Chapter 19
Analysis of Binding at 4-Aminobutyric Acid Receptor Sites by Structure—Activity Relationships 1
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019
Philip S. Magee and James W. King
2
1BIOSAR Research Project, Vallejo, CA 94591 and School of Medicine, University of California, San Francisco, CA 94143 U.S. Army Chemical Research, Development and Engineering Center, Aberdeen Proving Ground, Aberdeen, M D 21010-5423 2
Series of GABA-ergic compounds were analyzed through the expressed binding response (IC50) in the brain, spinal cord and uptake systems of man and various animals. The technique used was multiple regression of the pIC50 values against the variations in substructural features (1.0/0.0). Nearly a l l substructural factors made negative contributions relative to the basic GABA structure. Spacing is c r i t i c a l and binding occurs in a sterically restricted lipophilic cleft between the amino and carboxyl sites. The cleft exhibits chiral selection and the most probable binding mechanism is ion-paring. There a r e two c l a s s e s o f n e u r a l r e c e p t o r s f o r b i n d i n g o f t h e i n h i b i t o r y n e u r o t r a n s m i t t e r , 4 - a m i n o b u t y r i c a c i d (GABA). Of p r i m a r y i n t e r e s t t o t h i s study i s t h e GABA^ r e c e p t o r which p o p u l a t e s b o t h p r e - and p o s t - s y n a p t i c n e u r a l gaps i n t h e CNS. Of l e s s e r i n t e r e s t i s t h e p r e - s y n a p t i c GABAg r e c e p t o r and v a r i o u s n o n - n e u r a l r e c e p t o r sites. These s i t e s a r e r e a d i l y c l a s s i f i e d by b l o c k i n g r e s p o n s e s t o b i c u c u l l i n e (I) o r p i c r o t o x i n i n ( 2 ) . The p o s t - s y n a p t i c GABA^ r e c e p t o r i s a membrane embedded complex m e d i a t i n g t h e i n f l u x and e f f l u x of c h l o r i d e i o n and p o s s e s s i n g a l l o s t e r i c b i n d i n g s i t e s f o r b e n z o d i a z e p i n e s , p i c r o t o x i n i n and some a v e r m e c t i n s ( 3 ) . R e c i p r o c a l a l l o s t e r i c m o d u l a t i o n s among t h e f o u r c l a s s e s o f r e c e p t o r s i t e s a r e e a s i l y observed i n v i t r o . The r e c e p t o r has been shown t o be a g l y c o p r o t e i n , l i k e most membrane p r o t e i n s ( 4 ) . Two and p o s s i b l y t h r e e GABA r e c e p t o r s i t e s on t h e complex c a n be i d e n t i f i e d k i n e t i c a l l y by use o f S c a t c h a r d p l o t s ( 5 - 9 ) . Krogsgaard-Larsen presents e v i d e n c e f o r t h r e e b i n d i n g s i t e s (6) which he terms Low, Medium and H i g h ( 3 ) . A f u r t h e r c o m p l i c a t i o n i s t h e p r e s e n c e o f an endogeneous p r o t e i n i n h i b i t o r b i n d i n g t o t h e h i g h a f f i n i t y s i t e s (10,11). These s i t e s c a n be exposed f o r b i n d i n g s t u d i e s t h r o u g h a complex washing p r o t o c o l (9) u s i n g t h e n o n - i o n i c d e t e r g e n t , t r i t o n X-100 ( 1 2 ) . Johnson and co-workers have shown e x t r a o r d i n a r y i n c r e a s e s i n GABA b i n d i n g t o r a t b r a i n p r e p a r a t i o n s by T r i t o n X-100 e x t r a c t i o n ( 1 3 ) . 0097-6156789/0413-028im00/0 © 1989 American Chemical Society
Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019
282
PROBING BIOACTIVE
MECHANISMS
A v a r i e t y o f GABA r e l a t e d c h e m i c a l s b i n d t o t h e GABA^ s i t e s t o p r o duce b o t h a g o n i s t and a n t a g o n i s t r e s p o n s e s (3,14,15). B i c u c u l l i n e ( 1 ) , p i c r o t o x i n i n ( 2 ) , i s o - T H I P and iso-THAZ appear t o be s p e c i f i c GABA r e c e p t o r a n t a g o n i s t s (3,14). Muscimol, THPI, i s o g u v a c i n e and p i p e r i d i n e - 4 - s u l f o n i c a c i d (P4S) a r e s p e c i f i c GABA a g o n i s t s w h i l e muscimol, THPO, g u v a c i n e and n i p e c o t i c a c i d a r e s p e c i f i c GABA uptake i n h i b i t o r s (15,17). Muscimol, d e r i v e d from the mushroom Amanita m u s c a r i a , i s q u i t e t o x i c , t e n times more p o t e n t than GABA as an ago n i s t , and v e r y s p e c i f i c i n b i n d i n g o n l y t o h i g h a f f i n i t y s i t e s (5,18). DeFeudis and co-workers have r e p o r t e d a p p r o x i m a t e l y t w i c e as many b i n d i n g s i t e s f o r muscimol as f o r GABA ( 1 9 ) . Of t h e known s p e c i f i c a g o n i s t s , THPI i s t h e o n l y one c a p a b l e o f p e n e t r a t i n g t h e b l o o d - b r a i n b a r r i e r t o e x e r t a n a l g e s i c and a n t i c o n v u l s a n t e f f e c t s ( r e f e r e n c e s c i t e d i n 6). C l i n i c a l r e s p o n s e s o f GABA a g o n i s t s and a n t a g o n i s t s have been r e v i e w e d ( 2 0 ) . Of r e l a t e d i n t e r e s t i s the r e p o r t t h a t b o t h a n e s t h e t i c and c o n v u l s a n t b a r b i t u a t e s enhance GABA b i n d i n g i n a dose dependent manner, presumably an a l l o s t e r i c e f f e c t ( 1 3 ) . S t e r e o c h e m i s t r y i s c l e a r l y i n v o l v e d i n the b i n d i n g o f GABA and GABA-ergic compounds. Andrews and J o h n s t o n p o s t u l a t e t h a t GABA b i n d s to GABA r e c e p t o r s i n an extended c o n f o r m a t i o n and t o GABAg r e c e p t o r s i n a f o l d e d conformation (21). These c o n s i d e r a t i o n s l e d B l o c k and K i n g t o a d e t a i l e d c o n f o r m a t i o n a l s t u d y o f GABA, muscimol and n i p e c o t i c a c i d based on X-ray c r y s t a l d a t a ( 2 2 ) . Differences i n binding a f f i n i t i e s o f s t e r e o i s o m e r i c GABA-ergic compounds range from s m a l l to l a r g e (14,17). A
A s t a t i s t i c a l a p p r o a c h t o mapping the GABA r e c e p t o r s i t e s i s presented i n t h i s study. We attempt t o a n a l y z e t h e c o n t r i b u t i o n s o f key s u b s t r u c t u r e s t o the measured b i n d i n g a f f i n i t i e s o f GABA-ergic compound s e r i e s . O l s e n has n o t e d v a r i a t i o n s i n t h e r a n k o r d e r p o t e n cy o f GABA a n a l o g s between systems ( 2 3 ) . By use o f m u l t i p l e r e g r e s s i o n a n a l y s i s , we a r e a t t e m p t i n g t o q u a n t i f y these o b s e r v a t i o n s i n terms o f s u b - s t r u c t u r e c o n t r i b u t i o n s ( F i g u r e 1 ) . 1
R e s e a r c h Method. Most s t u d i e s i n v o l v e c a r e f u l l y measured I C 5 0 s f o r a s u b s t a n t i a l number o f GABA-ergic compounds on membrane o r c e l l u l a r preparations. Most o f t h e p r e p a r a t i o n s a r e t r e a t e d by complex p r o t o c o l s i n v o l v i n g e x t r a c t i o n w i t h T r i t o n X-100 ( 9 ) . I n many e x p e r i —-
n
ments, t h e GABA r e c e p t o r s i t e s a r e f i r s t s a t u r a t e d w i t h H-GABA, 3 3 3 H-muscimol, H-diazepam o r H-P4S f o l l o w e d by measurement o f t h e c o n c e n t r a t i o n o f GABA-ergic compound r e q u i r e d t o d i s p l a c e 50% o f t h e bound t r a c e r ( I C 5 0 ) . C o r r e c t i o n s f o r n o n - s p e c i f i c b i n d i n g a r e made to r e f i n e t h e v a l u e s . These numbers a r e c o n v e r t e d t o p I C 5 0 s ( l o g 1/IC50) f o r r e g r e s s i o n a g a i n s t the p r e s e n c e o r absence o f s p e c i f i c substructures. I n d i c a t o r v a r i a b l e s ( I • 1.0/0.0) a r e used t o code the p r e s e n c e or absence o f a key s u b s t r u c t u r e . R e g r e s s i o n o f r e a l numbers (pIC50 s) a g a i n s t a m a t r i x o f i n d i c a t o r v a r i a b l e s i s a v a l i d p r o c e dure f o r l a r g e s e t s , as i n t h e F r e e - W i l s o n method. However, many o f the s e t s i n t h i s s t u d y a r e s m a l l (n * 7-10) and i t i s p r o b a b l e t h a t s t a t i s t i c a l measures f o r these s e t s a r e o n l y a p p r o x i m a t e . The o v e r a l l c o n s i s t e n c y o f s u b s t r u c t u r e dependence i n b o t h s m a l l and l a r g e r s e t s i s c o n s i d e r e d t o v a l i d a t e these measures i n a s e m i - q u a n t i t a t i v e sense. f
f
Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
19.
M A G E E & KING
Binding at 4-Aminobutyrk Acid Receptor Sites283
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019
O
MUSCIMOL
GUVACINE
NIPECOTIC ACID
ISOGUVACINE
PIPERIDINE-4-SULFON1C ACID
THPO
Figure 1. G A B A agonists and antagonists.
Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
284
PROBING BIOACTIVE MECHANISMS
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019
There a r e major v a r i a t i o n s i n c h e m i c a l s t r u c t u r e among the s e t s , making g e n e r a l c l a s s i f i c a t i o n o f s u b - s t r u c t u r e s d i f f i c u l t . We have attempted t o use i n d i c a t o r v a r i a b l e s t h a t d e s c r i b e comparable changes i n the same b i n d i n g r e g i o n o f d i f f e r e n t s e t s a l t h o u g h the compounds d e s c r i b e d may not be i d e n t i c a l . The f o l l o w i n g v a r i a b l e s a r e t y p i c a l . IHETS « 1.0 IHETO « 1.0 IRNG « 1.0 IDB « 1.0 IME » 1.0 I20H, I30H 1.0 IS03 1.0 INSUB « 1.0 ILNG, ISL, ISHT » 1.0 INH2 1.0 IR = ING
for for for for for for for for for for
isothiazole ring isoxazole ring aliphatic ring closure c o n j u g a t e d double bond or equivalent r i g i d i t y b r a n c h i n g m e t h y l group 2- or 3-OH groups SO3H r e p l a c e m e n t o f COOH a l k y l - s u b s t i t u t e d amino l o n g and s h o r t s p a c i n g (2- o r 4 - C H s ) a d d i t i o n a l NH group f
2
£
1.0 f o r R - c o n f i g u r a t i o n i n c h i r a l 1.0 f o r u n u s u a l or "bad" f e a t u r e s
38
analogs
A r e a s o f study a r e d i v i d e d i n t o 1. B r a i n S t u d i e s , 2. S p i n a l Cord S t u d i e s , 3. Non-Competitive B i n d i n g S t u d i e s , 4. C e l l u l a r Uptake Studies. Brain
Studies
Human. D i s p l a c e m e n t o f H-GABA from 7 d i f f e r e n t r e g i o n s o f human b r a i n t i s s u e by GABA and 8 o t h e r GABA-ergic compounds p r o v i d e s a p o w e r f u l o v e r v i e w o f the GABA b i n d i n g s i t e ( 2 4 ) . Despite s e v e r a l f o l d v a r i a t i o n s i n the ICSO's f o r these r e g i o n s , a l l p I C 5 0 s a r e c o l i n e a r ( r - 0.938-0.983). The S u b s t a n t i a N i g r a c o r r e l a t e s lowest (r - 0.938-0.966), w h i l e the r i c h e s t GABA b r a i n r e g i o n , C e r e b e l l a r C o r t e x , c o r r e l a t e s h i g h e s t w i t h the o t h e r s ( r » 0.946-0.983). More o v e r , a l l p r o v i d e e q u i v a l e n t SAR e q u a t i o n s c o n t a i n i n g the same f a c tors with s i m i l a r loadings. The f o l l o w i n g e x p r e s s i o n f o r b i n d i n g a t the Caudate Nucleus i s t y p i c a l o f the 9 e q u a t i o n s . f
pIC50(CN) - -1.35 T « 6.18 n 9
IRNG - 0.74 2.28 r - 0.985
IHETS + 0.88 4.02 s - 0.251
IDB
- 2.93 IME 10.77 F « 32.56
+
7.76
In a r e l a t e d s t u d y c o n t a i n i n g h y d r o x y l a t e d and s u l f o n i c a c i d a n a l o g s , we a g a i n f i n d e x c e l l e n t a d d i t i v i t y o f s u b s t r u c t u r a l f e a t u r e s (25). Data a r e membranes. pIC50 =• 0.813 T « 2.15 n - 11
f o r i n h i b i t i o n o f ^H-GABA b i n d i n g to human c e r e b e l l a r
IRNG - 1.20 13OH - 0.770 IS03 - 3.16 ISHT - 4.25 INSUB + 2.60 2.16 6.43 10.52 r - 0.981 s - 0.522 F - 25.98
7.78
Other s t u d i e s on human c e r e b e l l a r membranes d e a l w i t h c l o s e l y r e l a t e d a n a l o g s d i f f e r i n g m o s t l y by m e t h y l s u b s t i t u t i o n i n the 2,3and 4 - p o s i t i o n o f GABA (26,27). The SAR e q u a t i o n s show n e a r l y p e r f e c t a d d i t i v i t y o f the p o s i t i o n a l m e t h y l e f f e c t s , a l l w i t h s t r o n g n e g a t i v e c o e f f i c i e n t s (-1.55 to - 2 . 5 1 ) .
Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
19.
M A G E E & KING
285
Binding at 4-Aminobutyric Acid Receptor Sites
Mouse and Rat. D i s p l a c e m e n t 3H-GABA from a mouse b r a i n membrane p r e p a r a t i o n shows a d d i t i v e r e s p o n s e s o f s u b s t r u c t u r e s s i m i l a r to those o b s e r v e d i n the human b r a i n ( 2 8 ) .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019
pICSO « -1.94 T « 6.18 n - 14
ISL - 0.98 IS03 - 1.05 IRNG - 2.71 INH2 - 1.67 I0H + 2.12 2.71 6.58 2.70 r - 0.962 s - 0.536 F 19.70
7.07
B i n d i n g s t u d i e s i n r a t b r a i n p r e p a r a t i o n s i n v o l v e a broad diver s i t y o f compounds and r e v e a l a v a r i e t y o f i n t e r e s t i n g e f f e c t s . In h i b i t i o n o f %-GABA b i n d i n g by O l s e n and co-workers shows the c r i t i c a l i t y o f the 4-carbon s p a c i n g o f GABA as w e l l as s e n s i t i v i t y to m e t h y l s u b s t i t u t i o n alpha to the amino group ( 2 9 ) . pIC50 - -2.37 T 7.16 n - 14
ISL - 1.05 I4ME + 3.49 r * 0.909
6.72
s - 0.481
F - 26.32
Another study c o n f i r m s the s p a c i n g c r i t i c a l i t y and d i f f e r e n t n e g a t i v e c o n t r i b u t i o n s o f R- and S - c o n f i g u r e d i n the 4 - p o s i t i o n ( 3 0 ) . D i f f e r e n t n e g a t i v e e f f e c t s f o r — groups a r e a l s o a p p a r e n t . Data a r e f o r d i s p l a c e m e n t o f rat b r a i n receptor s i t e s .
shows m e t h y l groups 2- and 3-0H 3 H-GABA i n
pIC50 « -1.67 I4ME(R) - 2.14 I4ME(S) - 1.53 ILNG - 1.69 I20H - 0.84 BOH + T « 3.40 3.75 3.25 3.13 2.10 n = 13 r - 0.890 S « 0.576 F = 5.33
6.61
Bovine. A s i n g l e s t u d y o f b o v i n e c o r t e x membranes by K r o g s g a a r d L a r s e n and co-workers p r o v i d e s some comparison w i t h human, mouse and r a t p r e p a r a t i o n s ( 3 1 ) . The s e l e c t i o n o f compounds does not r e v e a l much d e t a i l , but r e a f f i r m s the importance o f o p t i m a l s p a c i n g . Data a r e f o r c o m p e t i t i v e d i s p l a c e m e n t o f H-GABA and H-P4S. The p I C 5 0 s a r e c o l i n e a r ( r * 0.963). 3
pIC50(GABA) « 0.67 T 2.68 n - 13
IHETO - 1.98 ISL + 6.90 7.92 r - 0.931 s - 0.377
pIC50(P4S) 0.43 IDB - 1.99 ISL + T « 1.16 4.46 (not s i g n i f i c a n t ) n - 14 S p i n a l Cord
3
r - 0.820
f
F - 32.73
6.88
s - 0.680
F -
11.26
Studies
Cat. K r o g s g a a r d - L a r s e n and co-workers p r e s e n t a d a t a s e t composed p r i n c i p a l l y o f h e t e r o c y c l i c and c y c l i c GABA-ergic a n a l o g s ( 3 1 ) . Data are IC50*s f o r b i n d i n g to r e c e p t o r s i t e s i n c a t s p i n a l c o r d . Nega t i v e e f f e c t s f o r the i s o t h i a z o l e and a l i c y c l i c r i n g s a r e c l e a r l y defined.
Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
PROBING BIOACTIVE MECHANISMS
286 pIC50 « T n -
-1.35 2.44 14
IHETS - 1.21 3.00 r - 0.867
IRNG - 2.67 ING + 2.01 4.81 s » 0.710 F 10.08
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019
Rat. E q u i m o l a r p o t e n c i e s f o r d e p o l a r i z a t i o n o f d o r s a l ( D R ) and v e n t r a l (VR) r o o t f i b e r s o f the r a t s p i n a l c o r d have been measured f o r a v a r i e d s e t o f GABA-ergic compounds ( 3 2 ) . There a r e too many f e a t u r e s i n the d a t a s e t ( 6 ) f o r h i g h c o r r e l a t i o n o f non-IC50 d a t a , but the dominant f e a t u r e s a r e e a s i l y e x t r a c t e d . LogVR and LogDR a r e c o l i n e a r (r « 0.891). LogDR T « n -
-0.72 2.76 12
IRNG - 1.27 I30H + 0.306 2.70 r - 0.748 s « 0.429
LogVR « T -
-0.73 2.70
IRNG - 1.15 I30H + 0.260 2.35
12
r - 0.724
n -
Non-Competitive B i n d i n g
s * 0.447
F -
5.72
F -
4.95
Studies
B i n d i n g a t the GABA complex r e c e p t o r s i t e has
an a l l o s t e r i c
effect
o J
f
on the b i n d i n g o f H-diazepam a t i t s r e c e p t o r s i t e . EC50 s of diaze pam b i n d i n g have been measured f o r a v a r i e d s e t o f c y c l i c and a c y c l i c GABA-ergic compounds i n r a t f o r e b r a i n membranes ( 3 3 ) . The c o r r e l a t i o n shows n e g a t i v e c o n t r i b u t i o n s by m e t h y l groups a l p h a to amino and e s p e c i a l l y those i n the R - c o n f i g u r a t i o n . These two e f f e c t s a r e c o n founded i n the a n a l y s i s i n t h a t R-Me groups a r e c o u n t e d t w i c e . The o t h e r major e f f e c t i s the v e r y weak r e s p o n s e of c y c l i c v s . a c y c l i c s t r u c t u r e s (IRNG). pEC50 -2.54 IRNG - 1.73 IME - 1.60 IME(R) + 5.48 T = 6.97 3.94 3.65 n 11 r - 0.952 s - 0.506 F « 22.75 In a n o t h e r s t u d y o f n i n e o p t i c a l isomers o f s u b s t i t u t e d GABA, c r o t o n a t e and muscimol a n a l o g s , I C 5 0 s were measured f o r c o m p e t i t i v e b i n d i n g a g a i n s t H-GABA, H-THPI and H-P4S ( 3 4 ) . These were compared w i t h the n o n - c o m p e t i t i v e ( s t i m u l a t e d ) EC50 b i n d i n g o f H-diazepam. A l l p I C 5 0 s and the pEC50 were c o l i n e a r ( r - 0.905-0.993), d e s p i t e two o r d e r s o f magnitude i n the c o n c e n t r a t i o n r e s p o n s e . Correlations a r e weak ( r • 0.571-0.696) f o r t h i s s e t (n * 9 ) , but the major nega t i v e f a c t o r i s the double-bond r i g i d i t y o f the c r o t o n a t e s and m u s c i mols ( c o e f f i c i e n t s » -0.77 to -1.46). 1
3
3
3
3
f
B r a i n and
C e l l u l a r Uptake
Studies
E x t r a s y n a p t i c r e c e p t o r s i n the s u p p o r t i v e g l i a l c e l l s o f the CNS a r e r e s p o n s i b l e f o r the uptake ( s y n a p t i c gap c l e a r a n c e ) and t r a n s p o r t o f GABA t o t e r m i n a t e the n e u r o t r a n s m i s s i o n . These r e c e p t o r s i t e s d i f f e r markedly from the GABA^ s i t e s i n SAR response to GABA a n a l o g s . Other uptake s i t e s w i t h i n the n e u r o n a l s t r u c t u r e appear to d i f f e r from those i n the g l i a l c e l l s a c c o r d i n g t o c o m p a r a t i v e s t u d i e s by Schousboe
Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
19.
MAGEE
287 Binding at 4-Aminobutyric Acid Receptor Sites
& KING
and co-workers ( 3 5 ) . Data a r e f o r a c y c l i c and c y c l i c GABA a n a l o g s w i t h uptake measured i n c u l t u r e d a s t r o c y t e s and mouse b r a i n m i n i slices. The p I C 5 0 s show o n l y moderate c o l i n e a r i t y ( r • 0.780), though t h e r e g r e s s i o n e q u a t i o n s show s i m i l a r f a c t o r s . f
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019
pIC50(mouse b r a i n ) T n pIC50(astrocytes) « T « n -
-1.10 I4ME + 0.649 IR - 0.585 IRNG + 4.16 4.18 2.18 2.22 12 r - 0.856 s - 0.416 F - 7.31 -1.21 I4ME + 0.743 IR + 3.98 2.84 1.53(weak) 12 r - 0.699 s - 0.700
F - 4.29(weak)
R i n g s t r u c t u r e s and 4-methyl groups a r e n e g a t i v e f a c t o r s w h i l e the R - c o n f i g u r a t i o n i s f a v o r e d f o r b o t h c y c l i c and a c y c l i c a n a l o g s . The c o r r e l a t i o n s a r e weak t o modest but have t h e m e r i t o f b e i n g t h e o n l y a n a l y z a b l e s e t s known t o u s . S t r u c t u r a l c o m p o s i t i o n i n f i v e o t h e r d a t a s e t s was such t h a t no c l e a r d e d u c t i o n s were p o s s i b l e (28, 36-39). Summary o f S u b s t r u c t u r a l B i n d i n g E f f e c t s 3
B r a i n and S p i n a l Cord (CNS). In the b i n d i n g o f H-GABA t o human c e r e b e l l a r membranes, r i n g - c l o s e d a n a l o g s show enhanced p I C 5 0 s ( c o e f f i c i e n t « 0.813). T h i s i s an e x c e p t i o n as a l l o t h e r c o n t r i b u tions are negative. The p r e s e n c e o f a c o n j u g a t e d double bond i s p o s i t i v e i n t h e Caudate N u c l e u s f o r H-GABA b i n d i n g (IDB - 0.88) as i s the o x a z o l i n e h e t e r o - r i n g i n b o v i n e c o r t e x membranes (IHET = 0.67). These s m a l l p o s i t i v e e f f e c t s a r e opposed by g e n e r a l l y l a r g e n e g a t i v e binding e f f e c t s i n a l l other f a c t o r s . f
3
IRNG IHETS IME, I4ME INSUB I20H, I30H INH2 IS03 ISHT, ILNG, I S L Non-Competitive IRNG IME, IME(R) -
-0.72 -0.74 -1.05 -4.25 -0.84 -2.71 -0.77 -1.53
t o -1.35(4) t o -1.35(2) t o -2.93(4)
(#) o f c o e f f i c i e n t s
t o -1.69(6) t o -0.93(2) t o -3.16(7)
Binding -2.54 -1.60 t o -1.73(2)
C e l l u l a r Uptake IRNG I4ME IR »
-0.585 -1.10 t o -1.21(2) 0.649 - 0.743(2) -
(R-configuration i s favored)
Conclusions. The f a c t o r s o u t l i n e d i n the Summary o f S u b s t r u c t u r a l E f f e c t s l e a d t o a number o f b i n d i n g s i t e c o n c l u s i o n s .
Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
288
PROBING BIOACTIVE MECHANISMS
The r e c e p t o r s i t e i s c l e a r l y asymmetric. C h i r a l i t y i s important, b o t h by s i m p l e i n s p e c t i o n o f c a s e s and s u p p o r t e d by d i s c r e t e subs t r u c t u r a l c o n t r i b u t i o n s . The R - c o n f i g u r a t i o n f o r b o t h c y c l i c and a c y c l i c a n a l o g s i s f a v o r e d a t uptake s i t e s . I f we assume the amino and c a r b o x y l groups t o b i n d s p e c i f i c a l l y , then the c a v i t y between these s i t e s i s most l i k e l y a f l e x i b l e , narrow gap. Congeners are p e r m i t t e d to b i n d ( f l e x i b i l i t y ) , but a l l s u b s t i t u e n t s from the 2- t o 4 - p o s i t i o n reduce the b i n d i n g energy ( s t e r i c o b s t r u c t i o n ) . T h i s i s t r u e even f o r s m a l l H-bonding groups l i k e NH and OH. There a r e no H-bonding s i t e s i n the gap, hence these groups e x e r t a s i m p l e s t e r i c e f f e c t i n the same sense as a CH3~group. The v a l l e y between the amino and c a r b o x y l b i n d i n g s i t e s i s c l e a r l y h y d r o p h o b i c . It i s pro b a b l e t h a t the b i n d i n g o f muscimol i s s p e c i a l and o c c u r s w i t h the r i n g i n a v e r t i c a l , r a t h e r than f l a t o r i e n t a t i o n . The r e l a t i v e weak ness o f t h i o m u s c i m o l b i n d i n g s u g g e s t s a d i f f e r e n c e i n a c i d i t y r a t h e r than a s t e r i c e f f e c t f o r a m a r g i n a l l y l a r g e r r i n g .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019
2
The f a c t t h a t s u l f o n i c a n a l o g s b i n d w i t h r e s p e c t a b l e a f f i n i t y s u g g e s t s two f e a t u r e s about the b i n d i n g mechanism. F i r s t , t h e r e a r e s t e r i c r e q u i r e m e n t s f o r the a c i d group ( 1 - p o s i t i o n ) s i m i l a r t o those f o r the 2- to 4 - p o s i t i o n s . The b i n d i n g s i t e f o r the a c i d group a l s o l i e s i n a r e s t r i c t e d c a v i t y . Second, z w i t t e r i o n i c b i n d i n g i s assured f o r a l l a n a l o g s as the s u l f o n i c d e r i v a t i v e s a r e 100.00% z w i t t e r i o n i c w i t h no measurable e q u i l i b r i a to n e u t r a l s p e c i e s . T h i s would suggest t h a t b i n d i n g i s by i o n - p a r i n g w i t h no a c t i v a t i o n energy, much l i k e acetylcholine. D i f f u s i o n - c o n t r o l l e d i o n - p a i r i n g may be the o n l y p r o c e s s f a s t enough f o r a n e u r a l r e s p o n s e . Another f a c t o r r e l a t i n g to the b i n d i n g mechanism i s the aminoc a r b o x y l a t e s p a c i n g , a f a c t o r t h a t i s s t r o n g l y n e g a t i v e whenever the s p a c i n g i s too s h o r t [(CH2)2l or too l o n g [ ( ^ 2 ) 4 ] . I t i s important to n o t e t h a t b i n d i n g i s not p r e v e n t e d i n these c a s e s , but o n l y weak ened. T h i s f a c t , and the many c o l i n e a r i t i e s o b s e r v e d , s u p p o r t s an i o n - p a i r i n g mechanism t h a t depends o n l y on a d i s t a n c e f u n c t i o n . Ion p a i r s a r e i n t a c t out to 5 A i n n o n - p o l a r s o l v e n t s such as benzene. I t i s r e a s o n a b l e then to assume t h a t such p a i r s a r e i n t a c t a t 2 % d i s t a n c e s on a l i p o p h i l i c enzyme s u r f a c e . T h i s degree o f l a t i t u d e would e x p l a i n the p o s i t i v e but weaker b i n d i n g o f a l l p o o r l y spaced analogs. There i s n o t h i n g i n t h i s study t h a t p r o v i d e s a l e a d to h i g h e r GABA-ergic a c t i v i t y as v i r t u a l l y a l l s u b s t r u c t u r a l f a c t o r s a r e nega t i v e i n b i n d i n g energy. The message may s i m p l y be t h a t t h e r e i s no point i n searching f o r b e t t e r analogs. R a t h e r , the d i r e c t i o n o f r e s e a r c h s h o u l d be toward d e g r a d a b l e pro-GABA or -muscimol a n a l o g s t h a t e f f i c i e n t l y l o a d the drug i n t o the CNS. Acknowledgment. T h i s study was s u p p o r t e d by the C h e m i c a l Systems L a b o r a t o r y (Aberdeen P r o v i n g Ground, MD) under C o n t r a c t No. DAAD0586-M-Q973. We w i s h to thank P r o f e s s o r John H. B l o c k o f Oregon S t a t e U n i v e r s i t y f o r h i s e x c e l l e n t G A B A - r e l a t e d l i t e r a t u r e s e a r c h under a subcontract.
Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
19.
MAGEE & KING
Binding at 4-Aminobutyrk Acid Receptor S i t e 289
Literature Cited 1. 2. 3. 4. 5.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019
6. 7. 8. 9. 10. 11. 12. 13. 14.
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26.
Bicuculline, Merck Index, Tenth Edition, No. 1214, p 171. Picrotoxinin, Merck Index, Tenth Edition, No. 7297, p 1069. Krogsgaard-Larsen, P. J . Med. Chem. 1981, 24, 1377. Gavish, M.; Snyder, S. H. Nature 1980, 287, 651. Frere, R. C . ; MacDonald, R. L.; Young, A. B. Brain Res. 1982, 244, 145. Falch, E; Krogsgaard-Larsen, P. J . Neurochem. 1982, 38, 1123. Jordan, C. C.; Matus, A. I.; Piotrowski, W.; Wilkinson, D. J . Neurochem. 1982, 39, 52. Napias, C . ; Bergman, M. O.; Van Ness, P. C.; Greenlee, D. V.; Olsen, R. W. Life Sci. 1980, 27, 1001. Gardner, C. R.; Klein, J.; Grove, J . Eur. J. Pharmacol. 1981, 75, 83. Greenlee, D. V.; Van Ness, P. C.; Olsen, R. W. Life Sci. 1978, 22, 1653. Toffano, G.; Guidotti, A; Costa, E. Proc. Natl. Acad. Sci. USA 1978, 75, 4024. Triton X-100(Octoxynol), Merck Index, Tenth Edition, No. 6601, p 971. Johnston, G. A. R.; Skerritt, J . H.; Willow, M. In Problems in GABA Research, Okada, Y . ; Roberts, E . , Eds.; Excerpta Medica, Amsterdam-Oxford-Princeton, 1982, 293-301. Krogsgaard-Larsen, P; Falch, E . ; Peet, M. J.; Leah, J . D.; Curtis, D. R. in CNS Receptors: From Molecular Pharmacology to Behavior, Mandel, P.; DeFeudis, F. V . , Eds.; Volume 37, Raven Press, New York, 1983, 1-13. Krogsgaard-Larsen, P. In Glutamine, Glutamate and GABA in the Central Nervous System, Hertz, L . ; Kvamme, E.; McGeer, E. G.; Schousboe, A. Eds.; Alan R. Liss, Inc., New York, 1983, 537-557. Krogsgaard-Larsen, P.; Hjeds, H . ; Curtis, D. R.; Lodge, D.; Johnston, G. A. R. J . Neurochem. 1979, 32, 1717. Krogsgaard-Larsen, P. Mol. Cell Biochem. 1980, 31, 105. Ferrero, P.; Guidotti, A.; Costa, E. Proc. Natl. Acad. Sci. USA 1984, 81, 2247. DeFeudis, F. V . ; Ossola, L . ; Mandel, P. Biochem. Pharmacol. 1979, 28, 2687. Enna, S. J . In The GABA Receptors, Enna, S. J . Ed.; The Humana Press, Clifton, New Jersey, 1983, Chapter 1. Andrews, P. R.; Johnston, G. A. R. Biochem. Pharmacol. 1979, 28, 2697. Block, J . H . ; King, J . W. In Proceedings of the 1986 Scientific Conference on Chemical Defense Research, Vol. 2, 1051. Olsen, R. W. J. Neurochem. 1981, 37, 1. Enna, S. J.; Ferkany, J . W.; Krogsgaard-Larsen, P. In GABA -Neuro-Transmitters; Krogsgaard-Larsen, P.; Scheel-Kruger, J.; Kofod, H . , Eds.; Academic Press, New York, 1979, 191-200. Breckenridge, R. J.; Nicholson, S. H . ; Nicol, A. J.; Suckling, C. J.; Leigh, B.; Iversen, L. J . Neurochem 1981, 37, 837. Iversen, L. L.; Spokes, E . ; Bird, E. In Neurotransmitters, Volume 2; Simon, P., Ed.; Pergamon Press, Oxford, New York, 1979, 3-10.
Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
290 27. 28. 29. 30. Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019
31. 32. 33.
34. 35. 36. 37. 38.
39.
PROBING BIOACTIVE
MECHANISMS
Nicholson, S. H.; Suckling, C. J.; Iversen, L. L. J. Neurochem. 1979, 32, 249. Roberts, E. In Neurotransmitters, Volume 2; Simon, P., Ed.; Pergamon Press, Oxford, New York, 1979, 43-65. Olsen, R.W.; Ticku, M. K.; Van Ness, P. In GABA-Neurotransmitters; Krogsgaard-Larsen, P.; Scheel-Kruger, J.; Kofod, H . , Eds.; Academic Press, New York, 1979, 165-178. Honore, T . ; Hjeds, H . ; Krogsgaard-Larsen, P.; Christiansen, T.R. Eur. J. Med. Chem. 1978, 13, 429. Krogsgaard-Larsen, P.; Jacobsen, P.; Falch, E. In The GABA Receptors; Enna, S. J., Ed.; The Humana Press, Clifton, New Jersey, 1984, 149-176. Allan, R. D.; Evans, R. H . ; Johnston, G. A. R. Br. J. Pharm. 1980, 70, 609. Braestrup, C . ; Nielsen, M.; Krogsgaard-Larsen, P.; Falch, E. In Receptors for Neurotransmitters and Peptide Hormones; Pepeu, G.; Kuhar, M. J.; Enna, S. J., Eds.; Raven Press, New York, 1980, 301-312. Krogsgaard-Larsen, P.; Falch, E . ; Jacobsen, P. In Actions and Interactions of GABA and Benzodiazepines; Bowery, N. G . , Ed.; Raven Press, New York, 1984, 109-132. Schousboe, A . ; Hertz, L.; Larsson, O. M.; Krogsgaard-Larsen, P. In GABA Neurotransmission, Brain Research Bulletin, Vol. 5, Suppl. 2, 1980, 403-409. Larsson, O. M.; Krogsgaard-Larsen, P.; Schousboe, A. J. Neuro chem. 1980, 34, 970. Schousboe, A . ; Larsson, O. M.; Hertz, L . ; Krogsgaard-Larsen, P. In Amino Acid Neurotransmitters; DeFeudis, F. V . ; Mandel, P., Eds.; Raven Press, New York, 1981, 135-141. Johnston, G. A. R.; Allan, R. D.; Kennedy, S. M. E.; Twitchin, B. In GABA-Neurotransmitters; Krogsgaard-Larsen, P.; ScheelKruger, J.; Kofod, H . , Eds.; Academic Press, New York, 1979, 149-164. Brehm, L.; Krogsgaard-Larsen, P.; Jacobsen, P. In GABA-Neuro transmitters; Krogsgaard-Larsen, P.; Scheel-Kruger, J.; Kofod, H., Eds.; Academic Press, New York, 1979, 247-262.
RECEIVED June 14, 1989
Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.