Prediction of Carboxylic and Polyphenolic Chemical Feedstock

Mar 5, 2018 - In all cases (juice, bagasse without dilution, and bagasse with dilution), PARAFAC employed combined 2015–2016 data containing 132 tot...
15 downloads 11 Views 1MB Size
Subscriber access provided by UNIV OF NEW ENGLAND ARMIDALE

Biofuels and Biomass

Prediction of Carboxylic and Polyphenolic Chemical Feedstock Quantities in Sweet Sorghum Minori Uchimiya, and Joseph Edward Knoll Energy Fuels, Just Accepted Manuscript • DOI: 10.1021/acs.energyfuels.8b00491 • Publication Date (Web): 05 Mar 2018 Downloaded from http://pubs.acs.org on March 10, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

1

Prediction of Carboxylic and Polyphenolic Chemical

2

Feedstock Quantities in Sweet Sorghum

3

Minori Uchimiya*,a and Joseph E. Knollb

4 5 6 7 8 9 10

a

USDA-ARS Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124

b

USDA-ARS Crop Genetics and Breeding Research Unit, 115 Coastal Way, Tifton, GA 31793

*Corresponding

author

fax:

(504)

286-4367,

phone:

[email protected] (M. Uchimiya)

11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 Environment ACS Paragon Plus

(504)

286-4356,

email:

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 32

25

Abstract

26

Quantitative chemical phenotyping is in an increasing demand to develop sweet sorghum genotypes

27

targeted to accumulate carboxylate and polyphenolic secondary products as the plant-derived feedstocks

28

for renewable biobased products including plastics. Of 24 sweet sorghum genotypes investigated, No.5

29

Gambela (i) accumulated as much as 6-fold higher (p Brix > sucrose), but shifted towards bagasse parameters in 2016 (bagasse 286 nm > bagasse 320 nm > bagasse 13 Environment ACS Paragon Plus

Energy & Fuels

336

1 2 3 337 4 5 338 6 7 339 8 9 340 10 11 12 341 13 14 342 15 16 343 17 18 344 19 20 21 345 22 23 346 24 25 347 26 27 28 348 29 30 349 31 32 350 33 34 351 35 36 37 352 38 39 353 40 41 354 42 43 44 355 45 46 356 47 48 357 49 50 358 51 52 53 359 54 55 360 56 57 361 58 59 60

Page 14 of 32

extract PARAFAC %2). For the anodic peak areas (an estimate for the amount of electrons stored by polyphenols) by trapezoidal and Gaussian fits,26 juice absorbance at 320 nm dominated the positive correlation in both years. For Epa, correlation with TOC became dominant in 2016 (r=0.75 as opposed to 0.44 in 2015). Above-described shifts in the highest linearity of Pearson’s correlations collectively suggest greater dominance of non-sugar secondary products in 2016, relative to the previous planting year. For growth parameters (bold in Table 6), positive (r>0.6) correlations were observed for days to harvest/flower against CV areas and Epa in 2016, and aromatic fluorescence juice fingerprint in 2015. In conclusion, this study systematically developed PLS based on inexpensive UV/visible spectrophotometry to calibrate and predict renewable chemical feedstocks/defense phytochemicals, accounting for diverse environmental and genotypic variations. To our knowledge, this is the first report utilizing solid-phase in situ fluorescence technique to evaluate the molecular structures responsible for the redox reactivity of biomass. The present study specifically focused on sweet sorghum, which is receiving increasing industrial interests for producing bioenergy and renewable products such as plasticizers, composites, and antioxidant food additives.50-52 Sorghum has small diploid genome and phenotypic diversity,53 and represents C4 type of photosynthesis considered more efficient by fixing CO2 at high temperature climate, compared to the C3 route of rice or wheat.54 High gene flow is expected between cultivated sorghum, wild types, and their hybrids as well as weedy relatives, constraining transgenic approach.55 Chemical phenotyping, particularly PLS calibration and prediction of secondary product concentrations (Table 5) will expedite sorghum breeding efforts and enable precision agriculture targeting the accumulation of plant-derived chemical feedstocks52 or defense phytochemicals.7 New PLS methods will also aid accurate, rapid, inexpensive, and quantitative QA/QC developments at biorefineries and chemical plants, in place of traditionally employed colorimetric methods that are sensitive to experimental artifacts, including overlapping spectra near the detection wavelength, reactivity of non-target structures, and interferences from reaction media and kinetics. Our subsequent report in this series will explore the relationships between sugarcane aphid population/damage and chemical signatures determined in this study. 14 Environment ACS Paragon Plus

Page 15 of 32

362

1 2 3 363 4 5 364 6 7 365 8 9 10 366 11 12 13 367 14 15 16 368 17 18 369 19 20 21 370 22 23 24 371 25 26 372 27 28 29 373 30 31 32 374 33 34 375 35 36 37 376 38 39 40 377 41 42 378 43 44 379 45 46 47 48 380 49 50 381 51 52 53 382 54 55 56 383 57 58 384 59 60

Energy & Fuels

Supporting Information. Sections I-VI: Inbred and hybrid cultivars, UV/visible spectra of sweet sorghum juice and bagasse, bagasse EEM/PARAFAC with and without dilution, PLS cross-validation and prediction scatter plots for bagasse, cultivar effects, and mean values and ratios against No. Gambela. Disclaimer Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer. References (1) Colares, F.; Michaud, J. P.; Bain, C. L.; Torres, J. B., Relative toxicity of two aphicides to Hippodamia convergens (Coleoptera: Coccinellidae): Implications for integrated management of sugarcane aphid, Melanaphis sacchari (Hemiptera: Aphididae). J. Econ. Entomol. 2017, 110, 52-58. (2) Elliott, N.; Brewer, M.; Seiter, N.; Royer, T.; Bowling, R.; Backoulou, G.; Gordy, J.; Giles, K.; Lindenmayer, J.; McCornack, B.; Kerns, D., Sugarcane aphid spatial distribution in grain sorghum fields. Southwest. Entomol. 2017, 42, 27-35. (3) Mbulwe, L.; Peterson, G. C.; Scott-Armstrong, J.; Rooney, W. L., Registration of sorghum germplasm Tx3408 and Tx3409 with tolerance to sugarcane aphid [Melanaphis sacchari (Zehntner)]. J. Plant Regist. 2016, 10, 51-56. (4) Powell, G.; Tosh, C. R.; Hardie, J., Host plant selection by aphids: Behavioral, evolutionary, and applied perspectives. In Annual Review of Entomology, 2006; Vol. 51, pp 309-330. (5) Stanton, C.; Starek, M. J.; Elliott, N.; Brewer, M.; Maeda, M. M.; Chu, T., Unmanned aircraft system-derived crop height and normalized difference vegetation index metrics for sorghum yield and aphid stress assessment. J. Appl. Remote Sens. 2017, 11. 15 Environment ACS Paragon Plus

Energy & Fuels

385

1 2 3 386 4 5 6 387 7 8 388 9 10 389 11 12 13 14 390 15 16 391 17 18 19 392 20 21 22 393 23 24 394 25 26 27 395 28 29 396 30 31 32 33 397 34 35 398 36 37 399 38 39 40 41 400 42 43 401 44 45 402 46 47 48 403 49 50 51 404 52 53 405 54 55 56 57 58 59 60

Page 16 of 32

(6) Elliott, N. C.; Backoulou, G. F.; Brewer, M. J.; Giles, K. L., NDVI to detect sugarcane aphid injury to grain sorghum. J. Econ. Entomol. 2015, 108, 1452-1455. (7) Rustamani, M. A.; Kanehisa, K.; Tsumuki, H.; Shiraga, T., Further observations on the relationship between aconitic acid contents and aphid densities on some cereal plants. Bull. Res. Inst. Bioresour. Okayama Univ. 1992, 1, 9-20. (8) Rustamani, M. A.; Kanehisa, K.; Tsumuki, H., Aconitic acid content of some creals and its effect on aphids. Appl. Entomol. Zool. 1992, 27, 79-87. (9) Costa-Arbulu, C.; Gianoli, E.; Gonzales, W. L.; Niemeyer, H. M., Feeding by the aphid Sipha flava produces a reddish spot on leaves of Sorghum halepense: an induced defense? J. Chem. Ecol. 2001, 27, 273-283. (10) Züst, T.; Agrawal, A. A., Mechanisms and evolution of plant resistance to aphids. Nature Plants 2016, 2. (11) Brewer, M. J.; Gordy, J. W.; Kerns, D. L.; Woolley, J. B.; Rooney, W. L.; Bowling, R. D., Sugarcane aphid population growth, plant injury, and natural enemies on selected grain sorghum hybrids in Texas and Louisiana. J. Econ. Entomol. 2017, 110, 2109-2118. (12) Armstrong, J. S.; Rooney, W. L.; Peterson, G. C.; Villenueva, R. T.; Brewer, M. J.; Sekula-Ortiz, D., Sugarcane aphid (Hemiptera: Aphididae): Host range and sorghum resistance including crossresistance from greenbug sources. J. Econ. Entomol. 2015, 108, 576-582. (13) Singh, B. U.; Padmaja, P. G.; Seetharama, N., Biology and management of the sugarcane aphid, Melanaphis sacchari (Zehntner) (Homoptera: Aphididae), in sorghum: A review. Crop Prot. 2004, 23, 739-755.

16 Environment ACS Paragon Plus

Page 17 of 32

406

1 2 3 407 4 5 408 6 7 8 409 9 10 410 11 12 13 14 411 15 16 412 17 18 413 19 20 21 22 414 23 24 415 25 26 416 27 28 29 417 30 31 32 418 33 34 419 35 36 37 420 38 39 40 421 41 42 422 43 44 45 423 46 47 424 48 49 50 425 51 52 53 426 54 55 427 56 57 58 428 59 60

Energy & Fuels

(14) USEPA Renewable Fuel Standard Program; United States Environmental Protection Agency, Washington, DC. Available: https://www.epa.gov/renewable-fuel-standard-program (3 August 2017) (2017). (15) Lehmann, M. L.; Counce, R. M.; Counce, R. W.; Watson, J. S.; Labbé, N.; Tao, J., Recovery of phenolic compounds from switchgrass extract. ACS Sustainable Chem. Eng. 2017. (16) Du, C.; Cao, S.; Shi, X.; Nie, X.; Zheng, J.; Deng, Y.; Ruan, L.; Peng, D.; Sun, M., Genetic and biochemical characterization of a gene operon for trans-aconitic acid, a novel nematicide from Bacillus thuringiensis. J. Biol. Chem. 2017, 292, 3517-3530. (17) Martin, A. P.; Palmer, W. M.; Byrt, C. S.; Furbank, R. T.; Grof, C. P. L., A holistic highthroughput screening framework for biofuel feedstock assessment that characterises variations in soluble sugars and cell wall composition in Sorghum bicolor. Biotechnol. Biofuels 2013, 6, 186. (18) Xu, F.; Zhou, L.; Zhang, K.; Yu, J.; Wang, D., Rapid determination of both structural polysaccharides and soluble sugars in sorghum biomass using near-infrared spectroscopy. Bioenergy Res. 2015, 8, 130-136. (19) Fox, G. P.; O'Donnell, N. H.; Stewart, P. N.; Gleadow, R. M., Estimating hydrogen cyanide in forage sorghum (Sorghum bicolor) by near-infrared spectroscopy. J. Agr. Food Chem. 2012, 60, 61836187. (20) Aleixandre-Tudo, J. L.; Nieuwoudt, H.; Aleixandre, J. L.; Du Toit, W. J., Robust ultravioletvisible (UV-vis) partial least-squares (PLS) models for tannin quantification in red wine. J. Agr. Food Chem. 2015, 63, 1088-1098. (21) Dambergs, R. G.; Mercurio, M. D.; Kassara, S.; Cozzolino, D.; Smith, P. A., Rapid measurement of methyl cellulose precipitable tannins using ultraviolet spectroscopy with chemometrics: Application to red wine and inter-laboratory calibration transfer. Appl. Spectrosc. 2012, 66, 656-664. 17 Environment ACS Paragon Plus

Energy & Fuels

429

1 2 3 430 4 5 6 431 7 8 432 9 10 433 11 12 13 14 434 15 16 435 17 18 436 19 20 21 22 437 23 24 438 25 26 439 27 28 29 440 30 31 32 441 33 34 35 442 36 37 443 38 39 40 444 41 42 43 445 44 45 446 46 47 447 48 49 50 51 448 52 53 449 54 55 56 57 58 59 60

Page 18 of 32

(22) Tian, M.; Wu, G.; Adams, B.; Wen, J.; Chen, A., Kinetics of photoelectrocatalytic degradation of nitrophenols on nanostructured TiO2 electrodes. J. Phys. Chem. C 2008, 112, 825-831. (23) Dias, L. G.; Veloso, A. C. A.; Correia, D. M.; Rocha, O.; Torres, D.; Rocha, I.; Rodrigues, L. R.; Peres, A. M., UV spectrophotometry method for the monitoring of galacto-oligosaccharides production. Food Chem. 2009, 113, 246-252. (24) Zhang, C. H.; Yun, Y. H.; Zhang, Z. M.; Liang, Y. Z., Simultaneous determination of neutral and uronic sugars based on UV-vis spectrometry combined with PLS. Int. J. Biol. Macromol. 2016, 87, 290294. (25) Xu, D.; Fan, W.; Lv, H.; Liang, Y.; Shan, Y.; Li, G.; Yang, Z.; Yu, L., Simultaneous determination of traces amounts of cadmium, zinc, and cobalt based on UV-Vis spectrometry combined with wavelength selection and partial least squares regression. Spectrochim. Acta, Part A 2014, 123, 430-435. (26) Uchimiya, M.; Knoll, J. E.; Harris-Shultz, K. R., Electrochemical evaluation of sweet sorghum fermentable sugar bioenergy feedstock. ACS Sustainable Chem. Eng. 2017, 5, 7352−7364. (27) Uchimiya, M.; Knoll, J. E.; Anderson, W. F.; Harris-Shultz, K. R., Chemical analysis of fermentable sugars and secondary products in 23 sweet sorghum cultivars. J. Agr. Food Chem. 2017, 65, 7629-7637. (28) Yaacoub, R.; Saliba, R.; Nsouli, B.; Khalaf, G.; Rizkallah, J.; Birlouez-Aragon, I., Rapid assessment of neoformed compounds in nuts and sesame seeds by front-face fluorescence. Food Chem. 2009, 115, 304-312. (29) Albrecht, R.; Verrecchia, E.; Pfeifer, H. R., The use of solid-phase fluorescence spectroscopy in the characterisation of organic matter transformations. Talanta 2015, 134, 453-459.

18 Environment ACS Paragon Plus

Page 19 of 32

450

1 2 3 451 4 5 6 452 7 8 453 9 10 454 11 12 13 14 455 15 16 456 17 18 19 457 20 21 22 458 23 24 25 459 26 27 28 460 29 30 461 31 32 33 462 34 35 36 463 37 38 464 39 40 41 42 465 43 44 466 45 46 467 47 48 49 468 50 51 52 469 53 54 470 55 56 57 58 59 60

Energy & Fuels

(30) Muller, M.; Milori, D. M. B. P.; Déléris, S.; Steyer, J. P.; Dudal, Y., Solid-phase fluorescence spectroscopy to characterize organic wastes. Waste Manage. 2011, 31, 1916-1923. (31) Lenhardt, L.; Zeković, I.; Dramićanin, T.; Milićević, B.; Burojević, J.; Dramićanin, M. D., Characterization of cereal flours by fluorescence spectroscopy coupled with PARAFAC. Food Chem. 2017, 229, 165-171. (32) Knoll, J. E.; Anderson, W. F., Yield components in hybrid versus inbred sweet sorghum. Crop Sci. 2016, 56, 2638-2646. (33) Gorz, H. J.; Haskins, F. A.; Johnson, B. E., Registration of 15 germplasm lines of grain sorghum and sweet sorghum. Crop Sci. 1990, 30, 762–763. (34) Broadhead, D. M.; Coleman, O. H., Registration of Dale sweet sorghum. Crop Sci. 1973, 13, 776. (35) USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network (GRIN). [Online Database] National Germplasm Resources Laboratory, Beltsville, Maryland. Available: http://www.ars-grin.gov/cgi-bin/npgs/acc/display.pl?1201506 (17 September 2014). (36) Wu, X.; Staggenborg, S.; Propheter, J. L.; Rooney, W. L.; Yu, J.; Wang, D., Features of sweet sorghum juice and their performance in ethanol fermentation. Ind. Crop. Prod. 2010, 31, 164-170. (37) Ugliano, M., Rapid fingerprinting of white wine oxidizable fraction and classification of white wines using disposable screen printed sensors and derivative voltammetry. Food Chem. 2016, 212, 837843. (38) Pereira, A. C.; Reis, M. S.; Saraiva, P. M.; Marques, J. C., Madeira wine ageing prediction based on different analytical techniques: UV-vis, GC-MS, HPLC-DAD. Chemometr. Intell. Lab. 2011, 105, 43-55.

19 Environment ACS Paragon Plus

Energy & Fuels

471

1 2 3 472 4 5 6 473 7 8 474 9 10 11 475 12 13 14 476 15 16 477 17 18 19 478 20 21 22 479 23 24 480 25 26 27 481 28 29 482 30 31 32 33 483 34 35 36 484 37 38 485 39 40 41 486 42 43 44 487 45 46 488 47 48 49 489 50 51 52 490 53 54 491 55 56 57 58 59 60

Page 20 of 32

(39) Halwer, M., Light scattering by sucrose solutions at high concentrations. J. Am. Chem. Soc. 1948, 70, 3985-3986. (40) Baunsgaard, D.; Norgaard, L.; Godshall, M. A., Fluorescence of raw cane sugars evaluated by chemometrics. J. Agr. Food Chem. 2000, 48, 4955-4962. (41) Mobed, J. J.; Hemmingsen, S. L.; Autry, J. L.; McGown, L. B., Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction. Environ. Sci. Technol. 1996, 30, 3061-3065. (42) Christensen, J. H.; Hansen, A. B.; Mortensen, J.; Andersen, O., Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis. Anal. Chem. 2005, 77, 22102217. (43) Stedmon, C. A.; Bro, R., Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr. Methods 2008, 6, 572-579. (44) Lichtman, J. W.; Conchello, J. A., Fluorescence microscopy. Nat. Methods 2005, 2, 910-919. (45) Kalyanasundaram, K.; Thomas, J. K., Solvent-dependent fluorescence of pyrene-3-carboxaldehyde and its applications in the estimation of polarity at micelle-water interfaces. J. Phys. Chem. 1977, 81, 2176-2180. (46) Lakowicz, J. R., Effects of Solvents on Fluorescence Emission Spectra. In Principles of Fluorescence Spectroscopy, Lakowicz, J. R., Ed. Springer US: Boston, MA, 1983; pp 187-215. (47) Jonker, M. T.; Koelmans, A. A., Extraction of polycyclic aromatic hydrocarbons from soot and sediment: solvent evaluation and implications for sorption mechanism. Environ. Sci. Technol. 2002, 36, 4107-4113.

20 Environment ACS Paragon Plus

Page 21 of 32

492

1 2 3 493 4 5 6 494 7 8 495 9 10 496 11 12 13 14 497 15 16 498 17 18 499 19 20 21 500 22 23 24 501 25 26 502 27 28 29 503 30 31 32 33 504 34 35 505 36 37 506 38 39 40 507 41 42 43 508 44 45 46 509 47 48 510 49 50 51 511 52 53 512 54 55 513 56 57 58 59 60

Energy & Fuels

(48) Andersen, C. M.; Mortensen, G., Fluorescence spectroscopy: A rapid tool for analyzing dairy products. J. Agr. Food Chem. 2008, 56, 720-729. (49) Martínez-Lüscher, J.; Hadley, P.; Ordidge, M.; Xu, X.; Luedeling, E., Delayed chilling appears to counteract flowering advances of apricot in southern UK. Agr. Forest Meteorol. 2017, 237-238, 209218. (50) Karp, E. M.; Eaton, T. R.; Sànchez i Nogué, V.; Vorotnikov, V.; Biddy, M. J.; Tan, E. C. D.; Brandner, D. G.; Cywar, R. M.; Liu, R.; Manker, L. P.; Michener, W. E.; Gilhespy, M.; Skoufa, Z.; Watson, M. J.; Fruchey, O. S.; Vardon, D. R.; Gill, R. T.; Bratis, A. D.; Beckham, G. T., Renewable acrylonitrile production. Science 2017, 358, 1307-1310. (51) Yang, X.; Song, W.; Liu, N.; Sun, Z.; Liu, R.; Liu, Q. S.; Zhou, Q.; Jiang, G., Synthetic phenolic antioxidants cause perturbation in steroidogenesis in vitro and in vivo. Environ. Sci. Technol. 2017. (52) Hillmyer, M. A., The promise of plastics from plants. Science 2017, 358, 868-870. (53) Mace, E. S.; Tai, S.; Gilding, E. K.; Li, Y.; Prentis, P. J.; Bian, L.; Campbell, B. C.; Hu, W.; Innes, D. J.; Han, X.; Cruickshank, A.; Dai, C.; Frère, C.; Zhang, H.; Hunt, C. H.; Wang, X.; Shatte, T.; Wang, M.; Su, Z.; Li, J.; Lin, X.; Godwin, I. D.; Jordan, D. R.; Wang, J., Whole-genome sequencing reveals untapped genetic potential in Africa's indigenous cereal crop sorghum. Nat. Commun. 2013, 4. (54) Sasaki, T.; Antonio, B. A., Plant genomics: Sorghum in sequence. Nature 2009, 457, 547-548. (55) Paterson, A. H.; Bowers, J. E.; Bruggmann, R.; Dubchak, I.; Grimwood, J.; Gundlach, H.; Haberer, G.; Hellsten, U.; Mitros, T.; Poliakov, A.; Schmutz, J.; Spannagl, M.; Tang, H.; Wang, X.; Wicker, T.; Bharti, A. K.; Chapman, J.; Feltus, F. A.; Gowik, U.; Grigoriev, I. V.; Lyons, E.; Maher, C. A.; Martis, M.; Narechania, A.; Otillar, R. P.; Penning, B. W.; Salamov, A. A.; Wang, Y.; Zhang, L.; Carpita, N. C.; Freeling, M.; Gingle, A. R.; Hash, C. T.; Keller, B.; Klein, P.; Kresovich, S.; McCann, M. C.; Ming, R.;

21 Environment ACS Paragon Plus

Energy & Fuels

514

1 2 3 515 4 5 6 516 7 8 517 9 518 10 519 11 520 12 521 13 522 14 15 523 16 524 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 22 of 32

Peterson, D. G.; Mehboob Ur, R.; Ware, D.; Westhoff, P.; Mayer, K. F. X.; Messing, J.; Rokhsar, D. S., The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457, 551-556. Figure Captions Figure 1. Three EEM/PARAFAC fingerprints obtained for juice (a-c, 20-fold dilution) and methanol extract of bagasse (d-f, 10-fold dilution of 20 g L-1 extract) from 23 (24 in 2016) sweet sorghum cultivars in 2015-2016. Figure 2. Solid-phase EEM/PARAFAC fingerprints obtained from bagasse powder. Figure 3. Scatter plots of cross-validated (a) and predicted (b) versus measured (x-axis) trans-aconitic aid concentration. Lines are the PLS model fit (red) and 1:1 (green).

22 Environment ACS Paragon Plus

Page 23 of 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

Table 1. Concentrations of primary (sugars) and secondary (carboxylates) organic carbon products in juice of sweet sorghum planted in May of 2015 and 2016. Total number of samples (n for 23 cultivars (24 in 2016)×2 years×triplicate field plots), mean, standard deviation (s.d.), minimum, maximum, and number of non-zero values for each variable. Significant (p