Bioconjugate Chem. 2007, 18, 1185−1193
1185
Porphyrin-Retinamides: Synthesis and Cellular Studies Martha Sibrian-Vazquez, Timothy J. Jensen, and M. Grac¸ a H. Vicente* Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803. Received February 2, 2007; Revised Manuscript Received March 14, 2007
A series of four porphyrin-retinamides containing either all-trans- or 13-cis-retinoid acid residues, directly linked to the para-phenyl position of meso-tetraphenylporphyrin or via a low-molecular-weight PEG spacer, have been synthesized. The biological properties of these conjugates were evaluated in a model cell line, human HEp2, and in neuroblastoma SK-N-DZ cells, which exhibit moderate expression of retinoic acid receptors and retinoic acidinduced differentiation. The directly linked porphyrin-retinamides were taken up by a greater extent (20-50% more) in SK-N-DZ than in HEp2 cells. However, the PEG-containing conjugates accumulated maximally within both cell lines and approximately by the same amount, probably due to their increased amphiphilicity. Among all conjugates, the porphyrin-PEG-13-cis-retinamide accumulated the most in both cell lines (about 5 times more than the non-pegylated conjugates). None of the porphyrin-retinamide conjugates were toxic toward HEp2 cells at concentrations up to 100 µM, and only the hydrophobic non-pegylated conjugates were moderately toxic to SK-N-DZ cells [IC50 (dark) ) 56-92 µM, and IC50 (at 1 J/cm2) ) 6-8 µM]. All conjugates preferentially localized within cellular vesicles that correlated well to the lysosomes and, in addition, the PEG-containing porphyrinretinamides were also found in the ER.
INTRODUCTION The receptor-mediated transport of drugs into targeted cells and sensitive intracellular sites is a valuable approach aimed at increasing the specificity of drugs for diseased tissue (1-4). Photodynamic therapy (PDT) is a binary modality for the treatment of cancer based on the activation of a tumoraccumulated photosensitizer with light of a wavelength, suitable for the excitation of the photosensitizer and for maximum tissue penetration (5, 6). The excited photosensitizer reacts with molecular oxygen and other surrounding molecules, generating radicals and reactive oxygen species (such as 1O2) that cause irreversible photodamage to tumor tissues. Since 1O2, the main cytotoxic agent generated in PDT, has a very short lifetime in biological systems and a very limited range in tissues ( 50 µM) toward HEp2 cells, and only the hydrophobic
(1) Kim, C.-K., and Lim, S.-J. (2002) Recent progress in drug delivery systems for anticancer agents. Arch. Pharm. Res. 25, 229-239. (2) Nori, A., and Kopecek, J. (2004) Intracellular targeting of polymerbound drugs for cancer therapy. AdV. Drug. DeliVery ReV. 57, 609636. (3) Rosenkranz, A. A., Jans, D. A., and Sobolev, A. S. (2002) Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency. Immunol. Cell Biol. 78, 452-464. (4) Nyman, E. S., and Hynninen, P. H. (2004) Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J. Photochem. Photobiol., B 73, 1-28. (5) Dougherty, T. J., Gomer, C. J., Henderson, B. W., Jori, G., Kessel, D., Korbelik, M., Moan, J., and Peng, Q. (1998) Photodynamic therapy. J. Natl. Cancer Inst. 90, 889-905. (6) Pandey, R. K., and Zheng, G. (2000). Porphyrins as photosensitizers in photodynamic therapy. In The Porphyrin Handbook. Volume 6: Applications: past, present and future (Kadish, K. M., Smith, K. M., Guilard, R., Eds.) pp 157-230, Chapter 43, Academic Press, New York. (7) Moan, J., Waksvik, H., and Christensen, T. (1980) DNA Singlestrand breaks and sister chromatid exchanges induced by treatment with hematoporphyrin and light or by X-rays in human NHIK 3025 cells. Cancer Res. 40, 2915-2918. (8) Ramakrishnan, N., Oleinick, N. L., Clay, M. E., Horng, M. F., Antunez, A. R., and Evans, H. H. (1989) DNA lesions and DNA degradation in mouse lymphoma L5178Y cells after photodynamic treatment sensitized by chloroaluminum phthalocyanine. Photochem. Photobiol. 50, 373-378. (9) Ruck, A., Kollner, T., Dietrich, A., Strauss, W., and Schneckenburger, H. (1992) Fluorescence formation during photodynamic
1192 Bioconjugate Chem., Vol. 18, No. 4, 2007 therapy in nucleus of cells incubated with cationic and anionic watersoluble photosensitizers. J. Photochem. Photobiol., B 12, 403412. (10) Penning, L. C., Lagerberg, J. W., Van Dierendonck, J. H., Cornelisse, C. J., Dubbelman, T. M., and Van Steveninck, J. (1996) The role of DNA damage and inhibition of poly(ADP-ribosyl) action in loss of clonogenicity of murine L929 fibroblasts, caused by photodynamically induced oxidative stress. Cancer Res. 54, 55615567. (11) Kessel, D. (2004) Correlation between subcellular localization and photodynamic efficacy. J. Porphyrins Phthalocyanines 8, 10091014. (12) Weatherman, R. V., Fletterick, R. J., and Scanlan, T. S. (1999) Nuclear-receptor ligands and ligand-binding domains. Annu. ReV. Biochem. 68, 559-581. (13) Renaud, J. P., and Moras, D. (2000) Structural studies of nuclear receptors. Cell. Mol. Life Sci. 57, 1748-1769. (14) Curley, R. W. and Robarge M. J. (1997) Retinoid structure, chemistry, and biological active derivatives. In Retinoids: Their physiological function and therapeutic potential, Advances in Organ Biology, Volume 3 (Bittar, E. E., Sherbet, G. V., Eds.) pp 1-34, Jai Press Inc., Greenwich, Connecticut. (15) Marill, J., Idres, N., Capron, C. C., Nguyen, E., and Chabot, G. G. (2003) Retinoic acid metabolism and mechanism of action. Curr. Drug Metabolism 4, 1-10. (16) Tallman, M. S., and Wiernik, P. H. (1992) Retinoids in cancer treatment. J. Clin. Pharm. 32, 868-888. (17) Evans, T. R. J., and Kaye, S. B. (1999) Retinoids: present role and future potential. Br. J. Cancer 80, 1-8. (18) Lei, M., and de The, H. (2003) Retinoids and retinoid acid receptor in cancer. Eur. J. Cancer Suppl. 1, 13-18. (19) Panigot, M. J., Humphries, K. A., and Curley, R. W. (1994) Preparation of 4-retinamidophenyl- and 4-retinamidobenzyl-C-glycosyl and C-glucuronosyl analogs of the glucuronide of 4-hydroxyphenyl-retinamide as potential stable cancer chemopreventive agents. J. Carbohydr. Chem. 13, 303-321. (20) Curley, R. W., and Robarge, M. J. (1996) Recent advances in the development of retinoids. Curr. Med. Chem. 3, 325-342. (21) Redoules, D., and Perie, J. (1999) Stereospecific synthesis of retinoic acid glucoconjugates, as pseudo-substrates of epidermal betaglucocerebrosidase. Tetrahedron Lett. 40, 4811-4814. (22) Ruhl, R., Sass, J. O., Nau, H., and Klug, S. (2001) Effects of all-trans-retinoic acid and all-trans-retinoyl glucuronide in two in vitro systems of distinct biological complexity. Arch. Tox. 75, 497504. (23) Shealy, Y. F., Frye, J. L., and Schiff, L. J. (1988) N-(Retinoyl)amino acidsssynthesis and chemopreventive activity in vitro. J. Med. Chem. 31, 190-196. (24) Manfredini, S., Simoni, D., Ferroni, R., Bazzanini, R., Vertuani, S., Hatse, S., Balzarini, J., and DeClercq, E. (1997) Retinoic acid conjugates as potential antitumor agents: synthesis and biological activity of conjugates with Ara-a, Ara-c, 3(2H)-furanone, and aniline mustard moieties. J. Med. Chem. 40, 3851-3857. (25) Veal, G. J., Errington, J., Redfern, C. P. F., Pearson, A. D. J., and Boddy, A. V. (2002) Influence of isomerisation on the growth inhibitory effects and cellular activity of 13-cis and all-trans retinoic acid in neuroblastoma cells. Biochem. Pharm. 63, 207-215. (26) Johnsen, J. I., Pettersen, I., Ponthan, F., Sveinbjornsson, B., Flaegstad, T., and Kogner, P. (2004) Synergistic induction of apoptosis in neuroblastoma cells using a combination of cytostatic drugs with interferon-gamma and TRAIL. Int. J. Oncol. 25, 18491857. (27) Dalpiaz, A., Pavan, B., Scaglianti, M., Vitali, F., Bortolotti, F., Biondi, C., Scatturin, A., and Manfredini, S. (2005) Vitamin C and 6-amino-vitamin C conjugates of diclofenac: synthesis and evaluation. Int. J. Pharm. 291, 171-181. (28) Hassan, H. T., and Rees, J. K. H. (1989) Triple combination of retinoic acid + aclcinomycin A + dimethylformamide induces differentiation of acute myeloid leukaemic blasts in primary culture. Anticancer Res. 9. 647-652. (29) Filippovich, E. I., Evstigneeva, R. P., Luzgina, V. N., Egorova, T. G., Kurdyumova, N. R., Mikerin, I. E., and Makin, S. M. (1990) Energy transfer in the systems of covalently bound porphyrin and retinoic acid derivatives. Zh. Obshch. Khim. 60, 481-484.
Sibrian-Vazquez et al. (30) Gribkova, S. E., Evstigneeva, R. P., and Luzgina, V. N. (1993) Synthesis of molecular complexes based on porphyrins for the investigation of the energy transfer and primary charge separation in photosynthesis. Russ. Chem. ReV. 62, 963-979. (31) Sibrian-Vazquez, M., Jensen, T. J., Hammer, R. P., and Vicente, M. G. H (2006) Peptide-mediated cell transport of water-soluble porphyrin conjugates. J. Med. Chem. 49, 1364-1372. (32) Fery-Forgues, S., and Lavabre, D. (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J. Chem. Ed. 76, 1260-1264. (33) Lakowicz, J. R. (1999) Principles of Fluorescence Spectroscopy, 2nd ed., pp 52-53, Chapter 2, Kluwer Academic/Plenum Publishers, New York. (34) Luguya, R., Jaquinod, L., Fronczek, F. R., Vicente, M. G. H., and Smith, K. M. (2004) Synthesis and reactions of meso-(pnitrophenyl)porphyrins. Tetrahedron 60, 2757-2763. (35) Sibrian-Vazquez, M., Jensen, T. J., Fronczek, F. R., Hammer, R. P., and Vicente, M. G. H. (2005) Synthesis and characterization of positively charged porphyrin-peptide conjugates. Bioconjugate Chem. 16, 852-863. (36) Sibrian-Vazquez, M., Hao, E., Jensen, T. J., and Vicente, M. G. H. (2006) Enhanced cellular uptake with a cobaltacarboraneporphyrin-HIV-1 Tat 48-60 conjugate. Bioconjugate Chem. 17, 928934. (37) Sibrian-Vazquez, M., Jensen, T. J., and Vicente, M. G. H. (2007) Synthesis and cellular studies of PEG-functionalized meso-tetraphenylporphyrins. J. Photochem. Photobiol., B 86, 9-21. (38) Helson, L., and Helson, C. (1985) Human neuroblastoma cells and 13-cis-retinoic acid. J. Neuro-Oncol. 3, 39-41. (39) Lovat, P. E., Irving, H., Annicchiarico-Petruzzelli, M., Bernassola, F., Malcolm, A. J., Pearson, A. D. J., Melino, G., and Redfern, C. P. F. (1997) Retinoids in neuroblastoma therapy: Distinct biological properties of 9-cis- and all-trans-retinoic acid. Eur. J. Cancer 33, 2075-2080. (40) Nagai, J., Yazawa, T., Okudela, K., Kigasawa, H., Kitamura, H., and Osaka, H. (2004) Retinoic acid induces neuroblastoma cell death by inhibiting proteasomal degradation of retinoic acid receptor alpha. Cancer Res. 64, 7910-7917. (41) Armstrong, J. L., Ruiz, M., Boddy, A. V., Redfern, C. P. F., Pearson, A. D. J., and Veal, G. J. (2005) Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells. Br. J. Cancer 92, 696-704. (42) Shealy, Y. F., Frye, J. L., Odell, C. A., Thorpe, M. C., Kirk, M. C., Coburn, W. C., and Sporn, M. B. (1984) Synthesis and properties of some 13-cis-retinamides and all-trans-retinamides. J. Pharm. Sci. 73, 745-751. (43) Barua, A. B., Huselton, C. A., and Olson, J. A. (1996) Synthesis of novel glucuronide conjugates of retinoid carboxylic acids. Synth. Commun. 26, 1355-1361. (44) Barua, A. B., and Olson, J. A. (1985) Preparation of retinamides by use of retinoyl fluoride. J. Lipid Res. 26, 258-262. (45) Armstrong, J. L., Ruiz, M., Boddy, A. V., Redfern, C. P. F., Pearson, A. D. J., and Veal, G. J. (2005) Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells. Br. J. Cancer 92, 696-704. (46) Tsukada, M., Schroder, M., Roos, T. C., Chandraratna, R. A. S., Reichert, U., Merk, H. F., Orfanos, C. E., and Zouboulis, C. C. (2000) 13-cis Retinoic acid exerts its specific activity on human sebocytes through selectively intracellular isomerization to all-trans tetinoic acid and binding retinoid acid receptors. J. InVest. Dermatol. 115, 321-327. (47) Greenwald, R. B., Choe, Y. H., McGuire, J., and Conover, C. D. (2003) Effective drug delivery by PEGylated drug conjugates. AdV. Drug DeliVery ReV. 55, 217-250. (48) Hamblin, M. R., Miller, J. L., Rizvi, I., Ortel, B., Maytin, E. V., and Hasan, T. (2001) Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer. Cancer Res. 61, 71557162. (49) Kim, Y. S., Song, R., Hyun, K. D., Jun, M. J., and Sohn, Y. S. (2003) Synthesis, biodistribution and antitumor activity of hematoporphyrin-platinum(II) conjugates. Bioorg. Med. Chem. 11, 17531760. (50) Kanofsky, J. R. (1990) Quenching of singlet oxygen by human plasma. Photochem. Photobiol. 51 299-303.
Bioconjugate Chem., Vol. 18, No. 4, 2007 1193
Porphyrin Retinamides: Synthesis and Cellular Studies (51) Dawson, M. I., Jong, L., Hobbs, P. D., Cameron, J. F., Chao, W., Pfahal, M., Lee, M., Shroot, B., and Pfhal, M. (1995) Conformational effects on retinoid receptor selectivity. 2. Effects of retinoid bridging group on retinoid X receptor activity and selectivity. J. Med. Chem. 38, 3368-3383. (52) Silva, C. H. T. P., Almeida, P., and Taft, C. A. (2004) Density functional and docking studies of retinoids for cancer treatment. J. Mol. Model. 10, 38-43.
(53) Bogan, A. A., Cohen, F. E., and Scanlan, T. (1998) Natural ligands of nuclear receptors have conserved volumes. Nat. Struct. Biol. 5, 679-681. (54) Yang, Q., Sakurai, T., and Kakudo, K. (2002) Retinoid, retinoic acid receptor β and breast cancer. Breast Cancer Res. Treat. 76, 167-173. BC0700382