21 Production of Industrially Important Gums with Particular Reference to Xanthan Gum and Microbial
Downloaded by UNIV OF MISSOURI COLUMBIA on April 22, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch021
Alginate CHRISTOPHER J. LAWSON Tate & Lyle Ltd., Group R & D, P.O. Box 68, Reading, Berks, RG6 2BX, England The p r o d u c t i o n o f p o l y s a c c h a r i d e gums b y f e r m e n t a t i o n h a s b e e n d e s c r i b e d b y some o f t h e m o r e o p t i m i s t i c m i c r o b i a l t e c h n o l o g i s t s as t h enext major ferment a t i o n area. I t now i s g a i n i n g t r e a t m e n t i n p u b l i c and p r i v a t e m e e t i n g s s i m i l a r t o t h a t o f f e r e d t o s i n g l e c e l l p r o t e i n some y e a r s a g o . This optimism i s based on t h e u n d o u b t e d s u c c e s s o f t h e m a j o r p r o d u c t i n t h i s a r e a , x a n t h a n gum, w h i c h h a s r a i s e d t h e t a n t a l i s i n g p r o s p e c t o f a w h o l e r a n g e o f m i c r o b i a l gums w h i c h c o u l d n o t o n l y r e f l e c t and improve upon t h e a v a i l a b l e p l a n t gums, b u t a l s o i n t r o d u c e n o v e l p r o p e r t i e s f o r e x p l o i t a t i o n i ne x i s t i n g and as yet undeveloped a p p l i cations. About a dozen major companies a r e thought to be c o n d u c t i n g s u b s t a n t i a l r e s e a r c h and development programmes i n t o t h e p r o d u c t i o n o f m i c r o b i a l p o l y s a c c h a r i d e s ; some o f t h e m a l r e a d y a r e i n t h e f e r m e n t a t i o n i n d u s t r y , b u t o t h e r s , l i k e Tate and L y l e and H e r c u l e s , a r e newcomers t o t h i s t e c h n o l o g y . Despite t h i s heavy r e s e a r c h a n d d e v e l o p m e n t e f f o r t w h i c h , i n some i n s t a n ces has a h i s t o r y o f a t l e a s t a decade, t h e s t a t e o r at l e a s t p u b l i c knowledge o f t h e t e c h n o l o g y a s judged from the p a t e n t and s c i e n t i f i c l i t e r a t u r e , i s low, t o say t h e l e a s t . There i s l i t t l e l i t e r a t u r e on t h e p r o d u c t i o n technologies used by i n d u s t r y . Academic m i c r o b i o l o g y , f o r the most p a r t , h a s i g n o r e d t h e phys i o l o g y o f e x o c e l l u l a r p o l y s a c c h a r i d e s y n t h e s i s and excretion. The p h y s i o l o g y o f p o l y s a c c h a r i d e s y n t h e s i s has been s t u d i e d a s a b a s i s f o r d e v e l o p i n g p r o d u c t i o n processes. A number o f t h e r e s u l t s o b t a i n e d o n m i c r o b i a l a l g i n a t e i nthe Tate and L y l e l a b o r a t o r i e s w i l l be d i s c u s s e d . As a b r i e f i n t r o d u c t i o n t o m i c r o b i a l gum p r o d u c t i o n , i t w i l l b e u s e f u l t o c o n t e m p l a t e a number o f more g e n e r a l q u e s t i o n s w h i c h w o u l d be p o s e d by a n i n d i v i d u a l o r g r o u p o f i n d i v i d u a l s c o n s i d e r i n g this field for possible exploitation. 282
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
21.
LAwsoN
Industrially Important Gums
283
Downloaded by UNIV OF MISSOURI COLUMBIA on April 22, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch021
1. W h a t a r e b i o p o l y m e r s o f i n d u s t r i a l s i g n i f i cance? 2. Why s h o u l d s u g a r c o m p a n i e s show a n y i n t e r e s t ? 3. W h a t i s t h e c o m m e r c i a l s t a t u s o f m i c r o b i a l gums? 4« W h a t a r e t h e p r o p e r t i e s o f i n t e r e s t ? 5. W h a t a d v a n t a g e s h a s f e r m e n t a t i o n t o o f f e r ? 6. What d i s a d v a n t a g e s d o e s f e r m e n t a t i o n h a v e ? From t h e p o i n t o f v i e w o f c o m m e r c i a l u s e f u l n e s s , m i c r o b i a l p o l y s a c c h a r i d e s a r e found as s l i m y o r g e l a t i n o u s m a t e r i a l s s e c r e t e d i n t o t h e aqueous environment u p o n w h i c h a r e g r o w n many b a c t e r i a , f u n g i a n d y e a s t s . The r e a s o n why t h i s g r o u p o f c o m p o u n d s h a s r e c e i v e d a t t e n t i o n i s c o n n e c t e d w i t h t h e r h e o l o g i c a l and g e l f o r m i n g p r o p e r t i e s w h i c h t h e y show, d e f i n e d b y c o m p a r i s o n w i t h t h e w e l l - k n o w n , i n d u s t r i a l gums f r o m p l a n t sources. I n T a b l e I t h e m a j o r a r e a s o f gum c l a s s i f i c a t i o n a r e p r e s e n t e d , showing comparisons o f b o t h p l a n t a n d m i c r o b i a l gums. The i n t e r e s t o f T a t e a n d L y l e i n m i c r o b i a l gums was s t i m u l a t e d b y t h e e f f e c t i v e i n c r e a s e i n v a l u e w h i c h m i g h t be g i v e n t o s u c r o s e i f used a s a f e r m e n t a t i o n substitute. G e n e r a l l y , gums c a n b e c l a s s e d a s h i g h Table I . Classification of Water Soluble
Examples
Origin (i)
Polysaccharides
Unmodified Gums gum
'trees
arabïc
[
locust bean gum
seeds
guar gum
agar
seaweeds
alginate
plants
Lcarrageenan cornstarch
cereals
potato starch
tubers ^citrus
microorganisms (ii)
bacteria
- L
x a n t h a n gum
[
c a r b o x y m e t h y I c e 11 u i o s e methyl
grasses cottons
cellulose
hydroxymethyl
cereals
rdextrins
tubers
*-carboxymethyl
seaweeds ^citrus
microorganisms
dextran
C
Modified Gums ^trees
plants
pectin
fruits
fruits
bacteria
cellulose starch
propylene glycol low methoxy D.E.A.E.
alginate
pectin
dextran
(Diethyl amino ethyl)
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF MISSOURI COLUMBIA on April 22, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch021
284
SUCROCHEMISTRY
v a l u e c h e m i c a l s , a n d i t was c o n s i d e r e d t h a t t h e i r p r o d u c t i o n by f e r m e n t a t i o n processes c o u l d l e a d t o r e t u r n s on c a p i t a l e m p l o y e d b e t t e r t h a n t h o s e o b t a i n e d , f o r example, by s t r a i g h t f i n a n c i a l investment. There a l s o was a n a t u r a l a t t r a c t i o n t o w a r d s a p o t e n t i a l i n v o l v e m e n t w i t h t h e new a r e a o f d i v e r s i f i c a t i o n , w h i c h p r o d u c t i o n o f m i c r o b i a l gums w o u l d o f f e r . Glucose and g l u c o s e s y r u p s may b e o b t a i n e d m o r e c h e a p l y t h a n r e f i n e d cane sugar a n d , i n any l o g i c a l p r o c e s s d e v e l o p ment e x e r c i s e , i t w o u l d be n e c e s s a r y t o a c k n o w l e d g e this. F o r c e r t a i n p o l y s a c c h a r i d e f e r m e n t a t i o n s , howe v e r , t h e use o f raw sugar, r e f i n i n g syrups o r molasses may b e c o n t e m p l a t e d s u b s t a n t i a l l y i m p r o v i n g t h e e c o n o mics i n comparison w i t h glucose. A l s o , many s u g a r companies have s t r o n g i n t r i n s i c i n t e r e s t s i n carbohydrates other than sucrose. Again, this i s a possible r e a s o n f o ran i n t e r e s t i n f e r m e n t a t i o n s u b s t r a t e s o t h e r than sucrose. One o b v i o u s d i s a d v a n t a g e f o r a s u g a r company c o n t e m p l a t i n g t h e m a n u f a c t u r e o f m i c r o b i a l gums i s t h e p r o b a b l e l a c k o f b o t h a p p l i c a t i o n s know-how and m a r k e t i n g e x p e r t i s e . One o f t h e m a i n m o t i v a t i n g r e a s o n s f o r T a t e and L y l e ' s e n t h u s i a s m a t a j o i n t v e n t u r e w i t h a company l i k e H e r c u l e s , was i n t h e s t r e n g t h t o be g a i n e d from an o r g a n i s a t i o n a l r e a d y m a r k e t i n g gums. A v a s t number o f m i c r o o r g a n i s m s p r o d u c e e x o c e l l u l a r p o l y s a c c h a r i d e s , a n d many p u b l i c a t i o n s h a v e a p p e a r ed, i n which they a r e d e s c r i b e d . T h e m a j o r i t y , howe v e r , have n o t been e x p l o i t e d c o m m e r c i a l l y . I n Table I I some p o l y s a c c h a r i d e - p r o d u c i n g m i c r o o r g a n i s m s a r e shown t o g i v e a n i d e a o f t h e w i d e o c c u r a n c e o f t h e polysaccharide producers. I n Table I I I are l i s t e d t h o s e gums w h i c h a p p e a r t o b e t h e m o s t a d v a n c e d i n terms o f t h e i r commercial development. T h i s demons t r a t e s t h e c o m m e r c i a l s t a t u s o f t h e gums a n d g i v e s a n indication of possible future trends. To g i v e a n i d e a o f t h e s o r t o f p r o d u c t i o n volumes o f m i c r o b i a l gums, i t h a s b e e n e s t i m a t e d t h a t t h e p r o d u c t i o n o f x a n t h a n gum b y a l l m a n u f a c t u r e r s a m o u n t e d t o some 6,000 t o n n e s i n 1 9 7 5 . Table IV presents f o r comparis o n t h e c o n s u m p t i o n o f gums i n t h e U n i t e d S t a t e s i n 1973. P r o d u c t i o n c o s t s f o r m i c r o b i a l gums a r e v e r y h i g h , m a i n l y due t o t h e h i g h c o s t o f p l a n t . A number of reasons f o rt h i s a r e given l a t e r . Kelco, f o r i n s t a n c e , h a s a n n o u n c e d t h a t t h e i r new p l a n t f o r x a n t h a n gum p r o d u c t i o n i n O k l a h o m a , w i l l c o s t $35 m i l l i o n . The p r i c e s c h a r g e d r e f l e c t t h i s h i g h p r o d u c t i o n c o s t and t h e r e f o r e , i t i s n o t s u r p r i s i n g t h a t t h e p r i c e o f x a n t h a n r a n g e s f r o m $ 3 . 5 p e r l b t o $4 p e r l b , d e p e n d i n g upon grade.
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
21.
LAwsoN
Industrially Important Gums
285
Table I I . Some Gram
Positive
Polysaccharide-Producing
Bacteria
Yeasts Rhodotorula
Bacillus spp. Leuconostoc
Pichia
spp.
Streptococcus
mutans
Pachysolen
spp.
Lipomices
negative
H.
Crypto
Rhizobium
Torulopsis
£p_.
SD£.
Escherichia
coli
Acetobacter
xylinum
Arthrobacter
viscosus
Pseudomonas
aeruginosa
Xanthomonas
campestris
X.
T.
aerogenes
capsulata
Holstii
A z o t o b a c t e r si
Klebsiella
tannophilus spp.
Hansenula
Bacteria
spp.
spp.
Streptococcus Gram
Downloaded by UNIV OF MISSOURI COLUMBIA on April 22, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch021
Microorganisms
_sp£.
molischiana
Pinus
Aureobasidium Other
pullulons
Fungi
Pénicillium Tremella
spp.
mesentaria
phaseoli
Achromobacter spp. Alcaligenes
f a e c a l is v a r .
Agrobacterium Erwinia
myxogenes
spp.
spp.
Sphaerotilus
mutans
Table V g i v e s an i n d i c a t i o n o f t h e type o f p r o c e s s e i t h e r b e i n g operated o r i n development. I t i s t h o u g h t t h a t a l l c o m m e r c i a l i s e d p r o c e s s e s , a t t h e moment, a r e b a t c h , and a l l s u b s t r a t e s a r e c a r b o h y d r a t e s , m o s t l y based on g l u c o s e o r s u c r o s e . I n t h e s e l e c t i o n o f m i c r o b i a l gums f o r c o m m e r c i a l exploitation,inevitably the conclusion i s reached,that, f o r a gum t o b e s u c c e s s f u l , i t m u s t h a v e some u n i q u e physical property. As a l r e a d y mentioned, p r o d u c t i o n costs are high and, i t i s u n r e a l i s t i c t o contemplate d e v e l o p i n g gum s y s t e m s w h i c h show n o n - s p e c i f i c t h i c k e n ing and suspending p r o p e r t i e s . I n Table VI are l i s t e d some p o l y s a c c h a r i d e s , b o t h p l a n t a n d m i c r o b i a l , i d e n t i f y i n g t h e p h y s i c a l p r o p e r t i e s which a r e unique, and uses which a r e s p e c i f i c and n o t e a s i l y c o p i e d by o t h e r gums. Both t h e advantages and disadvantages o f t h e f e r m e n t a t i o n a p p r o a c h t o p o l y s a c c h a r i d e p r o d u c t i o n now w i l l be examined (Table V I I ) . Advantages o f fermentat i o n o v e r t r a d i t i o n a l methods a r e f i r s t l y i n medium preparation. The raw m a t e r i a l s such a s c a r b o h y d r a t e s u b s t r a t e s , n i t r o g e n s o u r c e s and i n o r g a n i c s a l t s normall y a r e r e a d i l y a v a i l a b l e a n d , i n many f e r m e n t a t i o n s , i t
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
SUCROCHEMISTRY
Downloaded by UNIV OF MISSOURI COLUMBIA on April 22, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch021
286
Table
III.
Microbial
Polysaccharides of Commercial
Name
State of
Dextran
Present
- In
Future
- Static
Present
- In
Future
- Expanding
Xanthan
Gum
Importance
Development production
production
(Commercial Trade N a m e
Information) Company Dextran
Various
Products
Pol y d e x
Keltrol
Kelco
Co.
Rhone
Poulenc/
Kelzan Rhodigel
23
General P r e s e n t - In Future
Involved
Tate &
development
Mills Lyle/
Hercules
- Commercialisation announced
Pullulan
Present
- In
Future
- Commercialisation
development Pullulan
Hayashibara
Zanflo
Kelco
Corp.
announced Erwinia
Present
- In
production
(U.S.A.) Exopolysaccharide
Future
- Not
P r e s e n t - In Scleroglucan Microbial alginate
development
Future
- Not
Present
- In
Future
-
Co.
known Polytran
F.S.
Pillsbury
known
development Tate & L y l e
Promising
Ltd./
Hercules Bakers GI
yean
Curdlan
Yeast
Present
- In
Future
- Not
development
Present
- In
Future
- Not
known
development known
BYG
A n h e u s e r - Busch
Inc.
Takeda Chemical
Ind.
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
21. LAwsoN
Industrially Important Gums
287
Downloaded by UNIV OF MISSOURI COLUMBIA on April 22, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch021
Table IV. The C o n s u m p t i o n o f Industrial G u m s
in T h e U n i t e d States (1973)*
Gum
Uses
Corn
Food sugars
Industrial
Total
-
?
2,232,142
Cornstarch
(Tonnes)
223,214
1,116,071
1,339,285
6,696
43,303
50,000
900
23,660
24,553
6,696
15,625
22,321
Arabic
10,267
3,125
13,392
Pectin
5,357
0
5,357
4,017
1,785
5,803
Alginate
4,017
4,017
8,034
Ghatti
4,464
446
4,910
Carrageenan
4,017
89
4,106
Xanthan
1,000
2,678
3,678
Karaya
446
3,125
3,571
Tragacanth
580
89
669
Agar
133
178
311
C a r b o x y m e t h y l eel1 ulose M e t h y l e e l lui ose Guar
Locust
bean
Furcellaran
*
R.L.
89
Whistler
1974 (unpublished
0
results)
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
89
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
gum
Yeast
yean
Curdlan
GI
Bakers
alginate
Microbial
Scleroglucan
Exopolysaccharide
Erwinia
Pullulan
Xanthan
Alcaligenes
free enzyme
bacterial
fungal
bacterial
fungal
bacterial
yeast
(Process
of Process
bacterial
cell
Type
Importance
f a e c a l is
A g r o b a c t e r i u m sp
cerevisiae
Saccharomyces
vinelandii
Azotobacter
glucanicum
Sclerotium
tahitica
Erwinia
pullulons
Aureobasidium
campestris
Xanthomonas
mesenteroides
Leuconostoc
Dextran
of Commercial
Organism
Polysaccharides
Name
Microbial
T a b l e V.
syrup
glucose
glucose
sucrose
glucose
glucose
glucose? syrup?
glucose syrup
glucose
glucose
(sucrose)
glucose
Substrate
Information)
glucose
mannose
glucose
(acetate)
guluronic
acid acid
mannuronic
glucose
(acetyl)
(pyruvate)
uronic acid
fucose
galactose
glucose
glucose
mannose
acid
(acetate)
glucuronic
glucose
glucose
C o m p o n e n t sugar of
Downloaded by UNIV OF MISSOURI COLUMBIA on April 22, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch021
polymer
to
o
o
oo
00
21. LAwsoN
Industrially Important Gums
289
Table V I ,
Downloaded by UNIV OF MISSOURI COLUMBIA on April 22, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch021
Some Important Physical Properties of Industrial Gums and their Applications Physical Property
Gum
Application
Cold set, clear, gel formation with divalent cations
Alginate
Re-formed fruit pieces Dental gels
Gel formation with sucrose
Pectin
Jam manufacture
Heat reversible gel formation
Agar
Microbiological solid media Synthetic meat gels
Heat reversible gel formation in the presence of potassium ions
Carrageenan
Non-reactivity with 'reactive' (Procion) dyestuffs
Alginate
Stability in the presence of strong acids
Xanthan gum
Pseudoplastic behaviour under conditions of high shear
Xanthan gum
Synergistic gel formation with carob and guar gums
Xanthan gum
Retardation of sugar crystallisation Gum Arabic at low moisture contents
Synthetic meat gels Instant desserts Textile print paste thickener In rust curing gels containing phosphoric acid As a lubricant for the ben ton i te muds used to drill oil wells Synthetic meat gels In pastilles and jujubes
i s p o s s i b l e t o use p r e c i s e l y d e f i n e d media compositions. In t h ea c t u a l process o f fermentation, ongoing param e t e r s such a s pH, t e m p e r a t u r e , f e r m e n t a t i o n t i m e , d i l u t i o n r a t e and a e r a t i o n c a n be c o n t r o l l e d and manipulated. Two i n t e r r e l a t e d r e s u l t s p o t e n t i a l l y a r e p o s s i b l e through these c o n t r o l s . The f i r s t i s t h e maintenance o fproduct s p e c i f i c a t i o n s w i t h i n d e f i n e d l i m i t s , and t h i s i s p a r t i c u l a r l y v i t a l i n polysacchar i d e f e r m e n t a t i o n s where even s m a l l changes i n c e r t a i n p r o c e s s v a r i a b l e s c a n have d r a m a t i c e f f e c t s on polymer s t r u c t u r e and, t h e r e f o r e , p h y s i c a l b e h a v i o u r . This, i n c i d e n t a l l y , i s o n e r e a s o n why t h e u s e o f c o n t i n u o u s c u l t u r e i sfavoured. Under steady s t a t e c o n d i t i o n s , the v a r i a b l e s o f fermentation a r eh e l d constant w i t h r e s p e c t t o e a c h o t h e r , t h u s a f f o r d i n g a much b e t t e r understanding and c o n t r o l o f the process. The s e c o n d e f f e c t i s t h e p o t e n t i a l a b i l i t y t o mani p u l a t e product type and y i e l d . F o r example, t h e a b i l i t y through s p e c i f i c changes i n f e r m e n t a t i o n cond i t i o n s t o p r o d u c e r a n g e s o f m i c r o b i a l gums o f a p a r t i cular type, d i f f e r i n g i n molecular weight. Another advantage o f fermentation i s t h a t , i nproduct recovery, harsh e x t r a c t i o n techniques normally a r en o tr e q u i r e d a n d , v e r y o f t e n , s o l v e n t p r e c i p i t a t i o n may b e c o n t e m plated which, o f course, i s a very m i l d treatment, not l i k e l y t o l e a d t o product degradation. The c h o i c e
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
SUCROCHEMISTRY
290
Table VII. Benefits O b t a i n e d
in P r o d u c i n g
by
Downloaded by UNIV OF MISSOURI COLUMBIA on April 22, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch021
1 .
Medium
Fermentation
Preparation
(a)
Raw
(b)
Precisely
2.
Polysaccharides
materials
in plentiful
defined media
supply
possible
Fermentation (a)
H i g h degree of process control
(b)
Continuous culture possible/, high
Product
3.
(a)
Mild
possible productivity
Recovery
conditions can
be u s e d . M i t t l e
product
degradation.
Table
VIII. Technical
Problems
in M i c r o b i a l
H i g h broth viscosities,
(i)
Polysaccharide
r e s u l t i n g in
Low product concentration,
Production
:
therefore
l a r g e v o l u m e s of w a t e r large fermenter
(ii)
High energy requirements oxygen bulk water
(iii)
capacity
for
transfer
mixing removal
Difficulties
in c e l l
removal.
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF MISSOURI COLUMBIA on April 22, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch021
21.
LAWSON
Industrially Important Gums
291
of p r o d u c t i o n s i t e s can be f a i r l y f l e x i b l e , l i m i t e d mainly by the a v a i l a b i l i t y o f water. F i n a l l y , the use of c o n t i n u o u s c u l t u r e can enhance p r o d u c t i v i t i e s over t h o s e o b t a i n e d i n b a t c h c u l t u r e s , a s c e l l s a r e grown always under c o n d i t i o n s most conducive t o e f f i c i e n t product formation. Turning t o the disadvantages o f fermentation (Table V I I I ) , they can be summarised as b e i n g caused l a r g e l y by the h i g h l y v i s c o u s fermentation broths encountered. This s e v e r e l y l i m i t s the concentrations of polymer i t i s p r a c t i c a b l e t o s y n t h e s i z e . The r a n g e 3 0 - 4 0 , 0 0 0 c p s i s n o t uncommon a n d n o c o n c e n t r a t i o n s o f gum a b o v e a b o u t 4% c a n b e c o n t e m p l a t e d . It follows, t h e r e f o r e , t h a t very l a r g e fermenters are r e q u i r e d i n order t o s y n t h e s i s e economically s e n s i b l e tonnages o f gum. F e r m e n t e r s i z e s o f 5 0 - 2 0 0 m^ a r e p r a c t i c a l . Very l a r g e volumes o f both water and product recovery s o l v e n t are r e q u i r e d , s o t h a t e f f l u e n t problems must be c o n t e m p l a t e d , u n l e s s r e c y c l i n g i s t o b e u n d e r t a k e n . Other problems l i e i n t h e h i g h power r e q u i r e m e n t s needed t o o b t a i n s a t i s f a c t o r y b r o t h m i x i n g and a e r a t i o n w h i c h , i f not adequate,can l e a d q u i c k l y t o oxygen l i m i t a t i o n and lowered p o l y s a c c h a r i d e p r o d u c t i v i t i e s . F i n a l l y , c e l l r e m o v a l , p a r t i c u l a r l y b y m e c h a n i c a l means ( c e n t r i f u g e , f i l t e r s ) , i s d i f f i c u l t and, a l t h o u g h metho d s b a s e d o n e n z y m e d i g e s t i o n o f c e l l s (1) a n d a l k a l i d i g e s t i o n h a v e b e e n p u b l i s h e d (2^) ,many p r o b l e m s h a v e y e t t o be s o l v e d . I n summary, i t i s i m p o r t a n t t o p o i n t o u t t h a t , a l though f e r m e n t a t i o n as an approach t o p o l y s a c c h a r i d e p r o d u c t i o n i s not w i t h o u t problems, the concept c o u l d , i n t h e f u t u r e , r e v o l u t i o n i z e many a s p e c t s o f i n d u s t r i a l gum production. A s p e c t s o f t h e work b e i n g u n d e r t a k e n i n t o the p r o d u c t i o n o f m i c r o b i a l a l g i n a t e a t the Tate and L y l e Labo r a t o r i e s now w i l l b e e x a m i n e d . Briefly, alginate i s b e s t known a s t h e p o l y s a c c h a r i d e o b t a i n e d f r o m b r o w n algae such as species o f Laminaria and M a c r o c y s t i s (Figure 1). I t i s a l i n e a r polymer o f ß-D-mannuronic a c i d and a - L - g u l u r o n i c a c i d . The a r r a n g e m e n t o f t h e monomers h a s b e e n s t u d i e d b y H a u g a n d c o - w o r k e r s (3) a n d R e e s a n d c o - w o r k e r s (4_) a n d r e f e r r e d t o a s t h e block structure. That i s , homopolymeric b l o c k s o f mannuronic and g u l u r o n i c a c i d comprise the so c a l l e d , "alternating regions". The f l o w and g e l - f o r m i n g p r o p e r t i e s o f the polymer i n aqueous s o l u t i o n depend on the p r o p o r t i o n s o f the monosaccharide r e s i d u e s , on t h e i r arrangement and on the polymer molecular weight. T h i s a p p l i e s v e r y much t o g e l f o r m a t i o n i n t h e p r e s e n c e of d i v a l e n t metal c a t i o n s as, f o r example, a l g i n a t e s
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
SUCROCHEMISTRY
292 Monomers
Downloaded by UNIV OF MISSOURI COLUMBIA on April 22, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch021
^-D-Mannuronic
Block
acid
oC
-L-Guluronic
acid
Structure
-M-M-M-M-M-M- G - G - G - G - G - G - M - G - M - G - M - G -
Figure 1.
Structure of alginic acid
having a high proportion of guluronic a c i d p a r t i c u l a r l y as h o m o p o l y m e r s f o r m t h e s t r o n g e s t a n d most b r i t t l e gels. The e x o c e l l u l a r p o l y s a c c h a r i d e p r o d u c e d b y A z o t o b a c t e r v i n e l a n d i i h a s b e e n shown i n i t i a l l y b y G o r i n a n d S p e n c e r (5») a n d b y t h e l a t e A r n e Haug a n d c o - w o r k e r s (6) t o h a v e t h e same b a s i c s t r u c t u r e a s t h a t f r o m a l g a l s o u r c e s e x c e p t t h a t a m a l l number o f hydroxy1 groups were a c e t y l a t e d . I n t h e Tate and L y l e study o f A z o t o b a c t e r a l g i n a t e the o b j e c t i v e has been t h e development o f a p r o d u c t w h i c h would compete b o t h i n b e h a v i o u r and economic terms w i t h t h e a l g a l m a t e r i a l s on s a l e i n world markets. E a r l y s t u d i e s i n batch c u l t u r e under t h e c o n d i t i o n s d e s c r i b e d b y G o r i n a n d S p e n c e r (5), g a v e p o o r p r o d u c t s , obtained i n very low y i e l d . Subsequent improvements w e r e made b y g r o w i n g t h e o r g a n i s m u n d e r p h o s p h a t e d e f i c i e n t c o n d i t i o n s (!) p l u s o t h e r m o d i f i c a t i o n s w h i c h i n c r e a s e d t h e c o n s i s t e n c y i n d e x (a measure o f f l o w b e h a v i o u r i n a q u e o u s s o l u t i o n ) f r o m ^ 3 0 c p s t o 4,000 cps, thus c o v e r i n g t h e range o f commercially a v a i l a b l e , algal alginates. This wide range o f product v i s c o s i t i e s a l s o has been o b t a i n e d from c o n t i n u o u s c u l t u r e s (Figure 2 ) . The most v i s c o u s p r o d u c t h a s a c o n s i s t e n c y i n d e x o f 6,000 c p s ( 1 % c o n c e n t r a t i o n ) . The g e l forming p r o p e r t i e s o f m i c r o b i a l a l g i n a t e a l s o were d e m o n s t r a t e d t o be s i m i l a r t o t h e i r a l g a l c o u n t e r p a r t s . f
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
21.
LAwsoN
Industrially Important Gums
293
Downloaded by UNIV OF MISSOURI COLUMBIA on April 22, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch021
In batch c u l t u r e s , the h i g h e s t y i e l d s o f sodium a l g i n a t e p o s s i b l e t o o b t a i n under phosphate d e f i c i e n t c o n d i t i o n s , were f o u n d t o a p p r o x i m a t e 25% o f t h e s u crose u t i l i s e d (Figure 3)• High r e s p i r a t i o n i n A.vinel a n d i i i s a w e l l - k n o w n phenomenon a n d , a s a r e s u l t und e r c e r t a i n c o n d i t i o n s , much o f t h e s u c r o s e c a n b e u t i l i z e d i n a n u n c o n t r o l l e d manner and l o s t a s c a r b o n dioxide. It,therefore,was decided to i n v e s t i g a t e the e f f e c t of r e s p i r a t i o n on alginate production i n continu o u s c u l t u r e ; a t e c h n i q u e h a v i n g t h e p o t e n t i a l o f much
10,000p
1
10
10Ö
TTürfo
Rate of shear (sec ^)
Figure 2.
Apparent viscosity vs. rate of shear plots for Azotobacter alginates and certain commercial algal alginates
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
SUCROCHEMISTRY
294
Cells
Downloaded by UNIV OF MISSOURI COLUMBIA on April 22, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch021
o
Alginate
• -^iginate/Cells
Figure 3. Effect of phosphate concentration on alginic acid synthesis by Azotobacter vinelandii in batch culture
greater control. Phosphate-limited growth c o n d i t i o n s were c h o s e n , a s a p a u c i t y o f p h o s p h a t e was i n d i c a t e d b y the work i n b a t c h c u l t u r e . R e s p i r a t i o n r a t e was c o n t r o l l e d by manipulating fermenter i m p e l l e r speeds, r e s u l t i n g i n a l t e r e d oxygen t r a n s f e r i n t o t h e fermentation broth. T h e r e f o r e , a l t h o u g h c e l l mass was c o n t r o l l e d a t an e s s e n t i a l l y constant l e v e l by t h e phosphate a v a i l a b i l i t y , t h e s p e c i f i c r e s p i r a t i o n r a t e was d e t e r m i n e d b y t h e a v a i l a b i l i t y o f o x y g e n ( F i g u r e 4 ) . Under t h e above c o n d i t i o n s , a t lower r e s p i r a t i o n r a t e s , t h e maximum y i e l d o f s o d i u m a l g i n a t e w a s i n t h e r e g i o n o f 45% o f t h e s u c r o s e u t i l i s e d . A thigher r e s p i r a t i o n r a t e s , t h e y i e l d f e l l d r a m a t i c a l l y due t o a g r e a t e r p r o p o r t i o n o f sucrose being burned o f f a s CO2. In c o n c l u s i o n , t h e production o f m i c r o b i a l polys a c c h a r i d e s o f c o m m e r c i a l s i g n i f i c a n c e i s now a w e l l e s t a b l i s h e d f a c t a n d a new g e n e r a t i o n o f w a t e r s o l u b l e polymers i s being i d e n t i f i e d . However, t h e p r o d u c t i o n t e c h n o l o g i e s a r e e x p e n s i v e , r e l a t i v e t o many o f t h e p l a n t gums. Biopolymers w i l l only gain a f u l l y established competitive position leading t o the use o f i n d u s t r i a l scale continuous c u l t u r e s through the succ e s s o f c u r r e n t r e s e a r c h programmes i n t o t h e p h y s i o l o g y of exopolysaccharide s y n t h e s i s .
Abstract In recent years, the exocellular polysaccharide elaborated by the bacterium Xanthomonas compestris has emerged as a product with significant industrial appli—
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF MISSOURI COLUMBIA on April 22, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch021
21.
LAwsoN
Industrially Important Gums
295
cation, and the present annual world consumption is several thousand tons. This has demonstrated the potential of fermentation for producing polysaccharides having unusual solution and gel properties. At the present time there is an increasing demand for xanthan gum and new applications appear regularly in the patent literature and elsewhere. It is likely that other microorganisms w i l l be capable of producing commercially valuable polysaccharides and, as a consequence, a number of systems are under investigation with several apparently at an advanced stage of development. Tate and Lyle became interested in microbial gums through reports that the bacteria Azotobacter vinelandii and Pseudomonas aeruginosa produce polysaccharides similar to the polyuronide, alginic acid. The sole source of this polysaccharide at present is the brown algae from which approximately 20,000 tons of alginate are extracted per annum. Pseudomonas aeruginosa was rejected for study due to its association with pathogenic conditions in man. As initial assessments indicated that the Azotobacter polysaccharide could be commercially valuable if sufficiently high yields were
1.5,-
0
10
20
30
40
Specific respiration rate (pmol O^/h/mg cell)
Figure
Exopolysaccharide production by Azotobacter vinelandii at a range of respiration rates
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF MISSOURI COLUMBIA on April 22, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch021
296 SUCROCHEMISTRY obtained, the latter was selected for further study. Subsequent developments to pilot plant level have involved improving yield and controlling and manipulating the physical properties of the polymer produced by appropriate choice of growth media and fermentation conditions, using both batch and continuous culture and also by strain selection. Literature Cited 1. Kelco Co., British Patent, 1,443,507, (1975). 2. Patton, J.T., United StaTes Patent, 3,729,460, (1970). 3. Larsen, B . , Smidsrod, O., Haug, A. and Painter, T. Acta. Chem. Scand., (1969), 23, 2375. 4. Rees, D.A., Biochem. J., (1972), 126, 257. 5. Gorin, P.A.J, and Spencer, J.F.T., Canad. J. Chem. (1966), 44, 993. 6. Larsen, B. and Haug, A . , Carbohyd. Res., (1971), 17, 287. 7. Imrie, F.K.E., British Patent, 1,331,771, (1973). Biographic Notes Christopher J . Lawson, Ph.D., Project Leader Microbiological Polysaccharides. Educated at the Univ. of Edinburgh. Joined Tate and Lyle, Ltd., in 1969, specializing in microbiological polysaccharides by fermentation. Tate and Lyle, Ltd., Philip Lyle Memorial Research Laboratory, P.O. Box 68, Reading, Berkshire RG6 2BX, England.
In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.