11 Preliminary Investigations on Chinese Ink
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch011
in Far Eastern Paintings JOHN WINTER Freer Gallery of Art, Smithsonian Institution, Washington, D.C. 20560 Chinese ink, an intimate mixture of combustion carbon and animal glue, was originally based on pine wood soot, but lampblack from oil lamps became dominant after about the 11th century. Various inks, many from paintings, were studied by scanning electron micrographs; these enable individual carbon particles to be seen and some approximate particle size distributions to be constructed. Combustion carbon can be recognized easily as a pigment in paintings. Lampblack inks seem to have a fairly narrow particle size distribution; pine soot inks give more variable distributions. The reason some inks show a bluish and some a brownish tint is concluded to be light absorption differences by the carbon rather than additives or Tyndall effects. Though falling into the same range, distributions differ sufficiently in shape to suggest that they could be an identifying characteristic in some cases.
V V T r i t i n g a n d the written w o r d have always h a d a special importance in Chinese culture. Paper a n d printing are both Chinese inven tions; t h e h a i r b r u s h , also u s e d f o r w r i t i n g , has a c o n s i d e r a b l e a n t i q u i t y i n that country.
A l t h o u g h b l a c k inks a n d p a i n t s w e r e m a d e i n other
parts of t h e w o r l d , p e r h a p s f r o m a n earlier t i m e ( I ) , i t w a s u n d o u b t e d l y the i m p o r t a n c e of l i t e r a c y a m o n g t h e C h i n e s e t h a t l e d t h e m to p r o d u c e i n k of a q u a l i t y u n m a t c h e d a n y w h e r e outside t h e F a r E a s t . F u r t h e r m o r e , u n l i k e m o s t other parts of t h e w o r l d , this same m a t e r i a l w a s u s e d n o t o n l y f o r w r i t i n g a n d p r i n t i n g , b u t i t b e c a m e almost u b i q u i t o u s i n p a i n t i n g . I n t h e present context there is n o d i s t i n c t i o n , of t h e t y p e f o u n d i n western practice, between i n k a n d paint.
Chinese ink could well be
d e s c r i b e d as b l a c k w a t e r - c o l o r p a i n t ; i t w a s a p p l i e d w i t h a b r u s h a n d u s e d t h e same g l u e v e h i c l e as t h a t u s e d w i t h other p i g m e n t s . 207 In Archaeological Chemistry; Beck, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
T h e ex-
208
ARCHAEOLOGICAL CHEMISTRY
p e r i m e n t a l results offered
here are d e r i v e d f r o m samples t a k e n f r o m
p a i n t i n g s r a t h e r t h a n f r o m examples of p r i n t i n g or w r i t i n g .
However,
C h i n e s e i n k is a t e r m c o m m o n l y u n d e r s t o o d i n several different
fields,
a n d i t w o u l d b e c o n f u s i n g a n d p e d a n t i c to r e p l a c e i t . F e w C h i n e s e , Japanese, or K o r e a n p a i n t i n g s o n flexible supports d o not use b l a c k i n k to a c o n s i d e r a b l e extent.
M a n y were executed using
o n l y this m e d i u m or w i t h slight a d d i t i o n of color.
The virtual ubiquity
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch011
of i n k is u n d o u b t e d l y one factor b e h i n d its i m p o r t a n c e i n the F a r E a s t ; t h i s is s h o w n b y the respect a c c o r d e d
its m a k e r s , b y its t r e a t m e n t i n
C h i n e s e h i s t o r i c a l w r i t i n g , a n d b y the extensive i n k l o r e t h a t exists. T h i s p a p e r describes the p r e l i m i n a r y a n d e x p l o r a t o r y p h a s e of a n i n v e s t i g a t i o n of C h i n e s e i n k i n F a r E a s t e r n p a i n t i n g s — i t s p r o p e r t i e s a n d its v a r i a b i l i t y .
T o clarify w h a t such investigation might achieve,
we
m u s t first look briefly at the h i s t o r y a n d m e t h o d of m a n u f a c t u r e of t h e ink.
N o t e that C h i n e s e i n k has b e e n v a r i o u s l y c a l l e d C h i n a i n k , I n d i a
( o r I n d i a n ) i n k , Japanese i n k , a n d o c c a s i o n a l l y b y its Japanese sumi.
name,
T h e C h i n e s e w o r d , less u s e d , is mo.
History
and
Manufacture
C h i n e s e i n k is essentially a m i x t u r e of soot or l a m p b l a c k w i t h g l u e ; o t h e r constituents m a y b e i n v o l v e d a n d are m e n t i o n e d b e l o w .
T h e estab
l i s h e d m a n u f a c t u r i n g m e t h o d stresses b o t h the c a r e f u l c h o i c e a n d p r e p a r a t i o n of the i n g r e d i e n t s a n d the assidousness
and diligence required
during their compounding. T h e o r i g i n s of C h i n e s e i n k are obscure.
T h e r e are references to the
e a r l y use of a b l a c k v a r n i s h ( 2 ) , a n i d e a that has b e e n d i s p u t e d
(3).
A n e a r l y m a t e r i a l c a l l e d shih mo, or "stone i n k " also crops u p i n C h i n e s e l i t e r a t u r e (2,
4)
a n d m a y h a v e b e e n g r a p h i t e or c o a l .
Archaeological
m a t e r i a l seems to b e sparse a n d scarcely s t u d i e d , a l t h o u g h a n i n v e s t i g a t i o n (5,6)
o n the b l a c k p i g m e n t f o u n d o n a S h a n g oracle b o n e suggests
that i t is carbonaceous
a n d p o s s i b l y b l o o d that has d a r k e n e d w i t h t i m e .
S o m e references exist to p r e - H a n potsherds b e a r i n g b l a c k i n k a p p a r e n t l y a p p l i e d w i t h a b r u s h as a l i q u i d (4,
7).
I n k as w e n o w r e c o g n i z e i t is t r a d i t i o n a l l y b e l i e v e d to date f r o m the W e i d y n a s t y , a n d the first extant d e s c r i p t i o n comes f r o m the 5 t h c e n t u r y A . D . (8).
[Ref. 9 erroneously gives the W e i p e r i o d as "220 à 260
a v a n t J . C . " w h e r e "après J . C . " is c l e a r l y meant. W e i are A . D . 2 2 0 - 2 6 5 . ]
A c c e p t e d dates f o r t h e
A c o n s i d e r a b l e p e r i o d of d e v e l o p m e n t
t h e n seems p r o b a b l e , h o w e v e r .
before
S i n c e t h a t t i m e the C h i n e s e l i t e r a t u r e
o n i n k has b e e n f a i r l y extensive; a d e t a i l e d h a n d b o o k o n i n k m a k i n g i n the 14th c e n t u r y has b e e n t r a n s l a t e d i n t o F r e n c h (9), F r a n k e has r e n d e r e d m a n y texts i n t o G e r m a n (4).
and more recently These
and
In Archaeological Chemistry; Beck, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
other
11.
Chinese
WINTER
authors ( 2 , 10-15)
209
Ink
h a v e d e s c r i b e d the h i s t o r y of i n k m a k i n g as d e r i v e d
f r o m the C h i n e s e l i t e r a t u r e . F r o m t h e 5 t h c e n t u r y the m e t h o d f o r m a k i n g i n k r e m a i n e d u n c h a n g e d i n essentials. T h e c a r b o n w a s m a d e i n w a y s w h i c h d i d v a r y , a n d this aspect is d e a l t w i t h i n m o r e d e t a i l b e l o w .
A n i m a l glue
was
p r e p a r e d u s i n g c o l l a g e n f r o m v a r i o u s sources, favorites b e i n g deer a n t l e r a n d skins of v a r i o u s a n i m a l s a l t h o u g h fish g l u e is also m e n t i o n e d . A l l Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch011
accounts stress the assiduousness w i t h w h i c h the soot o r l a m p b l a c k ,
finely
s i e v e d before use, a n d the s o l u t i o n of glue s h o u l d b e m i x e d . K n e a d i n g , p o u n d i n g , s t e a m i n g , a n d r o l l i n g are a l l r e c o m m e n d e d ,
usually i n com
b i n a t i o n , a n d are to b e d o n e r e p e t i t i v e l y a n d at l e n g t h to o b t a i n a g o o d product.
It m a y b e i n f e r r e d that p r o p e r l y m a d e i n k w i l l h a v e
divided carbon
(a hydrophobic material) a n d protein glue
(a
finely hydro-
p h i l i c m a t e r i a l ) i n t i m a t e l y m i x e d — a p o i n t w h i c h is of s o m e interest r e g a r d i n g its b e h a v i o r . Besides c a r b o n a n d glue v a r i o u s o t h e r constituents h a v e b e e n q u o t e d as b e i n g i n c o r p o r a t e d b y this or that i n k m a k e r , some of t h e m for obscure reasons.
F r a n k e (4)
states t h a t u p to 1100 are k n o w n ; t h e y i n c l u d e
p e r f u m e s l i k e c a m p h o r a n d m u s k , dyes ( e v i d e n t l y to i m p r o v e the a p p e a r a n c e i n some w a y ) , p l a n t extracts, a n d other m a t e r i a l s , some of w h i c h m a y h a v e i m p r o v e d the c o l l o i d a l b e h a v i o r of the system. W h a t concerns us is the c a r b o n p i g m e n t itself. T h i s has b e e n p r e p a r e d i n different w a y s , a n d the differences h a v e h i s t o r i c a l significance ( 2 , 4).
T h r o u g h T a n g times or later the s t a n d a r d p r e p a r a t i o n w a s the
c o n t r o l l e d b u r n i n g of p i n e w o o d i n l o n g ovens of b a m b o o c o v e r e d w i t h paper.
W o o d c u t i l l u s t r a t i o n s s h o w at least t w o o v e n designs t h a t w e r e
u s e d (4, 13);
some are as l o n g as 100 feet. T h e best soot for i n k m a k i n g
w a s c o l l e c t e d at the e n d remote f r o m the fire; c a r b o n f r o m too close to the fire was c o n s i d e r e d u n s u i t a b l e . T h i s c o l l e c t i o n m e t h o d w o u l d m e a n that t h e soot p r o p e r w a s separated f r o m u n w a n t e d d e b r i s s u c h as
fly-ash,
c h a r r e d fragments, a n d t a r r y p r o d u c t s . Soot p a r t i c l e s m a y also h a v e b e e n f r a c t i o n a t e d , s m a l l e r ones t e n d i n g to get i n t o the better inks.
Woods
other t h a n p i n e w e r e e v i d e n t l y t r i e d b u t f o u n d unsatisfactory, a n d p i n e itself w a s g r a d e d for i n k m a k i n g s u i t a b i l i t y (4).
I n any event, this m e t h o d
of o b t a i n i n g the c a r b o n w a s p r o b a b l y inefficient. A t some t i m e , p e r h a p s a r o u n d the 11th to 12th centuries, t h e p r o d u c t i o n of c a r b o n b y b u r n i n g o i l at a w i c k b e c a m e i m p o r t a n t . A c c o r d i n g to L a u f e r ( 2 ) , a n d e s p e c i a l l y to F r a n k e (4), w i t h the extensive
deforestation
o i l b u r n i n g w a s associated
of C h i n a d u r i n g the first m i l l e n i u m
A . D . ; i t r e s u l t e d i n a shortage of p i n e w o o d as r a w m a t e r i a l , a n d i t c o i n c i d e d w i t h a n i n c r e a s i n g i n k d e m a n d for c l e r i c a l a n d s i m i l a r purposes. I n a n y event l a m p b l a c k p r o d u c t i o n f r o m o i l is p r o b a b l y m o r e t h a n p i n e soot p r o d u c t i o n ( t h o u g h a d m i t t e d l y u s i n g a m o r e
In Archaeological Chemistry; Beck, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
efficient expensive
210
ARCHAEOLOGICAL CHEMISTRY
f u e l ) , is easier to c o n t r o l , less v u l n e r a b l e to the elements a n d to h a z a r d s , a n d r e q u i r e s less elaborate e q u i p m e n t .
fire
Conveniently, if arbi
t r a r i l y , w e m a y refer to c a r b o n f r o m w o o d b u r n i n g as soot a n d that f r o m o i l b u r n t i n a l a m p as l a m p b l a c k .
T h e r e l a t i v e q u a n t i t i e s of the t w o
types p r o d u c e d w h e n b o t h w e r e i n use are difficult to j u d g e , a n d the l i t e r a t u r e is c o n f l i c t i n g o n this p o i n t (4, 1 3 ) .
O t h e r fuels for p r o d u c i n g
c a r b o n are m e n t i o n e d f r o m t i m e to t i m e , a m o n g t h e m p e t r o l e u m (4)
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch011
p i g s fat (11,
12).
and
T h e i r i m p o r t a n c e is h a r d to assess, b u t most authors
r e g a r d i t as m i n o r . T h e i n k s t i c k also e v o l v e d i n t o a m i n o r art f o r m . M a n y sticks e x h i b i t surface d e c o r a t i o n b a s e d o n v a r i e d m o t i f s (4); i n t o s c u l p t u r e d forms ( 3 ) .
later t h e y w e r e m o l d e d
T h e latter w e r e p r e s u m a b l y m a d e e s p e c i a l l y
for collectors r a t h e r t h a n for use. C h i n e s e i n k w a s m a d e i n K o r e a f r o m a n e a r l y d a t e ; at the b e g i n n i n g of the T a n g p e r i o d that c o u n t r y r e m i t t e d a n a n n u a l t r i b u t e of p i n e soot i n k to the C h i n e s e c o u r t (2).
T h e t e c h n i q u e of m a k i n g i n k seemed to b e
i n t r o d u c e d to J a p a n b y a n e n v o y sent b y the K i n g of K o r e a i n 610 A.D.
(2). A f e w t e c h n i c a l studies o n C h i n e s e i n k h a v e b e e n p u b l i s h e d before.
O n e of the earliest (16)
i n c l u d e d a b r i e f i n v e s t i g a t i o n of e l e c t r o p h o r e t i c
properties w h i c h s h o w e d t h a t i n k p a r t i c l e s e x h i b i t e d a n isoelectric p o i n t b e t w e e n p H 4 a n d 5. of g e l a t i n [ca.
T h i s corresponds w e l l w i t h the isoelectric p o i n t
4.5 (17)
a n d ca. 4w8 ( I S ) ]
a n d shows that the c a r b o n
p a r t i c l e s h a v e a n a d s o r b e d l a y e r of collagenous p r o t e i n f r o m t h e glue that is k n o w n h i s t o r i c a l l y to b e present. c o l l o i d p r o t e c t i n g agent (19), c o l l o i d a l systems are e x p e c t e d
G e l a t i n or g l u e is a n efficient
a n d the properties of i n k suspensions as to be those i n v o l v i n g particles w i t h a
p r o t e i n surface r a t h e r t h a n a c a r b o n surface. T w o other papers h a v e s t u d i e d i n k f r o m the p o i n t of v i e w of its colloidal properties: suminagashi
(20)
o n inkstones (21). papers (23, 24) case (23),
one
with
s p e c i a l reference
to
the t e c h n i q u e
of
a n d one w i t h reference to its d i s p e r s i o n b y r u b b i n g A C h i n e s e p a p e r gives some g e n e r a l d a t a (22).
Two
s h o w e l e c t r o n m i c r o g r a p h s of i n k p a r t i c l e s w i t h , i n one
o b s e r v a t i o n o n the tint a n d the o r i g i n of the c a r b o n
(see
b e l o w ). A b o o k p r i m a r i l y o n inkstones also treats i n k i n some d e s c r i p t i v e detail
(25).
Experimental T h e results p r e s e n t e d here are b a s e d o n s c a n n i n g e l e c t r o n m i c r o g r a p h s ( S E M ) of p a p e r fibers c o a t e d w i t h i n k . T h e i n s t r u m e n t u s e d w a s the Stereoscan M a r k I I A ( C a m b r i d g e I n s t r u m e n t C o . , L t d . ) , o w n e d b y the N a t i o n a l M u s e u m of N a t u r a l H i s t o r y . A s a m p l e consisted of a single fiber excised f r o m a n i n k - c o a t e d area of p a p e r ( u s u a l l y a p a i n t i n g )
In Archaeological Chemistry; Beck, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch011
11.
Chinese
WINTER
211
Ink
a n d m o u n t e d o n a 1 2 - m m c i r c u l a r glass c o v e r s l i p b y s e c u r i n g one e n d w i t h p o l y ( v i n y l acetate) e m u l s i o n . T h e s l i p w a s t h e n s t u c k to a n a l u m i n u m stub a n d c o a t e d w i t h 2 0 - 3 0 n m of g o l d before s c a n n i n g . T h e p a i n t i n g s s a m p l e d are l i s t e d i n T a b l e I. I n a d d i t i o n , t w o m o d e r n i n k sticks w e r e u s e d . O n e ( d e s i g n a t e d m o d e r n l a m p b l a c k i n k ) was a stick k i n d l y g i v e n to t h e F r e e r G a l l e r y b y the K o b a i e n I n k W o r k s i n K y o t o a n d k n o w n to h a v e b e e n b a s e d o n l a m p b l a c k f r o m vegetable o i l l a m p s . T h e other ( m o d e r n b l u i s h i n k ) w a s p u r c h a s e d c o m m e r c i a l l y ( A i k o ' s A r t M a t e r i a l s I m p o r t , C h i c a g o ) a n d , a c c o r d i n g to a leaflet s u p p l i e d w i t h i t , was m a d e f r o m p i n e soot. T h e s e t w o inks w e r e r u b b e d u p w i t h w a t e r , d a u b e d o n to Kdsho ( a n a b s o r b e n t Japanese p a p e r ) , a n d the d a u b s w e r e s a m p l e d as for a p a i n t i n g . T h e r e m a i n i n g s a m p l e w a s of h o u s e h o l d c h i m n e y soot, generated b y a w o o d - f u e l e d fire, w h i c h w a s m u l l e d w i t h g e l a t i n s o l u t i o n a n d spotted o n to the c o v e r s l i p . Table I . Figure No.
Paintings in the Freer Collection Sampled for Scanning Electron Microscopy
Artist
Country,
Period
6 7
Tsou Fu-lei
C h i n a , 14th cent.
9
Wang H u i
China, 17th18th cent. C h i n a , 17th cent. C h i n a , dated 1706 Japan,13th14th cent. K o r e a , 18th cent.
10
K u n g Hsien
11
Wang Yuanch'i Fujiwara Nobuzane (attrib.) Chông S o n (attrib.)
12
13
Subject
Accession No.
p l u m branches i n flower (makimono)
31.1
landscape (makimono) w i n t e r landscape
50.19 61.11
r i v e r landscape
62.5
portrait M i n a m o t o no K i n t a d a
50.25
landscape ( a l b u m leaf)
60.9
T h e p a r t i c l e size d i s t r i b u t i o n s ( F i g u r e s 1-5) w e r e g e n e r a t e d as f o l l o w s . A contact p r i n t of a 4 X 5 i n c h S E M negative at a m a g n i f i c a t i o n of 1 0 w a s c o v e r e d w i t h a transparent p l a s t i c sheet, r u l e d w i t h a g r i d of 1-cm squares. E a c h square w a s e x a m i n e d u s i n g a 6 X m a g n i f i e r h a v i n g a reticle engraved w i t h a 1-cm particle measuring grid. T h e diameter of e a c h i d e n t i f i a b l e single c a r b o n p a r t i c l e w a s e s t i m a t e d to the nearest 0.01 c m a n d r e a d i n t o a tape recorder. L a t e r the tape was p l a y e d b a c k a n d t r a n s c r i b e d . A t 1 0 X , the diameters o n the m i c r o g r a p h i n c e n t i meters are e q u i v a l e n t to a c t u a l diameters i n m i c r o m e t e r s . F o r p l o t t i n g , the diameters w e r e g r o u p e d i n p a i r s (i.e., 0.05 + 0.06 μτη, 0.07 + 0.08 μτη, e t c . ) , a n d the n u m b e r s w e r e n o r m a l i z e d to a t o t a l of 100 p a r t i c l e s . T h o s e of d i a m e t e r less t h a n 0.05 μπι w e r e g r o u p e d a n d p l o t t e d as a combined group. 4
2
4
I n a l l of t h e plots except one ( F i g u r e 1 ) , analyses of at least t w o m i c r o g r a p h s o n samples f r o m the same p a i n t i n g or i n k are c o m b i n e d . T h e l o w e r ( t o p of t h e s h a d e d a r e a ) a n d u p p e r ( t o p of the o p e n
In Archaeological Chemistry; Beck, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
area)
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch011
212
ARCHAEOLOGICAL CHEMISTRY
10 D I A M E T E R
Figure 1.
15 ( Jim
WP χ
ι 100
Particle size distribution; modern ink. Plotted from one analysis.
)
lampblack
l i m i t s d r a w n for e a c h class of p a r t i c l e diameters represent r e s p e c t i v e l y the least a n d greatest n u m b e r s of p a r t i c l e s i n that class ( as percentages ) that w e r e f o u n d .
T h u s the plots g i v e some i d e a of the v a r i a t i o n over
different d e t e r m i n a t i o n s as w e l l as of the o v e r a l l shape of t h e d i s t r i b u t i o n . E x p e r i m e n t s o n the m o d e r n b l u i s h - t i n g e d i n k i n c o n n e c t i o n
with
t h e d i s c u s s i o n o n i n k tints w e r e as f o l l o w s : ( a ) P o w d e r e d i n k (0.11 g r a m ) w a s Soxhlet e x t r a c t e d successively w i t h acetone ( 4 h r s ) , 2 - p r o p a n o l ( 2 h r s ) , a n d p y r i d i n e (6^ h r s ) . N o c o l o r e d m a t e r i a l was extracted. ( b ) I g n i t i o n of i n k i n a i r to constant w e i g h t : ash r e s i d u e , 1.5%. S e m i q u a n t i t a t i v e analysis of a s h b y e m i s s i o n s p e c t r o g r a p h y gave the f o l l o w i n g elements i n c o n c e n t r a t i o n > 1 % : A l , C a , F e , S i . I g n i t i o n of a t y p i c a l m o d e r n b r o w n i s h - t i n g e d i n k gave a n ash ( 0 . 8 % ), s i m i l a r analysis of w h i c h s h o w e d the same f o u r elements i n c o n c e n t r a t i o n > 1 % .
In Archaeological Chemistry; Beck, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
11.
Chinese
WINTER
213
Ink
Results Precision and A c c u r a c y . T h i s p r e l i m i n a r y stage w a s d o n e to estimate the w a y s i n w h i c h p a r t i c l e size d i s t r i b u t i o n s v a r y a n d to see h o w
far
t h e y c a n b e u t i l i z e d i n p r a c t i c a l w a y s . T h e a b o v e t e c h n i q u e w a s chosen to e n a b l e us to o b t a i n some a p p r o x i m a t e results c o n v e n i e n t l y , w i t h o u t elaborate s a m p l e p r e p a r a t i o n . T h e s c a n n i n g e l e c t r o n m i c r o g r a p h s
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch011
ures 6 - 1 5 )
(Fig
s h o w t h a t too great a n a c c u r a c y s h o u l d not b e e x p e c t e d
at
this stage, e s p e c i a l l y i n v i e w of the i l l - d i s p e r s e d n a t u r e of the p a r t i c l e s i n some cases ( F i g u r e s 7 a n d 1 0 ) .
30r-
5
10
15 DIAMETER
Figure
2.
20
25
Particle size distribution; modern bluish-tinged pine soot. Plotted from two analyses.
The instruments resolving power
30
( μπι χ 1 0 0 )
ink from
is specified to b e 0.025 μτη
or
better. T h i s l i m i t a t i o n alone d i c t a t e d the g r o u p i n g of p a r t i c l e s i n ranges of 0.02 μΐη before p l o t t i n g . R e p r o d u c i b i l i t y of the instrument's m a g n i f i c a t i o n factor was w i t h i n ± 5 % .
A s l i g h t systematic bias t o w a r d s l a r g e r
diameters m a y be present b e c a u s e of the g o l d c o a t i n g o n t h e samples, b u t it s h o u l d be a b o u t constant over this series. T h e greatest sources of error c o m e f r o m t h e difficulties i n e s t i m a t i n g diameters a c c u r a t e l y i n these m i c r o g r a p h s .
T h e y include: misjudgement
In Archaeological Chemistry; Beck, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
214
ARCHAEOLOGICAL
CHEMISTRY
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch011
s o h
DIAMETER
(μΐη
χ
100)
Figure 3. Particle size distribution; 14th century Chinese painting No. 31.1. Plotted from five analyses. of a c l u m p of particles as one single one; u n d e r e s t i m a t i o n of the d i a m e t e r b e c a u s e of p a r t i a l e m b e d d i n g of a p a r t i c l e i n g l u e or i n a c l u m p ; selective h i d i n g of p a r t i c l e s b y others easily t h a n large o n e s ) .
( s m a l l e r particles m a y be h i d d e n
I n a d d i t i o n , i t is difficult to a v o i d a
more
subjective
In Archaeological Chemistry; Beck, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
11.
WINTER
Chinese
215
Ink
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch011
30r-
DIAMETER
Figure 4.
x
100)
Particle size distribution; 14th century Japanese No. 50.25. Plotted from three analyses.
painting
selection factor; the operator m u s t c o n t i n u a l l y d e c i d e w h e t h e r or n o t a p a r t i c l e is m e a s u r a b l e a n d m u s t d o so w i t h o u t b i a s i n g t h e selection for or against a p a r t i c u l a r size. T h e r e p r o d u c i b i l i t y of the d i s t r i b u t i o n w a s c h e c k e d s t a t i s t i c a l l y i n several cases—e.g., the C h i n e s e p a i n t i n g 31.1 ( F i g u r e s 3, 6, 7, a n d 8 ) . F i v e m i c r o g r a p h s f r o m three samples
( t h r e e w e r e f r o m one
sample)
w e r e a n a l y z e d . A l l gave the same k i n d of d i s t r i b u t i o n — a s t r o n g peak i n t h e 0.05 + ameter
0.06 μΐη class, f a l l i n g r a p i d l y to zero w i t h i n c r e a s i n g d i
(Figure 3).
(Figures 6-8)
T h i s is v i s u a l l y c o n f i r m e d
by
the
micrographs
w h i c h s h o w m a n y s m a l l c a r b o n particles a n d v i r t u a l l y
n o l a r g e r ones. C o m p a r i s o n of the plots i n pairs b y a c o n v e n t i o n a l χ s h o w e d v a r i a b l e results, r a n g i n g f r o m no significant difference
2
test
to s i g
nificance at the 0 . 1 % l e v e l . W h e r e the difference w a s significant, i t w a s c a u s e d m a i n l y b y shifts of particles b e t w e e n
adjacent size
n a t u r a l result of i n a c c u r a c y i n the d i a m e t e r measurement.
classes—a
S i m i l a r checks
o n other samples c o n f i r m e d this i m p r e s s i o n . F i g u r e s 6 a n d 7 s h o w d i f ferent degrees of p a r t i c l e m a t t i n g , l e a d i n g to possible
bias as
noted
above. Results f r o m these t w o m i c r o g r a p h s , w h i c h w e r e f r o m the same s a m p l e , w e r e s i g n i f i c a n t l y different. A l t h o u g h the gross features of these
In Archaeological Chemistry; Beck, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
216
ARCHAEOLOGICAL CHEMISTRY
p a r t i c l e size d i s t r i b u t i o n s m a y be
t r u s t e d , the present ones are
too
i n a c c u r a t e for close statistical analysis. Discussion General Features of Chinese Ink. F i g u r e s 6 to 13 s h o w a r e p r e s e n t a t i v e selection of s c a n n i n g e l e c t r o n m i c r o g r a p h s of inks f o u n d i n o r i e n t a l
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch011
p a i n t i n g s . T h e c a r b o n p a r t i c l e s are s p h e r i c a l a n d h a v e d i a m e t e r s u p to a b o u t 0.20
CO
W
μτη.
20-
υ
I'l
Figure 5.
ι • 30
Particle size distribution; 18th century Korean painting 60.9. Plotted from four analyses.
A c c o r d i n g to the l i t e r a t u r e (26,
27),
No.
soot f r o m d i f f u s i o n
flames
contains s p h e r i c a l c a r b o n p a r t i c l e s f r o m 0.01 to a b o u t 0.20 μτη i n d i a m eter.
T h e structure of s u c h a flame shows a n u m b e r of zones; i n the
i n n e r zones c a r b o n is f o r m e d f r o m gaseous f u e l m o l e c u l e s ; the
outer
ones see the subsequent c o m b u s t i o n of the p a r t i c l e s . W h e r e the latter process is i n c o m p l e t e , the flame p r o d u c e s soot. W e w i l l c a l l s u c h m a terial combustion
carbon
to d i s t i n g u i s h it f r o m t h a t d e r i v e d b y
p y r o l y s i s of existing s o l i d , i n v o l a t i l e f r a g m e n t s , w h i c h w e c a l l char.
the A
c h a r consists of i r r e g u l a r p a r t i c l e s of v a r i o u s sizes, some of w h i c h m a y
In Archaeological Chemistry; Beck, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch011
11.
Chinese
WINTER
217
Ink
Figure 6. Scanning electron micrograph; ink on paper fiber from 14th century Chinese painting No. 31.1
Figure 7. Scanning electron micrograph; ink on paper fiber from 14th century Chinese painting No. 31.1
reflect the m o r p h o l o g y of the b u r n t m a t e r i a l . F i g u r e 16 shows a p a r t i c l e of h o u s e h o l d c h i m n e y soot w h i c h is itself a c h a r r e d f r a g m e n t h a v i n g combustion
particles a t t a c h e d to, a n d p a r t l y f u s e d
i n t o , the
surface.
A l t h o u g h chars are possible i n soot i n k s , the d e s i g n of soot ovens ensures c o n s i d e r a b l e f r a c t i o n a t i o n of the c a r b o n , o n l y that w h i c h settles least r a p i d l y b e i n g used. T h i s d i s c r i m i n a t e s h e a v i l y against chars, a n d no s u c h m a t e r i a l has yet b e e n p o s i t i v e l y i d e n t i f i e d i n p a i n t i n g s . T h e particles i n o u r samples are c e r t a i n l y of c o m b u s t i o n
carbon.
T h e y m a y be w e l l d i s p e r s e d ( F i g u r e 1 1 ) , p a r t i a l l y c l u m p e d or m a t t e d b y the glue m e d i u m ( F i g u r e 9 ), or h e a v i l y m a t t e d b y the m e d i u m ( F i g ure 10).
N o association of this last feature w i t h schools or p e r i o d s
of
p a i n t i n g has been detected, except t h a t p a i n t i n g s o n silk u s u a l l y have m o r e h e a v i l y aggregated i n k t h a n those o n paper. I n d e e d , the p r e c e d i n g three examples Chinese).
were
a l l f r o m closely r e l a t e d p a i n t i n g s
(17th-18th
century
T h e definite i d e n t i f i c a t i o n of c a r b o n ( i n p a r t i c u l a r of soot or
l a m p b l a c k ) as a p i g m e n t has p o s e d p r o b l e m s w h e r e o n l y a s m a l l s a m p l e c a n b e t a k e n , a n d the s c a n n i n g e l e c t r o n m i c r o s c o p e m a y be the i n s t r u m e n t of c h o i c e i n m a k i n g s u c h i d e n t i f i c a t i o n . Carbon Manufacture.
T h e h i s t o r y of C h i n e s e i n k i n d i c a t e s that t h e
c a r b o n was m a d e i n at least t w o w a y s — v i z . , b y b u r n i n g w o o d , u s u a l l y p i n e , or b y b u r n i n g o i l . H o w e v e r , other fuels m a y also h a v e b e e n used.
In Archaeological Chemistry; Beck, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
218
ARCHAEOLOGICAL CHEMISTRY
I t is h e l p f u l to k n o w i f the m o d e of m a n u f a c t u r e c a n be d i s t i n g u i s h e d for a g i v e n sample. D e s p i t e the a b s e n c e of c h a r n o t e d a b o v e , i t w o u l d b e s u r p r i s i n g i f there w e r e not some reflection of the m e t h o d of m a n u f a c t u r e i n the p a r t i c l e size d i s t r i b u t i o n . A n o i l l a m p has a steady flame of f a i r l y c o n stant size, w h i l e a w o o d fire has a v a r i a b l e , f l i c k e r i n g
flame.
A naive,
i n t u i t i v e v i e w w o u l d be t h a t the w o o d fire c a n be e x p e c t e d to p r o d u c e a Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch011
b r o a d e r r a n g e of p a r t i c l e sizes, w h a t e v e r the m e a n a n d m o d e of d i s t r i b u t i o n m i g h t be.
T h e c o n s t a n t l y c h a n g i n g geometry of the
w i l l t e n d to a l l o w some particles to escape before t h e y have
the flame
combusted
v e r y far, others p e r h a p s b e f o r e t h e y are f u l l y f o r m e d .
Figure 8. Scanning electron micrograph; ink on paper fiber from 14th century Chinese painting No. 31.1
Figure 9. Scanning electron micrograph; ink on paper fiber from 17th18th century Chinese painting No. 50.19
T o some extent this v i e w is b o r n e out b y o b s e r v a t i o n .
A
modern
i n k k n o w n to h a v e b e e n m a d e f r o m l a m p b l a c k ( F i g u r e s 1 a n d 14)
has
a f a i r l y u n i f o r m p a r t i c l e size, w i t h a strong p e a k to the d i s t r i b u t i o n . F i g u r e s 2 a n d 15 c a m e f r o m another m o d e r n i n k m a d e
(according
to
details that c a m e w i t h i t ) f r o m p i n e soot p r e p a r e d i n the t r a d i t i o n a l way.
Despite
inaccuracies
i n the plots
noted
a b o v e , the
difference
b e t w e e n t h e m is l a r g e e n o u g h to afford some c o n f i r m a t i o n of
In Archaeological Chemistry; Beck, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
expecta-
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch011
11.
Chinese
WINTER
219
Ink
Figure 10. Scanning electron micrograph; ink on paper fiber from 17th century Chinese painting No. 61.11 tions, e s p e c i a l l y since i t accords
Figure 11. Scanning electron micrograph; ink on paper fiber from 18th century Chinese painting No. 62.5
w i t h the v i s u a l i m p r e s s i o n g i v e n
by
F i g u r e s 14 a n d 15. T h e c h i m n e y soot s a m p l e ( F i g u r e 16) offers c o n f i r m a t o r y
evidence.
A l t h o u g h the c o m b u s t i o n p a r t i c l e s are too i l l - d e f i n e d to p e r m i t a w o r t h w h i l e p a r t i c l e size p l o t , a r o u g h analysis suggested a p a r t i c u l a r l y w i d e range of d i a m e t e r s , w i d e r p e r h a p s t h a n those e n c o u n t e r e d i n inks. A n o t h e r i n t e r e s t i n g case is that of the 14th c e n t u r y C h i n e s e p a i n t i n g N o . 31.1. T h e b l u i s h tint of this i n k suggests that i t m a y b e of the p i n e soot t y p e (see
below).
T h e d i s t r i b u t i o n ( F i g u r e s 3, 6, 7, a n d 8 ) is n a r
r o w , b u t i t falls i n a range of c o n s i d e r a b l y s m a l l e r diameters t h a n l a m p b l a c k i n k . T h e p l o t t e d d i s t r i b u t i o n is almost c e r t a i n l y t r u n c a t e d — t h e m e t h o d u s e d d i s c r i m i n a t e d h e a v i l y against p a r t i c l e sizes i n the