Subscriber access provided by CORNELL UNIVERSITY LIBRARY
Review
Polymers for DNA Vaccine Delivery Mingming Zhang, Yanhang Hong, Wenjuan Chen, and Chun Wang ACS Biomater. Sci. Eng., Just Accepted Manuscript • DOI: 10.1021/acsbiomaterials.6b00418 • Publication Date (Web): 30 Sep 2016 Downloaded from http://pubs.acs.org on October 4, 2016
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
ACS Biomaterials Science & Engineering is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
Polymers for DNA Vaccine Delivery Mingming Zhang1, Yanhang Hong1, Wenjuan Chen1, Chun Wang2,* 1
Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin, 300192, China 2
Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street S. E., Minneapolis, Minnesota, 55455, USA * Corresponding author:
[email protected] Abstract DNA vaccine is a third generation vaccine type based on concepts and techniques of molecular biology. It can closely mimic live infections and induce both antibody and cell mediated immune responses, and thus, has much potential for treating chronic viral infection and cancer. How to transport DNA vaccine to the right target cells in lymphoid tissues and organs? How to achieve high and robust gene transfection efficiency while simultaneously induce DC maturation and antigen presentation? These questions pose significant challenges and addressing them may require serious efforts in developing better biomaterials as carriers. This review is dedicated to the discussion of polymers as nano-scale carriers for DNA vaccine. We summarize recent advances in polymer science and engineering to overcome multi-level hurdles for DNA vaccine delivery, and conclude with thoughts on challenges and opportunities that may shape the future of polymers in DNA vaccination.
Keywords Polymers; DNA vaccine; Gene delivery; Immunotherapy
ACS Paragon Plus Environment
1
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 2 of 56
1. Introduction Ever since Edward Jenner demonstrated in 1798 that inoculation with pus from cowpox lesions conferred protection against smallpox infection, the development and application of vaccines have seen tremendous progress. Traditional subunit protein based vaccines have been shown to elicit robust immunity against many microbes and prevent human infections1, but they have limited impact on diseases such as cancer and chronic viral infections such as HIV2. A key reason is that subunit vaccines are only adequate in eliciting humoral immune response3, whereas controlling cancer and chronic viral infections relies more on T cell mediated immune response4. Live attenuated viruses and bacteria are able to produce cell-mediated immune responses, yet they may be dangerous to administer into patients with compromised immune systems5-6. DNA vaccine is a third generation vaccine type developed in the early 1990s based on concepts and techniques of molecular biology. It works by incorporating the gene of a protein antigen in a recombinant eukaryotic expression vector (such as a plasmid) and introducing it into the body to produce the exogenous antigen, which then elicits antigen-specific immune responses that control diseases7. Compared with traditional vaccines, DNA vaccine can closely mimic live infections and induce both antibody and cell mediated immune responses, and thus, has much potential for treating chronic viral infection and cancer. In addition, DNA vaccine has multiple advantages, for examples, stable gene expression in transfected host cells providing sufficient supply of antigen, easy design of genetic sequences using recombinant techniques, possibility of expressing specific antigen and immunoregulatory proteins, scalable manufacturing, easy
ACS Paragon Plus Environment
2
Page 3 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
to store and transport without cold-chain, and demonstrated safety in animal and human clinical experiments6, 8-10. DNA vaccine often uses plasmid as vector that contains one or more exogenous DNA antigens and regulatory components to drive expression in a eukaryotic host. The typical process of DNA vaccination begins by introducing recombinant DNA vaccine into the body through intradermal, subcutaneous, or intramuscular injection. Professional antigen-presenting cells (APCs) such as dendritic cells (DCs) and macrophages can be transfected directly to express the encoded protein antigen endogenously. APCs can also acquire and process exogenous antigens shed by other transfected cells (bystanders). After phenotypic maturation, the APCs migrate to the draining lymph nodes and the spleen, where epitopes are presented by major histocompatibility complex (MHC) class I/II molecules, and along with the necessary co-stimulatory signals and cytokine environment, enable the activation of naïve CD8 (to become cytotoxic T lymphocytes, or CTLs) and CD4 helper T cells (to stimulate antibody production by B cells)11. The first clinical investigation on DNA vaccine was for treating HIV infection6, 12. Since then, DNA vaccine has been evaluated extensively for a wide range of diseases including various cancers (breast8, 13, prostate14-15, cervical16-18, colorectal19-20, hepatocellular21-23, melanoma24-26) and infections (influenza27-29, malaria30, hepatitis B, human papillomavirus (HPV31-34, HIV6, 35-36). Despite potential technological and commercial value, there has not been any FDA approved DNA vaccine for human use in the US. Poor immunogenicity of DNA vaccine is one of the most frequently cited problems. Recent years have seen development of several approaches to enhance the immunogenicity of naked DNA vaccine. These include using more potent promoter,
ACS Paragon Plus Environment
3
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 56
codon optimization, addition of adjuvants, electroporation, intradermal delivery, and various prime-boost schemes14. Despite these efforts, naked DNA as vaccine has serious limitations. The in vivo half-life of naked DNA is minutes due to degradation by nucleases and removal by the reticular endothelial system (RES)16. For protein expression, naked DNA has to overcome multiple cellular and subcellular barriers including the plasma membrane17. Naked DNA also lacks the ability of facilitating specific uptake by DCs, the most important APCs37. How to transport DNA vaccine to the right target cells in lymphoid tissues and organs, achieve high and robust gene transfection efficiency while simultaneously induce DC maturation and antigen presentation, present significant challenges and require serious efforts in developing better biomaterials as carriers. Polymers are extensively investigated in drug and gene delivery. In comparison with small molecule, polymers have certain advantages and unique features as carriers for DNA vaccine. First, long chains of macromolecules afford multivalency and cooperativity in binding to DNA, which effectively collapses into compact, stable nanoparticles resistant to degradation in biological medium. Second, polymers are easily rendered multifunctional through chemical and biological derivatization that provide reactive groups and ligands for mediating cellular targeting and transport. Third, polymer carriers are highly tunable for incorporating dynamic structural transitions (such as degradation and disassembly) in response to biological stimuli (such as pH and redox state), in order to modulate transport and environment-specific release of DNA. Finally, in some sense, polymers are the ultimate bio-inspired gene carriers: they resemble viral
ACS Paragon Plus Environment
4
Page 5 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
capsid proteins and nuclear histones in eukaryotic cells, but with structural diversity far exceeding that of natural proteins. This review is dedicated to the discussion of polymers as nano-scale carriers for DNA vaccine. After an analysis of multi-level hurdles for DNA vaccine delivery, we summarize recent advances in polymer science and engineering to overcome these hurdles. We conclude with thoughts on challenges and opportunities that may shape the future of polymers in DNA vaccination. 2. Overcoming hurdles Multiple hurdles must be overcome for DNA vaccine to succeed in generating robust, antigen-specific immune responses in vivo. After DNA is condensed or packaged by polymer and introduced into the body, it must overcome those barriers generic to all gene delivery applications and be able to transfect DCs. Unfortunately, DCs are particularly resistant to the entry of exogenous DNA into the cell nuclei and thus, are very difficult to be transfected by DNA encoding foreign antigens. For this reason, current research on DNA vaccine delivery has focused on overcoming barriers to intracellular delivery of DNA and achieving high transfection efficiency in APCs. In addition, DCs need to process and present the DNA-encoded protein antigen, express high levels of co-stimulatory molecules, and produce immunostimulatory cytokines, so as to prime naïve T and B cells. Here we describe these multitudes of barriers to DNA vaccine delivery and outline general strategies to overcome them. 2.1 Gene transfection 2.1.1 Extracellular delivery
ACS Paragon Plus Environment
5
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 56
The lymphatic system, including lymph nodes (LNs), spleen, and mucosaassociated lymphoid tissue (MALT), where T and B lymphocytes reside, is the main locale for immune activation and response toward foreign antigen. Extracellular hurdles that a DNA vaccine carrier may face depend on which type of lymphatic organ and tissue it is designed to target, and this will dictate the choice of route of vaccination. An overview of these target tissues and organs, the hurdles they pose, and potential polymerbased delivery approaches to overcome them, is given in Figure 1. 2.1.1.1 Lymph nodes (LNs) LNs are specialized peripheral lymphatic organs distributed widely throughout the body. Lymphocytes are preserved in distinct layers inside the LNs, where they are stimulated by antigens and can generate antigen-specific immune responses. LNs are the final destination of DNA vaccine administered to the skin and muscle through microneedles, intradermal injection, subcutaneous injection, intramuscular injection, electroporation, gene gun, etc. During the course of vaccination, the majority of the DNA vaccine carriers may be taken up by cells at the site of administration (such as dermal fibroblasts and myocytes), which could lead to expression of the DNA-encoded antigen. If the expressed antigen is released from these cells, it may be captured by DCs at the injection site and reach the draining LNs. Alternatively, DNA vaccine carriers may transfect directly Langerhans cells in the epidermis, or drain directly into the LNs and transfect resident DCs there.
ACS Paragon Plus Environment
6
Page 7 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
Figure 1. Extracellular hurdles of DNA vaccine delivery and polymer-based strategies to overcome them. Abbreviations: NALT (nasal associated lymphoid tissue); BALT (bronchus associated lymphoid tissue); GALT (gut associated lymphoid tissue); i.n. (intranasal administration); p.o. (oral administration); i.m. (intramuscular administration); i.v. (intravenous administration); i.d. (intradermal administration); s.c. (subcutaneous administration); APCs (antigen-presenting cells); RES: reticulo-endothelial system.
ACS Paragon Plus Environment
7
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 56
Engineering the physico-chemical properties of DNA vaccine carriers and selecting the appropriate route of vaccination may enhance the capture of DNA vaccine by cells and facilitate lymphatic drainage and immune activation. Particle size, surface charge and colloidal stability of the DNA vaccine carriers can influence the transport of DNA and the ultimate type of immune responses. In general, particles of 9-10 nm in diameter will rapidly drain to the LNs through lymph ducts, whereas particles smaller than 6 nm will enter directly into the blood circulation. Particles larger than 500 nm may be trapped in the extracellular matrix of the injection site, captured through phagocytosis or macropinocytosis by peripheral DCs or monocytes from the blood, which bias toward eliciting humoral immunity. On the other hand, particles of 20-200 nm in size are expected to drain into the LNs and to be captured by resident DCs and macrophages, which bias toward eliciting Th1 type immune response38. DNA vaccine carriers with neutral or negatively charged surface are easier to drain into the LNs, whereas positively charged carriers may interact electrostatically with negatively charged extracellular matrix that impedes lymphatic drainage39. Moreover, modification of carriers with certain moieties may actively engage APCs and enhance lymphatic retention. Studies have indicated that polymers conjugated with specific ligands for APC surface receptors, such as Fc receptors, CD40, C-type lectins (DC-SIGN, DEC-205, mannose receptor, etc), can help increase lymphatic drainage40-42. Currently the most widely investigated strategy to improve polymer/DNA vaccine delivery to APCs is the use of mannosylated polymers, which has been shown to promote the generation of immune responses43-45. 2.1.1.2 Spleen
ACS Paragon Plus Environment
8
Page 9 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
The spleen is the body’s largest lymphatic organ and is structurally separate from the lymph ducts. While the LNs are responsible for immune responses toward antigens that drain through the lymph, it is the spleen that responds to antigens coming through the blood circulation. Therefore, the spleen is the major destination of DNA vaccine carriers administered via intravenous injection. The carriers are expected to travel through the blood circulation to reach the spleen and transfect DCs or macrophages in the spleen. During this process, the carriers should avoid interacting with blood components (such as plasma proteins and red blood cells), because it might cause aggregation or dissociation of polyplexes, depending on particle size and surface charge. The carriers also need to avoid opsonization by IgG, complement proteins as well as proteins of the blood coagulation cascade. Otherwise, it could lead to rapid clearance by the mononuclear phagocytotic system (MPS) and even activation of the innate immune responses, resulting in acute inflammation and causing severe acute renal and hepatic toxicity46. However, it should be noted that complement activation by polymer carriers with certain surface chemistry could be exploited to enhance the immune responses against antigens47. Nonetheless, in addition to particle size and surface charge, maintaining colloidal stability of DNA vaccine carriers is key to retention in the spleen and cellular uptake. For example, covalent conjugation with biocompatible hydrophilic polymer (such as PEG)44,48-50 and chemical crosslinking51-52 are effective approaches to stabilize polymer carriers and prolong their circulation during systemic administration. Besides spleen targeting, it may be desirable to target DNA vaccines directly to numerous types of circulating lymphocytes by incorporating cell-specific ligands to the carriers. 2.1.1.3 Mucosa-associated lymphoid tissue (MALT)
ACS Paragon Plus Environment
9
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 10 of 56
The MALT is a diffuse system of small clusters of lymphoid tissue found in sites in the epithelium and sub-mucosa (lamina propria) of the gastrointestinal tract, respiratory tract, salivary glands, genitourinary tract, and includes those containing germinal centers such as the thyroid, Peyer’s patches of the small intestine, the appendix, etc. Thus, the MALT can be subdivided into GALT (gut-associated lymphoid tissue), BALT (bronchus-associated lymphoid tissue), NALT (nasal-associated lymphoid tissue), LALT (larynx-associated lymphoid tissue), and so on. The MALT contains a plethora of immune cells and is the main location where mucosal immunity is induced. For DNA vaccine delivered through intranasal, oral, buccal/sublingual, pulmonary, and vaginal routes, the MALT is the destination. To illustrate the hurdles to DNA vaccine delivery posed by the MALT, consider the intranasal route. DNA vaccine carriers must be able to penetrate mucus and reach the NALT through epithelial cells or M cells (microfold epithelial cells). M cells are single layer of epithelial cells above the NALT and are responsible for sampling antigens in the lumen for presentation to B and T cells in the mucosal tissue53-55. M cells can translocate particles as large as several microns, and thus, the size of the DNA vaccine carriers (too large or too small) may not be a significant constraint for cellular uptake. However, quick turnover of mucus in the nasal cavity may remove the vaccine carriers. Several approaches have been proposed to improve intranasal vaccine delivery through engineering carrier properties. One, surface modification with PEGylated polymers may enable better diffusion through the nasal mucosa and make them available for acquisition by APCs or epithelial cells48. Two, using mucoadhesive polymers as carriers will increase the retention time on mucosal tissue surface. Third, modification of carrier surface with
ACS Paragon Plus Environment
10
Page 11 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
M cell specific ligands was shown to target DNA vaccine to mucosal tissue and respiratory epithelium with improved immune responses56. Furthermore, it may be worthwhile borrowing from certain protein-based vaccine strategies to incorporate heparin-binding hemagglutinin adhesion (HBHA) protein to promote binding between DNA vaccine carriers and epithelial cells57. Similar to intranasal delivery, DNA vaccine delivered orally by swallowing – once reaching the intestinal wall – must overcome tissue barriers to reach the GALT. A difference, however, is that orally delivered DNA vaccine has to survive the hostile environment of the gastrointestinal tract, which includes the extreme acidic pH in the stomach (pH 2), intestinally secreted nucleases for digesting nucleic acid in food, bile salts, and gut microbiota. It is thus imperative to use highly stable polymers to protect DNA vaccine from hydrolytic and enzymatic degradation. Co-delivery of agonists of tolllike receptors 2 and 4 can also enhance the absorption of DNA vaccine carriers by the intestinal mucosa58-59. 2.1.2 Cellular uptake DNA vaccine carriers arriving at the lymphoid tissues of the skin, muscle, LNs, spleen, and MALT, will need to be captured and internalized by immune cells 60. Given that there are already a large number of studies elucidating the uptake mechanism of particles by various cell types61-62, here we only discuss those factors that influence the uptake of DNA vaccine carriers by APCs (Figure 2). APCs capture particulates through receptor-mediated or non-receptor-mediated endocytosis. Receptor-mediated endocytosis can be mediated by clathrin, caveolin, or be independent of clathrin and caveolin63, and is triggered by a variety of molecular entities
ACS Paragon Plus Environment
11
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 12 of 56
such as serum-transport proteins, transferrin, hormones, growth factors, antigens and viruses64. Targeting receptor-mediated endocytosis of APCs by using carriers bearing APC-specific ligands (such as mannose, anti-DEC205 antibodies, Fc receptor antibodies) has been demonstrated to improve cell specificity and transfection efficiency of DNA vaccine2, 65. Moreover, particle size of carriers also influences the pathway of uptake and can lead to different immune responses63. Studies have revealed that inert particles of 40100 nm in size are prone to be internalized by DED205+ DCs, whereas 1-µm size particles are preferred by F4/80+ macrophages. Particles with size similar to viruses (20200 nm) are particularly attractive to DCs66.
ACS Paragon Plus Environment
12
Page 13 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
⑩ T cell activation
① Receptor-mediated endocytosis
② Non receptor-mediated endocytosis
•Co-delivery of DNA with molecular adjuvants
• Conjugation cell-specific targeting moieties
•Particle size & shape
•“Smart” polymers for subcellular targeted delivery of immunomodulatory agents
•Surface charge
①
•Conjugation to cell penetrating peptides
•Co-delivery of gene-based adjuvants
②
•Co-delivery of antiapoptotic agents macropinocytosis Secret antigen
Transfection of bystander cells
phagocytosis
③
③ Endosomal escape
⑥ Transcription
• pH-sensitive “protonsponge” polymers
④
⑦ ⑧
⑤
⑥ Antigen processing & presentation
• pH-sensitive membrane lytic polymers and peptides
CD8+ T cell
④ DNA dissociation
CD4+ T cell
•Promote cross-presentation via bystander cells ⑨
• Backbone or side chain degradable polymers • pH or redox or enzyme sensitive polymers
•Recombinant DNA approaches to promote MHC I ⑦ & II ⑧ pathways
⑤ Nucleus entry
•Co-delivery of antiapoptotic signals
• Conjugation to nuclear localization signals • Manipulation of cell cycle
Plasmid
Intracellular antigen
Proteasome
MHC class I
Endoplasmic Reticulum
Costimulator
Nanoparticle
Extracellular antigen
Peptide
MHC class II
T cell receptor
Costimulator receptor
Figure 2. Cellular and subcellular hurdles to DNA vaccine delivery and polymer-based strategies to overcome them. Non-receptor-mediated endocytosis includes macropinocytois and phagocytosis, and particle size is a significant factor in the pathway of uptake. Carriers with particle size of 0.5-5 µm can be taken up by APCs through both macropinocytosis and phagocytosis, whereas particles larger than 5 µm are mainly taken up through phagocytosis. Both pathways eventually lead to acidic subcellular vesicles and fusion
ACS Paragon Plus Environment
13
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 14 of 56
with lysosome61 that expose DNA vaccine to damage and destruction. It has been reported that DNA vaccine carriers conjugated to certain cell-penetrating peptides, such as MPG, could enhance cellular uptake, potentially through non-receptor-mediated pathways, and result in better immune responses67. Regardless of whether receptors are involved, surface charge and shape of vaccine particles have much impact on cellular uptake. Interestingly, both cationic and anionic carriers can be taken up by phagocytic cells68. Electrostatic interaction between cationic carriers and glycoproteins in the cell membrane favors cellular uptake69, but could also cause cytotoxicity associated with membrane damage and apoptosis, which leads to inflammation70. How to strike a balance between enhancing cellular uptake and avoiding cytotoxicity is crucial in designing the proper cationic DNA vaccine carriers. Equally important is the shape of carriers. Optimal phagocytosis requires a particle shape with high length-normalized curvature71. Cellular uptake of spherical particles is higher than particles of other shapes, because nonspherical particles with odd geometries do not engage cells that facilitate the formation of actin filaments requisite for phagocytosis72. 2.1.3 Intracellular delivery and antigen expression Polymer/DNA vaccine complexes internalized by APCs must traverse several intracellular barriers to transfect cells that express antigen (Figure 2). First, DNA vaccine carriers must either avoid or escape from the acidic phagosome. Several polymer designs are known to be effective in mediating endosomal escape via different mechanisms. These include PEI and poly(amidoamine)s that may cause leakage in endo-lysosomes due to the “proton sponge” effect73, and membrane-lytic polymers (such as poly(propyl acrylic acid) and fusogenic peptides), whose pH-sensitive conformational changes can
ACS Paragon Plus Environment
14
Page 15 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
alter cell membrane structure in ways that leaky holes can form74-76. Second, the release of antigen-encoding plasmid DNA from its carrier must be accomplished along the way of transit to the cell nucleus. Various polymer chemistries have been tested for promoting intracellular release of cargos. These include endosomal pH triggered degradation of polymer backbone or side chain77-84, pH triggered polymer solubilization85, reduction of disulfide linkages86 and enzymatic degradation of polymer carriers87. Finally, the entry into the cell nucleus often relies on cell division to breach the nucleic membrane88. In nondividing cells, plasmid DNA larger than 2000 base-pairs may require coupling to nuclear localization signals (NLS) to be transported into the nucleus. Some studies showed that NLS coupling was helpful in enhancing gene transfection efficiency89-92, but others suggested that NLS didn’t seem to have much positive enhancement93-95. At this point the jury is still out there in terms of the necessity and benefit of the NLS. Nevertheless, nuclear entry is perhaps the most challenging intracellular hurdle for DNA vaccine delivery, because the target cells, primarily immature DCs, may not be actively dividing. Furthermore, as DCs undergo phenotypic maturation, intracellular transport processes of DNA vaccine are surely affected, but how and to what degree, remain unknown. 2.2 Immune activation 2.2.1 Antigen processing and presentation DCs use two main pathways for antigen presentation that are mediated by either MHC I or MHC II (Figure 2). When DCs are transfected directly by DNA vaccine, antigens are produced in the cytoplasm and mainly processed via the MHC I pathway. During antigen synthesis, some of them are labeled by ubiquitin. Ubiquitinylated antigens
ACS Paragon Plus Environment
15
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 16 of 56
are digested into polypeptides by proteases and translocated to the ER (endoplasmic reticulum) by TAP (Transporter Associate with antigen Processing), where they are further cut into 8-10 residue peptides, loaded onto MHC I and transported to the cell membrane for engaging CD8+ T cells. If DNA vaccine happens to transfect bystander cells (i.e. nonphagocytic somatic cells), expressed antigen may be released and captured by DCs (Figure 2). These DCs may process the acquired antigen either by crosspresentation or by MHC II mediated pathway. Cross-presented antigen will be processed and presented by MHC I on the cell surface as described above. For the MHC II pathway, the antigen is localized in the lysosome and hydrolyzed into fragments of 20-25 residues, and after fusing with MHC II containing vesicles, the peptides are further processed to 12-15 mers, loaded onto MHC II molecules, shipped to the cell surface for stimulating CD4+ T cells. Thus, whether the direct target of DNA vaccine transfection is APCs or bystander cells may influence the outcome of antigen processing and presentation. 2.2.2 T cell activation The display of MHC-epitope complex on the surface of APCs, often called Signal 1, is responsible for antigen recognition by B and T cells. Also required are Signal 2– DC surface bound co-stimulatory molecules (such as CD80, CD86, CD40), and Signal 3 – secreted cytokines that stimulate T cell differentiation and expansion (such as IL-12 and Type I IFN). These signals are provided by phenotypically mature DCs and are crucial in eliciting immune responses (Figure 2). Molecular adjuvants based on pathogenassociated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) are potent stimuli of DC maturation via pattern recognition receptors (PRRs) such as TLRs. It is recognized that in addition to antigen-encoding DNA, one must
ACS Paragon Plus Environment
16
Page 17 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
deliver molecular adjuvants, preferably through the same carriers, to DCs. Considering that different TLRs are found in different subcellular locations, proper engineering of the polymer carriers is necessary to deliver DNA to the nucleus and adjuvants to TLRs in other organelles96-97. An alternative method is to deliver a single recombinant DNA that encodes both the antigen and the adjuvant (such as GM-CSF)98-102. Another hurdle to T cell activation is that activated DCs have limited life span and will undergo apoptosis to avoid “over-activating” the immune system. Therefore, combined delivery of DNA antigen with apoptosis inhibitors (such as Bcl-xL and Bcl-2) to prolong the survival of DCs and their engagement with T cells will likely boost the effectiveness of DNA vaccine103. 3. Polymer carriers for DNA vaccine delivery Table 1 is a comprehensive list of natural and synthetic polymers used as DNA vaccine carriers along with their intended disease targets and, if tested in vivo, routes of administration and animal species involved. Major classes of these polymers are discussed in detail as follows. 3.1 Natural polymers 3.1.1 Chitosan Chitosan is a natural linear polysaccharide, obtained through deacetylation of chitin found in exoskeleton of Crustaceans. As a copolymer of glucosamine and acetyl glucosamine, chitosan contains large numbers of amino groups that can interact with DNA electrostatically to form polyplexes. It is a widely investigated polymer carrier for gene delivery104.
ACS Paragon Plus Environment
17
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 18 of 56
Chitosan is well known for its mucoadhesive property. Positively charged chitosan/DNA complexes can bind to negatively charged sialic acid residues in mucins found at the surface of nasal mucosa and delay the clearance of polyplexes. Chitosan can also open up tight junctions between epithelial cells and increase transport across the epithelium. Therefore, chitosan has long been regarded as an ideal DNA vaccine carrier for intranasal administration. For example, as reported in 2003, L. Illum et al tested chitosan for intranasal DNA vaccination against Respiratory Syncytial Virus (RSV) and demonstrated protective cytotoxic T lymphocyte (CTL) response in mice105. More recently, M. Fan and X. Yang et al combined chitosan/DNA complexes with anionic liposome into hybrid nanoparticles. It was reasoned that DNA binding to these nanoparticles was depended on pH. Stable binding was expected at intranasal pH of 5.56.5, but electrostatic repulsion within the complexes favored DNA release at cytoplasmic pH of 7.2-7.6 after cellular internalization, thus promoting gene transfection efficiency. Intranasal immunization with an anti-caries DNA vaccine formulated with the hybrid nanoparticles led to absorption by the nasal mucosa, the secretion of IgA, and a longlasting (12-week) immune response in vivo106. It should be noted that the molecular weight (MW) of chitosan significantly affects transfection efficiency of DNA vaccine. L. Zong et al compared chitosan with high (173 kDa) and low (5 kDa) molecular weights in delivering DNA vaccine to treat atherosclerosis. They found that the low MW chitosan had higher in vitro transfection efficiency than the high MW polymer. Intranasal vaccination with the low MW chitosan DNA vaccine induced systemic immune responses and delayed sclerotic process through modulating plasma lipoprotein in a high-cholesterol rabbit model107. However, low MW
ACS Paragon Plus Environment
18
Page 19 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
chitosan/DNA complexes may be unstable in vivo due to weaker binding between the polymers108. Chitosan has been modified with mannose for targeting mannose receptor of APCs. W. Kong et al prepared microspheres of mannosylated chitosan encapsulating PEI/DNA complexes to enhance the uptake by DCs. As a result, CTL response was achieved at reduced, safer vaccine dose109. L. Zong et al used mannosylated chitosan to carry a DNA vaccine targeting gastrin-release peptide and demonstrated enhanced uptake by macrophages via C-type lectin binding. Compared with unmodified chitosan and naked DNA vaccine, mannosylated chitosan was a more effective carrier in suppressing the growth of prostate tumor in mice110. J. Singh et al synthesized mannosylated phenylalanine grafted chitosan to complex with DNA encoding HBV antigen. Enhanced cellular uptake and transfection were demonstrated in vitro using macrophages (RAW 264.7) and DCs (DC 2.4). Intradermal vaccination of the polyplexes stimulated T cell proliferation and maturation as well as humoral immune response in mice43. In addition to mannose, other chemical modifications have been made to chitosan for APC targeting. For example, S. Heuking et al conjugated a TLR7 agonist to chitosangraft-PEG. In vitro experiments showed that conjugated polyplexes stimulated human THP-1 macrophages to secrete IL-8, which plays a role in leukocyte recruitment and chemotaxis to the mucosal site of infection111. K. Kaur et al evaluated biotinylated chitosan nanoparticles decorated with streptavidin-antibody fusion protein to target DEC205+ DCs. Intranasal vaccination resulted in DC maturation and elevated levels of mucosal IgA and systemic IgG112.
ACS Paragon Plus Environment
19
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 20 of 56
Coupling chitosan with other polymers through chemical or physical means presents new opportunities. J. Gao et al conjugated chitosan with PEI chemically and showed transfection of DCs and modest suppression of B16 melanoma in animals113. Chitosan nanoparticles coated with alginic acid were prepared by X. Tan et al for oral delivery of DNA vaccine. Alginic acid coating improved stability of polyplexes under gastric pH (1.5). Tumor suppression and CTL response were observed in a mouse breast cancer model114. In summary, much promise is seen with chitosan, in particular for mucosal delivery of DNA vaccine115. Modification of chitosan to reduce solubility at gastric pH may expand the usage of this polymer in oral DNA vaccination116. 3.1.2 Other polysaccharides Besides chitosan, other natural polysaccharides have also found use in DNA vaccination. For example, X. Zeng et al demonstrated that Astragalus polysaccharides (APS), an adjuvant of Hepatitis B virus (HBV) DNA vaccine (pcDS2), could enhance the humoral and cellular immune responses with increased IgG level as well as T cell proliferation. Compared to naked DNA, the addition of APS enhanced IFN-γ expression byCD8+ T cells, and induced CD4+ T cells to produce IL-4, IL-2 and IFN-γ. Moreover, APS also induced robust CTL, stimulated DC maturation, and decreased regulatory T cell level117. C. Letellier et al used agarose hydrogel for encapsulation and sustained release of DNA vaccine against Herpesvirus. Antibody response was demonstrated in cattle after intradermal implantation of the vaccine without the need of using osmotic pump118. 3.2 Synthetic polymers 3.2.1 Polypeptides
ACS Paragon Plus Environment
20
Page 21 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
As one of the earliest synthetic cationic gene carriers, poly-L-lysine (PLL) has already been explored for DNA vaccine delivery57,129. More recently, M. Plebanski et al condensed a plasmid encoding chicken egg ovalbumin (OVA) with PLL-coated polystyrene nanoparticles. The obtained complexes could induce high levels of CD8+ T cells and OVA-specific antibodies in C57BL/6 mice as well as significant inhibition of tumor growth after challenge with the OVA expressing EG7 tumor cells119. On the other hand, the anionic poly (γ-glutamic acids) (γ-PGA) was used by H. Sasaki et al to coat the surface of PEI/DNA complexes. The negatively charged γ-PGA could reduce the high liver toxicity of the cationic PEI. After intravenous injection, the γ-PGA-coated complexes showed selectively high transgene expression in the marginal zone of the spleen, where DCs and macrophages are abundant, and delivered a therapeutic DNA vaccine that significantly inhibited the growth and metastasis of B16-F10 melanoma cells120. In the last few years, K. Nakano and K. Kataoka et al introduced a simple but elegant carrier system based on polyplexes of DNA with mixture of a homopolymer of cationic polyaspartamide P[Asp(DET)] and a block copolymer PEG-b-P[Asp(DET)]121122
. The ratio between the homopolymer and block copolymer was optimized for DNA
complexation, stability against nonspecific clearance, and transfection efficiency of cells. The polyplexes containing DNA encoding a tumor antigen SART3, adjuvants CD40L and GM-CSF, was administered i.p. and shown to prolong survival of animals bearing CT26 colon carcinoma through suppression of tumor growth and metastasis121. Subsequently, these researchers compared the performance of the vaccine given through different routes (Figure 3). It was found that s.c. injected polyplexes were localized in the
ACS Paragon Plus Environment
21
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 22 of 56
inguinal LN and the skin, whereas i.p. injected polyplexes were found in the mesenteric LNs, the liver and spleen, and positive gene transfection was detected from both routes. In contrast, i.v. injected polyplexes and electroporation did not produce detectable gene expression, perhaps due to dilution in the blood and limited area of impact. It was the DNA vaccine injected subcutaneously that achieved the most positive immunological and therapeutic responses as measured by tumor growth suppression, animal survival, activation of CTL and NK cells, and tumor infiltration of DCs and CD8/CD4 T cells122.
A
B
C
D
Figure 3. The transgene expression and anti-tumor efficiency of SART3/CD40L/GMCSF gene-loaded homopolymer P[Asp(DET)]/block copolymer PEG-b-P[Asp(DET)]mixed polyplexes in a mouse tumor model. (A) GM-CSF mRNA expression in the indicated tissues after s.c. and i.p. administrations of the polyplexes. (B) Tumor volumes for four weeks. (C) The number of CD11c+ DCs in groin LN, spleen, and tumor tissues. (D) Infiltration of CD4+ and CD8a+ T cells into tumor tissues after s.c. administration of polyplexes. Reprinted with permission from reference 122. Copyright 2015 Elsevier.
ACS Paragon Plus Environment
22
Page 23 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
3.2.2 Degradable polyesters 3.2.2.1 PLGA Perhaps the most popular biodegradable polymer, PLGA is well-known for its safety and track-record in FDA approved product applications123. Earlier studies showed that PLGA microspheres could encapsulate DNA plasmid and target APCs passively to induce CTL-mediated immune response124-125. Such microsphere DNA vaccines could be given orally and parenterally through injection, which induced mucosal and systemic antibody responses and antitumor responses126-130. This delivery system is also effective in antiviral applications such as in the case of delivering prophylactic DNA vaccine against foot-and-mouth disease virus (FMDV)131. PLGA alone does not carry any positive charges. Simple encapsulation of DNA into PLGA may lead to DNA degradation due to acidic polymer degradation products. Transfection efficiency of pure PLGA/DNA microspheres is low132. A popular and successful strategy is to combine PLGA with a cationic molecule, through physical mixing, adsorption, or chemical conjugation, in order to improve DNA loading, stability, and transfection efficiency. Numerous cationic surfactants and polymers have been used in this context, such as dimethyldioctyldecyl ammonium bromide (DDA) through mixing 133
, cetyl trimethylammonium bromide (CTAB) through surface adsorption 134-136, PEI
through blending137-138or chemical conjugation139-140, chitosan through blending141, glycol chitosan by coating of PLGA nanoparticles142, dendrimers through emulsified blending143, and cationic poly(β-aminoesters) (PBAE) through layer-by-layer coating onto PLGA microneedles144. These binary polymer systems have been extensively examined for
ACS Paragon Plus Environment
23
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 24 of 56
DNA vaccine delivery in vitro as well as in numerous animal disease models with promising results. 3.2.2.2 Other polyesters PBAE and poly(ortho esters) (POE) are two types of acid-labile biodegradable polymers investigated for DNA vaccine delivery. There is much tunability in both types of polymers through adjusting monomer type and ratio145-146, polymerization pathway147, introducing targeting ligand45, control of hydrophilicity and degradation rate, and so on. Similar to PLGA, these polymers can be readily processed into various physical forms including microparticles148, nanoparticles149, and microneedle arrays150. C. Wang et al and S. Little et al were the first to demonstrate that acid-labile POE148 and PBAE/PLGA151 microspheres could be used to carry DNA vaccine to APCs and induce robust immune responses in healthy and tumor-bearing animals. The rationale was based on accelerated degradation of microspheres and release of DNA vaccine in response to the acidic environment of the phagosomes of APCs, potentially synchronizing DNA delivery with the maturation of transfected cells. Subsequently, a variety of modifications to these polymers have been explored, including physical blending with PEI152, layered deposition with PLGA and adjuvant poly(I:C) 150, and changes in composition of polymer backbone146. An interesting recent development is a library of mannosylated PBAE by B. A. Pfeifer et al that produced optimized polymer composition for targeted delivery of APCs153 and strong humoral immune response in vivo without exogenous adjuvant44. Furthermore, these novel synthetic polyesters have been used to construct hybrid delivery systems by coating the surface of bacterial cells with promising results in animal models154-155.
ACS Paragon Plus Environment
24
Page 25 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
3.2.3 PEI Well-known for its “proton sponge” mechanism of endosomal escape, PEI (particularly the branched polymer of 25 kDa) has long been the “gold standard” of polymeric gene carriers115, 156. Interestingly, PEI alone was found to have some immunostimulatory effect, as demonstrated in animals after intratracheal157, subcutaneous158, and intranasal delivery159 of antigen-encoding DNA. At least part of this effect is attributed to PEI induced cytotoxicity, as demonstrated by C. Wang et al that moderate cell death due to exposure to PEI might be exploited for promoting DC crosspresentation of antigen produced by transfected bystander cells, leading to activation of CD8+ T cells. Such intrinsic immunostimulatory property combined with high transfection efficiency have made PEI an attractive DNA vaccine carrier160. Multiple molecular designs of PEI, including the hyperbranched structures, have been explored for DNA vaccine delivery. J. F. S. Mann et al synthesized dPEI (a nearly fully hydrolyzed linear PEI with 11% additional free protonatable nitrogen atoms) with reduced toxicity compared to regular PEI. They used dPEI to deliverDNA vaccine through the pulmonary route and detected mucosal and systemic immune responses against influenza challenge161. E. V. Grant et al examined several linear PEI with different structures and found that physical properties of the PEI/DNA complexes correlated with immunogenicity of the vaccine. Interestingly, CD8+ T cell responses inversely correlated with particle size of the polyplexes but positively correlated with surface charge. Further, their study showed that i.v. injection of polyplexes was more effective than i.m. injection in inducing gene expression in secondary lymphoid organs and CD8+ T cell responses162. Yet a separated study on poly(propylenimine) (PPI)
ACS Paragon Plus Environment
25
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 26 of 56
dendrimer with a structure analogous to PEI showed effectiveness in i.m. delivery of DNA vaccine163. Direct comparison among studies like these is difficult, given the diverse chemical structure of the polymers, type of vaccine, and choices of animal models. PEI has been extensively modified with small molecule ligands and other polymers through covalent conjugation, aiming to achieve cell specific targeting, reduce toxicity, and enhance transfection. E. R. Tőke et al have shown that mannose-PEI conjugate formed nanoparticles of 50-240 nm in size with plasmid DNA. These virus-like particles were able to enter Langerhans cells (LCs) through receptor-mediated endocytosis and be transported to the draining LNs by the LCs164. In fact, PEIm is the only polymer carrier used in a DNA vaccine product (DermaVir) being clinically tested165. A. David et al synthesized multivalent mannose ligands and modified PEI through a PEG spacer. Subcutaneous injection of the polyplexes achieved targeted cellular uptake and higher transfection of CD11c+ DCs in the inguinal LNs than nontargeted polyplexes44. Similar strategy was employed by the same group in PEI modification with a DC targeting peptide (DC3) 166. Another study incorporated mannose and deoxycholic acid dual modified PEI into polyelectrolyte multilayer assembly films for cutaneous delivery of DNA vaccine167. Finally, modification of low MW PEI (600 Da) with cationic cell-penetrating Tat peptide was also effective in intracellular delivery of DNA vaccine and eliciting humoral and cellular immune responses after s.c. injection168. More recently, cyclodextrin-modified PEI/DNA polyplexes were used to coat live attenuated bacteria for delivering a DNA tumor antigen VEGFR2 orally and achieved antitumor effect169.
ACS Paragon Plus Environment
26
Page 27 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
3.2.4 Vinyl polymers Vinyl polymers can be easily synthesized by various radical polymerization methods, achieving broad diversity of well-defined architectures, compositions and functionalities. Therefore, they are perfect model polymers for structure-function relationship studies. In addition, practical application of vinyl polymers as DNA vaccine carriers may also be explored. Varieties of vinyl polymers tested for DNA vaccine delivery range from corecrosslinked particles to linear water-soluble polymers. Back in 2004, J. M. J. Frechet et al. prepared acid-labile crosslinked acrylamide-based microspheres by free radical polymerization, which were used for condense DNA. The encapsulated DNA can transfect and activate RAW264.7 macrophages, leading to secretion of IL-6 with a response 40-fold higher than the naked plasmid170. A more recently example is microgel particles whose vinyl polymer side-chains hydrolyze to convert positive charges to zwitterions, thus facilitating the delivery of DNA to macrophages171. Core-shell cationic nanoparticles consisting of vinyl polymers were prepared by A. Caputo et al. using emulsion polymerization. The inner core was polymethylmethacrylate (PMMA) and the shell was poly(2-(dimethyloctyl) ammonium ethyl methacrylate bromine) and PEG. HIV DNA vaccine was condensed into the nanoparticles via electrostatic interactions. Intramuscular immunizations of the complexes followed by protein boosts in BALB/c mice induced significant antigen-specific humoral and cellular responses, and greatly increased Th1-type T cell responses and CTLs against HIV 172. T. H. Young et al prepared five kinds of PMMA particles with different size and surface charge. The ones with positively charged surface and larger size (460±160 nm) showed stronger immune
ACS Paragon Plus Environment
27
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 28 of 56
responses than other particles. They stimulated the highest level of TNF-α production by transfected macrophages cell line J774A.1 in vitro without inducing significant IL-6 production, demonstrating potential advantage of using PMMA particles as adjuvants for DNA vaccination 173. Water-soluble block copolymers PEG-b-poly(dimethylaminoethyl methacrylate) (PDMAEMA) were synthesized by A. Dong et al using atom transfer radical polymerization (ATRP) and used to condense HIV DNA vaccine into polyplexes with size of 150 nm. After intranasal administration in mice, the polyplexes enhanced the priming effect of the vaccine and stimulated cytokine secretion by mouse macrophages48. Homopolymers of 2-aminoethyl methacrylate (PAEM) bearing primary amines on the side chains were synthesized by C. Wang et al using ATRP. The effect of polymer chain length on DC transfection, DC maturation, and CD8+ T cell activation by a model OVA DNA vaccine was investigated174. Subsequently, PAEM homopolymer was compared with PEG-b-PAEM block copolymer with equivalent cationic segment in terms of DNA complexation capacity and distribution in the skin after s.c. injection. Both polyplexes formed depots at the injection site that persisted for days, allowing engagement and transfection of APCs and dermal fibroblasts. PEGylated polyplexes showed higher colloidal stability and broader tissue distribution than non-PEGylated polyplexes49. A potential weakness of vinyl polymers as practically useful DNA vaccine carriers is that their carbon-carbon backbone chains are not biodegradable. The possibility of synthesizing biodegradable vinyl polymers with similarly exquisite structural control remains to be explored. 3.2.5 Dendrimers
ACS Paragon Plus Environment
28
Page 29 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
Cationic dendrimers represent another family of polycations that have been extensively investigated as gene carriers. Compared to linear polycations, dendrimers typically have higher cationic charge density, more globular shape, and higher DNA binding and gene transfection efficiency. The chemical structure of dendrimers can be easily tuned and adapted for many gene delivery applications175. Recent examples of using dendrimers for DNA vaccine delivery include genenration-4 poly(propyl ether imine) (PETIM) dendrimer for stimulating production of neutralizing antibody in mice against rabies176, generation-4 polyamidoamine (PAMAM) dendrimer modified with lysine for DNA vaccination against S. japonica infection177, and generation-5 PAMAM dendrimer-MHC-II-peptide conjugate as a universal APC-targeted plartform showing efficacy in vivo animal against established tumors231.
4. Concluding remarks Published studies on polymer mediated DNA vaccine delivery have largely focused on a few major types of polymers that include chitosan, degradable polyesters, synthetic polypeptides, PEI, nondegradable vinyl polymers, PAMAM dendrimers, and some nonionic block copolymers. Much progress has been made toward developing effective polymer carriers that show promise in enhancing the efficacy of DNA vaccine both in vitro and in vivo. Studies in the past have established several unequivocal benefits of using polymers as DNA vaccine carriers in comparison to naked DNA or lipid-based carriers. One, polymers can protect DNA from degradation by complexation or encapsulation, thus prolonging the in vivo lifetime of the DNA. Two, compact, nanoscale polyplexes can be internalized by phagocytic APCs through various pathways much
ACS Paragon Plus Environment
29
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 30 of 56
efficiently than naked DNA. Three, polymers can form depots after local vaccination and provide sustained supply of antigen, resulting in more robust immune responses. Four, conjugation of polymer carriers to specific targeting ligands can lead to enhanced uptake by APCs. Five, composition, architecture, size, surface charge of polymer carriers can be tuned to have profound influence on transfection efficiency of APCs and immune responses. Despite such progress, clinical translation of polymer mediated DNA vaccination has been slow. To our knowledge, currently there is only one DNA vaccine formulation in clinical trial that involves a polymer as delivery system (DermaVir, mannosylated PEI)115. The paucity of viable polymer candidate for clinically relevant DNA vaccination suggests that there is much to be learned about the fundamental science of polymer based DNA vaccine delivery, before robust, practical technologies can emerge. Two outstanding problems of current polymer carriers are apparent. The first is the lack of sufficient transfection efficiency of APCs in vivo. DCs are notoriously difficult to transfect, both because of its intrinsic resistance to foreign DNA and its rarity in the body. Localized delivery to DC-rich tissues and organs has achieved some success, but the appealing idea of cell-specific targeting through systemic delivery remains elusive. Without sufficiently high level of antigen expression in the right type of APCs, there is the risk of inducing anergy or even immune tolerance. The second problem is the lack of intrinsic immunogenicity of DNA vaccine. While the use of adjuvants along with DNA vaccination is widely practiced, such approaches have yet to live up to their full potential in jump-starting the immune system, largely due to poor choices of adjuvant and suboptimal delivery.
ACS Paragon Plus Environment
30
Page 31 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
It is our opinion that future research effort needs to focus on increasing our understanding of structure-function relationship in polymer mediated DNA vaccine delivery, in light of searching for solutions to overcome multitudes of hurdles in delivery. One aspect of structure-function relationship is the interaction between polymer carriers and immune cells. A potentially fruitful approach is to synthesize structurally welldefined polymer carriers using tools such as controlled polymerization and click reactions, and characterize systematically the uptake and intracellular trafficking dynamics in DCs. This approach may identify rate-limiting processes in antigen expression and presentation and reveal critical structural features of polymers that have impact on these processes. It is important to note that biological state of the target cells may have unexpected influence on antigen expression and presentation. For example, cell death by apoptosis may reduce antigen expression level and limit the duration of DC engagement with naïve T cells necessary for immune activation. However, cell death by necrosis may facilitate cross-presentation by releasing endogenous danger signals that promote immune activation. Furthermore, autophagy induced by polymer-mediated transfection either augments or reduces antigen expression through currently unknown mechanisms. Finally, phenotypic maturation of DCs confers profound changes in several aspects of cell behavior, such as endocytosis, fusion of intracellular vesicles, and transcriptional activity, all of which are expected to alter polymer mediated DNA delivery to DCs. Understanding the dynamics of DC maturation and gene delivery will provide guidance to designing polymers for synergistic co-delivery of molecular adjuvants and DNA vaccine.
ACS Paragon Plus Environment
31
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 32 of 56
It is vitally important to consider the investigation of structure-function relationship of DNA vaccine delivery in the context of in vivo environment. Clearly, different route of DNA vaccine delivery involves different target tissue sites that vary in anatomical features, cell types and distribution of various cell types, demanding completely different sets of carrier design principles. Thus, polymers that perform well in one delivery route (such as subcutaneous injection) may be completely ineffective in another (such as systemic injection). Ideally, tracking the fate of polymer DNA vaccine carriers should be performed on live animals in real-time. Further, somewhat unconventional routes of delivery, such as intranodal injection and buccal/sublingual vaccination, may be worth exploring.
Acknowledgment C. Wang acknowledges funding from the NIH/NCI (grant R01CA129189).
ACS Paragon Plus Environment
32
Page 33 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
Animal Formulation
Disease
Administration
Ref. model
Natural polymers Chitosan
Chitosan
Chitosan/anionic liposomes Mannosylated chitosan Chitosan-g-PEG Biotinylated chitosan Chitosan-linked PEI Chitosan/PEI Alginic acid-coated Chitosan nanoparticle GNPs-chitosan N-acetylated chitosan N-trimethyl chitosan Albumin-based chitosan
RSV Streptococcus pneumoniae Atherosclerosis Coxsackievirus B3 infection Tuberculosis Toxoplasma gondii Vibrio parahaemolytucus Chlamydia trachomatis Anatid herpesvirus Newcastle disease Viral myocarditis Influenza virus HPV White spot syndrome virus Tumor antigen Leptospirosis Caries HBV Tumor antigen
i.n., pulmonary, p.o., i.m.
Mouse, rabbit, black seabream , duck, chicken, shrimp
i.n.
Mouse
i.m., i.d. i.n.
Mouse, guinea pig
i.n. i.m.
Mouse Mouse
p.o., i.m.
Mouse
i.m. p.o. i.n. p.o.
Mouse Mouse Mouse Mouse
106 43, 109 110, 195 111 112 113 196 114, 197 198 199 200 201
HBV Bovine herpesvirus 1 Melanoma
i.v. s.c. s.c.
Mouse Cattle Mouse
117 118 202
HIV
i.m., i.d., s.c.
Mouse
203
Colorectal cancer
i.p., s.c., i.m.
Mouse
121-
FMDV Model antigen SARS Melanoma Reporter system Breast cancer HBV HBV Model antigen Modal antigen HBV
105, 107, 178194
Other polysaccharides Astragalus polysaccharides Agarose hydrogel Spermine dextran Synthetic polymers Peptides and polypeptides Peptide-based nanofibrous hydrogel P[Asp(DET)]/PEG-b-
ACS Paragon Plus Environment
33
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
P[Asp(DET)] Cell penetrating peptides (MPG, CPP-PEI1800-Man) γ-PGA PEI/γ-PGA PLL-coated PS nanoparticle Cell-penetrating peptides (CPPs) Th1-type epitope peptides
Page 34 of 56
Electroporation
122
HPV
12, 67
s.c., t.c
Mouse
Melanoma Melanoma Malaria Model antigen
i.v., i.p.
Mouse
i.d.
Mouse
120 204 119
HBV
-
-
205
Schistosomiasis
s.c.
Mouse
206
i.p., p.o, i.m., i.d., i.n., intranodal
Mouse, sheep, chicken, nonhuma n primate
96, 126127, 129130, 207214
i.m.
Mouse
Degradable polyesters ---- PLGA
PLGA
PLGA/DDA
Rotavirus HIV Model antigen FMDV HBV Allergic response Tubercolosis Newcastle disease Fungal infection Alphavirus-based measles virus Mycobacterium tuberculosis
PLGA-CTAB
HIV HBV FMDV
i.m.
Mouse, pig
PLGA/PEI PLGA-PEI
Listeria monocytogenes HIV Model antigen
i.m., pulmonary
Mouse
i.n., gene gun, i.m,
Mouse, chicken
i.m. t.c. -
Mouse Mouse -
i.d. -
Mouse -
i.m., i.d., t.c.
Mouse
s.c.
Mouse
PLGA-Chitosan PLGA/Chitosan PLGA-PEG/NGR-PEI PLGA-dendron PLGA microneedles PLGA/PBAE
FMDV Model antigen Newcastle disease Model antigen Anthrax Model antigen Model antigen
133 134, 136, 215216 137138, 140, 217 141142, 218 219 143 144 220
Degradable polyesters ---- POE and PBAE Poly(ortho ester) (POE) POE-PEI Poly(beta-amino esters) (PBAE) Mannosylated PBAE
Model tumor antigen Reporter system HIV Modal antigen Model antigen
148 152 146, 150 45
PEI PEI (branched PEI, dPEI, linear PEI)
Model antigen Influenza Model antigen HIV Renal carcinoma
s.c., i.n., pulmonary, i.v., i.m.
Mouse
Mannosylated PEI (mannose-PEI, mannosePEG-b-PEI)
Model antigen HPV
s.c., t.c., i.m.
Mouse, rabbit
ACS Paragon Plus Environment
159, 161162, 221223 44, 164, 167,
34
Page 35 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
Mouse Mouse Mouse
Malaria HPV
s.c. t.c. i.m. i.p., i.m., s.c., i.d. s.c.
Mouse
224 166 168 225 163 226227 228 229
Reporter system
-
-
170
DC-targeting PEI CPP-PEI Pluronic P123-PEI PPI dendrimer
Reporter system HPV HBV HBV
SPIONs-PEI
Malaria
SPIONs/PEI/HA PEI-Tat
Mouse
Vinyl polymers Acrylamide microspheres Hydrolytically degradable polyamine PDMAEMA-PEG-PMMA PMMA
Reporter system
-
-
230
HIV HPV
i.m. Gene gun
Mouse Mouse
PEGylated PDMAEMA
HIV
i.n.
Mouse
PAEM PEG-b-PAEM
Model antigen
i.d., i.m.
Mouse
PDMAEMA-PEG/MMA
HBV Tat
i.m.
Mouse
172 173 48, 231 174, 232 233234
Rabies
i.m.
Mouse
176
S. japonicum infection Model tumor antigens
i.m. s.c.
Mouse Mouse
177 235
Dendrimers Poly(propyl ether imine) (PETIM) (G4) (G4) PAMAM-lys Peptide-PAMAM (G5)
i.m., intramuscular; i.p., intraperitoneal; i.v., intravenous; i.d., intradermal; i.n., intranasal; s.c., subcutaneous; t.c., transcutaneous
Table 1
ACS Paragon Plus Environment
35
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 36 of 56
References 1. Romani, N.; Thurnher, M.; Idoyaga, J.; Steinman, R. M.; Flacher, V., Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy. Immunology & Cell Biology 2010, 88 (4), 424-30. DOI: 10.1038/icb.2010.39. 2. Nguyen, D. N.; Green, J. J.; Chan, J. M.; Langer, R.; Anderson, D. G., Polymeric Materials for Gene Delivery and DNA Vaccination. Advanced Materials 2009, 21 (8), 847-867. DOI: 10.1002/adma.200801478. 3. Robinson, H. L., HIV/AIDS Vaccines: 2007. Clinical Pharmacology & Therapeutics 2007, 82 (6), 686–693. DOI: 10.1038/sj.clpt.6100408. 4. Rice, J.; Ottensmeier, C. H.; Stevenson, F. K., DNA vaccines: precision tools for activating effective immunity against cancer. Nature Reviews Cancer 2008, 8 (2), 108-20. DOI: 10.1038/nrc2326. 5. Bachmann, M. F.; Jennings, G. T., Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nature Reviews Immunology 2010, 10 (11), 787-96. DOI: 10.1038/nri2868. 6. Macgregor, R. R.; Boyer, J. D.; Ugen, K. E.; Lacy, K. E.; Gluckman, S. J.; Bagarazzi, M. L.; Chattergoon, M. A.; Baine, Y.; Higgins, T. J.; Ciccarelli, R. B., First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. Journal of Infectious Diseases 1998, 178 (1), 92-100. DOI: 10.1086/515613. 7. Rabinovich, N. R.; McInnes, P.; Klein, D. L.; Hall, B. F., Vaccine technologies: view to the future. Science 1994, 265 (5177), 1401-1404. 8. Norell, H.; Poschke, I.; Charo, J.; Wei, Z. W.; Erskine, C.; Piechocki, M. P.; Knutson, K. L.; Bergh, J.; Lidbrink, E.; Kiessling, R., Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial. Journal of Translational Medicine 2010, 8 (6), 53-53. DOI: 10.1186/1479-5876-8-53. 9. Rinaldi, M.; Signori, E.; Rosati, P.; Cannelli, G.; Parrella, P.; Iannace, E.; Monego, G.; Ciafrè, S. A.; Farace, M. G.; Iurescia, S., Feasibilty of in utero DNA vaccination following naked gene transfer into pig fetal muscle: Transgene expression, immunity and safety. Vaccine 2006, 24 (21), 4586-4591. DOI: 10.1016/j.vaccine.2005.08.030. 10. Le, T. P.; Coonan, K. M.; Hedstrom, R. C.; Charoenvit, Y.; Sedegah, M.; Epstein, J. E.; Kumar, S.; Wang, R.; Doolan, D. L.; Maguire, J. D.; Parker, S. E.; Hobart, P.; Norman, J.; Hoffman, S. L., Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine 2000, 18 (18), 1893-901. DOI: 10.1016/S0264-410X(99)00407-7. 11. Kutzler, M. A.; Weiner, D. B., DNA vaccines: ready for prime time? Nat Rev Genet 2008, 9 (10), 776-788. 12. Hu, Y.; Xu, B.; Xu, J.; Shou, D.; Liu, E.; Gao, J.; Liang, W.; Huang, Y., Microneedleassisted dendritic cell-targeted nanoparticles for transcutaneous DNA immunization. Polym. Chem. 2015, 6 (3), 373-379. DOI: 10.1039/c4py01394h. 13. Tiriveedhi, V.; Fleming, T. P.; Goedegebuure, P. S.; Naughton, M.; Ma, C.; Lockhart, C.; Gao, F.; Gillanders, W. E.; Mohanakumar, T., Mammaglobin-A cDNA
ACS Paragon Plus Environment
36
Page 37 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
vaccination of breast cancer patients induces antigen-specific cytotoxic CD4+ ICOShi T cells. Breast cancer research and treatment 2013, 138 (1), 109-118. 14. Becker, J. T.; Olson, B. M.; Johnson, L. E.; Davies, J. G.; Dunphy, E. J.; Mcneel, D. G., DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer. Journal of Immunotherapy 2009, 33 (6), 639-647. DOI: 10.1097/CJI.0b013e3181dda23e. 15. Chudley, L.; McCann, K.; Mander, A.; Tjelle, T.; Campos-Perez, J.; Godeseth, R.; Creak, A.; Dobbyn, J.; Johnson, B.; Bass, P., DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency CD8+ T-cell responses and increases PSA doubling time. Cancer Immunology, Immunotherapy 2012, 61 (11), 2161-2170. 16. Trimble, C. L.; Peng, S.; Kos, F.; Gravitt, P.; Viscidi, R.; Sugar, E.; Pardoll, D.; Wu, T. C., A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clinical Cancer Research 2009, 15 (1), 361-7. DOI: 10.1158/1078-0432.CCR-08-1725. 17. Bagarazzi, M. L.; Yan, J.; Morrow, M. P.; Shen, X.; Parker, R. L.; Lee, J. C.; Giffear, M.; Pankhong, P.; Khan, A. S.; Broderick, K. E., Immunotherapy against HPV16/18 generates potent TH1 and cytotoxic cellular immune responses. Science translational medicine 2012, 4 (155), 155ra138-155ra138. 18. Maldonado, L.; Teague, J. E.; Morrow, M. P.; Jotova, I.; Wu, T. C.; Wang, C.; Desmarais, C.; Boyer, J. D.; Tycko, B.; Robins, H. S., Intramuscular therapeutic vaccination targeting HPV16 induces T cell responses that localize in mucosal lesions. Science Translational Medicine 2014, 6 (221), 87-93. DOI: 10.1126/scitranslmed.3007323. 19. Rao, B.; Han, M.; Lei, W.; Gao, X.; Huang, J.; Huang, M.; Liu, H.; Wang, J., Clinical outcomes of active specific immunotherapy in advanced colorectal cancer and suspected minimal residual colorectal cancer: a meta-analysis and system review. Journal of Translational Medicine 2011, 9 (1), 1-11. DOI: 10.1186/1479-5876-9-17. 20. Staff, C.; Mozaffari, F.; Haller, B. K.; Wahren, B.; Liljefors, M., A Phase I safety study of plasmid DNA immunization targeting carcinoembryonic antigen in colorectal cancer patients. Vaccine 2011, 29 (39), 6817-22. DOI: 10.1016/j.vaccine.2010.12.063. 21. Butterfield, L. H.; Ribas, A.; Potter, D. M.; Economou, J. S., Spontaneous and vaccine induced AFP-specific T cell phenotypes in subjects with AFP-positive hepatocellular cancer. Cancer Immunology, Immunotherapy 2007, 56 (12), 19311943. 22. Evdokimova, V. N.; Liu, Y.; Potter, D. M.; Butterfield, L. H., AFP-specific CD4+ helper T-cell responses in healthy donors and HCC patients. Journal of immunotherapy (Hagerstown, Md.: 1997) 2007, 30 (4), 425-37. DOI: 10.1097/CJI.0b013e31802fd8e2. 23. Evdokimova, V. N.; Liu, Y.; Potter, D. M.; Butterfield, L. H., AFP-specific CD4+ helper T-cell responses in healthy donors and HCC patients. Journla of Immunotherapy 2007, 30 (4), 425-37. DOI: 10.1097/CJI.0b013e31802fd8e2. 24. Weber, J.; Boswell, W.; Smith, J.; Hersh, E.; Snively, J.; Diaz, M.; Miles, S.; Liu, X.; Obrocea, M.; Qiu, Z.; Bot, A., Phase 1 Trial of Intranodal Injection of a MelanA/MART-1 DNA Plasmid Vaccine in Patients With Stage IV Melanoma. Journal of Immunotherapy 2008, 31 (2), 215-223. DOI: 10.1097/CJI.0b013e3181611420.
ACS Paragon Plus Environment
37
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 38 of 56
25. Yuan, J.; Ku, G. Y.; Gallardo, H. F.; Orlandi, F.; Manukian, G.; Rasalan, T. S.; Xu, Y.; Li, H.; Vyas, S.; Mu, Z., Safety and immunogenicity of a human and mouse gp100 DNA vaccine in a phase I trial of patients with melanoma. Cancer Immunity Archive 2009, 9 (1), 5. 26. Ginsberg, B. A.; Gallardo, H. F.; Rasalan, T. S.; Adamow, M.; Mu, Z.; Tandon, S.; Bewkes, B. B.; Roman, R.-A.; Chapman, P. B.; Schwartz, G. K.; Carvajal, R. D.; Panageas, K. S.; Terzulli, S. L.; Houghton, A. N.; Yuan, J. D.; Wolchok, J. D., Immunologic Response to Xenogeneic gp100 DNA in Melanoma Patients: Comparison of Particle-Mediated Epidermal Delivery with Intramuscular Injection. American Association for Cancer Research 2010, 16 (15), 4057-4065. DOI: 10.1158/1078-0432.ccr-10-1093. 27. Smith, L. R.; Wloch, M. K.; Ye, M.; Reyes, L. R.; Boutsaboualoy, S.; Dunne, C. E.; Chaplin, J. A.; Rusalov, D.; Rolland, A. P.; Fisher, C. L., Phase 1 clinical trials of the safety and immunogenicity of adjuvanted plasmid DNA vaccines encoding influenza A virus H5 hemagglutinin. Vaccine 2010, 28 (13), 2565-2572. 28. Jones, S.; Evans, K.; Mcelwaine-Johnn, H.; Sharpe, M.; Oxford, J.; LambkinWilliams, R.; Mant, T.; Nolan, A.; Zambon, M.; Ellis, J., DNA vaccination protects against an influenza challenge in a double-blind randomised placebo-controlled phase 1b clinical trial. Vaccine 2009, 27 (18), 2506-12. DOI: 10.1016/j.vaccine.2009.02.061. 29. Smith, L. R.; Wloch, M. K.; Ye, M.; Reyes, L. R.; Boutsaboualoy, S.; Dunne, C. E.; Chaplin, J. A.; Rusalov, D.; Rolland, A. P.; Fisher, C. L., Phase 1 clinical trials of the safety and immunogenicity of adjuvanted plasmid DNA vaccines encoding influenza A virus H5 hemagglutinin. Vaccine 2010, 28 (13), 2565-72. DOI: 10.1016/j.vaccine.2010.01.029. 30. Wang, R.; Doolan, D. L.; Le, T. P.; Hedstrom, R. C.; Coonan, K. M.; Charoenvit, Y.; Jones, T. R.; Hobart, P.; Margalith, M.; Ng, J.; Weiss, W. R.; Sedegah, M.; Taisne, C. d.; Norman, J. A.; Hoffman, S., Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 1998, 282 (5388), 476-480. DOI: 10.1126/science.282.5388.476. 31. Sheets, E. E.; Urban, R. G.; Crum, C. P.; Hedley, M. L.; Politch, J. A.; Gold, M. A.; Muderspach, L. I.; Cole, G. A.; Crowley-Nowick, P. A., Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. American journal of obstetrics and gynecology 2003, 188 (4), 916-926. 32. Klencke, B.; Matijevic, M.; Urban, R. G.; Lathey, J. L.; Hedley, M. L.; Berry, M.; Thatcher, J.; Weinberg, V.; Wilson, J.; Darragh, T., Encapsulated Plasmid DNA Treatment for Human Papillomavirus 16-associated Anal Dysplasia A Phase I Study of ZYC101. Clinical Cancer Research 2002, 8 (5), 1028-1037. 33. Sheets, E. E.; Urban, R. G.; Crum, C. P.; Hedley, M. L.; Politch, J. A.; Gold, M. A.; Muderspach, L. I.; Cole, G. A.; Crowley-Nowick, P. A., Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. American Journal of Obstetrics & Gynecology 2003, 188 (4), 916-26. DOI: 10.1067/mob.2003.256. 34. Klencke, B.; Matijevic, M.; Urban, R. G.; Lathey, J. L.; Hedley, M. L.; Berry, M.; Thatcher, J.; Weinberg, V.; Wilson, J.; Darragh, T.; Jay, N.; Da Costa, M.; Palefsky, J. M.,
ACS Paragon Plus Environment
38
Page 39 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
Encapsulated Plasmid DNA Treatment for Human Papillomavirus 16-associated Anal Dysplasia. A Phase I Study of ZYC101 2002, 8 (5), 1028-1037. 35. Tavel, J. A.; Martin, J. E.; Kelly, G. G.; Enama, M. E.; Shen, J. M.; Gomez, P. L.; Andrews, C. A.; Koup, R. A.; Bailer, R. T.; Stein, J. A., Safety and immunogenicity of a Gag-Pol candidate HIV-1 DNA vaccine administered by a needle-free device in HIV1-seronegative subjects. Journal of Acquired Immune Deficiency Syndromes 2007, 44 (5), 601-605. DOI: 10.1097/QAI.0b013e3180417cb6. 36. Dong, Y.; Yang, J.; Zhang, J.; Zhang, X., Nano-Delivery Vehicles/Adjuvants for DNA Vaccination Against HIV. Journal of Nanoscience & Nanotechnology 2016, 16 (3), 2126-2133. DOI: 10.1166/jnn.2016.10947. 37. Maldonado, L.; Teague, J. E.; Morrow, M. P.; Jotova, I.; Wu, T.; Wang, C.; Desmarais, C.; Boyer, J. D.; Tycko, B.; Robins, H. S., Intramuscular therapeutic vaccination targeting HPV16 induces T cell responses that localize in mucosal lesions. Science translational medicine 2014, 6 (221), 221ra13-221ra13. 38. Manolova, V.; Flace, A.; Bauer, M.; Schwarz, K.; Saudan, P.; Bachmann, M. F., Nanoparticles target distinct dendritic cell populations according to their size. European journal of immunology 2008, 38 (5), 1404-1413. DOI: 10.1002/eji.200737984. 39. Liu, H.; Irvine, D. J., Guiding principles in the design of molecular bioconjugates for vaccine applications. Bioconjug Chem 2015, 26 (5), 791-801. DOI: 10.1021/acs.bioconjchem.5b00103. 40. Apostolopoulos, V.; Thalhammer, T.; Tzakos, A. G.; Stojanovska, L., Targeting antigens to dendritic cell receptors for vaccine development. Journal of drug delivery 2013, 2013. 41. Tacken, P. J.; de Vries, I. J. M.; Gijzen, K.; Joosten, B.; Wu, D.; Rother, R. P.; Faas, S. J.; Punt, C. J.; Torensma, R.; Adema, G. J., Effective induction of naive and recall Tcell responses by targeting antigen to human dendritic cells via a humanized anti– DC-SIGN antibody. Blood 2005, 106 (4), 1278-1285. DOI: 10.1182/blood-2005-010318. 42. Bonifaz, L. C.; Bonnyay, D. P.; Charalambous, A.; Darguste, D. I.; Fujii, S.-I.; Soares, H.; Brimnes, M. K.; Moltedo, B.; Moran, T. M.; Steinman, R. M., In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. The Journal of experimental medicine 2004, 199 (6), 815-824. DOI: 10.1084/jem.20032220. 43. Layek, B.; Lipp, L.; Singh, J., APC targeted micelle for enhanced intradermal delivery of hepatitis B DNA vaccine. J Control Release 2015, 207, 143-53. DOI: 10.1016/j.jconrel.2015.04.014. 44. Raviv, L.; Jaron-Mendelson, M.; David, A., Mannosylated polyion complexes for in vivo gene delivery into CD11c(+) dendritic cells. Mol Pharm 2015, 12 (2), 45362. DOI: 10.1021/mp5005492. 45. Jones, C. H.; Chen, M.; Ravikrishnan, A.; Reddinger, R.; Zhang, G.; Hakansson, A. P.; Pfeifer, B. A., Mannosylated poly(beta-amino esters) for targeted antigen presenting cell immune modulation. Biomaterials 2015, 37, 333-44. DOI: 10.1016/j.biomaterials.2014.10.037.
ACS Paragon Plus Environment
39
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 40 of 56
46. Elsabahy, M.; Wooley, K. L., Design of polymeric nanoparticles for biomedical delivery applications. Chemical Society Reviews 2012, 41 (7), 2545-2561. DOI: 10.1039/C2CS15327K. 47. Reddy, S. T.; van der Vlies, A. J.; Simeoni, E.; Angeli, V.; Randolph, G. J.; O'Neil, C. P.; Lee, L. K.; Swartz, M. A.; Hubbell, J. A., Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature biotechnology 2007, 25 (10), 1159-1164. DOI: 10.1038/nbt1332. 48. Qiao, Y.; Huang, Y.; Qiu, C.; Yue, X.; Deng, L.; Wan, Y.; Xing, J.; Zhang, C.; Yuan, S.; Dong, A.; Xu, J., The use of PEGylated poly [2-(N,N-dimethylamino) ethyl methacrylate] as a mucosal DNA delivery vector and the activation of innate immunity and improvement of HIV-1-specific immune responses. Biomaterials 2010, 31 (1), 115-23. DOI: 10.1016/j.biomaterials.2009.09.032. 49. Palumbo, R. N.; Zhong, X.; Panus, D.; Han, W.; Ji, W.; Wang, C., Transgene expression and local tissue distribution of naked and polymer-condensed plasmid DNA after intradermal administration in mice. J Control Release 2012, 159 (2), 2329. DOI: 10.1016/j.jconrel.2012.01.012. 50. Ogris, M.; Brunner, S.; Schüller, S.; Kircheis, R.; Wagner, E., PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene therapy 1999, 6 (4), 595-605. 51. Neu, M.; Germershaus, O.; Mao, S.; Voigt, K.-H.; Behe, M.; Kissel, T., Crosslinked nanocarriers based upon poly (ethylene imine) for systemic plasmid delivery: in vitro characterization and in vivo studies in mice. Journal of Controlled Release 2007, 118 (3), 370-380. DOI: 10.1016/j.jconrel.2007.01.007. 52. Yang, Y.; Park, Y.; Man, S.; Liu, Y.; Rice, K. G., Cross‐linked low molecular weight glycopeptide‐mediated gene delivery: Relationship between DNA metabolic stability and the level of transient gene expression in vivo. Journal of pharmaceutical sciences 2001, 90 (12), 2010-2022. DOI: 10.1002/jps.1152. 53. Mestecky, J.; Abraham, R.; Ogra, P., Common mucosal immune system and strategies for the development of vaccines effective at the mucosal surfaces. Handbook of mucosal immunology 1994, 357-372. 54. Neutra, M. R.; Phillips, T. L.; Mayer, E. L.; Fishkind, D. J., Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer's patch. Cell and tissue research 1987, 247 (3), 537-546. DOI: 10.1007/BF00215747. 55. Miller, H.; Zhang, J.; KuoLee, R.; Patel, G. B.; Chen, W., Intestinal M cells: the fallible sentinels? World journal of gastroenterology: WJG 2007, 13 (10), 1477. DOI: 10.3748/wjg.v13.i10.1477. 56. Wu, Y.; Wang, X.; Csencsits, K. L.; Haddad, A.; Walters, N.; Pascual, D. W., M cell-targeted DNA vaccination. Proc Natl Acad Sci U S A 2001, 98 (16), 9318-23. DOI: 10.1073/pnas.161204098. 57. Stylianou, E.; Diogo, G. R.; Pepponi, I.; Dolleweerd, C.; Arias, M. A.; Locht, C.; Rider, C. C.; Sibley, L.; Cutting, S. M.; Loxley, A., Mucosal delivery of antigen‐coated nanoparticles to lungs confers protective immunity against tuberculosis infection in
ACS Paragon Plus Environment
40
Page 41 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
mice. European journal of immunology 2014, 44 (2), 440-449. DOI: 10.1002/eji.201343887. 58. Chabot, S.; Wagner, J. S.; Farrant, S.; Neutra, M. R., TLRs regulate the gatekeeping functions of the intestinal follicle-associated epithelium. The Journal of immunology 2006, 176 (7), 4275-4283. DOI: 10.4049/jimmunol.176.7.4275. 59. Chabot, S. M.; Chernin, T. S.; Shawi, M.; Wagner, J.; Farrant, S.; Burt, D. S.; Cyr, S.; Neutra, M. R., TLR2 activation by proteosomes promotes uptake of particulate vaccines at mucosal surfaces. Vaccine 2007, 25 (29), 5348-5358. DOI: 10.1016/j.vaccine.2007.05.029. 60. Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G., Non-viral vectors for gene-based therapy. Nat Rev Genet 2014, 15 (8), 541-55. DOI: 10.1038/nrg3763. 61. Swanson, J. A.; Baer, S. C., Phagocytosis by zippers and triggers. Trends in Cell Biology 1995, 5 (3), 89-93. DOI: 10.1016/S0962-8924(00)88956-4. 62. Sarangarajan, R.; Apte, S. P., Melanization and phagocytosis: implications for age related macular degeneration. Molecular Vision 2005, 11, 482-90. 63. Xiang, S. D.; Scholzen, A.; Minigo, G.; David, C.; Apostolopoulos, V.; Mottram, P. L.; Plebanski, M., Pathogen recognition and development of particulate vaccines: does size matter? Methods 2006, 40 (1), 1-9. DOI: 10.1016/j.ymeth.2006.05.016. 64. Dobrovolskaia, M. A.; Mcneil, S. E., Immunological properties of engineered nanomaterials. Nature Nanotechnology 2007, 2, 469-478. DOI: 10.1038/nnano.2007.223. 65. Hubbell, J. A.; Thomas, S. N.; Swartz, M. A., Materials engineering for immunomodulation. Nature 2009, 462 (7272), 449-60. DOI: 10.1038/nature08604. 66. Pelkmans, L., Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochimica Et Biophysica Acta 2005, 1746 (3), 295304. DOI: 10.1016/j.bbamcr.2005.06.009. 67. Saleh, T.; Bolhassani, A.; Shojaosadati, S. A.; Aghasadeghi, M. R., MPG-based nanoparticle: An efficient delivery system for enhancing the potency of DNA vaccine expressing HPV16E7. Vaccine 2015, 33 (28), 3164-70. DOI: 10.1016/j.vaccine.2015.05.015. 68. Yu, S. S.; Lau, C. M.; Thomas, S. N.; Jerome, W. G.; Maron, D. J.; Dickerson, J. H.; Hubbell, J. A.; Giorgio; D, T., Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. International Journal of Nanomedicine 2012, 7 (9), 799–813. DOI: 10.2147/IJN.S28531. 69. PUTNAM, D., Polymers for gene delivery across length scales. nature materials 2006, 5, 439-451. DOI: 10.1038/nmat1645. 70. Lv, H.; Zhang, S.; Wang, B.; Cui, S.; Yan, J., Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of Controlled Release 2006, 114 (1), 100109. DOI: 10.1016/j.jconrel.2006.04.014. 71. Champion, J. A.; Mitragotri, S., Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 2006, 103 (13), 4930-4. DOI: 10.1073/pnas.0600997103. 72. Champion, J. A.; Katare, Y. K.; Mitragotri, S., Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 2007, 121 (1-2), 3-9. DOI: 10.1016/j.jconrel.2007.03.022.
ACS Paragon Plus Environment
41
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 42 of 56
73. Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J.-P., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceedings of the National Academy of Sciences 1995, 92 (16), 7297-7301. 74. Kichler, A.; Mason, A. J.; Bechinger, B., Cationic amphipathic histidine-rich peptides for gene delivery. Biochimica et Biophysica Acta (BBA)-Biomembranes 2006, 1758 (3), 301-307. DOI: 10.1016/j.bbamem.2006.02.005. 75. Deshayes, S.; Morris, M.; Divita, G.; Heitz, F., Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cellular and Molecular Life Sciences CMLS 2005, 62 (16), 1839-1849. DOI: 10.1007/s00018-005-5109-0. 76. Mahat, R.; Monera, O. D.; Smith, L. C.; Rolland, A., Peptide-based gene delivery. Current opinion in molecular therapeutics 1999, 1 (2), 226-243. 77. Lim, Y.-b.; Kim, C.-h.; Kim, K.; Kim, S. W.; Park, J.-s., Development of a safe gene delivery system using biodegradable polymer, poly [α-(4-aminobutyl)-Lglycolic acid]. Journal of the American Chemical Society 2000, 122 (27), 6524-6525. DOI: 10.1021/ja001033h. 78. Pichon, C.; LeCam, E.; Guérin, B.; Coulaud, D.; Delain, E.; Midoux, P., Poly [Lys(AEDTP)]: a cationic polymer that allows dissociation of pDNA/cationic polymer complexes in a reductive medium and enhances polyfection. Bioconjugate chemistry 2002, 13 (1), 76-82. DOI: 10.1021/bc015503o. 79. Lim, Y.-b.; Kim, S.-m.; Suh, H.; Park, J.-s., Biodegradable, endosome disruptive, and cationic network-type polymer as a highly efficient and nontoxic gene delivery carrier. Bioconjugate chemistry 2002, 13 (5), 952-957. DOI: 10.1021/bc025541n. 80. Forrest, M. L.; Koerber, J. T.; Pack, D. W., A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjugate chemistry 2003, 14 (5), 934-940. DOI: 10.1021/bc034014g. 81. Ahn, C.-H.; Chae, S. Y.; Bae, Y. H.; Kim, S. W., Biodegradable poly (ethylenimine) for plasmid DNA delivery. Journal of controlled release 2002, 80 (1), 273-282. DOI: 10.1016/S0168-3659(01)00547-8. 82. Murthy, N.; Campbell, J.; Fausto, N.; Hoffman, A. S.; Stayton, P. S., Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides. Journal of Controlled Release 2003, 89 (3), 365-374. DOI: 10.1016/S0168-3659(03)00099-3. 83. Wang, C.; Ge, Q.; Ting, D.; Nguyen, D.; Shen, H.-R.; Chen, J.; Eisen, H. N.; Heller, J.; Langer, R.; Putnam, D., Molecularly engineered poly (ortho ester) microspheres for enhanced delivery of DNA vaccines. Nature Materials 2004, 3 (3), 190-196. DOI: 10.1038/nmat1075. 84. Goh, S. L.; Murthy, N.; Xu, M.; Fréchet, J. M., Cross-linked microparticles as carriers for the delivery of plasmid DNA for vaccine development. Bioconjugate chemistry 2004, 15 (3), 467-474. DOI: 10.1021/bc034159n. 85. Lynn, D. M.; Amiji, M. M.; Langer, R., pH‐responsive polymer microspheres: Rapid release of encapsulated material within the range of intracellular pH. Angewandte Chemie International Edition 2001, 40 (9), 1707-1710. DOI: 10.1002/1521-3773.
ACS Paragon Plus Environment
42
Page 43 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
86. Gosselin, M. A.; Guo, W.; Lee, R. J., Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjugate chemistry 2001, 12 (6), 989-994. DOI: 10.1021/bc0100455. 87. Katayama, Y.; Fujii, K.; Ito, E.; Sakakihara, S.; Sonoda, T.; Murata, M.; Maeda, M., Intracellular signal-responsive artificial gene regulation for novel gene delivery. Biomacromolecules 2002, 3 (5), 905-909. DOI: 10.1021/bm025532h. 88. Gasparini, G.; Bang, E.-K.; Montenegro, J.; Matile, S., Cellular uptake: lessons from supramolecular organic chemistry. Chemical Communications 2015, 51 (52), 10389-10402. DOI: 10.1039/C5CC03472H. 89. Opanasopit, P.; Rojanarata, T.; Apirakaramwong, A.; Ngawhirunpat, T.; Ruktanonchai, U., Nuclear localization signal peptides enhance transfection efficiency of chitosan/DNA complexes. International journal of pharmaceutics 2009, 382 (1), 291-295. DOI: 10.1016/j.ijpharm.2009.08.029. 90. Hu, Q.; Wang, J.; Shen, J.; Liu, M.; Jin, X.; Tang, G.; Chu, P. K., Intracellular pathways and nuclear localization signal peptide-mediated gene transfection by cationic polymeric nanovectors. Biomaterials 2012, 33 (4), 1135-1145. DOI: 10.1016/j.biomaterials.2011.10.023. 91. Zanta, M. A.; Belguise-Valladier, P.; Behr, J.-P., Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proceedings of the National Academy of Sciences 1999, 96 (1), 91-96. DOI: 10.1073/pnas.96.1.91. 92. Hu, J.; Zhao, W.; Liu, K.; Yu, Q.; Mao, Y.; Lu, Z.; Zhang, Y.; Zhu, M., LowMolecular Weight Polyethylenimine Modified with Pluronic 123 and RGD-or Chimeric RGD-NLS Peptide: Characteristics and Transfection Efficacy of Their Complexes with Plasmid DNA. Molecules 2016, 21 (5), 655. DOI: 10.3390/molecules21050655. 93. Tanimoto, M.; Kamiya, H.; Minakawa, N.; Matsuda, A.; Harashima, H., No enhancement of nuclear entry by direct conjugation of a nuclear localization signal peptide to linearized DNA. Bioconjugate chemistry 2003, 14 (6), 1197-1202. DOI: 10.1021/bc034075e. 94. van der Aa, M.; Koning, G.; van der Gugten, J.; d'Oliveira, C.; Oosting, R.; Hennink, W.; Crommelin, D., Covalent attachment of an NLS-peptide to linear dna does not enhance transfection efficiency of cationic polymer based gene delivery systems. Journal of controlled release: official journal of the Controlled Release Society 2005, 101 (1-3), 395-397. 95. Van der Aa, M.; Koning, G.; d'Oliveira, C.; Oosting, R.; Wilschut, K.; Hennink, W.; Crommelin, D., An NLS peptide covalently linked to linear DNA does not enhance transfection efficiency of cationic polymer based gene delivery systems. The journal of gene medicine 2005, 7 (2), 208-217. DOI: 10.1002/jgm.643. 96. Christopher M. Jewella, S. C. B. L., Darrell J. Irvine, In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proceedings of the National Academy of Sciences 2011, 108 (38), 15745-15750. DOI: 10.1073/pnas.1105200108/-/DCSupplemental. 97. Kojima, Y.; Xin, K.-Q.; Ooki, T.; Hamajima, K.; Oikawa, T.; Shinoda, K.; Ozaki, T.; Hoshino, Y.; Jounai, N.; Nakazawa, M., Adjuvant effect of multi-CpG motifs on an HIV1 DNA vaccine. Vaccine 2002, 20 (23), 2857-2865. DOI: 10.1016/S0264410X(02)00238-4.
ACS Paragon Plus Environment
43
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 44 of 56
98. Pasquini, S.; Xiang, Z.; Wang, Y.; He, Z.; Deng, H.; Blaszczyk-thruin, M.; Ertl, H., Cytokines and costimulatory molecules as genetic adjuvants. Immunology & Cell Biology 1997, 75 (4). 99. Kim, J. J.; Yang, J.-S.; VanCott, T. C.; Lee, D. J.; Manson, K. H.; Wyand, M. S.; Boyer, J. D.; Ugen, K. E.; Weiner, D. B., Modulation of antigen-specific humoral responses in rhesus macaques by using cytokine cDNAs as DNA vaccine adjuvants. Journal of virology 2000, 74 (7), 3427-3429. DOI: 10.1128/JVI.74.7.34273429.2000. 100. Okada, E.; Sasaki, S.; Ishii, N.; Aoki, I.; Yasuda, T.; Nishioka, K.; Fukushima, J.; Miyazaki, J.; Wahren, B.; Okuda, K., Intranasal immunization of a DNA vaccine with IL-12-and granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing plasmids in liposomes induces strong mucosal and cell-mediated immune responses against HIV-1 antigens. The Journal of Immunology 1997, 159 (7), 3638-3647. 101. Hanlon, L.; Argyle, D.; Bain, D.; Nicolson, L.; Dunham, S.; Golder, M. C.; McDonald, M.; McGillivray, C.; Jarrett, O.; Neil, J. C., Feline leukemia virus DNA vaccine efficacy is enhanced by coadministration with interleukin-12 (IL-12) and IL18 expression vectors. Journal of virology 2001, 75 (18), 8424-8433. DOI: 10.1128/JVI.75.18.8424-8433.2001. 102. Kalams, S. A.; Parker, S.; Jin, X.; Elizaga, M.; Metch, B.; Wang, M.; Hural, J.; Lubeck, M.; Eldridge, J.; Cardinali, M., Safety and immunogenicity of an HIV-1 gag DNA vaccine with or without IL-12 and/or IL-15 plasmid cytokine adjuvant in healthy, HIV-1 uninfected adults. PLoS One 2012, 7 (1), e29231. DOI: 10.1371/journal.pone.0029231. 103. Kim, T. W.; Hung, C.-F.; Ling, M.; Juang, J.; He, L.; Hardwick, J. M.; Kumar, S.; Wu, T.-C., Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. The Journal of clinical investigation 2003, 112 (1), 109-117. 104. Lai, W.-F.; Lin, M. C.-M., Nucleic acid delivery with chitosan and its derivatives. Journal of Controlled Release 2009, 134 (3), 158-168. DOI: 10.1016/j.jconrel.2008.11.021. 105. Iqbal, M.; Lin, W.; Jabbal-Gill, I.; Davis, S. S.; Steward, M. W.; Illum, L., Nasal delivery of chitosan–DNA plasmid expressing epitopes of respiratory syncytial virus (RSV) induces protective CTL responses in BALB/c mice. Vaccine 2003, 21 (13-14), 1478-1485. DOI: 10.1016/s0264-410x(02)00662-x. 106. Chen, L.; Zhu, J.; Li, Y.; Lu, J.; Gao, L.; Xu, H.; Fan, M.; Yang, X., Enhanced nasal mucosal delivery and immunogenicity of anti-caries DNA vaccine through incorporation of anionic liposomes in chitosan/DNA complexes. PLoS One 2013, 8 (8), e71953. DOI: 10.1371/journal.pone.0071953. 107. Yang, X.; Yuan, X.; Cai, D.; Wang, S.; Zong, L., Low molecular weight chitosan in DNA vaccine delivery via mucosa. Int J Pharm 2009, 375 (1-2), 123-32. DOI: 10.1016/j.ijpharm.2009.03.032. 108. Koping-Hoggard, M.; Mel'nikova, Y. S.; Varum, K. M.; Lindman, B.; Artursson, P., Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo. J Gene Med 2003, 5 (2), 130-41. DOI: 10.1002/jgm.327. 109. Zhou, X.; Liu, B.; Yu, X.; Zha, X.; Zhang, X.; Chen, Y.; Wang, X.; Jin, Y.; Wu, Y.; Chen, Y.; Shan, Y.; Chen, Y.; Liu, J.; Kong, W.; Shen, J., Controlled release of PEI/DNA
ACS Paragon Plus Environment
44
Page 45 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
complexes from mannose-bearing chitosan microspheres as a potent delivery system to enhance immune response to HBV DNA vaccine. J Control Release 2007, 121 (3), 200-7. DOI: 10.1016/j.jconrel.2007.05.018. 110. Yao, W.; Peng, Y.; Du, M.; Luo, J.; Zong, L., Preventative vaccine-loaded mannosylated chitosan nanoparticles intended for nasal mucosal delivery enhance immune responses and potent tumor immunity. Mol Pharm 2013, 10 (8), 2904-14. DOI: 10.1021/mp4000053. 111. Heuking, S.; Borchard, G., Toll-like receptor-7 agonist decoration enhances the adjuvanticity of chitosan-DNA nanoparticles. J Pharm Sci 2012, 101 (3), 116677. DOI: 10.1002/jps.23017. 112. Raghuwanshi, D.; Mishra, V.; Das, D.; Kaur, K.; Suresh, M. R., Dendritic cell targeted chitosan nanoparticles for nasal DNA immunization against SARS CoV nucleocapsid protein. Mol Pharm 2012, 9 (4), 946-56. DOI: 10.1021/mp200553x. 113. Chen, Y. Z.; Yao, X. L.; Ruan, G. X.; Zhao, Q. Q.; Tang, G. P.; Tabata, Y.; Gao, J. Q., Gene-carried chitosan-linked polyethylenimine induced high gene transfection efficiency on dendritic cells. Biotechnol Appl Biochem 2012, 59 (5), 346-52. DOI: 10.1002/bab.1036. 114. Liu, Z.; Lv, D.; Liu, S.; Gong, J.; Wang, D.; Xiong, M.; Chen, X.; Xiang, R.; Tan, X., Alginic Acid-Coated Chitosan Nanoparticles Loaded with Legumain DNA Vaccine: Effect against Breast Cancer in Mice. PLOS ONE 2013, 8 (4). DOI: 10.1371/journal.pone.0060190.g001. 115. Irvine, D. J.; Hanson, M. C.; Rakhra, K.; Tokatlian, T., Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem Rev 2015, 115 (19), 11109-46. DOI: 10.1021/acs.chemrev.5b00109. 116. Hejazi, R.; Amiji, M., Chitosan-based gastrointestinal delivery systems. Journal of Controlled Release 2003, 89 (2), 151-65. DOI: 10.1016/S0168-3659(03)00126-3. 117. Du, X.; Zhao, B.; Li, J.; Cao, X.; Diao, M.; Feng, H.; Chen, X.; Chen, Z.; Zeng, X., Astragalus polysaccharides enhance immune responses of HBV DNA vaccination via promoting the dendritic cell maturation and suppressing Treg frequency in mice. Int Immunopharmacol 2012, 14 (4), 463-70. DOI: 10.1016/j.intimp.2012.09.006. 118. Toussaint, J. F.; Dubois, A.; Dispas, M.; Paquet, D.; Letellier, C.; Kerkhofs, P., Delivery of DNA vaccines by agarose hydrogel implants facilitates genetic immunization in cattle. Vaccine 2007, 25 (7), 1167-74. DOI: 10.1016/j.vaccine.2006.10.021. 119. Minigo, G.; Scholzen, A.; Tang, C. K.; Hanley, J. C.; Kalkanidis, M.; Pietersz, G. A.; Apostolopoulos, V.; Plebanski, M., Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine 2007, 25 (7), 1316-27. DOI: 10.1016/j.vaccine.2006.09.086. 120. Kurosaki, T.; Kodama, Y.; Muro, T.; Higuchi, N.; Nakamura, T.; Kitahara, T.; Miyakoda, M.; Yui, K.; Sasaki, H., Secure Splenic Delivery of Plasmid DNA and Its Application to DNA Vaccine. Biol. Pharm. Bull. 2013, 36 (11), 1800-1806. DOI: 10.1248/bpb.b13-00489. 121. Furugaki, K.; Cui, L.; Kunisawa, Y.; Osada, K.; Shinkai, K.; Tanaka, M.; Kataoka, K.; Nakano, K., Intraperitoneal administration of a tumor-associated antigen SART3, CD40L, and GM-CSF gene-loaded polyplex micelle elicits a vaccine effect in mouse tumor models. PLoS One 2014, 9 (7), e101854. DOI: 10.1371/journal.pone.0101854.
ACS Paragon Plus Environment
45
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 46 of 56
122. Cui, L.; Osada, K.; Imaizumi, A.; Kataoka, K.; Nakano, K., Feasibility of a subcutaneously administered block/homo-mixed polyplex micelle as a carrier for DNA vaccination in a mouse tumor model. J Control Release 2015, 206, 220-31. DOI: 10.1016/j.jconrel.2015.03.029. 123. Anderson, J. M.; Shive, M. S., Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews 1997, 28, 5-24. 124. Hedley, M. L.; Curley, J.; Urban, R., MIcrospheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nature Medicine 1998, 4 (3), 365-368. DOI: 10.1038/nm0398-365. 125. Hedley, M. L.; Strominger, J. L.; Urban, R. G., Plasmid DNA encoding targeted naturally processed peptides generates protecive cytotoxic T lymphocyte responses in immunized animals. Human Gene Therapy 1998, 9, 325-332. DOI: 10.1089/hum.1998.9.3-325. 126. D.H. Jones; S. Corris; S. McDonald; Clegg, J. C. S.; Farrar, G. H., Poly(DL-lactideco-glycolide)-encapsulated plasmid DNA elicits svstemic and mucosal antibody resphses to encoded protein after oral administration Vaccine 1997, 15 (8), 814817. DOI: 10.1016/S0264-410X(96)00266-6. 127. Chen, S. c.; Jones, D. h.; Fynan, E. f.; Farrar, G. h.; Clegg, J. C. s.; Greenberg, H. b.; Herrmann, J. e., Protective Immunity Induced by Oral Immunization with a Rotavirus DNA Vaccine Encapsulated in Microparticles. Journal of Virology 1998, 72 (7), 5757-5761. 128. Herrmann, J. E.; Chen, S. C.; Jones, D. H.; Tinsley-Bown, A.; Fynan, E. F.; Greenberg, H. B.; Farrar, G. H., Immune Responses and Protection Obtained by Oral Immunization with Rotavirus VP4 and VP7 DNA Vaccines Encapsulated in Microparticles. Virology 1999, 259, 148-153 DOI: 10.1006/viro.1999.9751. 129. McKeever, U.; Barman, S.; Hao, T.; Chambers, P.; Song, S.; Lunsford, L.; Hsu, Y.Y.; Roy, K.; Hedley, M. L., Protective immune responses elicited in mice by immunization with formulations of poly(lactide-co-glycolide) microparticles. Vaccine 2002, 20, 1524-1531. DOI: 10.1016/S0264-410X(01)00509-6. 130. Kaneko, H.; Bednarek, I.; Wierzbicki, A.; Kiszka, I.; Dmochowski, M.; Wasik, T. J.; Kaneko, Y.; Kozbor, D., Oral DNA vaccination promotes mucosal and systemic immune responses to HIV envelope glycoprotein. Virology 2000, 267 (1), 8-16. DOI: 10.1006/viro.1999.0093. 131. Wang, F.; He, X. W.; Jiang, L.; Ren, D.; He, Y.; Li, D. A.; Sun, S. H., Enhanced immunogenicity of microencapsulated multiepitope DNA vaccine encoding T and B cell epitopes of foot-and-mouth disease virus in mice. Vaccine 2006, 24 (12), 201726. DOI: 10.1016/j.vaccine.2005.11.042. 132. Walter, E.; Moelling, K.; Pavlovic, J.; Merkle, H. P., Microencapsulation of DNA using poly( DL -lactide-co-glycolide): stability issues and release characteristics. Journal of Controlled Release 1999, 61, 361-374. DOI: 10.1016/S01683659(99)00151-0. 133. Cai, H.; Hu, X. D.; Yu, D. H.; Li, S. X.; Tian, X.; Zhu, Y. X., Combined DNA vaccine encapsulated in microspheres enhanced protection efficacy against Mycobacterium tuberculosis infection of mice. Vaccine 2005, 23 (32), 4167-74. DOI: 10.1016/j.vaccine.2005.03.024.
ACS Paragon Plus Environment
46
Page 47 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
134. S., M.; B., M.; O., G.; O'Hagan, D., Cationic microparticles: A potent delivery system for DNA vaccines. PNAS 2000, 97 (2), 811-816. DOI: 10.1073/pnas.97.2.811. 135. O'Hagan, D.; Singh, M.; Ugozzoli, M.; Wild, C.; Barnett, S.; Chen, M.; Schaefer, M.; Doe, B.; Otten, G. R.; Ulmer, J. B., Induction of potent immune responses by cationic microparticles with adsorbed human immunodeficiency virus DNA vaccines. J Virol 2001, 75 (19), 9037-43. DOI: 10.1128/JVI.75.19.9037-9043.2001. 136. He, X.; Jiang, L.; Wang, F.; Xiao, Z.; Li, J.; Liu, L. S.; Li, D.; Ren, D.; Jin, X.; Li, K.; He, Y.; Shi, K.; Guo, Y.; Zhang, Y.; Sun, S., Augmented humoral and cellular immune responses to hepatitis B DNA vaccine adsorbed onto cationic microparticles. J Control Release 2005, 107 (2), 357-72. DOI: 10.1016/j.jconrel.2005.06.020. 137. Oster, C. G.; Kim, N.; Grode, L.; Barbu-Tudoran, L.; Schaper, A. K.; Kaufmann, S. H.; Kissel, T., Cationic microparticles consisting of poly(lactide-co-glycolide) and polyethylenimine as carriers systems for parental DNA vaccination. J Control Release 2005, 104 (2), 359-77. DOI: 10.1016/j.jconrel.2005.02.004. 138. Zhou, X.; Liu, B.; Yu, X.; Zha, X.; Zhang, X.; Wang, X.; Jin, Y.; Wu, Y.; Chen, Y.; Shan, Y.; Chen, Y.; Liu, J.; Kong, W.; Shen, J., Controlled release of PEI/DNA complexes from PLGA microspheres as a potent delivery system to enhance immune response to HIV vaccine DNA prime/MVA boost regime. Eur J Pharm Biopharm 2008, 68 (3), 589-95. DOI: 10.1016/j.ejpb.2007.09.006. 139. Kasturi, S. P.; Sachaphibulkij, K.; Roy, K., Covalent conjugation of polyethyleneimine on biodegradable microparticles for delivery of plasmid DNA vaccines. Biomaterials 2005, 26 (32), 6375-85. DOI: 10.1016/j.biomaterials.2005.03.043. 140. Singh, A.; Nie, H.; Ghosn, B.; Qin, H.; Kwak, L. W.; Roy, K., Efficient modulation of T-cell response by dual-mode, single-carrier delivery of cytokine-targeted siRNA and DNA vaccine to antigen-presenting cells. Mol Ther 2008, 16 (12), 2011-21. DOI: 10.1038/mt.2008.206. 141. Wang, G.; Pan, L.; Zhang, Y.; Wang, Y.; Zhang, Z.; Lu, J.; Zhou, P.; Fang, Y.; Jiang, S., Intranasal Delivery of Cationic PLGA Nano/Microparticles- Loaded FMDV DNA Vaccine Encoding IL-6 Elicited Protective Immunity against FMDV Challenge. PLOS ONE 2011, 6 (11). DOI: 10.1371/journal.pone.0027605.g001. 142. Lee, P. W.; Hsu, S. H.; Tsai, J. S.; Chen, F. R.; Huang, P. J.; Ke, C. J.; Liao, Z. X.; Hsiao, C. W.; Lin, H. J.; Sung, H. W., Multifunctional core-shell polymeric nanoparticles for transdermal DNA delivery and epidermal Langerhans cells tracking. Biomaterials 2010, 31 (8), 2425-34. DOI: 10.1016/j.biomaterials.2009.11.100. 143. Ribeiro, S.; Rijpkema, S. G.; Durrani, Z.; Florence, A. T., PLGA-dendron nanoparticles enhance immunogenicity but not lethal antibody production of a DNA vaccine against anthrax in mice. Int J Pharm 2007, 331 (2), 228-32. DOI: 10.1016/j.ijpharm.2006.11.063. 144. DeMuth, P. C.; Su, X.; Samuel, R. E.; Hammond, P. T.; Irvine, D. J., Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv Mater 2010, 22 (43), 4851-6. DOI: 10.1002/adma.201001525. 145. Lynn, D. M.; Anderson, D. G.; Putnam, D.; Langer, R., ChemInform Abstract: Accelerated Discovery of Synthetic Transfection Vectors: Parallel Synthesis and
ACS Paragon Plus Environment
47
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 48 of 56
Screening of a Degradable Polymer Library. Journal of the American Chemical Society 2001, 32 (123), 8155-6. DOI: 10.1021/ja016288p. 146. Greenland, J. R.; Liu, H.; Berry, D.; Anderson, D. G.; Kim, W. K.; Irvine, D. J.; Langer, R.; Letvin, N. L., Beta-amino ester polymers facilitate in vivo DNA transfection and adjuvant plasmid DNA immunization. Mol Ther 2005, 12 (1), 16470. DOI: 10.1016/j.ymthe.2005.01.021. 147. Anderson, D. G.; Lynn, D. M.; Langer, R., Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angewandte Chemie 2003, 42 (27), 3153-8. DOI: 10.1002/ange.200351244. 148. Wang, C.; Ge, Q.; Ting, D.; Nguyen, D.; Shen, H. R.; Chen, J.; Eisen, H. N.; Heller, J.; Langer, R.; Putnam, D., Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat Mater 2004, 3 (3), 190-6. DOI: 10.1038/nmat1075. 149. Green, J. J.; Shi, J.; Chiu, E.; Leshchiner, E. S.; Langer, R.; Anderson, D. G., Biodegradable polymeric vectors for gene delivery to human endothelial cells. Bioconjugate Chemistry 2006, 17 (5), 1162-1169. DOI: 10.1021/bc0600968. 150. DeMuth, P. C.; Min, Y.; Huang, B.; Kramer, J. A.; Miller, A. D.; Barouch, D. H.; Hammond, P. T.; Irvine, D. J., Polymer multilayer tattooing for enhanced DNA vaccination. Nat Mater 2013, 12 (4), 367-76. DOI: 10.1038/nmat3550. 151. Little, S. R.; Langer, R., Poly-beta amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proceedings of the National Academy of Sciences of the United States of America 2004, 101 (26), 9534-9. DOI: 10.1073/pnas.0403549101. 152. Nguyen, D. N.; Raghavan, S. S.; Tashima, L. M.; Lin, E. C.; Fredette, S. J.; Langer, R. S.; Wang, C., Enhancement of poly(orthoester) microspheres for DNA vaccine delivery by blending with poly(ethylenimine). Biomaterials 2008, 29 (18), 2783-93. DOI: 10.1016/j.biomaterials.2008.03.011. 153. Jones, C. H.; Chen, M.; Gollakota, A.; Ravikrishnan, A.; Zhang, G.; Lin, S.; Tan, M.; Cheng, C.; Lin, H.; Pfeifer, B. A., Structure–Function Assessment of Mannosylated Poly(β-amino esters) upon Targeted Antigen Presenting Cell Gene Delivery. Biomacromolecules 2015, 16 (5), 1534-1541. DOI: 10.1021/acs.biomac.5b00062. 154. Jones, C. H.; Gollakota, A.; Chen, M.; Chung, T.-C.; Ravikrishnan, A.; Zhang, G.; Pfeifer, B. A., Influence of molecular weight upon mannosylated bio-synthetic hybrids for targeted antigen presenting cell gene delivery. Biomaterials 2015, 58, 103-111. DOI: 10.1016/j.biomaterials.2015.04.033. 155. Jones, C. H.; Ravikrishnan, A.; Chen, M.; Reddinger, R.; Kamal, A. M.; Rane, S.; Hakansson, A. P.; Pfeifer, B. A., Hybrid biosynthetic gene therapy vector development and dual engineering capacity. Proceedings of the National Academy of Sciences of the United States of America 2014, 111 (34), 12360-5. 156. Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. PNAS 1995, 92, 7297-7301. 157. Regnström, K.; Ragnarsson, E.G.; Köping-Höggård, M.; Torstensson, E.; Nyblom, H.; Artursson, P., PEI – a potent, but not harmless, mucosal immunostimulator of mixed T-helper cell response and FasL-mediated cell death in mice. Gene Therapy 2003, 10, 1575-1583. DOI: 10.1038/sj.gt.3302054.
ACS Paragon Plus Environment
48
Page 49 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
158. Ingolotti, M.; Kawalekar, O.; Shedlock, D. J.; Muthumani, K.; Weiner, D. B., DNA vaccines for targeting bacterial infections. Expert review of vaccines 2010, 9 (7), 747-763. 159. Torrieri-Dramard, L.; Lambrecht, B.; Ferreira, H. L.; Van den Berg, T.; Klatzmann, D.; Bellier, B., Intranasal DNA vaccination induces potent mucosal and systemic immune responses and cross-protective immunity against influenza viruses. Mol Ther 2011, 19 (3), 602-11. DOI: 10.1038/mt.2010.222. 160. Palumbo, R. N.; Zhong, X.; Wang, C., Polymer-mediated DNA vaccine delivery via bystander cells requires a proper balance between transfection efficiency and cytotoxicity. J Control Release 2012, 157 (1), 86-93. DOI: 10.1016/j.jconrel.2011.08.037. 161. Mann, J. F.; McKay, P. F.; Arokiasamy, S.; Patel, R. K.; Klein, K.; Shattock, R. J., Pulmonary delivery of DNA vaccine constructs using deacylated PEI elicits immune responses and protects against viral challenge infection. J Control Release 2013, 170 (3), 452-9. DOI: 10.1016/j.jconrel.2013.06.004. 162. Grant, E. V.; Thomas, M.; Fortune, J.; Klibanov, A. M.; Letvin, N. L., Enhancement of plasmid DNA immunogenicity with linear polyethylenimine. Eur J Immunol 2012, 42 (11), 2937-48. DOI: 10.1002/eji.201242410. 163. Dutta, T.; Garg, M.; Jain, N. K., Poly(propyleneimine) dendrimer and dendrosome mediated genetic immunization against hepatitis B. Vaccine 2008, 26 (27-28), 3389-94. DOI: 10.1016/j.vaccine.2008.04.058. 164. Toke, E. R.; Lorincz, O.; Csiszovszki, Z.; Somogyi, E.; Felfoldi, G.; Molnar, L.; Szipocs, R.; Kolonics, A.; Malissen, B.; Lori, F.; Trocio, J.; Bakare, N.; Horkay, F.; Romani, N.; Tripp, C. H.; Stoitzner, P.; Lisziewicz, J., Exploitation of Langerhans cells for in vivo DNA vaccine delivery into the lymph nodes. Gene Ther 2014, 21 (6), 56674. DOI: 10.1038/gt.2014.29. 165. Lorincz, O.; Toke, E. R.; Somogyi, E.; Horkay, F.; Chandran, P. L.; Douglas, J. F.; Szebeni, J.; Lisziewicz, J., Structure and biological activity of pathogen-like synthetic nanomedicines. Nanomedicine 2012, 8 (4), 497-506. DOI: 10.1016/j.nano.2011.07.013. 166. Golani-Armon, A.; Golan, M.; Shamay, Y.; Raviv, L.; David, A., DC3-decorated polyplexes for targeted gene delivery into dendritic cells. Bioconjug Chem 2015, 26 (2), 213-24. DOI: 10.1021/bc500529d. 167. Kim, N. W.; Lee, M. S.; Kim, K. R.; Lee, J. E.; Lee, K.; Park, J. S.; Matsumoto, Y.; Jo, D. G.; Lee, H.; Lee, D. S.; Jeong, J. H., Polyplex-releasing microneedles for enhanced cutaneous delivery of DNA vaccine. J Control Release 2014, 179, 11-7. DOI: 10.1016/j.jconrel.2014.01.016. 168. Bolhassani, A.; Ghasemi, N.; Servis, C.; Taghikhani, M.; Rafati, S., The efficiency of a novel delivery system (PEI600-Tat) in development of potent DNA vaccine using HPV16 E7 as a model antigen. Drug Deliv 2009, 16 (4), 196-204. DOI: 10.1080/10717540902757721. 169. Hu, Q.; Wu, M.; Fang, C.; Cheng, C.; Zhao, M.; Fang, W.; Chu, P. K.; Ping, Y.; Tang, G., Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Letters 2015, 15 (4).
ACS Paragon Plus Environment
49
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 50 of 56
170. Goh, S. L.; Murthy, N.; Xu, M.; Fréchet, J. M. J., Cross-Linked Microparticles as Carriers for the Delivery of Plasmid DNA for Vaccine Development. Bioconjugate Chemistry 2004, 15 (3), 467-474. DOI: 10.1021/bc034159n. 171. Zhang, L.; Sinclair, A.; Cao, Z.; Ella-Menye, J.-R.; Xu, X.; Carr, L. R.; Pun, S. H.; Jiang, S., Hydrolytic Cationic Ester Microparticles for Highly Efficient DNA Vaccine Delivery. Small 2013, 9 (20), 3439-3444. DOI: 10.1002/smll.201202727. 172. Castaldello, A.; Brocca-Cofano, E.; Voltan, R.; Triulzi, C.; Altavilla, G.; Laus, M.; Sparnacci, K.; Ballestri, M.; Tondelli, L.; Fortini, C.; Gavioli, R.; Ensoli, B.; Caputo, A., DNA prime and protein boost immunization with innovative polymeric cationic core-shell nanoparticles elicits broad immune responses and strongly enhance cellular responses of HIV-1 tat DNA vaccination. Vaccine 2006, 24 (29-30), 5655-69. DOI: 10.1016/j.vaccine.2006.05.058. 173. Lou, P. J.; Cheng, W. F.; Chung, Y. C.; Cheng, C. Y.; Chiu, L. H.; Young, T. H., PMMA particle-mediated DNA vaccine for cervical cancer. J Biomed Mater Res A 2009, 88 (4), 849-57. DOI: 10.1002/jbm.a.31919. 174. Ji, W.; Panus, D.; Palumbo, R. N.; Tang, R.; Wang, C., Poly(2-aminoethyl methacrylate) with well-defined chain length for DNA vaccine delivery to dendritic cells. Biomacromolecules 2011, 12 (12), 4373-85. DOI: 10.1021/bm201360v. 175. Hu, J.; Hu, K.; Cheng, Y., Tailoring the dendrimer core for efficient gene delivery. Acta Biomaterialia 2016, 35, 1-11. DOI: 10.1016/j.actbio.2016.02.031. 176. Ullas, P. T.; Madhusudana, S. N.; Desai, A.; Sagar, B. K. C.; Jayamurugan, G.; Rajesh, Y. B. R. D.; Jayaraman, N., Enhancement of immunogenicity and efficacy of a plasmid DNA rabies vaccine by nanoformulation with a fourth-generation amineterminated poly(ether imine) dendrimer. International Journal of Nanomedicine 2014, 9, 627-634. DOI: 10.2147/IJN.S53415. 177. Wang, X.; Dai, Y.; Zhao, S.; Tang, J.; Li, H.; Xing, Y.; Qu, G.; Li, X.; Dai, J.; Zhu, Y.; Zhang, X., PAMAM-Lys, a Novel Vaccine Delivery Vector, Enhances the Protective Effects of the SjC23 DNA Vaccine against Schistosoma japonicum Infection. PLoS ONE 2014, 9 (1), e86578. DOI: 10.1371/journal.pone.0086578. 178. Xu, J.; Dai, W.; Wang, Z.; Chen, B.; Li, Z.; Fan, X., Intranasal vaccination with chitosan-DNA nanoparticles expressing pneumococcal surface antigen a protects mice against nasopharyngeal colonization by Streptococcus pneumoniae. Clin Vaccine Immunol 2011, 18 (1), 75-81. DOI: 10.1128/CVI.00263-10. 179. Xu, W.; Shen, Y.; Jiang, Z.; Wang, Y.; Chu, Y.; Xiong, S., Intranasal delivery of chitosan-DNA vaccine generates mucosal SIgA and anti-CVB3 protection. Vaccine 2004, 22 (27-28), 3603-12. DOI: 10.1016/j.vaccine.2004.03.033. 180. Bivas-Benita, M.; van Meijgaarden, K. E.; Franken, K. L.; Junginger, H. E.; Borchard, G.; Ottenhoff, T. H.; Geluk, A., Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLAA*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine 2004, 22 (13-14), 1609-15. DOI: 10.1016/j.vaccine.2003.09.044. 181. Bivas-Benita M, L. M., Versteyhe S, Generation of Toxoplasma gondii GRA1 protein and DNA vaccine loaded chitosan particles: preparation, characterization, and preliminary in vivo studies. International journal of pharmaceutics 2003, 266 (1), 17-27. DOI: 10.1016/S0378-5173(03)00377-6.
ACS Paragon Plus Environment
50
Page 51 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
182. Li, L.; Lin, S. L.; Deng, L.; Liu, Z. G., Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in black seabream Acanthopagrus schlegelii Bleeker to protect from Vibrio parahaemolyticus. J Fish Dis 2013, 36 (12), 987-95. DOI: 10.1111/jfd.12032. 183. Cambridge, C. D.; Singh, S. R.; Waffo, A. B.; Fairley, S. J.; Dennis, V. A., Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles. Int J Nanomedicine 2013, 8, 1759-71. DOI: 10.2147/IJN.S42723. 184. Sun K, L. X., Jiang J, Distribution characteristics of DNA vaccine encoded with glycoprotein C from Anatid herpesvirus 1 with chitosan and liposome as deliver carrier in ducks. Virology journal 2013, 10 (1), 1. DOI: 10.1186/1743-422X-10-89. 185. Ai, W.; Yue, Y.; Xiong, S.; Xu, W., Enhanced protection against pulmonary mycobacterial challenge by chitosan-formulated polyepitope gene vaccine is associated with increased pulmonary secretory IgA and gamma-interferon(+) T cell responses. Microbiol Immunol 2013, 57 (3), 224-35. DOI: 10.1111/13480421.12027. 186. Zhao, K.; Zhang, Y.; Zhang, X.; Li, W.; Shi, C.; Guo, C.; Dai, C.; Chen, Q.; Jin, Z.; Zhao, Y.; Cui, H.; Wang, Y., Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles. Int J Nanomedicine 2014, 9, 389402. DOI: 10.2147/IJN.S54226. 187. Ye, T.; Yue, Y.; Fan, X.; Dong, C.; Xu, W.; Xiong, S., M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3induced viral myocarditis elicited by chitosan-DNA vaccine. Vaccine 2014, 32 (35), 4457-65. DOI: 10.1016/j.vaccine.2014.06.050. 188. Sawaengsak, C.; Mori, Y.; Yamanishi, K.; Srimanote, P.; Chaicumpa, W.; Mitrevej, A.; Sinchaipanid, N., Intranasal chitosan-DNA vaccines that protect across influenza virus subtypes. Int J Pharm 2014, 473 (1-2), 113-25. DOI: 10.1016/j.ijpharm.2014.07.005. 189. Tahamtan A, G. A., Gorji A, Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. Journal of biomedical science 2014, 21 (1), 1. DOI: 10.1186/s12929-014-0069-z. 190. Rajeshkumar, S.; Venkatesan, C.; Sarathi, M.; Sarathbabu, V.; Thomas, J.; Anver Basha, K.; Sahul Hameed, A. S., Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish & Shellfish Immunology 2009, 26 (3), 429-437. DOI: 10.1016/j.fsi.2009.01.003. 191. Boyoglu, S.; Vig, K.; Pillai, S.; Rangari, V.; Dennis, V. A.; Khazi, F.; Singh, S. R., Enhanced delivery and expression of a nanoencapsulated DNA vaccine vector for respiratory syncytial virus. Nanomedicine: Nanotechnology, Biology and Medicine 2009, 5 (4), 463-472. DOI: 10.1016/j.nano.2009.02.004. 192. Yan, C.; Jie, L.; Yongqi, W.; Weiming, X.; Juqun, X.; Yanbing, D.; Li, Q.; Xingyuan, P.; Mingchun, J.; Weijuan, G., Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity. Biochemical and Biophysical Research Communications 2015, 463 (3), 336-343. DOI: 10.1016/j.bbrc.2015.05.065. 193. Umthong, S.; Buaklin, A.; Jacquet, A.; Sangjun, N.; Kerdkaew, R.; Patarakul, K.; Palaga, T., Immunogenicity of a DNA and Recombinant Protein Vaccine Combining
ACS Paragon Plus Environment
51
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 52 of 56
LipL32 and Loa22 for Leptospirosis Using Chitosan as a Delivery System. J Microbiol Biotechnol 2015, 25 (4), 526-36. 194. Zhai, Y. Z.; Zhou, Y.; Li, M. A.; Feng, G. H., Effects of Cell-Mediated Immunity Induced by Intramuscular Chitosan-pJME/GM-CSF Nano-DNA Vaccine in BALB/c Mice. Chinese journal of virology 2014, 30 (4), 423-8. 195. Nanda, R. K.; Hajam, I. A.; Edao, B. M.; Ramya, K.; Rajangam, M.; Chandra Sekar, S.; Ganesh, K.; Bhanuprakash, V.; Kishore, S., Immunological evaluation of mannosylated chitosan nanoparticles based foot and mouth disease virus DNA vaccine, pVAC FMDV VP1-OmpA in guinea pigs. Biologicals 2014, 42 (3), 153-9. DOI: 10.1016/j.biologicals.2014.01.002. 196. Zhou, X.; Liu, B.; Yu, X.; Zha, X.; Zhang, X.; Wang, X.; Chen, Y.; Chen, Y.; Chen, Y.; Shan, Y.; Jin, Y.; Wu, Y.; Liu, J.; Kong, W.; Shen, J., Enhance immune response to DNA vaccine based on a novel multicomponent supramolecular assembly. Biomaterials 2007, 28 (31), 4684-92. DOI: 10.1016/j.biomaterials.2007.07.002. 197. Borges, O.; Silva, M.; de Sousa, A.; Borchard, G.; Junginger, H. E.; Cordeiro-daSilva, A., Alginate coated chitosan nanoparticles are an effective subcutaneous adjuvant for hepatitis B surface antigen. International Immunopharmacology 2008, 8 (13–14), 1773-1780. DOI: 10.1016/j.intimp.2008.08.013 198. Zhou, X.; Zhang, X.; Yu, X.; Zha, X.; Fu, Q.; Liu, B.; Wang, X.; Chen, Y.; Chen, Y.; Shan, Y.; Jin, Y.; Wu, Y.; Liu, J.; Kong, W.; Shen, J., The effect of conjugation to gold nanoparticles on the ability of low molecular weight chitosan to transfer DNA vaccine. Biomaterials 2008, 29 (1), 111-7. DOI: 10.1016/j.biomaterials.2007.09.007. 199. Kai E, O. T., A method for oral DNA delivery with N-acetylated chitosan. Pharmaceutical research 2004, 21 (5), 838-843. DOI: 10.1023/B:PHAM.0000026437.32238.6f. 200. Slutter, B.; Jiskoot, W., Dual role of CpG as immune modulator and physical crosslinker in ovalbumin loaded N-trimethyl chitosan (TMC) nanoparticles for nasal vaccination. J Control Release 2010, 148 (1), 117-21. DOI: 10.1016/j.jconrel.2010.06.009. 201. Bhowmik, T.; D'Souza, B.; Uddin, M. N.; D'Souza, M. J., Oral delivery of microparticles containing plasmid DNA encoding hepatitis-B surface antigen. J Drug Target 2012, 20 (4), 364-71. DOI: 10.3109/1061186X.2012.662686. 202. Chen, Y. Z.; Ruan, G. X.; Yao, X. L.; Li, L. M.; Hu, Y.; Tabata, Y.; Gao, J. Q., Cotransfection gene delivery of dendritic cells induced effective lymph node targeting and anti-tumor vaccination. Pharm Res 2013, 30 (6), 1502-12. DOI: 10.1007/s11095-013-0985-8. 203. Tian, Y.; Wang, H.; Liu, Y.; Mao, L.; Chen, W.; Zhu, Z.; Liu, W.; Zheng, W.; Zhao, Y.; Kong, D.; Yang, Z.; Zhang, W.; Shao, Y.; Jiang, X., A peptide-based nanofibrous hydrogel as a promising DNA nanovector for optimizing the efficacy of HIV vaccine. Nano Lett 2014, 14 (3), 1439-45. DOI: 10.1021/nl404560v. 204. Cherif, M. S.; Shuaibu, M. N.; Kodama, Y.; Kurosaki, T.; Helegbe, G. K.; Kikuchi, M.; Ichinose, A.; Yanagi, T.; Sasaki, H.; Yui, K.; Tien, N. H.; Karbwang, J.; Hirayama, K., Nanoparticle formulation enhanced protective immunity provoked by PYGPI8ptransamidase related protein (PyTAM) DNA vaccine in Plasmodium yoelii malaria model. Vaccine 2014, 32 (17), 1998-2006. DOI: 10.1016/j.vaccine.2014.01.005.
ACS Paragon Plus Environment
52
Page 53 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
205. Ndeboko, B.; Lemamy, G. J.; Nielsen, P. E.; Cova, L., Therapeutic Potential of Cell Penetrating Peptides (CPPs) and Cationic Polymers for Chronic Hepatitis B. Int J Mol Sci 2015, 16 (12), 28230-41. DOI: 10.3390/ijms161226094. 206. Tao, F.-F.; Yang, Y.-F.; Wang, H.; Sun, X.-J.; Luo, J.; Zhu, X.; Liu, F.; Wang, Y.; Su, C.; Wu, H.-W.; Zhang, Z.-S., Th1-type epitopes-based cocktail PDDV attenuates hepatic fibrosis in C57BL/6 mice with chronic Schistosoma japonicum infection. Vaccine 2009, 27 (31), 4110-4117. DOI: 10.1016/j.vaccine.2009.04.073. 207. Niborski, V.; Li, Y.; Brennan, F.; Lane, M.; Torche, A. M.; Remond, M.; Bonneau, M.; Riffault, S.; Stirling, C.; Hutchings, G.; Takamatsu, H.; Barnett, P.; Charley, B.; Schwartz-Cornil, I., Efficacy of particle-based DNA delivery for vaccination of sheep against FMDV. Vaccine 2006, 24 (49-50), 7204-13. DOI: 10.1016/j.vaccine.2006.06.048. 208. Eratalay, A.; Coskun-Ari, F. F.; Oner, F.; Ozcengiz, E., In vitro and in vivo evaluations of PLGA microsphere vaccine formulations containing pDNA coexpressing hepatitis B surface antigen and Interleukin-2. J Microencapsul 2010, 27 (1), 48-56. DOI: 10.3109/02652040902937666. 209. Jilek, S.; Walter, E.; Merkle, H. P.; Corthesy, B., Modulation of allergic responses in mice by using biodegradable poly(lactide-co-glycolide) microspheres. J Allergy Clin Immunol 2004, 114 (4), 943-50. DOI: 10.1016/j.jaci.2004.05.065. 210. Hans-Joachim Mollenkopfa, G. D., Joachim Fensterlea, Leander Grodea,KlausDieter Diehlb, Bernhard Knappb, Manmohan Singhc, Derek T. O’Haganc, Jeffrey B. Ulmerc, Stefan H.E. Kaufmanna, Enhanced protective efficacy of a tuberculosis DNA vaccine by adsorption onto cationic PLG microparticles. vaccine 2004, 22 (21), 2690-2695. DOI: 10.1016/j.vaccine.2004.05.005. 211. Zhao, K.; Li, W.; Huang, T.; Luo, X.; Chen, G.; Zhang, Y.; Guo, C.; Dai, C.; Jin, Z.; Zhao, Y.; Cui, H.; Wang, Y., Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in PLGA nanoparticles. PLoS One 2013, 8 (12), e82648. DOI: 10.1371/journal.pone.0082648. 212. Ribeiro A M, S. A. C. O., Amaral A C, Nanobiotechnological approaches to delivery of DNA vaccine against fungal infection. Journal of biomedical nanotechnology 2013, 9 (2), 221-230. DOI: 10.1166/jbn.2013.1491. 213. Pan, C. H.; Nair, N.; Adams, R. J.; Zink, M. C.; Lee, E. Y.; Polack, F. P.; Singh, M.; O'Hagan, D. T.; Griffin, D. E., Dose-dependent protection against or exacerbation of disease by a polylactide glycolide microparticle-adsorbed, alphavirus-based measles virus DNA vaccine in rhesus macaques. Clin Vaccine Immunol 2008, 15 (4), 697-706. DOI: 10.1128/CVI.00045-08. 214. Goodsell, A.; Zhou, F.; Gupta, S.; Singh, M.; Malyala, P.; Kazzaz, J.; Greer, C.; Legg, H.; Tang, T.; Zur Megede, J.; Srivastava, R.; Barnett, S. W.; Donnelly, J. J.; Luciw, P. A.; Polo, J.; O'Hagan, D. T.; Vajdy, M., β7-integrin-independent enhancement of mucosal and systemic anti-HIV antibody responses following combined mucosal and systemic gene delivery. Immunology 2008, 123 (3), 378-389. DOI: 10.1111/j.13652567.2007.02702.x. 215. Reddy, K. S.; Rashmi, B. R.; Dechamma, H. J.; Gopalakrishna, S.; Banumathi, N.; Suryanarayana, V. V.; Reddy, G. R., Cationic microparticle [poly(D,L-lactide-coglycolide)]-coated DNA vaccination induces a long-term immune response against
ACS Paragon Plus Environment
53
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 54 of 56
foot and mouth disease in guinea pigs. J Gene Med 2012, 14 (5), 348-52. DOI: 10.1002/jgm.2622. 216. Singh, M.; Kazzaz, J.; Ugozzoli, M.; Malyala, P.; Chesko, J.; O'Hagan, D. T., Polylactide-co-glycolide microparticles with surface adsorbed antigens as vaccine delivery systems. Current Drug Delivery 2006, 3 (1), 115-20. 217. Bivas-Benita, M.; Lin, M. Y.; Bal, S. M.; van Meijgaarden, K. E.; Franken, K. L.; Friggen, A. H.; Junginger, H. E.; Borchard, G.; Klein, M. R.; Ottenhoff, T. H., Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA-PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine 2009, 27 (30), 4010-7. DOI: 10.1016/j.vaccine.2009.04.033. 218. Zhao, K.; Zhang, Y.; Zhang, X.; Shi, C.; Wang, X.; Wang, X.; Jin, Z.; Cui, S., Chitosan-coated poly(lactic-co-glycolic) acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine. International Journal of Nanomedicine 2014, 9, 4609-4619. DOI: 10.2147/IJN.S70633. 219. Moffatt, S.; Cristiano, R. J., Uptake characteristics of NGR-coupled stealth PEI/pDNA nanoparticles loaded with PLGA-PEG-PLGA tri-block copolymer for targeted delivery to human monocyte-derived dendritic cells. Int J Pharm 2006, 321 (1-2), 143-54. DOI: 10.1016/j.ijpharm.2006.05.007. 220. Balashanmugam, M. V.; Nagarethinam, S.; Jagani, H.; Josyula, V. R.; Alrohaimi, A.; Udupa, N., Preparation and characterization of novel PBAE/PLGA polymer blend microparticles for DNA vaccine delivery. ScientificWorldJournal 2014, 2014, 385135. DOI: 10.1155/2014/385135. 221. Sun, Z.; Liu, B.; Ruan, X.; Liu, Q., An enhanced immune response against G250, induced by a heterologous DNA primeprotein boost vaccination, using polyethyleneimine as a DNA vaccine adjuvant. Mol Med Rep 2014, 10 (5), 2657-62. DOI: 10.3892/mmr.2014.2537. 222. Raina, O. K.; Tripathy, A.; Sriveny, D.; Gupta, P. K.; Samanta, S.; Gupta, S. C.; Singh, R.; Tewari, A. K.; Banerjee, P. S.; Kumar, S.; Yadav, S. C., Immune responses to polyethylenimine delivered plasmid DNA encoding a Fasciola gigantica fatty acid binding protein in mice and rabbits. Journal of Helminthology 2009, 83 (3), 275-283. DOI: 10.1017/S0022149X08124798. 223. Talsma, S. S.; Babensee, J. E.; Murthy, N.; Williams, I. R., Development and in vitro validation of a targeted delivery vehicle for DNA vaccines. Journal of Controlled Release 2006, 112 (2), 271-279. DOI: 10.1016/j.jconrel.2006.02.008. 224. Smitha, S.; Raina, O. K.; Singh, B. P.; Samanta, S.; Velusamy, R.; Dangoudoubiyam, S.; Tripathi, A.; Gupta, P. K.; Sharma, B.; Saxena, M., Immune responses to polyethylenimine-mannose-delivered plasmid DNA encoding a Fasciola gigantica fatty acid binding protein in mice. Journal of Helminthology 2009, 84 (2), 149-155. DOI: 10.1017/S0022149X0999037X. 225. Dongfeng Yin; Liang, W.; Xing, S.; Gao, Z.; Zhang, W.; Guo, Z.; Gao, S., Hepatitis B DNA Vaccine-Polycation Nano-Complexes Enhancing Immune Response by Percutaneous Administration with Microneedle. Biol. Pharm. Bull. 2013, 36 (8), 1283-1291. DOI: 10.1248/bpb.b13-00050.
ACS Paragon Plus Environment
54
Page 55 of 56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Biomaterials Science & Engineering
226. Al-Deen, F. N.; Ho, J.; Selomulya, C.; Ma, C.; Coppel, R., Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine. Langmuir 2011, 27 (7), 3703-12. DOI: 10.1021/la104479c. 227. Nawwab Al-Deen, F.; Ma, C.; Xiang, S. D.; Selomulya, C.; Plebanski, M.; Coppel, R. L., On the efficacy of malaria DNA vaccination with magnetic gene vectors. J Control Release 2013, 168 (1), 10-7. DOI: 10.1016/j.jconrel.2013.02.030. 228. Nawwab Al-Deen, F. M.; Selomulya, C.; Kong, Y. Y.; Xiang, S. D.; Ma, C.; Coppel, R. L.; Plebanski, M., Design of magnetic polyplexes taken up efficiently by dendritic cell for enhanced DNA vaccine delivery. Gene Ther 2014, 21 (2), 212-8. DOI: 10.1038/gt.2013.77. 229. Mohit, E.; Bolhassani, A.; Zahedifard, F.; Seyed, N.; Eslamifar, A.; Taghikhani, M.; Samimi-Rad, K.; Rafati, S., Immunomodulatory effects of IP-10 chemokine along with PEI600-Tat delivery system in DNA vaccination against HPV infections. Mol Immunol 2013, 53 (1-2), 149-60. DOI: 10.1016/j.molimm.2012.07.011. 230. Saurer, E. M.; Jewell, C. M.; Kuchenreuther, J. M.; Lynn, D. M., Assembly of erodible, DNA-containing thin films on the surfaces of polymer microparticles: toward a layer-by-layer approach to the delivery of DNA to antigen-presenting cells. Acta Biomater 2009, 5 (3), 913-24. DOI: 10.1016/j.actbio.2008.08.022. 231. Voltan, R.; Castaldello, A.; Brocca-Cofano, E.; De Michele, R.; Triulzi, C.; Altavilla, G.; Tondelli, L.; Laus, M.; Sparnacci, K.; Reali, E.; Gavioli, R.; Ensoli, B.; Caputo, A., Priming with a very low dose of DNA complexed with cationic block copolymers followed by protein boost elicits broad and long-lasting antigen-specific humoral and cellular responses in mice. Vaccine 2009, 27 (33), 4498-4507. DOI: 10.1016/j.vaccine.2009.05.031. 232. Tang, R.; Palumbo, R. N.; Nagarajan, L.; Krogstad, E.; Wang, C., Well-defined block copolymers for gene delivery to dendritic cells: Probing the effect of polycation chain-length. Journal of Controlled Release 2010, 142 (2), 229-237. DOI: 10.1016/j.jconrel.2009.10.021. 233. Bos, G. W.; Kanellos, T.; Crommelin, D. J.; Hennink, W. E.; Howard, C. R., Cationic polymers that enhance the performance of HbsAg DNA in vivo. Vaccine 2004, 23 (4), 460-9. DOI: 10.1016/j.vaccine.2004.06.020. 234. Caputo A, G. R., Altavilla G, Immunization with low doses of HIV-1 tat DNA delivered by novel cationic block copolymers induces CTL responses against Tat. vaccine 2003, 21 (11), 1103-1111. DOI: 10.1016/S0264-410X(02)00555-8. 235. Daftarian, P.; Kaifer, A. E.; Li, W.; Blomberg, B. B.; Frasca, D.; Roth, F.; Chowdhury, R.; Berg, E. A.; Fishman, J. B.; Al Sayegh, H. A.; Blackwelder, P.; Inverardi, L.; Perez, V. L.; Lemmon, V.; Serafini, P., Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigen-presenting cells. Cancer Res 2011, 71 (24), 7452-62. DOI: 10.1158/0008-5472.CAN-11-1766.
ACS Paragon Plus Environment
55
ACS Biomaterials Science & Engineering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 56 of 56
TOC graphic DNA
Delivery
Complexes Polymer
C MH
Peptide
Others
PLGA
T cell
t o ry ula e l tim Cos olecu m
APC Cy
Chitosan
TCR
tok
ine
s
PEI T cell differentiation and expansion
ACS Paragon Plus Environment
56