e r e d " p o l y m e r s " as association complexes o f l o w m o l e c u l a r w e i g h t species (4).
S i n c e that t i m e h y d r o g e n a t i o n s o f polystyrenes 27
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
28
POLYMERIZATION REACTIONS A N D N E W POLYMERS
a n d p o l y d i e n e s h a v e b e e n s t u d i e d i n the h o p e of o b t a i n i n g c o m m e r c i a l l y attractive p o l y m e r d e r i v a t i v e s (5, 6, 7, 8, 9 ) . b y M o b e r l y (10)
a n d W i c k l a t z (11)
T w o r e v i e w s i n this area
discuss the d e v e l o p m e n t of n e w
techniques b o t h i n synthesis a n d catalysis for the h y d r o g e n a t i o n of p o l y dienes a n d s t y r e n e - d i e n e c o p o l y m e r s .
W h i l e the b u l k of research d i s
cussed i n these r e v i e w s has b e e n i n v o l v e d w i t h p o l y d i e n e s , some i n t e r esting w o r k w i t h n o n - d i e n e p o l y m e r s s h o u l d be m e n t i o n e d . n i t r i l e has b e e n h y d r o g e n a t e d b y J . H . P a r k e r (12)
u s i n g a 15% n i c k e l catalyst i n the presence of a m m o n i a . (13)
Polyacrylo-
to the p o l y a l l y l a m i n e Gluesenkamp
r e p o r t e d the p a r t i a l h y d r o g e n a t i o n of p o l y ( v i n y l c h l o r i d e ) i n d i
Downloaded by COLUMBIA UNIV on September 19, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch003
m e t h y l a c e t a m i d e a g a i n w i t h a h i g h l e v e l of catalyst ( P d / C ) . hofer (14)
Stein-
a n d W a r n e r ( 1 5 ) , u s i n g h i g h concentrations of n i c k e l c a t a
lysts, h y d r o g e n a t e d p o l y s t y r e n e h o m o p o l y m e r to p o l y ( v i n y l c y c l o h e x a n e ) . A s o b s e r v e d i n a l l the references, the use of n o b l e m e t a l a n d t y p i c a l t r a n s i t i o n m e t a l h y d r o g e n a t i o n catalysts r e q u i r e d l o n g r e a c t i o n times, h i g h catalyst concentrations, a n d h i g h t e m p e r a t u r e .
T h i s was a c c o m
p a n i e d b y p r o b l e m s i n catalyst r e m o v a l a n d i n most cases some m o l e c u l a r b r e a k d o w n of the p o l y m e r d u r i n g h y d r o g e n a t i o n .
P r o b l e m s are
c o m p o u n d e d w h e n the p o l y m e r to be h y d r o g e n a t e d is c r o s s l i n k e d or not c o m p l e t e l y s o l u b l e i n the h y d r o g e n a t i o n solvent. so-called
soluble
alkylaluminums review,
t r a n s i t i o n m e t a l catalysts m a d e
T h e recent use of by
the r e a c t i o n
a n d t r a n s i t i o n m e t a l salts is d e s c r i b e d
a n d these
systems, at least i n p o l y d i e n e
of
in Moberly's
a n d styrene
diene
c o p o l y m e r s , a v o i d the p r o b l e m s e n c o u n t e r e d w i t h t y p i c a l heterogeneous catalysts.
W o r k i n o u r l a b o r a t o r y confirms that residence
times are
short, catalyst concentrations are l o w , a n d p r o d u c t w o r k u p is easy.
In
fact, the a c t i v i t y of s u c h systems is t r u l y c a t a l y t i c i n that as m u c h as 4 k g of a s t y r e n e - b u t a d i e n e c o p o l y m e r c a n be h y d r o g e n a t e d c o m p l e t e l y u s i n g a s o l u b l e catalyst c o n t a i n i n g o n l y 1 g r a m of cobalt. T h e i m p e t u s for this research was generated f r o m the e x t r a o r d i n a r y properties
established for h y d r o g e n a t e d
poly (vinylcyclohexane) I.
(PVCH).
amorphorus
polystyrene—i.e.,
T h e s e properties are s h o w n i n T a b l e
B y c o m p l e t e h y d r o g e n a t i o n of p o l y s t y r e n e , density is decreased
by
10%, hardness is s i g n i f i c a n t l y i m p r o v e d , c l a r i t y is m a i n t a i n e d , a n d w i t h this heat resistance is d r a m a t i c a l l y i m p r o v e d .
A n increase of 6 0 ° C i n
A S T M heat d i s t o r t i o n is d e m o n s t r a t e d ; this, of course, is reflected i n the h i g h tensile strengths at elevated temperatures s h o w n i n T a b l e I.
Un
f o r t u n a t e l y , the b r i t t l e c h a r a c t e r of p o l y s t y r e n e system was not i m p r o v e d on hydrogenation.
T h i s was the s t a r t i n g p o i n t for this
research—to
d e v e l o p a t o u g h p r o d u c t w h i l e m a i n t a i n i n g the i n h e r e n t heat resistance of the P V C H . S i n c e v i n y l c y c l o h e x a n e c o u l d not b e p o l y m e r i z e d b y c o n v e n t i o n a l free r a d i c a l i n i t i a t i o n , i n o u r l a b o r a t o r y , the o p t i o n of p o l y m e r i z a t i o n i n
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
3.
Heat Resistant
PENDELTON ET AL.
T a b l e I.
P h y s i c a l P r o p e r t i e s of P o l y s t y r e n e ( P S ) Poly (vinylcyclohexane) (PVCH)
Property
PS
Specific g r a v i t y
0.94
116.0
* P / C dl/gram
125.5
0.78 ( C H ) 6
M o l e c u l a r weight (M ) (light scattering) D i e l e c t r i c constant U l t i m a t e tensile X psi
0.61
6
265,000
w
10
vs. PVCH
1.04
R o c k w e l l hardness, " R " scale
Downloaded by COLUMBIA UNIV on September 19, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch003
29
Plastics
(C H ) 6
1 2
235,000
2.58
2.56
4.5 2.9 2.0 0.05 —
3.9 1.9 1.5 1.4 1.2
3
25°C 60°C 80°C 100°C 120°C Heat distortion temperat u r e , °C ( A S T M - 6 4 8 , 264 psi)
81.5
D y n s t a t i m p a c t i}/2 unnotched)
142.5
2.9 kg c m / c m
2.9 kg c m / c m
2
2
the presence of r u b b e r as d o n e to p r e p a r e i m p a c t styrene w a s not v i a b l e . M e l t b l e n d i n g of
PVCH
w i t h rubbery polymers
d i d not i m p a r t the
degree of toughness that c o u l d b e o b t a i n e d i n m e l t b l e n d i n g p o l y s t y r e n e w i t h rubbers.
T h e fact that n o i m p a c t m o d i f i c a t i o n w a s o b t a i n e d e v e n
w h e n the b l e n d e d r u b b e r was almost c o m p l e t e l y saturated i n d i c a t e d t h a t n o g r a f t i n g o n the r u b b e r w a s a c c o m p l i s h e d as is a s s u m e d i n p o l y s t y r e n e - r u b b e r b l e n d i n g to p r o d u c e i m p a c t polystyrene.
T h e s e factors p l u s
the l a c k of a n e c o n o m i c a l source of v i n y l c y c l o h e x a n e s h o w e d t h a t the best m e t h o d of m o d i f y i n g P V C H was to m o d i f y p o l y s t y r e n e a n d h y d r o genate this to the P V C H d e r i v a t i v e . W e b e l i e v e that a r u b b e r - m o d i f i e d p o l y s t y r e n e c o u l d not b e h y d r o genated efficiently.
E v e n a styrene-butadiene emulsion copolymer w i t h
l o w gel content c o u l d o n l y b e p a r t i a l l y h y d r o g e n a t e d
and then only
v e r y s l o w l y f o l l o w e d b y difficult catalyst r e m o v a l . Soluble copolymers
of styrene w e r e c o n s i d e r e d
h y d r o g e n a t i o n to i m p a c t P V C H
materials.
as c a n d i d a t e s
A n i o n i c diene
w i t h styrene w e r e chosen for s t u d y b e c a u s e the structure of
for
copolymers polydiene
portions c o u l d b e c o n t r o l l e d to g i v e flexible r u b b e r y segments o n h y d r o -
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
30
POLYMERIZATION REACTIONS A N D N E W POLYMERS
genation.
T h e p o l y d i e n e structures l i s t e d i n T a b l e I I a l l g i v e
flexible
to r u b b e r y p r o d u c t s on h y d r o g e n a t i o n . P o l y i s o p r e n e o n h y d r o g e n a t i o n gives a r u b b e r d i r e c t l y — a n a l t e r n a t ing ethylene-propylene polymer.
Polybutadiene can give polyethylene
o n h y d r o g e n a t i o n i f it is a l l 1,4 i n structure or a v a r i e t y of
flexible-to-
r u b b e r y e t h y l e n e - b u t e n e c o p o l y m e r s as the 1,2 content of the p o l y b u t a d i e n e is increased.
T h e s e p o l y d i e n e structures c a n b e i n c o r p o r a t e d as
segments i n a n i o n i c styrene c o p o l y m e r s . H y d r o g e n a t e d Diene P o l y m e r s
Table II. Downloaded by COLUMBIA UNIV on September 19, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch003
CH3
I
CH3
I
H
CHoC
CHCH2
C H 2 C H CH2CH2 n
>
n
Poly(L4-isoprene)
Alternating E P rubber H
—CH2CH=CHCH2—
—CH2CH2CH2CH2—
>
n
P o l y (1,4-butadiene)
Polyethylene H
—CH CH=CH—CH2— 2
—CH2CH—
n
>
m
I
CH CH Random
2
1,4-1,2-polybutadiene
CH2CH2CH2CH2
n
CH CH 2
m
I
CH
2
CH
3
R a n d o m e t h y l e n e - b u t e n e elastomer I n a d d i t i o n to the v a r i a t i o n i n d i e n e c o m p o s i t i o n a n d m i c r o s t r u c t u r e , a n i o n i c techniques also a l l o w a v a r i e t y of b l o c k c o p o l y m e r structures. W e i n v e s t i g a t e d three basic types of b l o c k structure.
U s i n g styrene a n d
b u t a d i e n e as the m o d e l system, t w o b l o c k structures s t u d i e d w e r e p u r e d i - a n d t r i b l o c k p r e p a r e d b y s e q u e n t i a l a d d i t i o n of t h e m o n o m e r s i n a butyllithium
initiated
styrene-butadiene-styrene
system, g i v i n g s t y r e n e - b u t a d i e n e ( S B S ) block polymers.
block polymers ( S B ) were hydrogenated. M
(SB)
and
In addition, mixed
T h i s t y p e of s t a r t i n g p o l y
m e r was p r e p a r e d b y a l k y l l i t h i u m i n i t i a t i o n w i t h b o t h m o n o m e r s present. T h e first b l o c k is a m i x t u r e of m o s t l y p o l y b u t a d i e n e w i t h some of the styrene r a n d o m l y d i s t r i b u t e d i n this segment (10 to 35% of t o t a l styrene c h a r g e d , d e p e n d i n g on c o m p o s i t i o n ) c o m p r i s i n g the second b l o c k
(16,
w i t h the r e m a i n i n g styrene o n l y T h e letter designations
17).
used
here for the v a r i o u s p r o d u c t s are b a s e d o n the d e s i g n a t i o n f o r the u n h y d r o g e n a t e d p r o d u c t s — S B S , S B , or S B
M
for s t y r e n e - b u t a d i e n e systems
w h e r e B is the t y p i c a l 90% 1,4- /10% 1-2-polybutadiene f r o m b u t y l l i t h i u m
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
3.
PENDELTON ET AL.
Heat Resistant
initiation i n hydrocarbons.
F o r p o l y b u t a d i e n e of h i g h e r 1,2 content the
d e s i g n a t i o n is, for e x a m p l e , S B ( 1 , 2 ) S . (1,2)
31
Plastics
I n a l l h i g h v i n y l products the
percent i n the p o l y b u t a d i e n e segment is a b o u t 50%.
The number
p r e c e d i n g the letters is the o v e r a l l styrene content p r i o r to h y d r o g e n a tion.
T h e hydrogenated
product
carries a n R after the
composition
i d e n t i f i c a t i o n , a n d this refers to c o m p l e t e h y d r o g e n a t i o n of b o t h the d i e n e a n d styrene portions.
F o r e x a m p l e as 2 5 S B - R is a f u l l y h y d r o M
g e n a t e d m i x e d b l o c k p o l y m e r of 25% styrene a n d 75% b u t a d i e n e . T h e h y d r o g e n a t e d p o l y m e r s i n a l l ranges w e r e transparent a n d h a d heat s t a b i l i t y far s u p e r i o r to the s t y r e n e - b u t a d i e n e counterparts.
The
Downloaded by COLUMBIA UNIV on September 19, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch003
i n h e r e n t t h e r m a l o x i d a t i v e s t a b i l i t y was d e m o n s t r a t e d b y r e p e a t e d ex t r u s i o n of u n s t a b i l i z e d p r o d u c t s w i t h o u t loss of c l a r i t y or decrease i n viscosity. and
T h e l e v e l of styrene content s t u d i e d was f r o m 10% t o 90%,
the properties of the h y d r o g e n a t e d
derivatives generally ranged
f r o m t o u g h r u b b e r y p r o d u c t s at l o w styrene to t o u g h , r i g i d , heat resistant p r o d u c t s at h i g h styrene content.
T h e p r o d u c t s o b t a i n e d i n these t w o
areas are d e s c r i b e d b e l o w . Laboratory
Procedure
A l l operations w e r e c a r r i e d out i n the absence of a i r u n d e r a r g o n . Styrene B l o c k P o l y m e r Synthesis. G L A S S W A R E . A l l glassware w a s d r i e d at 130°C i n a f o r c e d a i r o v e n o v e r n i g h t a n d c o o l e d to r o o m t e m p e r a t u r e u n d e r a n a r g o n p u r g e . T h e 12 oz a n d 28 oz " p o p " bottles w e r e c a p p e d i m m e d i a t e l y after c o o l i n g u n d e r a n a r g o n p u r g e , w i t h a neoprene l i n e r a n d a m e t a l p e r f o r a t e d c r o w n c a p . T h e 12-oz bottles are b o r o s i l i c a t e glass, a n d the 28-oz bottles w e r e soft glass. I n a l l cases, contents w e r e a d d e d to the bottles b y s y r i n g e needle. S O L V E N T S . Tetrahydrofuran (THF). T H F ( D u p o n t ) was d i s t i l l e d i n a s i m p l e d i s t i l l a t i o n setup, w h i c h h a d b e e n flamed out u n d e r a r g o n . To 1500 m l of the T H F , w h i c h was passed t h r o u g h m o l e c u l a r sieves, w e a d d e d 20 m l . styrene a n d e n o u g h 1.52V b u t y l l i t h i u m s o l u t i o n i n hexane to g i v e a p e r m a n e n t y e l l o w collor. A s m a l l f o r e r u n was d i s c a r d e d , a n d the T H F d i s t i l l e d d i r e c t l y i n t o 28-oz bottles, w h i c h w e r e c a p p e d a n d pressured w i t h argon. Cyclohexane. Pure grade cyclohexane (Phillips Petroleum C o . ) was passed t h r o u g h a c t i v a t e d L i n d e 3 A m o l e c u l a r sieves u n d e r a r g o n i n t o a stainless steel o x y g e n b o m b ( 9 g a l ) . It was d i s p e n s e d u n d e r pressure t h r o u g h a v a l v e c o n n e c t e d to p o l y e t h y l e n e t u b i n g w i t h a s y r i n g e needle attached. M O N O M E R S . Styrene. S t y r e n e ( E a s t m a n w h i t e l a b e l ) , 1200 m l , was p l a c e d i n a d r y 2-liter R . B . flask c o n t a i n i n g a T e f l o n - c o v e r e d m a g n e t i c stirrer. W h i l e s t i r r i n g u n d e r a r g o n , d i e t h y l ether, 200 m l ( a n h y d r o u s ) , and b e n z o p h e n o n e , 12 grams, w e r e a d d e d a n d t h e n 1.0 g r a m of s o d i u m i n s m a l l pieces. O n s t i r r i n g o v e r n i g h t , a d e e p b l u e c o l o r develops, i n d i c a t i n g that a l l i m p u r i t i e s are p u r g e d . W i t h o u t s t o p p i n g the s t i r r i n g , the flask was a t t a c h e d to a d r y , v a c u u m d i s t i l l a t i o n setup. T h e system was t h e n e v a c u a t e d a n d filled w i t h a r g o n t w i c e , a n d the v a c u u m was
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by COLUMBIA UNIV on September 19, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch003
32
POLYMERIZATION REACTIONS A N D N E W POLYMERS
b r o u g h t e v e n t u a l l y to 40 m m as the v a p o r pressure of t h e ether p e r m i t s . T h e ether was c o l l e c t e d i n the d r y ice t r a p a n d a f o r e r u n of 25-50 m l was c o l l e c t e d at 5 0 ° C a n d 40 m m . P u r e styrene was t h e n c o l l e c t e d ( 5 0 ° C / 4 0 m m ) , y i e l d i n g a p p r o x i m a t e l y 1 liter. T h i s was t r a n s f e r r e d to 12-oz c a p p e d bottles b y s y r i n g e needles, p u r g e d w i t h a r g o n , a n d stored i n a d r y ice chest. Butadiene. P h i l l i p s s p e c i a l p u r i t y b u t a d i e n e (99.5 m o l e %) w a s d i s t i l l e d f r o m the c y l i n d e r i n t o a d r y ice c h i l l e d 1700-cc b o m b . T h i s b o m b was t h e n i n v e r t e d a n d c o n n e c t e d to a 4' x 2 " stainless steel c o l u m n p a c k e d w i t h 3 A m o l e c u l a r sieves. ( 4 A sieves cause p o l y m e r i z a t i o n ; 3 A d o not.) T h e l i q u i d b u t a d i e n e was passed t h r o u g h this c o l u m n a n d m e t e r e d out s l o w l y (150 grams i n 15 m i n u t e s ) t h r o u g h a v e r n i e r needle v a l v e c o n n e c t e d to a syringe n e e d l e i n t o the p o l y m e r i z a t i o n bottles. Isoprene. M a t h e s o n p u r e g r a d e isoprene was passed s l o w l y t h r o u g h 3 A m o l e c u l a r sieves i n t o a d r y R . B . flask. T o this (500 m l ) w e a d d e d 50 m l of a 25% t r i i s o b u t y l a l u m i n u m s o l u t i o n i n hexane. T h e i s o p r e n e was d i s t i l l e d i n a s i m p l e d i s t i l l a t i o n setup a n d c o l l e c t e d i n 12-oz bottles w h i c h are c a p p e d a n d m a i n t a i n e d at 10 p s i a r g o n . A d d i t i o n to p o l y m e r i z a t i o n bottles was a c c o m p l i s h e d b y syringe. PURGING
SOLUTION
AND CATALYST
PREPARATION.
TO
a
dry,
12-oz
c a p p e d b o t t l e w e a d d e d 100 m l of b e n z e n e , 5 m l of «-methylstyrene a n d 5 m l of 1.52V b u t y l l i t h i u m i n hexane. T h i s m i x t u r e was w a r m e d to 50° C for one-half h o u r or u n t i l the d e e p r e d #-methylstyrene a n i o n color f o r m e d . It was k e p t u n d e r 10 p s i a r g o n a n d stored w i t h the styrene i n the d r y ice chest. T h e catalyst s o l u t i o n was p r e p a r e d b y a d d i n g 25 m l 1.5N b u t y l l i t h i u m ( F o o t e M i n e r a l C o . , i n h e x a n e ) to 250 m l of argon-degassed c y c l o h e x a n e i n a 12-oz bottle. T h e active b u t y l l i t h i u m c o n c e n t r a t i o n was d e t e r m i n e d b y the m e t h o d of G i l m a n ( 1 8 ) , except that T H F was u s e d instead of d i e t h y l ether. T h e r e a c t i o n flasks (50 m l E r l e n m e y e r ) w e r e d r y , a r g o n - f i l l e d , a n d c a p p e d w i t h s e r u m stoppers. T o each was a d d e d 10 m l T H F a n d 1 m l b e n z y l c h l o r i d e . F o u r m l of catalyst s o l u t i o n w e r e a d d e d to t w o of these and 8 m l to t w o more. A f t e r at least one m i n u t e , the solutions w e r e p o u r e d i n t o d i s t i l l e d w a t e r (100 m l ) , a n d the L i O H was t i t r a t e d w i t h s t a n d a r d a c i d to a p h e n o l p h t h a l e i n e n d p o i n t . T h e difference b e t w e e n the 4 m l a n d 8 m l a l i q u o t samples is the i n a c t i v e content of the catalyst s o l u t i o n . T h i s takes i n t o a c c o u n t a n y i m p u r i t i e s w h i c h m a y h a v e b e e n present i n the T H F or b e n z y l c h l o r i d e . T o t a l l i t h i u m content was deter m i n e d b y q u e n c h i n g 4 m l of the catalyst s o l u t i o n i n 100 m l of w a t e r a n d t i t r a t i n g w i t h s t a n d a r d a c i d . T h e m o l a r i t y of the catalyst s o l u t i o n i n a c t i v e b u t y l l i t h i u m is s i m p l y the t o t a l L i O H a c i d t i t r e less the i n a c t i v e L i O H titre. P O L Y M E R I Z A T I O N P R O C E D U R E . T h e bottles u s e d to store styrene, isoprene, p u r g i n g s o l u t i o n , catalyst s o l u t i o n , cyclohexane, a n d T H F are all m a i n t a i n e d u n d e r a p p r o x i m a t e l y 15 p s i a r g o n pressure. I n r e m o v i n g samples b y s y r i n g e , the bottles are i n v e r t e d , a n d the solutions are pressured i n t o the syringe. T h i s eliminates a n y c h a n c e of c o n t a m i n a t i o n b y a i r seepage a r o u n d the b a r r e l of the s y r i n g e , as sometimes h a p p e n s in normal syringe operation. A l l l a b o r a t o r y p o l y m e r i z a t i o n s w e r e r u n i n 28-oz bottles c o n t a i n i n g a T e f l o n - c o v e r e d m a g n e t i c s t i r r i n g b a r . C y c l o h e x a n e , 550 m l , was p r e s s u r e d
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by COLUMBIA UNIV on September 19, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch003
3.
PENDELTON ET AL.
Heat Resistant
Plastics
i n t o t h e bottle, a n d t h e solvent was degassed b y i n s e r t i n g a l o n g , 18 gage n e e d l e to t h e b o t t o m of the b o t t l e a n d b l o w i n g a r g o n t h r o u g h the r a p i d l y s t i r r i n g solvent a n d out a n 18 gage n e e d l e at t h e top. A t pressures b e t w e e n 10 a n d 25 p s i , t h e m a x i m u m flow rate i n s u c h a sys t e m is a p p r o x i m a t e l y 3 l i t e r s / m i n u t e . T h i s flow c o n t i n u e d f o r at least 15 m i n u t e s . T h e p r o p e r a m o u n t of styrene was a d d e d b y s y r i n g e , a n d a r g o n p u r g i n g was c o n t i n u e d for a f e w minutees longer. T h e m i x t u r e was t h e n c o o l e d to a p p r o x i m a t e l y 10 ° C , a n d , w h i l e s t i r r i n g , t h e p u r g i n g s o l u t i o n was a d d e d c a r e f u l l y u n t i l a s l i g h t c o l o r c h a n g e was o b s e r v e d — w a t e r w h i t e to a l i g h t y e l l o w or t a n . T h e b o t t l e was t h e n s h a k e n t o ensure t h a t all impurities were purged. If this is to b e a m i x e d b l o c k synthesis, b u t a d i e n e is a d d e d at this p o i n t a n d t h e n the catalyst. T h e f o l l o w i n g p r o c e d u r e describes a p u r e A B A b l o c k synthesis. W i t h t h e styrene p u r g e d , catalyst is a d d e d b y s y r i n g e i n a n a m o u n t w h i c h depends o n the final m o l e c u l a r w e i g h t d e s i r e d a c c o r d i n g t o the following equation: M o l e c u l a r weight
=
grams monomer moles c a t a l y s t
T h e b o t t l e is t h e n p l a c e d i n a 50 ° C w a t e r b a t h a n d is s t i r r e d b y a m a g n e t i c s t i r r i n g m o t o r u n d e r the b a t h for 3 hours. It is r e m o v e d a n d c o o l e d to n e a r r o o m t e m p e r a t u r e , w e i g h e d , a n d b u t a d i e n e is a d d e d f r o m the b u t a d i e n e d r y i n g c o l u m n . W h e n the d e s i r e d w e i g h t of b u t a d i e n e has b e e n i n t r o d u c e d , t h e b o t t l e is r e t u r n e d to t h e b a t h , a n d t h e p o l y m e r i z a t i o n is a l l o w e d to p r o c e e d for 5 hours. F o r the last b l o c k , a s t y r e n e - i n - c y c l o h e x a n e s o l u t i o n is p r e p a r e d a n d p u r g e d s i m i l a r to the s t a r t i n g s o l u t i o n , a n d the p r o p e r a m o u n t is a d d e d b y s y r i n g e d i r e c t l y i n t o the p o l y m e r i z a t i o n b o t t l e at 5 0 ° C . T h i s p o r t i o n of the p o l y m e r i z a t i o n is a l l o w e d to p r o c e e d for a n a d d i t i o n a l 3 hours a n d is t e r m i n a t e d b y t h e a d d i t i o n of a f e w m i l l i l i t e r s of m e t h a n o l . T h e p o l y m e r s are p r e c i p i t a t e d i n m e t h a n o l i n a W a r i n g B l e n d o r , s t a b i l i z e d w i t h 1% N - p h e n y l - j 8 - n a p h t h y l a m i n e a n d d r i e d i n a v a c u u m oven. If the p r o d u c t is h y d r o g e n a t e d , the q u e n c h w i t h m e t h a n o l is n o t d o n e a n d the c y c l o h e x a n e s o l u t i o n of the p o l y m e r is u s e d d i r e c t l y . H y d r o g e n a t i o n C a t a l y s t P r e p a r a t i o n . A 0 . 0 8 1 M s o l u t i o n of h y d r o g e n a t i o n catalyst (based o n cobalt) was p r e p a r e d b y a d d i n g 23.6 grams of c o b a l t ( I I ) 2-ethylhexanoate c y c l o h e x a n e s o l u t i o n (12.0% c o b a l t w / w , H a r s h a w C h e m i c a l C o . ) over a p e r i o d of 90 m i n u t e s t o a s o l u t i o n of 18.8 grams (0.165 m o l e ) of t r i e t h y l a l u m i n u m i n 495 grams of c y c l o h e x a n e ( T e x a s A l k y l s ) . A d d i t i o n is to a c a p p e d b o t t l e w i t h v e n t i n g . T h e a l u m i n u m - t o - c o b a l t r a t i o w a s 3:1. A n i c k e l - b a s e d system c a n b e p r e p a r e d b y s u b s t i t u t i n g n i c k e l ( I I ) 2-ethylhexanoate f o r the c o b a l t octoate. H y d r o g e n a t i o n P r o c e d u r e . N i n e t y - f i v e p o u n d s of a c y c l o h e x a n e solution c o n t a i n i n g 12.5 p o u n d s of a 40 S B S p o l y m e r (rj = 0.79 d l / g r a m , b e n z e n e 2 3 ° C ) w e r e c h a r g e d to a 2 0 - g a l autoclave. T h e reactor was p r e s s u r i z e d t w i c e to 50 p s i g w i t h h y d r o g e n a n d 750 m l of a 0 . 1 9 M c o b a l t catalyst was a d d e d . T h e h y d r o g e n a t i o n w a s c o n d u c t e d at a h y d r o g e n pressure of 3500 p s i at 2 5 0 ° C f o r 80 m i n u t e s . T h e p r o d u c t sWc
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
34
POLYMERIZATION REACTIONS A N D N E W POLYMERS
i n s o l u t i o n at 5 0 ° - 6 0 ° C was m i x e d w i t h 10% aqueous n i t r i c a c i d to extract catalyst residues a n d p r e c i p i t a t e d i n m e t h a n o l . T h e w h i t e p r o d u c t h a d a viscosity of 0.85 d l / g r a m i n D e c a l i n at 135°C (rj ). T h e r e was n o u n s a t u r a t i o n , either a l i p h a t i c or a r o m a t i c , d e t e c t e d b y i n f r a r e d analysis o n a P e r k i n - E l m e r r e c o r d i n g g r a t i n g spectrophotometer. A film was cast f r o m hot c y c l o h e x a n e o n t o N a C l plates, a n d n o a b s o r p t i o n was o b s e r v e d at 960 c m (£rans-l,4-polybutadiene), 910 c n r (1,2p o l y b u t a d i e n e ) , or 690-695 c m ( p o l y s t y r e n e ) . P r e p a r e d standards s h o w e d that less t h a n 0.5% a l i p h a t i c or a r o m a t i c u n s a t u r a t i o n c a n be r e a d i l y observed. SX)/c
1
1
- 1
Downloaded by COLUMBIA UNIV on September 19, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch003
T a b l e III.
R e t e n t i o n of T e n s i l e S t r e n g t h at E l e v a t e d T e m p e r a t u r e s Tensile
Polymer
Vsp/c
T, °C
psi
1,4-PBde-R
1.73
25 75
3160 1180
10SB -R
1.72
25 75
3440 1940
15SB -R
1.64
25 75
4240 2740
20SB -R
1.74
25 75
2770 2000
25SBS-R
1.62
25 75
3030 2420
40SBS-R
1.10
25 100
4500 1500
M
M
M
Results Flexible
Hydrogenated
Styrene-Diene
Polymers.
These
hydro
genated styrene b u t a d i e n e p o l y m e r s w i t h less t h a n 50% styrene are t o u g h , p u n c t u r e resistant, clear, elastomeric properties.
flexible
complete
alphatic.
h a v e true
T h e heat resistance i m p a r t e d b y the P V C H seg
ments is s h o w n i n T a b l e I I I . shows
plastics; c e r t a i n m e m b e r s
A s i n d i c a t e d e a r l i e r the d e s i g n a t i o n - R
h y d r o g e n a t i o n of a l l u n s a t u r a t i o n , b o t h a r o m a t i c a n d
T h e r e t e n t i o n of tensile s t r e n g t h at e l e v a t e d temperatures is
d i r e c t l y r e l a t e d to the increase i n P V C H content.
A t 40% P V C H
the 40 S B S - R ) a tensile strength of 1500 p s i g was o b s e r v e d
(for
e v e n at
100°C. T h e effects of b l o c k s t r u c t u r e a n d m i c r o s t r u c t u r e a n d the o v e r a l l effect of
hydrogenation
illustrated i n T a b l e I V .
i n the l o w
styrene c o n t a i n i n g p o l y m e r s
are
T h e d a t a s h o w that the u n h y d r o g e n a t e d
SB
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
3.
PENDELTON ET AL.
Table IV.
Heat Resistant
35
Plastics
Effect of Hydrogenation and Block Structure in 2 5 % Styrene-Diene Polymers Tensile
Yield, psi
Vsp/ci
Downloaded by COLUMBIA UNIV on September 19, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch003
No.
Polymer
dl/gram
Elongation,
Ultimate, psi
IER,°
%
%
1
25SB
0.98
—
30
1300
6
25SBS-R
1.62
1780
4550
800
75
7
25SB(1,2)S-R
.94
180
>2570
>1300
94
1.39
240
1390
1000
97
8
M
25SIS-R
High
Immediate elastic recovery from 100% extension
a
Table V .
Physical Properties Rigid Hydrogenated SB Polymers Tensile
No.
Polymer
Vsp/c, Yield, dl/gram psi
Ultimate, psi
Elongation,
%
Flex. Mod. HDT, °C psi X 10
a
3
Impact, ft lbs/in
6
1
56SB -R
1.67
2200
3500
445
—
114
NB
1.47
3400
3800
100
150
129
1.9 1.9
M
2
70SB -R
3
75SB -R
2.10
3560
3610
20
160
136
4
80SB -R
1.13
—
4800
10
260
138
.9
5
90SB -R
.89
5560
5
—
132
.2
6
70SB-R
.86
— —
4730
5
320
140
.4
M
M
M
M
7
70SBS-R
1.29
—
4690
6
280
138
1.1
8
70SB(1,2)S-R
1.31
3480
3190
9
200
140
1.3
9
75SBS-R
1.10
4750