2 Properties of Protein-Water Systems at Subzero Temperatures
Downloaded by IOWA STATE UNIV on February 28, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch002
I. D. KUNTZ Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
The hydration of proteins at subzero temperatures is reviewed. The thermodynamics of the protein-water system and the water molecule dynamics are discussed. The hydration layer around a protein at low temperature is best thought of as being in a glass-like state with the water molecules selectively oriented near ionic and polar groups at the protein surface. Water motions in the nanosecond and microsecond range have been detected.
l
x
his p a p e r w i l l s u m m a r i z e t h e a v a i l a b l e i n f o r m a t i o n o n a n u m b e r o f p r o p e r t i e s o f p r o t e i n - w a t e r systems b e l o w 0 ° C . W e w i l l d i r e c t o u r
a t t e n t i o n t o t h e r m o d y n a m i c d a t a a n d t o e x p e r i m e n t s t h a t speak t o t h e d y n a m i c s o f t h e systems.
I n some cases, w e u s e results a t h i g h e r t e m -
peratures t o i n f e r l o w - t e m p e r a t u r e b e h a v i o r .
O u r p r i m a r y p u r p o s e is t o
o r g a n i z e t h e e x p e r i m e n t a l results. N o s i n g l e m o d e l i s l i k e l y t o c o v e r a l l the facts. Thermodynamic Phase component
Properties
Diagram.
W e will
treat p r o t e i n - w a t e r
systems
p o r t i n g electrolytes t h a t f o r m a l l y r e q u i r e t h r e e ( o r m o r e ) These
as t w o -
systems a l t h o u g h m a n y p r e p a r a t i o n s c o n t a i n buffer o r s u p -
additional components
c a n always b e expected
components.
t o influence a
n u m b e r o f measurements a n d w i l l alter t h e e n t i r e p h a s e d i a g r a m , i n c l u d ing the b u l k melting behavior, i n complex ways.
W e w i l l c a l l attention
to s u c h effects w h e r e a p p r o p r i a t e . 0-8412-0484-5/79/33-180-027$5.00/0 © 1979 American Chemical Society Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
28
PROTEINS A T L O W T E M P E R A T U R E S
T h e first i m p o r t a n t o b s e r v a t i o n is t h a t a n y p r o t e i n - w a t e r
system
w i l l c o n t a i n some w a t e r m o l e c u l e s t h a t d o not freeze i n t o a c r y s t a l l i n e state at t e m p e r a t u r e s f a r b e l o w z e r o
( J , 2, 3 ) .
A l t h o u g h the
lowest
t e m p e r a t u r e s r e a c h e d v a r y f r o m one t e c h n i q u e to a n o t h e r ( c a . — 7 0 ° C f o r N M R a n d — 1 9 6 ° C f o r i r ) n o e v i d e n c e for a first-order c r y s t a l l i z a t i o n f o r t h e " n o n f r e e z i n g " w a t e r has b e e n r e p o r t e d .
Further, annealing pro
cedures d o n o t i n d u c e c r y s t a l l i z a t i o n , s u g g e s t i n g s t r o n g l y t h a t a state w i t h some degree of s t a b i l i t y has b e e n a c h i e v e d . F o r m o s t p r o t e i n a c e o u s systems, the s t a r t i n g p r e p a r a t i o n contains w a t e r i n excess of t h e n o n f r e e z i n g w a t e r , a n d the excess w a t e r r e a d i l y freezes to a n o r m a l i c e p h a s e Downloaded by IOWA STATE UNIV on February 28, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch002
i f n o l o w m o l e c u l a r w e i g h t a d d i t i v e s are present. F o r p r e p a r a t i o n s w i t h b u l k w a t e r contents less t h a n 0.3-0.5 g w a t e r / g p r o t e i n , n o ice f o r m a t i o n is d e t e c t a b l e b y N M R at a n y l o w t e m p e r a t u r e . T h e d e v e l o p m e n t of v e r y small
s u b n u c l e a t i o n c r y s t a l l o i d s of
ice
has b e e n
suggested
in
some
cases ( 5 , β ) . W a t e r - p r o t e i n systems s h o w d i s t i n c t l y different f r e e z i n g b e h a v i o r t h a n aqueous solutions t h a t c o n t a i n m a n y l o w m o l e c u l a r w e i g h t
com
ponents. A d i l u t e N a C l solution, for example, w i l l have l i q u i d water i n stable e q u i l i b r i u m w i t h ice. T h e a m o u n t of u n f r o z e n w a t e r w i l l b e q u i t e temperature-dependent,
falling
attained, w h i c h for N a C l
smoothly
is — 2 1 ° C .
until
the
eutectic
point
A t a d e g r e e o r so b e l o w
is
this
temperature, no water signal can be detected b y conventional N M R t e c h n i q u e s , a n d i r w i l l i n d i c a t e a m i x t u r e of i c e a n d N a C l - H o O , a w e l l characterized crystalline monohydrate.
D i l u t e a q u e o u s p r o t e i n solutions
w i l l also s h o w i c e f o r m a t i o n b e g i n n i n g at a b o u t z e r o degrees, w i t h t h e a m o u n t of u n f r o z e n w a t e r d e c r e a s i n g r a p i d l y w i t h d e c r e a s i n g t e m p e r a t u r e u n t i l a v a l u e i n t h e 0.3-0.5 g H 0 / g p r o t e i n r a n g e is r e a c h e d ( u s u a l l y 2
at a b o u t — 1 0 ° C i n the absence of s a l t s ) . H o w e v e r , i n contrast to t h e e u t e c t i c b e h a v i o r d e s c r i b e d a b o v e f o r N a C l , the a m o u n t of f r o z e n w a t e r t h e n r e m a i n s essentially constant w i t h f u r t h e r decreases i n t e m p e r a t u r e . P r o t e i n c r y s t a l s — n o r m a l l y h y d r a t e d at r o u g h l y 1 g w a t e r / g p r o t e i n — s h o w s i m i l a r b e h a v i o r to a q u e o u s solutions c o n t a i n i n g t h e same p r o t e i n composition.
(However,
r e p o r t e d ( 7 , S, 9 ) .
s o m e exceptions
to t h i s p a t t e r n h a v e
been
These include tropomyosin (a muscle protein) and
a n u m b e r of p o l y p e p t i d e solutions t h a t s h o w a c o n t i n u a l decrease i n t h e f r a c t i o n of u n f r o z e n w a t e r , at least d o w n to the l o w t e m p e r a t u r e l i m i t of N M R . )
N o s i m p l e e x p l a n a t i o n has b e e n offered f o r these t w o t y p e s
of b e h a v i o r .
Perhaps the most straightforward qualitative explanation
is t h a t c o n v e n t i o n a l eutectic b e h a v i o r arises b e c a u s e of the i n t e r s e c t i o n of
two
phase
boundaries:
the
freezing
point
curve
that
represents
e q u i l i b r i u m conditions between the solution a n d ice a n d the m e l t i n g p o i n t c u r v e t h a t represents e q u i U b r i u m c o n d i t i o n s b e t w e e n t h e s o l u t i o n and (generally)
a w e l l defined crystalline hydrate.
P o l y m e r solutions
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
2.
Properties
KUNTZ
of
29
Protein-Water
have w e l l characterized freezing point curves, but they usually do
not
f o r m w e l l b e h a v e d c r y s t a l l i n e h y d r a t e s . T h u s t h e l a c k of a e u t e c t i c p o i n t is not too s u r p r i s i n g . T h e slope of t h e f r e e z i n g p o i n t c u r v e at t e m p e r a t u r e s f a r b e l o w z e r o is not easily d e t e r m i n e d b u t i t is t h o u g h t to d e p e n d o n a n u m b e r of p a r a m e t e r s s u c h as Δ Η
of f u s i o n a n d t h e F l o r y - H u g g i n s
i n t e r a c t i o n constant, a n d these c o u l d a c c o u n t f o r the r a n g e of b e h a v i o r d e s c r i b e d a b o v e . W e k n o w t h a t c e r t a i n solutions c o n t a i n i n g l o w m o l e c u l a r w e i g h t h y d r o x y l i c solutes (sugars, alcohols, etc.) c a n f o r m glasses at l o w temperatures.
P r o t e i n solutions at h i g h p o l y m e r concentrations
and/or
l o w t e m p e r a t u r e s h a v e m a n y features i n c o m m o n w i t h these glasses. Downloaded by IOWA STATE UNIV on February 28, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch002
F o r systems i n w h i c h t h e u n f r o z e n w a t e r content is i n d e p e n d e n t of t e m p e r a t u r e , t h e a m o u n t of u n f r o z e n w a t e r at a n y g i v e n t e m p e r a t u r e is r e l a t e d to the i o n i c c o m p o s i t i o n of t h e
the m o r e i o n i c , t h e m o r e u n f r o z e n w a t e r o b s e r v e d (4, 8 ) . are f o u n d
to b e
hydrated more
subfreezing
macromolecule— N e g a t i v e ions
extensively t h a n p o s i t i v e
Preparations containing oppositely charged macromolecules somes, v i r u s e s , a n d m e m b r a n e
proteins)
ions
(8).
(e.g., r i b o -
f r e q u e n t l y are less h y d r a t e d
t h a n w o u l d b e p r e d i c t e d b a s e d o n t h e b e h a v i o r of t h e f i x e d
components
T h i s suggests t h a t i o n i c g r o u p s b e c o m e b u r i e d i n a m i x e d system.
(4).
I a m n o t a w a r e of a g e n e r a l t r e a t m e n t of c o u n t e r - i o n effects o n m a c r o m o l e c u l a r h y d r a t i o n . T h e w i d e l y v a r y i n g eutectic p o i n t s i n s u c h systems m a k e a d e f i n i t i v e s t u d y q u i t e difficult. A p h a s e d i a g r a m f o r w a t e r - p r o t e i n systems has b e e n p r o p o s e d (4)
to s u m m a r i z e t h e a b o v e d i s c u s s i o n .
Enthalpy, Entropy, and Heat Capacity of Protein—Water Systems Below
0°C.
A number
of investigators h a v e r e p o r t e d t h e
apparent
e n t h a l p y of f u s i o n as a f u n c t i o n of t e m p e r a t u r e a n d c o m p o s i t i o n several hydrated proteins.
M a c K e n z i e a n d coworkers
a b s o r p t i o n isotherms at l o w
temperatures
and found
for
determined
(10)
t h a t : 1)
these
a b s o r p t i o n isotherms h a v e essentially t h e same s i g m o i d a l shapes as those o b s e r v e d a b o v e zero degrees; 2 ) the m a g n i t u d e s of the v a l u e s for p a r t i a l m o l a l e n t h a l p y a n d e n t r o p y increase as t h e content of u n f r o z e n w a t e r decreases;
3)
the h e a t of f u s i o n decreases as t h e c o n t e n t of
unfrozen
w a t e r decreases; a n d 4 ) t h e heat c a p a c i t y of the system increases as t h e content of u n f r o z e n w a t e r increases.
T a k i n g these
findings
a l l together,
the t h e r m o d y n a m i c p r o p e r t i e s of " u n f r o z e n ' w a t e r are n o t v e r y different f r o m those of s u p e r c o o l e d w a t e r at c o m p a r a b l e t e m p e r a t u r e s . O n e s h o u l d a l w a y s r e m e m b e r t h a t i t is difficult to p r o c e e d t h e r m o d y n a m i c measurements t o m o l e c u l a r p r o p e r t i e s . l a r l y t r u e i n m u l t i c o m p o n e n t systems.
from
T h i s is p a r t i c u
T h a t is, w a t e r - w a t e r a n d w a t e r -
p r o t e i n interactions a r e i n e x t r i c a b l y m i x e d w i t h p r o t e i n - p r o t e i n i n t e r actions w h e n one measures p a r t i a l m o l a l q u a n t i t i e s . A s s u m p t i o n s a n d e x p e r i m e n t s b e y o n d those y i e l d i n g t h e r m o d y n a m i c i n f o r m a t i o n are n e e d e d to d e t e r m i n e w h a t is h a p p e n i n g at t h e m o l e c u l a r l e v e l . T h e m a j o r cause
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
30
PROTEINS A T L O W
TEMPERATURES
f o r c o n c e r n , here, is the r e a l p o s s i b i l i t y t h a t significant changes i n p r o t e i n c o n f o r m a t i o n c a n o c c u r at l o w t e m p e r a t u r e s . T h e r e is some e v i d e n c e , f o r e x a m p l e , t h a t p r o t e i n d e n a t u r a t i o n is i m p o r t a n t i n some cases
(11)·
C l e a r l y , t h e concentrations of a n y solutes increase d r a m a t i c a l l y as b u l k w a t e r freezes.
T o the extent t h a t a p p r e c i a b l e d e n a t u r a t i o n o r s t r u c t u r a l
m o d i f i c a t i o n occurs, one c a n expect difficulties i n i n t e r p r e t i n g t h e r m o d y n a m i c measurements o n these systems. I n s u m m a r y , I suggest t h a t t h e p h e n o m e n o n of n o n f r e e z i n g w a t e r i n p r o t e i n - w a t e r systems at l o w t e m p e r a t u r e m i g h t arise f r o m t h e l a c k of e q u i l i b r i u m w i t h a w e l l d e f i n e d c r y s t a l l i n e p r o t e i n h y d r a t e phase.
For
Downloaded by IOWA STATE UNIV on February 28, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch002
p r o t e i n s i n w h i c h a c r y s t a l l i n e p h a s e is k n o w n to exist, M a c K e n z i e has s h o w n t h a t samples c a n b e t a k e n t h r o u g h t h e c r y s t a l l i z a t i o n r e g i o n w i t h n o c r y s t a l f o r m a t i o n (10).
T h i s l a c k of e q u i h b r i u m is q u i t e l i k e l y a k i n e t i c
p r o b l e m b e c a u s e of the v e r y h i g h v i s c o s i t y present. S u r f a c e effects m i g h t also c o n t r i b u t e s i g n i f i c a n t l y since t h e surface a r e a p e r u n i t v o l u m e is v e r y l a r g e for a n y m o l e c u l a r l y d i s p e r s e d p o l y m e r . O n t h e w h o l e , t h e t h e r m o d y n a m i c properties reported for nonfreezing water appear rather similar t o those of s u p e r c o o l e d
water.
Motions in Protein-Water
Systems
T h e most p o w e r f u l technique for studying molecular motions protein-water
systems
below
0°C
is m a g n e t i c
resonance.
in
Dielectric
r e l a x a t i o n measurements c a n b e u s e d , b u t these measurements are m o r e s u i t a b l e at h i g h e r t e m p e r a t u r e s i n h o m o g e n o u s solutions (13). the f r e q u e n c y d e p e n d e n c e of the m e h c a n i c a l p r o p e r t i e s of
Recently, biopolymers
has b e e n s h o w n to y i e l d c o n s i d e r a b l e k i n e t i c i n f o r m a t i o n (14).
I will
l i m i t d i s c u s s i o n to the salient results a t t a i n a b l e f r o m these t e c h n i q u e s . NMR.
M a g n e t i c resonance e x p e r i m e n t s at l o w t e m p e r a t u r e s h a v e
b e e n l i m i t e d l a r g e l y to p r o t o n a n d d e u t e r o n N M R of t h e w a t e r m o l e c u l e s i n w a t e r - p o l y m e r p r e p a r a t i o n s . T h i s is reasonable b e c a u s e of t h e sensi t i v i t y a t t a i n a b l e a n d b e c a u s e the most r a p i d l y m o v i n g m o l e c u l a r species ( w a t e r ) is t h e most easily detected. macroscopic
I w i l l discuss o n l y systems w i t h o u t
o r d e r (e.g., f r o z e n solutions of g l o b u l a r p r o t e i n s ) b u t t h e
i n t e r e s t e d r e a d e r w i l l find i n t r i g u i n g reports of n m r m e a s u r e m e n t s
on
p r o t e i n crystals a n d o n fibrous o r l a y e r e d m a t e r i a l s ( 1 5 , 1 6 , 1 7 ) . I m p o r t a n t results t h a t h a v e b e e n o b t a i n e d f r o m N M R analysis of p r o t e i n solutions at subzero t e m p e r a t u r e s a r e : (1)
T h e w a t e r p r o t o n l i n e w i d t h at — 20 ° C is 100 times s h a r p e r f o r
w a t e r t h a n f o r i c e , a n d e v e n at — 6 0 ° C t h e difference is v e r y m a r k e d . (2)
A l l systems w e h a v e s t u d i e d to date s h o w a m i n i m u m s p i n -
lattice relaxation time ( T i )
o r a m a x i m u m s p i n - l a t t i c e r e l a x a t i o n rate
( 1 / T i ) at c a . — 3 5 ° C f o r a l a r m o r f r e q u e n c y of 40 M H z . T h e m i n i m u m f o r Γ ι moves to l o w e r t e m p e r a t u r e s as t h e l a r m o r f r e q u e n c y
decreases.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
2.
Properties
KUNTZ (3)
of
31
Proteinr-Water
I n o u r w o r k , t h e p r o t o n l i n e w i d t h is a p p r o x i m a t e l y e q u a l to t h e
s p i n - s p i n r e l a x a t i o n rate ( 1 / Γ ) a n d this r e l a x a t i o n is n o t i c e a b l y faster 2
t h a n Ι / Τ Ι at a l l subzero t e m p e r a t u r e s . (4)
T h e s p i n - l a t t i c e r e l a x a t i o n rate ( 1 / Γ ι ) is r e p o r t e d to b e q u i t e
frequency-dependent
(see
(2)
above), and rotating frame
experiments
( l / T i p ) at l o w temperatures also i n d i c a t e f r e q u e n c y d e p e n d e n t r e l a x a tions
(18,19). (5)
N o r a p i d m o t i o n i n the m a c r o m o l e c u l a r c o m p o n e n t s
has b e e n
reported. Downloaded by IOWA STATE UNIV on February 28, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch002
C e r t a i n c o n c l u s i o n s c a n b e d r a w n f r o m these observations a l t h o u g h detailed interpretation w i l l depend on future quantitative developments. F i r s t , m o s t of the w a t e r m o l e c u l e s d e t e c t e d b y N M R are m o v i n g q u i t e r a p i d l y at s u b z e r o t e m p e r a t u r e s .
T h e sharp N M R s i g n a l f o r protons of
u n f r o z e n w a t e r is p e r h a p s the best e v i d e n c e that a n o n c r y s t a l l i n e state of w a t e r is present i n these samples.
Quantitative conclusions
about
p r o t o n m o b i l i t y c a n b e d e r i v e d f r o m the r e l a x a t i o n d a t a g i v e n a b o v e . W i t h o u t g o i n g into d e t a i l , a b o v e — 35 ° C the average r o t a t i o n a l c o r r e l a t i o n t i m e for w a t e r protons is c e r t a i n l y less t h a t 4 X 10~ seconds. I n o u r 9
e a r l y p a p e r s w e expressed t h e v i e w that this average c o r r e l a t i o n t i m e a p p l i e d to most of the w a t e r m o l e c u l e s t h a t c o n t r i b u t e to t h e n m r s i g n a l . It is n o w c l e a r t h a t there is n o h a r d e v i d e n c e i n s u p p o r t of this p o s i t i o n . T h e T i m i n i m u m is b r o a d a n d n o t as d e e p as s i m p l e t h e o r y (20)
would
p r e d i c t . C o n t r i b u t i o n s f r o m s p i n - s p i n d i f f u s i o n are r e a d i l y d e t e c t e d T h e r e is a r e a l c h a n c e t h a t a v e r y significant f r a c t i o n of
21, 22).
(17, the
unfrozen water molecules have rotational correlation times considerably shorter t h a n 10" seconds. T h e c o r r e l a t i o n t i m e f o r s u p e r c o o l e d w a t e r at 9
these t e m p e r a t u r e s is a b o u t 3 X 10~
10
seconds. T h e d e f i n i t i v e e x p e r i m e n t
w o u l d i n v o l v e m e a s u r e m e n t of h i g h f r e q u e n c y
dielectric dispersion i n
these m a t e r i a l s . S e c o n d , observations molecules
(3)
and (4)
e x h i b i t s l o w motions
suggest thas some of the w a t e r
(e.g., s l o w e r t h a n 4 Χ
T h e r e are t w o i m p o r t a n t restrictions here.
10"
seconds).
9
I t is n o t p o s s i b l e to b e v e r y
quantitative i n discussing slow motions because there is a substantial a m p l i f i c a t i o n f a c t o r f o r t h e w a y s l o w motions influence N M R l i n e w i d t h . A l s o , there is nô reason to assume t h a t a g i v e n w a t e r m o l e c u l e
experiences
a single r o t a t i o n a l m o t i o n . I t is m u c h m o r e l i k e l y t h a t a n y g i v e n m o l e c u l e samples a l l p o s s i b l e m o t i o n s f o r v a r y i n g p e r i o d s of t i m e . O b s e r v a t i o n of n o n e x p o n e n t i a l d e c a y of N M R signals is not, i n itself, e v i d e n c e of s l o w l y e x c h a n g i n g p o p u l a t i o n s of w a t e r m o l e c u l e s (17,
21, 22).
Thus, the con-
servative c o n c l u s i o n is t h a t a s m a l l f r a c t i o n of t h e w a t e r m o t i o n s at, say, — 35 ° C
are c o n s i d e r a b l y
s l o w e r t h a n 10"
9
and might approach
seconds.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
10"
6
32
PROTEINS A T L O W
TEMPERATURES
T h i r d , t h e r e is n o N M R e v i d e n c e f o r r a p i d t u m b l i n g of t h e m a c r o m o l e c u l e s o r f o r r a p i d m o t i o n of t h e i r s i d e c h a i n s . H o w e v e r , these m o t i o n s w o u l d b e difficult to detect.
C a r e f u l e x p e r i m e n t s of p r o t e i n r e l a x a t i o n i n
c o n c e n t r a t e d solutions a n d gels are n e e d e d b e f o r e a c c u r a t e c a n b e d r a w n w i t h r e g a r d to m o t i o n s of
conclusions
macromolecules.
T h u s w e i n t e r p r e t t h e N M R results t o date as p r o v i d i n g r e a s o n a b l e e v i d e n c e f o r t w o classes of m o t i o n i n f r o z e n p r o t e i n solutions i n t h e subzero range.
T h e first a n d most p r o m i n e n t m o t i o n is the q u i t e r a p i d
t u m b l i n g of n o n f r o z e n w a t e r m o l e c u l e s . T h e s e c o n d , m o r e p o o r l y d e f i n e d m o t i o n i n v o l v e s m a n y f e w e r w a t e r p r o t o n s at a n y i n s t a n t of t i m e a n d these h a v e c o r r e l a t i o n t i m e s of a p p r o x i m a t e l y 10" to 10" seconds i n t h e Downloaded by IOWA STATE UNIV on February 28, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch002
5
7
t e m p e r a t u r e r a n g e of — 20 to — 5 0 ° C . Dielectric Measurements.
R e c e n t d i e l e c t r i c e x p e r i m e n t s at a b o v e -
z e r o t e m p e r a t u r e s h a v e d e t e c t e d a n u m b e r of m o l e c u l a r m o t i o n s m i g h t o c c u r at l o w t e m p e r a t u r e s ( 2 3 , 24, 2 5 ) .
that
I n particular, sidechain
m o t i o n s a n d the m o t i o n s of counter-ions c o u l d c o n t r i b u t e t o t h e w a t e r r e l a x a t i o n processes. F r e q u e n c i e s i n the r a n g e of 1 0 suggested
4
to 1 0
8
have
been
f o r s u c h effects, b u t , at present, there is n o d i r e c t l i n e of
e v i d e n c e c o n n e c t i n g these m o t i o n s to t h e l o w f r e q u e n c y n m r results. Mechanical Properties.
H i l t n e r a n d coworkers have measured the
d y n a m i c p r o p e r t i e s of h y d r a t e d p r o t e i n s a n d p o l y p e p t i d e s at l o w t e m p e r a t u r e s (6,14).
T h i s technique involves direct mechanical deformation
a n d has a v e r y l o w f r e q u e n c y " w i n d o w " f o r m o t i o n s at 1 H z . C o l l a g e n , f o r e x a m p l e , shows t w o processes, t h e faster one m o v i n g t h r o u g h t h e 1 H z w i n d o w at a p p r o x i m a t e l y — 1 2 5 ° C w h i l e the s l o w e r process is seen at — 7 5 ° C .
H i l t n e r suggests t h a t the first m o t i o n is r e l a t e d to p o l y m e r
s i d e c h a i n effects, w h i l e the s e c o n d is a s s i g n e d to a specific w a t e r - p r o t e i n interaction.
A l a r g e a c t i v a t i o n b a r r i e r w o u l d m o v e these m o t i o n s i n t o
t h e N M R f r e q u e n c y r a n g e at h i g h e r temperatures. I n s u m m a r y , a s u b s t a n t i a l n u m b e r of p o s s i b l e m o t i o n s exist f o r w a t e r m o l e c u l e s associated w i t h p r o t e i n a c e o u s m a t e r i a l s at l o w t e m p e r a t u r e s . A v e r y w i d e r a n g e of f r e q u e n c i e s exists: f r o m a f e w H z to a f e w G H z . A c o m b i n a t i o n of studies, i n v o l v i n g N M R measurements of t h e f r e q u e n c y d e p e n d e n c e of r e l a x a t i o n rates a n d t h e d i e l e c t r i c a n d m e c h a n i c a l t e c h n i q u e s d e s c r i b e d a b o v e , w i l l b e r e q u i r e d to c h a r a c t e r i z e a n d assign a l l these m o t i o n s . O u r present i n t e r p r e t a t i o n is t h a t t h e w a t e r m o t i o n s a p p e a r to reflect the t o t a l s p e c t r u m of k i n e t i c events i n t h e system.
Acknowledgment S u p p o r t f r o m t h e N a t i o n a l Institutes of H e a l t h a n d t h e D i v i s i o n of R e s e a r c h Resources is g r a t e f u l l y a c k n o w l e d g e d .
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
2.
KUNTZ
Properties
of
Protein-Water
33
Downloaded by IOWA STATE UNIV on February 28, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch002
Literature Cited 1. Migchelsen, C.; Brendsen, H . J. C.; Rupprecht, A. J. Mol. Biol. 1968, 37, 235. 2. Kuntz, I. D.; Brassfield, T. S.; Law, G. D.; Purcell, G. V. Science 1969, 163, 1329. 3. Falk, M.; Poole, A. G.; Goymour, C. G. Can. J. Chem. 1970, 48, 1536. 4. Kuntz, I. D.; Kauzmann, W. Adv. Protein Chem. 1974, 28, 239. 5. Luyet, B. J. Ann. Ν. Y. Acad. Sci. 1965, 125, 502. 6. Nomura, S.; Hiltner, Α.; Lando, J. B.; Baer, E . Biopolymers 1977, 16, 231. 7. Blanshard, J. M. V.; Derbyshire, W. In "Water Relations of Foods"; Duck worth, R. B., Ed.; Academic: New York, 1975; p 559. 8. Kuntz, I. D. J. Amer. Chem. Soc. 1971, 93, 514. 9. Ramirez, J. E.; Cavanaugh, J. R.; Purcell, J. M. J. Phys. Chem. 1974, 78, 80. 10. MacKenzie, A. P. In "Water Relations in Foods"; Duckworth, R. B., Ed.; Academic: New York, 1975; p 477. 11. Kuntz, I. D.; Brassfield, T. S. Arch. Biochem. Biophys. 1971, 142, 660. 12. Resing, Η. Α.; Wage, C. G. ACS Symp. Ser. 1976, 34. 13. Takashima, S.; Fishman, Η. H., Eds., "Electric Properties of Biological Polymers, Water, and Membranes", Ann. Ν. Y. Acad. Sci. 1977, Vol. 303. 14. Shiraisi, H.; Hiltner, Α.; Baer, E . Biopolymers 1977, 16, 2801. 15. Resing, Η. Α.; Garroway, A. N.; Foster, K. R. ACS Symp. Ser. 1976, 34. 516. 16. Woessner, D. E.; Snowden, B. S. J. Colloid Interface Sci. 1970, 34, 290. 17. Bryant, R. G. Adv. Biophys. Bioengr. 1978, Vol. 8. 18. Kuntz, I. D.; Zipp, Α.; James, T. L. ACS Symp. Ser. 1976, 34. 499. 19. Zipp, A; Kuntz, I. D.; James, T. L. Arch. Biochem. Biophys. 1977, 178, 435 20. Bloembergen, N.; Purcell, Ε. M.; Pound, R. V.; Phys. Rev. 1948, 73, 679. 21. Edzes, H. T.; Samulski, Ε. T. Nature 1977, 265, 521. 22. Kimmich, R.; Noack, F. Ber. Bunsenges Phys. Chemie. 1971, 75, 269. 23. Cole, R. H. Ann. Ν. Y. Acad. Sci. 1977, 303, 59. 24. Mandel, M. Ann. Ν. Y. Acad. Sci. 1977, 303, 74. 25. Minakata, A. Ann. Ν. Y. Acad. Sci. 1977, 303, 107. RECEIVED June 16,
1978.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.