1 Protein Alterations at Low Temperatures: A n Overview
Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
GEORGE TABORSKY Section of Biochemistry and Molecular Biology, Department of Biological Sciences, University of California, Santa Barbara, CA 93106
Physical and chemical alterations of protein structure and function, caused by the exposure of aqueous protein solutions to low temperatures, have been explored and explained by various investigators in terms of a broad range of hypotheses. This survey attempts to give a mostly retrospective overview of this range, emphasizing effects of low temperature and of freezing on hydrophobic interactions, hydrogen bonding, and interactions of the protein with the solvent, other solution components, the ice, and the ice-liquid interface. The effects of low temperatures per se are considered, followed by a discussion of those effects on protein structure and reactivity which are associated with ice formation and its consequences such as the freezing out of solutes. The effects of the admixture of organic cosolvents to aqueous protein solutions are noted with reference to cryoenzymological studies and the prevention of freezing injuries. Experimental and interpretive approaches and results of these approaches are illustrated by examples drawn selectively from the literature.
" V T T a t e r is, o f course, t h e p r i m a l m a t t e r . T h i s w a s as c l e a r t o t h e a n c i e n t * ^
p h i l o s o p h e r s o f G r e e c e a n d I n d i a as i t is c l e a r t o m o d e r n students
of t h e i r o w n i n t e r n a l a n d e x t e r n a l e n v i r o n m e n t s . T h e p h y s i c a l states of w a t e r , a n d t h e process a n d consequences of i t s p h a s e t r a n s i t i o n s , h a v e a l w a y s b e e n n e a r t h e center of t h e o v e r a l l interest i n w a t e r . T h e p h y s i c a l c h e m i s t is a t t r a c t e d b y t h e " a n o m a l i e s " associated w i t h these states a n d 0-8412-0484-5/79/33-180-001$6.50/0 © 1979 American Chemical Society
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
2
PROTEINS A T L O W T E M P E R A T U R E S
phase t r a n s i t i o n s . T h e
geologist
is d r a w n b y
the abundance
of
the
aqueous c o v e r of t h e t e r r e s t r i a l surface a n d t h e d y n a m i c s of t h i s c o v e r i n its v a r i o u s states of a g g r e g a t i o n .
F o r t h e b i o l o g i s t , w a t e r is a substance
that is i n t i m a t e l y a n d p e r v a s i v e l y i n v o l v e d i n t h e m a i n t e n a n c e of t h e v i t a l i n t e g r i t y of b i o l o g i c a l structures a n d i n t h e expression of m a n y of t h e i r vital functions.
Indeed, the modern
biologist
c l e a r l y recognizes
the
essential r e c i p r o c i t y of t h i s i n v o l v e m e n t : t h e s t r u c t u r e of w a t e r is l i n k e d i n a m u t u a l r e l a t i o n s h i p w i t h the o r d e r a n d o r g a n i z a t i o n of b i o m a t t e r . T h e s e v a r i e d a n d f u n d a m e n t a l v a n t a g e p o i n t s w o u l d suffice b y t h e m selves to a c c o u n t f o r interest i n w a t e r a n d its p h y s i c a l states. B u t interest i n t h e p r o p e r t i e s of w a t e r a n d of aqueous systems, i n a l l states of a g g r e Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
g a t i o n , has b e e n s u s t a i n e d also b y d e m a n d s of p r a c t i c a l a p p l i c a t i o n s i n fields
as d i v e r s e as m e t e o r o l o g y , m e d i c i n e , a g r i c u l t u r e , t e c h n o l o g y ,
and
commerce—to name a few. D e s p i t e t h e l o n g h i s t o r y of p h y s i c a l a n d b i o l o g i c a l interest i n f r e e z i n g , a n effective j o i n i n g of p h y s i c a l - c h e m i c a l a n d b i o l o g i c a l insights is a r e c e n t achievement.
T h e e d i t o r of a l a n d m a r k r e v i e w of t h e m a n y facets
of
" c r y o b i o l o g y " has d u l y n o t e d t h a t a significant confluence of p h y s i c a l a n d b i o l o g i c a l t h o u g h t o n f r e e z i n g b a r e l y existed p r i o r to 1940, a n d e v e n i n t h e 1960s o n l y a h a n d f u l of investigators w e r e effectively e n g a g e d i n t h e s t u d y of c r y o b i o l o g y at the f u n d a m e n t a l l e v e l (1 ). The
last t w o
decades b r o u g h t
welcome
change
i n this regard.
A q u e o u s b i o l o g i c a l systems a r e b e i n g s t u d i e d at l o w t e m p e r a t u r e s o n a b r o a d f r o n t a n d i n a m a n n e r t h a t m a k e s i n t e g r a t i o n of d i v e r s e d i s c i p l i n a r y insights increasingly promising.
T h e t h e m e of this s y m p o s i u m
reaches
t h e c o r e of these efforts i n t h a t the b e h a v i o r of p r o t e i n s ( a n d , b y i n f e r ence, other m a c r o m o l e c u l e s ) at l o w t e m p e r a t u r e s m u s t b e v i e w e d as the k e y to a n y r e a l u n d e r s t a n d i n g of c r y o b i o l o g y .
Obviously, the book on
f r e e z i n g of b i o l o g i c a l systems is not a b o u t to b e c l o s e d .
B u t i t seems
e q u a l l y c e r t a i n t h a t o n - g o i n g e f f o r t s — m a n y of w h i c h are r e p o r t e d i n t h i s v o l u m e — a r e impressive a n d h i g h l y encouraging for the future. T h e r o l e a s s i g n e d to t h i s p a p e r is to p r o v i d e a n o v e r v i e w of p r o t e i n s at l o w t e m p e r a t u r e s . T h i s is a v e r y b r o a d assignment. W i t h i n a v a i l a b l e space, response to this a s s i g n m e n t m u s t b e u n a v o i d a b l y selective cursory.
B u t t h e t h e m e of t h i s c h a r g e is l a r g e l y coextensive
t h e m e of t h e s y m p o s i u m .
and
w i t h the
Its s p e c i a l aspects w i l l b e e x p l o r e d i n m o r e
c r i t i c a l l y s e a r c h i n g f a s h i o n t h r o u g h o u t the b u l k of this v o l u m e .
I shall
n o t e n c r o a c h o n those topics t h a t w i l l get expert c o v e r a g e i n t h e s p e c i a l i z e d chapters to f o l l o w .
Instead, I shall attempt to give a s u m m a r y
a c c o u n t t h a t w i l l b e l a r g e l y r e t r o s p e c t i v e . I t seems t h a t s u c h a n effort at t h e outset c o u l d b e of v a l u e to t h e extent t h a t i t p r o v i d e s a f a i r v i e w of t h e r a n g e over w h i c h p r o b l e m s of c r y o b i o l o g y h a v e b e e n a p p r o a c h e d a n d t h o u g h t about.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
1.
TABORSKY
Protein
3
Alterations
A s s u b s e q u e n t chapters w i l l u n d o u b t e d l y s h o w , t h e i n t e l l e c t u a l a n d e x p e r i m e n t a l approaches t a k e n to c r y o b i o l o g y i n the r e l a t i v e l y r e c e n t p a s t h a v e c l e a r l y a d v a n c e d o u r u n d e r s t a n d i n g of f r e e z i n g p h e n o m e n a b u t , t h e advances of the last d e c a d e or t w o n o t w i t h s t a n d i n g , m a n y of t h e p r o b l e m s c o n t i n u e to c h a l l e n g e the c r y o b i o l o g i s t .
I t w o u l d b e p r e m a t u r e , i t seems,
to a t t e m p t to d r a w a n i n t e g r a t e d p i c t u r e of t h e state a n d d y n a m i c s of p r o t e i n s i n l o w t e m p e r a t u r e systems.
T o o m a n y features of t h e p i c t u r e
r e m a i n insufficiently clear f o r a p r e c i s e d e f i n i t i o n of t h e i r r e l a t i v e p l a c e w i t h i n the whole.
H o w e v e r , t h e p r o b l e m s c a n b e a d d r e s s e d one at a
time w h i l e keeping i n m i n d that fragmentary a n d oversimplified concepts m u s t e v e n t u a l l y m e r g e i n t o a n i n t e g r a t e d d e s c r i p t i o n i f t h e r e a l i t y of Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
f r e e z i n g p h e n o m e n a is not to b e m i s r e p r e s e n t e d .
Conceptual Approaches to the Study of Proteins at Low
Temperatures
I t is b y n o means c e r t a i n t h a t a g i v e n f r e e z i n g e x p e r i m e n t , d e s i g n e d o r i n t e r p r e t e d i n a p a r t i c u l a r c o n c e p t u a l setting, is o p t i m a l l y effective i n a d v a n c i n g o u r u n d e r s t a n d i n g of f r e e z i n g p h e n o m e n a .
T h e freezing litera-
t u r e is n o t free of a m b i g u i t i e s o r controversies t h a t stem f r o m hypotheses a d v a n c e d o n a too n a r r o w o r e v e n m i s t a k e n basis. T h e i d e n t i f i c a t i o n of the p r o p e r basis o n w h i c h to p l a n or evaluate experiments represents the k e y to progress. I t is l i k e l y t h a t a l l of t h e c o n c e p t u a l l y significant features of the f r e e z i n g process h a v e n o t y e t b e e n r e c o g n i z e d .
Thus, important
factors m a y e l u d e p r o p e r e x p e r i m e n t a l c o n t r o l . A l s o , w e m a y find o u r selves a t t r a c t e d b y reasonable notions t h a t t u r n out to b e not a m e n a b l e to d e f i n i t i v e e x p e r i m e n t a l tests. I t seems best to t r y to d e a l w i t h these reservations b y k e e p i n g t h e m i n focus. W i t h these reservations i n m i n d , i t seems safe a n d h e l p f u l to t a k e the p r a g m a t i c a p p r o a c h a n d p r o c e e d
w i t h o r g a n i z a t i o n of t h e
m a t t e r i n terms of t h e most f r e q u e n t l y e m p l o y e d w o r k i n g
subject
hypotheses.
T h e s e t e n d to b e r o o t e d i n p a r t i c u l a r features of the f r e e z i n g process o r t h e f r o z e n state.
I p r o p o s e to t a k e these u n d e r c o n s i d e r a t i o n i n t h e
a p p r o x i m a t e o r d e r of t h e i r e x p e r i m e n t a l or c o n c e p t u a l c o m p l e x i t y . T h e s i m p l e s t c o n c e p t u a l f r a m e w o r k f o r a l o w t e m p e r a t u r e or f r e e z i n g s t u d y is the a s s u m p t i o n t h a t a n y o b s e r v e d
difference
between
protein
s t r u c t u r e or b e h a v i o r at " n o r m a l " a n d at " l o w " t e m p e r a t u r e c a n
be
a c c o u n t e d f o r i n terms of t h e t e m p e r a t u r e difference alone. T h i s h y p o t h esis focuses a t t e n t i o n o n a c o l d p r o t e i n s o l u t i o n t h a t m a y b e h o m o g e n e o u s or i n contact w i t h f r o z e n solvent. I f t h e r e is i c e present, i t is c o n s i d e r e d of n o p a r t i c u l a r significance. W e c a n e x p a n d this v i e w next b y r e c o g n i z i n g t h a t f r e e z i n g has c e r t a i n consequences i n a d d i t i o n to a c h a n g e i n t e m p e r a t u r e . F u r t h e r m o r e , w e c a n take t h e t a c k t h a t t h e k e y to p r o t e i n alterations is the i n t e r a c t i o n of t h e p r o t e i n w i t h t h e f r o z e n f r a m e w o r k i n
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
4
PROTEINS A T L O W
w h i c h i t is e m b e d d e d .
TEMPERATURES
A n d l a s t l y , w e c a n d i r e c t o u r a t t e n t i o n at the
f r e e z i n g process i t s e l f r a t h e r t h a n t h e f r o z e n system i n its e q u i l i b r i u m o r q u a s i - e q u i U b r i u m state. I n this case, w e w o u l d t a k e c o g n i z a n c e of t h e p o s s i b i l i t y t h a t alterations of t h e p r o t e i n o c c u r w h e r e t h e d y n a m i c events of t h e p h a s e c h a n g e t a k e p l a c e , n a m e l y at o r n e a r t h e i c e - l i q u i d i n t e r f a c e . T h e s e events m a y b e l i n k e d d i r e c t l y t o the p r o d u c t i o n of s t r u c t u r a l changes
o r t h e y m a y p o t e n t i a t e s u c h changes,
to b e
expressed
later
through altered protein behavior. Proteins in Cold Solutions F o r o u r purposes, a p r o t e i n s o l u t i o n is " c o l d " w h e n e v e r its t e m p e r a Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
t u r e is n e a r or b e l o w t h e f r e e z i n g p o i n t of w a t e r . T h e f r e e z i n g p o i n t c a n b e r e a d i l y m a n i p u l a t e d b y a d d i n g l o w m o l e c u l a r w e i g h t solutes.
Thus,
the temperature range over w h i c h the solution can be studied i n the absence of i c e c a n b e a p p r e c i a b l y e x t e n d e d — b y 20 or m o r e degrees b e l o w zero.
T h e l o w e r H m i t of t h i s m a n i p u l a t i o n is d e f i n e d b y t h e
temperature(s)
of the p a r t i c u l a r system ( 2 ) .
eutectic
M o r e d r a s t i c d e p r e s s i o n of
t h e f r e e z i n g p o i n t ( t o —100° o r e v e n l o w e r ) c a n b e a t t a i n e d u p o n t h e a d m i x t u r e of c e r t a i n o r g a n i c solvents. T h e use of s u c h " c r y o s o l v e n t s " f o r the particular purpose
of p r o t e c t i n g cells against f r e e z i n g dates
back
a b o u t t h i r t y years, w h e n g l y c e r o l w a s first e m p l o y e d as a c r y o p r o t e c t a n t (3).
M o s t l y f o r the same p u r p o s e , m a n y o t h e r o r g a n i c solvents h a v e b e e n
u s e d a n d i n v e s t i g a t e d since t h e n (4).
T h e i r use w i t h p a r t i c u l a r e m p h a s i s
o n consequences at t h e m o l e c u l a r l e v e l , e s p e c i a l l y o n p r o t e i n s , is of r e l a tively recent vintage
(5,6).
Protein Conformation and L o w Temperature: General Considerations.
N a r r o w i n g t h e focus t o just t h e p r o t e i n solute a n d its i m m e d i a t e
l i q u i d e n v i r o n m e n t is a d m i t t e d l y a n o v e r s i m p l i f i c a t i o n . H o w e v e r , t a k i n g t h e n a r r o w v i e w , i f o n l y for t h e m o m e n t , has its a d v a n t a g e . I t w i l l e m p h a size t h a t w h a t e v e r else m a y o c c u r , t h e p r o t e i n w i l l a l w a y s adjust its conformation d u r i n g a temperature change i n accord w i t h the temperature d e p e n d e n c e of those forces t h a t m a i n t a i n the protein's A l t h o u g h a d e f i n i t i v e analysis is b e y o n d
confirmation.
the c a p a b i l i t i e s p r o v i d e d
by
theorists, a q u a l i t a t i v e l y reasonable a n d q u a n t i t a t i v e l y e m e r g i n g p i c t u r e is at h a n d a n d m a y b e u s e f u l to d e s c r i b e the effects of l o w temperatures on protein conformation.
I n o u r d i s c u s s i o n of this p i c t u r e , w e s h a l l r e l y
heavily on a recent pertinent review
(7).
I t is g e n e r a l l y a c c e p t e d t h a t t h e p r i n c i p a l c o n t r i b u t o r to the s t a b i l i t y of t h e " n a t i v e " c o n f o r m a t i o n of a p r o t e i n is t h e t e n d e n c y of its n o n p o l a r groups to a v o i d c o n t a c t w i t h w a t e r — t h a t is, to e n g a g e i n h y d r o p h o b i c i n t e r a c t i o n s . B a s e d o n m o d e l c o m p o u n d s a n d o n c u r r e n t theories of w a t e r s t r u c t u r e , t h e process is v i e w e d as l a r g e l y e n t r o p y - d r i v e n . T h e u n f a v o r a b l e l o w e n t r o p y of " o r d e r e d " w a t e r , w h i c h w o u l d s u r r o u n d n o n p o l a r
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
1.
TABORSKY
Protein
5
Alterations
g r o u p s w h e n these are exposed
to the aqueous
because the nonpolar groups f o l d i n w a r d .
m e d i u m , is
avoided
T h i s is a c c o m p a n i e d b y a n
e n t r o p y - i n c r e a s i n g release of o r d e r e d w a t e r to t h e r e l a t i v e l y d i s o r d e r e d state of the b u l k solvent. C o n s i d e r i n g t h a t b u l k w a t e r itself b e c o m e s m o r e extensively h y d r o g e n - b o n d e d a n d thus m o r e h i g h l y o r d e r e d as the t e m p e r a t u r e is l o w e r e d , t h e e n t r o p i e a d v a n t a g e of f o l d i n g n o n p o l a r groups i n w a r d is lessened at l o w temperatures.
I n this case, s t a b i l i z a t i o n b y
h y d r o p h o b i c i n t e r a c t i o n s w o u l d b e e x p e c t e d to decrease.
[It is g e n e r a l l y
u n q u e s t i o n e d t h a t " h y d r o p h o b i c i n t e r a c t i o n s " are of m a j o r i m p o r t a n c e w i t h r e g a r d to the c o n f o r m a t i o n a l i n t e g r i t y of p r o t e i n s a n d t h a t these i n t e r a c t i o n s suffer w h e n a p r o t e i n is " c o l d - d e n a t u r e d . " M a n y e x p e r i m e n t a l Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
d a t a are s u p p o r t i v e of this v i e w (see, f o r e x a m p l e , 8, 9 ) .
This support
n o t w i t h s t a n d i n g , c e r t a i n e x p e r i m e n t a l p a r a m e t e r s of p r o t e i n d e n a t u r a t i o n — p a r t i c u l a r l y t h e associated, u n e x p e c t e d l y s m a l l v o l u m e changes
(10,
c a u s e d questions to b e r a i s e d c o n c e r n i n g t h e strict a p p l i c a -
11)—have
b i l i t y of m o d e l s i n terms of w h i c h h y d r o p h o b i c i n t e r a c t i o n s , m a i n t a i n i n g p r o t e i n s i n a f o l d e d state, h a d f r e q u e n t l y b e e n a c c o u n t e d for. T h i s p r o b l e m is g i v e n c r i t i c a l a t t e n t i o n i n a n u m b e r of recent r e v i e w s (see, example,
for
7,12,13,14,15).]
A s t r o n g l y c o n t r a s t i n g b e h a v i o r m a y b e e x p e c t e d , at first sight, w i t h h y d r o g e n b o n d s t h a t c o n t r i b u t e to p r o t e i n s t a b i l i z a t i o n . L o w t e m p e r a t u r e s s h o u l d enhance h y d r o g e n b o n d f o r m a t i o n i n v i e w of t h e n e g a t i v e c h a n g e i n e n t h a l p y that characterizes this process.
W e w o u l d expect h y d r o g e n
b o n d s to b e c o m e stronger as t h e t e m p e r a t u r e drops. S u c h s t r e n g t h e n i n g s h o u l d a p p l y to i n t r a m o l e c u l a r b o n d s
(between donor
and
acceptor
g r o u p s of t h e p r o t e i n ) as w e l l as to i n t e r m o l e c u l a r b o n d s ( b e t w e e n p r o tein groups a n d water molecules).
T h e enhanced strength, particularly
of those i n t r a m o l e c u l a r b o n d s i n t h e protein's i n t e r i o r , m i g h t b e to e n h a n c e c o n f o r m a t i o n a l s t a b i l i t y — o r e v e n t o alter the
expected
conformation
b y u p s e t t i n g the o v e r a l l b a l a n c e of a l l forces t h a t m a i n t a i n c o n f o r m a t i o n . T h e r e appears, h o w e v e r , to b e l i t t l e l i k e l i h o o d that a d d i t i o n a l h y d r o g e n b o n d s w i l l f o r m i n the i n t e r i o r of the p r o t e i n d u r i n g c o o l i n g since m o s t of t h e p o s s i b l e b o n d s w o u l d b e e x p e c t e d to exist a l r e a d y at t h e h i g h e r , " n o r m a l " temperatures.
[ T h e v i e w t h a t most of the p o s s i b l e
hydrogen
b o n d s a l r e a d y exist i n the " n o r m a l " p r o t e i n m a y r e q u i r e q u a l i f i c a t i o n b y the postulate
(12)
t h a t the d e m o n s t r a t e d a c c e s s i b i l i t y of the p r o t e i n
i n t e r i o r to w a t e r ( a n d to H
+
or O H " ) is d u e to s t r u c t u r a l "defects," exist-
i n g b e c a u s e of s u b o p t i m a l h y d r o g e n b o n d i n g of p e p t i d e groups.
Accord-
i n g to this v i e w , some p o s s i b i l i t y r e m a i n s i n a " n o r m a l " p r o t e i n f o r t h e a c q u i s i t i o n of a d d i t i o n a l h y d r o g e n b o n d s as t h e t e m p e r a t u r e is l o w e r e d . ] T h e r e is l i t t l e t h a t w e c a n say a b o u t electrostatic forces i n c o n n e c t i o n w i t h l o w t e m p e r a t u r e effects.
U n d o u b t e d l y , the charged groups of
p r o t e i n i n t e r a c t a n d t h e r e b y c o n t r i b u t e to c o n f o r m a t i o n a l s t a b i l i t y .
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
a
How-
6
PROTEINS A T L O W T E M P E R A T U R E S
ever, the m a g n i t u d e a n d d i r e c t i o n o f these c o n t r i b u t i o n s is b e y o n d o u r a b i l i t y to assess since i t w o u l d r e q u i r e i n f o r m a t i o n a b o u t t h e i r p r e c i s e l o c a t i o n o n the p r o t e i n surface a n d a b o u t the effective d i e l e c t r i c constant o n w h i c h t h e f o r c e of these i n t e r a c t i o n s d e p e n d s .
S u c h i n f o r m a t i o n is
usually lacking. T h u s , even though temperature w o u l d be expected
to
i n f l u e n c e c h a r g e d e n s i t y ( b e c a u s e a c i d d i s s o c i a t i o n e q u i l i b r i a are t e m perature dependent)
a n d t h e d i e l e c t r i c constant ( w h a t e v e r its v a l u e ) ,
o u r a b i l i t y t o p r e d i c t is severely c i r c u m s c r i b e d . Effects m a y b e s i g n i f i c a n t b u t t h e i r m a g n i t u d e c a n n o t b e assessed n o r is i t p o s s i b l e to d e t e r m i n e w h e t h e r s u c h effects w o u l d s t r e n g t h e n , w e a k e n , o r alter t h e p r o t e i n ' s conformation i n a temperature dependent manner. Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
I n s u m m a r y , w e c a n say t h a t l o w t e m p e r a t u r e s w o u l d b e
expected
to alter p r o t e i n c o n f o r m a t i o n s b y f a v o r i n g t h e f o r m a t i o n of a n d s t r e n g t h e n i n g h y d r o g e n b o n d s a n d d i m i n i s h i n g the i m p o r t a n c e of
hydrophobic
i n t e r a c t i o n s . T h e effect of l o w t e m p e r a t u r e s o n electrostatic i n t e r a c t i o n s i n p r o t e i n s is o u t s i d e o u r p a l e . W e s h o u l d also r e c a l l t h e e a r l i e r s t i p u l a t i o n that w h a t e v e r consequences the c o l d or f r o z e n state m i g h t h a v e o n p r o t e i n s p e r se, these c o n s e q u e n c e s m u s t b e i n t e g r a t e d , i n t h e
final
analysis, w i t h t h e c o n s e q u e n c e s o f c o o l i n g or f r e e z i n g o n n o n p r o t e i n c o m p o n e n t s of t h e system. T h e p r e s e n t " m i n i m a l " h y p o t h e s i s as w e l l as those w h i c h are y e t to b e c o n s i d e r e d , t a k e n i n d i v i d u a l l y , p r o v i d e o n l y a l i m i t e d v i e w of l o w t e m p e r a t u r e a n d f r e e z i n g p h e n o m e n a . Experimental Observations
of Putative Conformational
Ascribed or Ascribable to L o w Temperature Effects.
Changes
Some
of
the
p a t h - b r e a k i n g studies of the effects o f near-zero o r s u b z e r o t e m p e r a t u r e s o n several e n z y m e systems w e r e i n t e r p r e t e d o n the basis of t e m p e r a t u r e - d e p e n d e n t shifts i n e n z y m e c o n f o r m a t i o n .
assumed,
These conforma
t i o n a l changes w e r e p r e s u m e d to relate d i r e c t l y to t h e degree of i n t r a m o l e c u l a r h y d r o g e n b o n d i n g (16,
17, 18, 19, 20).
W h i l e the p h y s i c a l -
c h e m i c a l d e s c r i p t i o n of the observations is reasonable a n d s t r a i g h t f o r w a r d (cf.
20),
t h e h y p o t h e s i s m u s t b e v i e w e d w i t h reservations, n o t
only
b e c a u s e i t w a s p r o p o s e d at a t i m e w h e n l i t t l e w a s k n o w n a b o u t m e c h a n i s m s a n d forces b y w h i c h p r o t e i n c o n f o r m a t i o n is s t a b i l i z e d , b u t also b e c a u s e t h e e v i d e n c e i n s u p p o r t of the h y p o t h e s i s w a s i n f e r r e d r a t h e r t h a n d i r e c t . N e v e r t h e l e s s , these results s h o u l d b e n o t e d : t h e y w e r e the first results of a first a t t e m p t at q u a n t i t a t i v e i n s i g h t i n t o a h i g h l y r e f r a c t o r y p r o b l e m a n d they m a y still b e instructive. T a b l e I illustrates the nature of t h i s i n s i g h t . T h e k i n e t i c d a t a o b t a i n e d w i t h t h r e e e n z y m e s b i p h a s i c p l o t s of l o g k vs. 1 / Γ .
fitted
These plots y i e l d e d values for the apparent
A r r h e n i u s a c t i v a t i o n energies, w h i c h s h o w e d a m a j o r increase w h e n the t e m p e r a t u r e w a s l o w e r e d b e l o w t h e p o i n t at w h i c h t h e aqueous system began
to freeze.
Similar biphasic Arrhenius plots were
subsequently
r e p o r t e d f o r o t h e r e n z y m e s (e.g., a l k a l i n e p h o s p h a t a s e a n d p e r o x i d a s e )
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
1.
Protein
TABORSKY
Table I.
7
Alterations
Arrhenius Activation Energies of Some " F r o z e n " Enzyme Reactions 0
Arrhenius Enzyme
Above
Lipase Invertase Trypsin β
Energy
(kcal/mol) Below
0
C
(16).
T h e s e results w e r e i n t e r p r e t e d to m e a n t h a t l o w
f a v o r e d the f o r m a t i o n of e n z y m e bonds
(intramolecular)
and
molecules
caused,
0°
37.0 60.0 65.0
7.6 11.1 15.4
A l l data were taken from Sizer and Josephson
(18). Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
Activation
temperatures
with abundant
thereby,
hydrogen
a decrease i n
enzyme
a c t i v i t y . [ A l t h o u g h , as n o t e d , this i n t e r p r e t a t i o n predates t h e i n t r o d u c t i o n of t h e c o n c e p t of h y d r o p h o b i c
interactions a n d perforce
ignores
p u t a t i v e i m p o r t a n c e a t t r i b u t e d to these i n t e r a c t i o n s as t h e m a j o r f o r m a t i o n - m a i n t a i n i n g force, t h e n o t i o n of e n h a n c e d h y d r o g e n
the con
bonding
at l o w t e m p e r a t u r e s s h o u l d n o t b e s i m p l y d i s m i s s e d as o u t d a t e d .
The
r e c e n t l y p o s t u l a t e d " s t r u c t u r e defects" a t t r i b u t e d to i n c o m p l e t e l y h y d r o gen-bonded
structures i n t h e n a t i v e p r o t e i n i n t e r i o r (see R e f e r e n c e
are, i n p r i n c i p l e , f u l l y c a p a b l e of c o m p l e t i o n at l o w e r e d
12)
temperatures,
c a u s i n g c o n f o r m a t i o n a l r e a r r a n g e m e n t s o n a scale t h a t m a y b e significant.] It s h o u l d b e e m p h a s i z e d t h a t this h y p o t h e s i s w a s e v e n t h e n r e g a r d e d as o v e r l y s i m p l i s t i c i n t h a t i t p r o b a b l y o v e r l o o k e d a w h o l e r a n g e of o t h e r consequences of exposure to l o w t e m p e r a t u r e .
Recognized possibilities
i n c l u d e d : 1)
i n intermolecular inter
a v i s c o s i t y increase, 2 )
changes
actions i n v o l v i n g e n z y m e , substrate, solvent, a n d buffer i o n s , a n d 3 ) shifts i n i o n i z a t i o n e q u i l i b r i a of a n y of these c o m p o n e n t s .
T h u s , t h e stage w a s
set for f u t u r e i n v e s t i g a t i o n s of a m o r e s e a r c h i n g n a t u r e . O n c e the i m p o r t a n c e of h y d r o p h o b i c i n t e r a c t i o n s b e c a m e g e n e r a l l y e v i d e n t , i t b e c a m e c l e a r t h a t these i n t e r a c t i o n s m i g h t u n d e r g o i m p o r t a n t changes w h e n e v e r p r o t e i n s a r e exposed to l o w t e m p e r a t u r e s .
This view
d o m i n a t e s reports o n m u l t i m e r i c e n z y m e systems, m i c e l l e - l i k e aggregates, and
m e m b r a n o u s structures. I w i l l refer to s e v e r a l examples f r o m t h e
r e l a t i v e l y r e c e n t l i t e r a t u r e f o r purposes of i l l u s t r a t i o n . P r o m p t e d b y the s t r i k i n g i n i t i a l o b s e r v a t i o n t h a t m u l t i p l e e n z y m e forms are p r o d u c e d u p o n f r e e z i n g solutions of l a c t i c d e h y d r o g e n a s e
(21),
t h e p r o p e r t i e s of s e v e r a l other e n z y m e s w e r e e x p l o r e d u n d e r f r e e z i n g c o n d i t i o n s (22).
T h e s e studies m a y b e v i e w e d as t h e take-off p o i n t f o r
m a n y studies t h a t gave c a r e f u l a t t e n t i o n to t h e d i v e r s e p a r a m e t e r s t h a t c a n affect t h e o u t c o m e of a f r e e z i n g e x p e r i m e n t .
It produced the tenta
t i v e g e n e r a l i z a t i o n t h a t s u b u n i t d i s s o c i a t i o n m a y b e t h e p r i m a r y response of e n z y m e s to f r e e z i n g .
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8
PROTEINS A T L O W T E M P E R A T U R E S
B y n o t i n g t h e b e h a v i o r of c a s e i n m i c e l l e s of g e n e t i c a l l y v a r i e d p o l y m o r p h i c c o m p o s i t i o n (23),
one c a n r e a d i l y sense t h a t f r e e z i n g m a y h a v e
o n l y s u b t l e effects o n t h e m o l e c u l a r structures of m a c r o m o l e c u l a r plexes.
com-
T h e p o l y m o r p h i s m o f casein stems f r o m m i n o r v a r i a t i o n s i n t h e
p r i m a r y s t r u c t u r e of casein s u b u n i t s . I t w a s f o u n d t h a t f r e e z i n g p r o d u c e d different changes i n m i c e l l e s t a b i l i t y d e p e n d i n g o n t h e genetic v a r i a n t b e i n g s t u d i e d . F o r e x a m p l e , i n the case of one p a r t i c u l a r v a r i a n t c o m p l e x , its s t a b i l i t y ( n o n f r o z e n ) e x c e e d e d t h a t of t h e average c a s e i n m i c e l l e , b u t u p o n f r e e z i n g t h i s same v a r i a n t c o m p l e x
b e c a m e less stable t h a n t h e
average m i c e l l e . A l l of this p r e s u m a b l y o c c u r r e d b e c a u s e of a f e w a m i n o a c i d substitutions. I t is a l m o s t necessary to assume t h a t the c h a n g e i n Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
s t a b i l i t y of the m i c e l l e reflects some r e a r r a n g e m e n t i n t h e m a n n e r i n which
subunits interact.
s u p p o r t this v i e w .
A n independent
observation
tends
(24)
to
L o n g f r o z e n storage w a s f o u n d to cause d i s t o r t i o n
a n d , u l t i m a t e l y , d e p o l y m e r i z a t i o n of t h e m i c e l l e . T h e e g g p r o v i d e s another system of interest b e c a u s e of the r o l e t h a t l i p o p r o t e i n complexes p l a y i n t h e y o l k structure. E g g y o l k gels o n freezing.
T h e r e is b r o a d u n a n i m i t y i n t h e l i t e r a t u r e , b a s e d o n a w e a l t h of
e x p e r i m e n t a l d a t a (25-30), protein aggregation.
t h a t t h i s response to f r e e z i n g i n v o l v e s l i p o -
R e p l a c e m e n t of n a t i v e h y d r o p h o b i c i n t e r a c t i o n s b y
a r t i f i c i a l ones m a y o c c u r because the n a t i v e a r r a n g e m e n t m a y b e d i s r u p t e d b y f r e e z i n g - i n d u c e d changes i n t h e l i p o p r o t e i n ' s aqueous
environment.
I m p o r t a n c e has also b e e n a s c r i b e d to t h e f a t t y a c i d s p e c t r u m of y o l k l i p i d s [ i n f l u e n c i n g the t e m p e r a t u r e of t h e r m a l transitions (26)]
a n d to
t h e salt c o n t e n t [affecting t h e i n t e g r i t y of the y o l k granules of w h i c h t h e y o l k l i p o p r o t e i n is a m a j o r c o m p o n e n t
(25, 27, 29)]
The formation
of a d d i t i o n a l h y d r o g e n b o n d s d u r i n g f r e e z i n g has also b e e n
suggested
(29). H y d r o p h o b i c i n t e r a c t i o n s are, of course,
c r u c i a l to
biomembrane
i n t e g r i t y . M e m b r a n e s , therefore, s h o u l d e x h i b i t v u l n e r a b i l i t y to f r e e z i n g , a n d t h e y do. I t seems, h o w e v e r , t h a t i n j u r i e s n e e d n o t p r i m a r i l y c o n c e r n the protein
chemist.
F o r example, the
fluorescence
of t h e p r o t e i n of
e r y t h r o c y t e membranjes undergoes a shift o n f r e e z i n g . T h i s is i n d i c a t i v e of a c h a n g e i n the p r o t e i n e n v i r o n m e n t , most l i k e l y i n v o l v i n g m e m b r a n e lipids
(31).
P r o t e i n s are a p p a r e n t l y not released
(32).
Nevertheless,
m e m b r a n e - b o u n d p r o t e i n s d o n o t escape t h e effects of l o w t e m p e r a t u r e altogether. I t has b e e n s h o w n , f o r e x a m p l e , t h a t the c i r c u l a r d i c h r o i s m e x h i b i t e d b y the e r y t h r o c y t e m e m b r a n e ( d u e , p r e s u m a b l y , to its p r o t e i n c o m p o n e n t s ) undergoes
significant changes
as the t e m p e r a t u r e of
the
m e m b r a n e suspension is v a r i e d over a w i d e r a n g e , d o w n to n e a r l y 0 ° C (33).
( S h a r p , c o o p e r a t i v e transitions r e f l e c t i n g d e n a t u r a t i o n w e r e s h o w n
to o c c u r o n l y at t e m p e r a t u r e s a b o v e 4 0 ° C u n d e r t h e c o n d i t i o n s of these experiments. )
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
1.
Protein
TABORSKY
The mitochondrial membrane content
during freezing.
dehydrogenase
9
Alterations
For
also sutlers alterations of
example,
freezing
alters
its l i p i d
ketoglutarate
a c t i v i t y a n d t h i s c h a n g e m a y result f r o m t h e i n h i b i t o r y
a c t i o n of free f a t t y acids t h a t h a v e b e e n f r e e z i n g - i n d u c e d a c t i v i t y of p h o s p h o l i p a s e s
generated, p r e s u m a b l y , (34).
I n another study, the
" a n t i r a d i c a l a c t i v i t y " of l i p i d s f r o m v a r i o u s f r o z e n organelles w a s s h o w n to d i m i n i s h ( 3 5 ) .
by
and thawed
liver
Studies w i t h f r o z e n b r a i n o r g a n -
elles l e n d a d d i t i o n a l s t r e n g t h to the v i e w t h a t p r o t e i n d a m a g e is n o t , p e r h a p s , the p r i m a r y , f u n c t i o n a l l y d e s t r u c t i v e event d u r i n g f r e e z i n g of membrane enzymes
systems.
among
I n these studies, some r e d i s t r i b u t i o n o f " m a r k e r "
s u b c e l l u l a r fractions w a s
found
b u t loss of
enzyme
Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
a c t i v i t y w a s m i n i m a l , suggesting t h a t t h e m e m b r a n e b i n d i n g sites of these p r o t e i n s w e r e d a m a g e d r a t h e r t h a n the p r o t e i n s themselves
(36).
B e f o r e I t u r n to m o r e c o m p l e x matters, I w o u l d l i k e to e m p h a s i z e t h a t m a n y of t h e p u t a t i v e c o n f o r m a t i o n a l or other changes
mentioned
a b o v e o c c u r r e d i n a f r o z e n r a t h e r t h a n just a c o l d e n v i r o n m e n t .
Thus,
the changes o b s e r v e d p r o b a b l y i n v o l v e m o r e t h a n a s i m p l e exposure to l o w temperatures. H o w e v e r , i n some instances the effects of l o w t e m p e r a t u r e p e r se m a y p r e d o m i n a t e , a n d this s i m p l e h y p o t h e s i s a l w a y s m e r i t s consideration. Frozen Aqueous
Solutions:
As
Concentration Effects.
solute
is
r e j e c t e d b y the g r o w i n g i c e a n d as its c o n c e n t r a t i o n increases i n t h e s h r i n k i n g l i q u i d phase, the t e m p e r a t u r e d r o p s t o w a r d the eutectic p o i n t , w h e r e the entire system approaches
complete
solidification.
Of
major
i m p o r t a n c e is t h e f a c t that a h i g h l y c o n c e n t r a t e d l i q u i d phase c a n persist i n d e f i n i t e l y at a n y p o i n t a b o v e t h e eutectic t e m p e r a t u r e . T h i s t y p e of " f r e e z i n g - o u t "
has l o n g b e e n k n o w n a n d has
been
e x p l o i t e d i n i n d u s t r i a l settings. B u t , i n a r e s e a r c h s e t t i n g , a t t e n t i o n w a s focussed o n i t o n l y r e c e n t l y w h e n the c r y o c h e m i s t b e c a m e c o n c e r n e d w i t h " a n o m a l o u s " r e a c t i o n k i n e t i c s i n " f r o z e n " systems, a n d w h e n t h e c r y o b i o l o g i s t b e g a n l o o k i n g into t h e causes of f r e e z i n g i n j u r y . A n i l l u s t r a t i o n of s u c h studies, as t h e y p e r t a i n to p r o t e i n s , is n o w i n order. T h e t y p i c a l p r o t e i n s o l u t i o n contains a v a r i e t y of l o w w e i g h t solutes
(e.g.
substrates, cofactors,
buffer s a l t s ) .
molecular
Such
systems
s h o u l d e x h i b i t s e v e r a l " e u t e c t i c " p o i n t s . D u r i n g f r e e z i n g , the c o n c e n t r a tions of v a r i o u s m o l e c u l a r species, because t h e y h a v e different p o i n t s , w i l l c h a n g e r e l a t i v e to e a c h other. u n t i l the
final
eutectic
T h e s e changes w i l l c o n t i n u e
eutectic t e m p e r a t u r e has b e e n
attained.
For
example,
r e l a t i v e l y s i m p l e aqueous systems c o m p o s e d o n l y of s o d i u m a n d p o t a s s i u m salts of p h o s p h o r i c
acid were
shown
associated w i t h t h e m (see T a b l e I I ) .
to h a v e
eleven
eutectic
points
It is i m p o r t a n t f r o m a p r o t e i n -
o r i e n t e d p o i n t of v i e w t h a t t h e p H values a n d i o n i c strengths of these eutectic solutions r a n g e w i d e l y w i t h i n t h e i r f r e e z i n g r a n g e b e t w e e n
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
0°
10
PROTEINS A T L O W T E M P E R A T U R E S
Table II.
Eutectic Solutions of Phosphate Ionic Strength (M)
Solute(s) Na HP0 KH P0 Na HP0 + KH P0 NaH P0 NaH P0 + Na HP0 NaH P0 + KH P0 NaH P0 + Na HP0 + KH P0 K HP0 Na HP0 + K HP0 KH P0 + K HP0 Na HP0 + KH P0 + K HP0 2
4
2
4
2
4
2 2
4
2
4
2
2
4
2
4
2
4
4
2
4
2
4
4
2
Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
2
4
4
2
2
4
2
4
2
4
4
2
4
2
4
Salts*
Freezing Point (°C)
0.33 0.92 2.50 3.42 3.60 3.84 4.10 8.55 9.00 9.40 9.72
8.9 4.1 5.5 3.3 3.6 3.4 3.6 9.3 9.3 7.5 7.5
-0.5 -2.7 -4.3 -9.7 -9.9 -11.2 -11.4 -13.7 -14.4 -16.7 -17.2
A l l data were taken from V a n den Berg and Rose (87) ; the ionic strength values were calculated from concentration data given in the reference. p H measurements were made at 25° after separation of the unfrozen liquid from the solid phase. a
&
a n d a b o u t — 17°. expected
T h u s , a d i s s o l v e d protein's s t r u c t u r a l i n t e g r i t y c a n b e
to be c h a l l e n g e d b y these v a r i a t i o n s .
M i l k , for e x a m p l e , i n
w h i c h the p r o t e i n s c a n experience f r e e z i n g - i n d u c e d changes, w i l l s h o w a d e c l i n e i n p H o n s l o w f r e e z i n g f r o m 6.6 to 5.8. F a s t f r e e z i n g causes n o i m m e d i a t e p H c h a n g e , b u t a l o w p H develops u p o n " f r o z e n "
storage—
p r e s u m a b l y b e c a u s e e q u i l i b r i u m is s l o w l y e s t a b l i s h e d b e t w e e n l i q u i d a n d s o l i d phases
(38).
F r e e z i n g - i n d u c e d changes
solutions a n d foods ( 3 9 )
i n p H occur
i n many
a n d i t is to s u c h p H v a r i a t i o n s t h a t
specific
e n z y m i c a c t i v i t y losses u p o n f r e e z i n g h a v e b e e n a t t r i b u t e d (40).
Such
f r e e z i n g - i n d u c e d p H effects c a n b e c o u n t e r a c t e d b y t h e a d d i t i o n of " c r y o p r o t e c t a n t s " s u c h as g l y c e r o l or d i m e t h y l s u l f o x i d e , w h i c h are
effective
b e c a u s e t h e selective p r e c i p i t a t i o n of buffer salts w i l l o c c u r o n l y at l o w e r t e m p e r a t u r e s i n t h e i r presence
(41).
T h e r e are n u m e r o u s reports
p r o t e i n alterations a t t r i b u t e d to other c o n c e n t r a t i o n changes D e n a t u r a t i o n of c h y m o t r y p s i n (42),
a c t i v a t i o n of a
( 4 3 ) , a n d d i s r u p t i o n of y o l k g r a n u l e s (29)
as
of
well.
phosphodiesterase
h a v e b e e n a s c r i b e d , at least
i n p a r t , to increases i n salt c o n c e n t r a t i o n u p o n f r e e z i n g .
(Parenthetically,
w e m a y note some t e c h n i c a l l y i n t e r e s t i n g d e v e l o p m e n t s . has b e e n d e s c r i b e d t h a t p e r m i t s t h e freeze
A n apparatus
c o n c e n t r a t i o n of
proteins
themselves, o n a m u l t i l i t e r scale. T e n - f o l d increases i n c o n c e n t r a t i o n c a n b e o b t a i n e d b y t h i s means (44).
A l s o i n t h e p r a c t i c a l d o m a i n is a r e c e n t
r e p o r t o n t h e use of p H i n d i c a t o r s i n f r o z e n solutions (45).
Finally, we
m a y t a k e note of a n e x p e r i m e n t t h a t is i n d i c a t i v e of t h e s e l e c t i v i t y of the freezing-out mechanism.
U p o n f r e e z i n g a m i x t u r e of l i g h t a n d
w a t e r ( d e u t e r a t e d ) , a n isotope e n r i c h m e n t a m o u n t i n g to 2 % achieved
heavy
could
(46).)
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
be
1.
Protein
TABORSKY
11
Alterations
I n g e n e r a l , i t is c l e a r t h a t f r e e z i n g c a n cause c o n c e n t r a t i o n of solutes to c h a n g e b y orders of m a g n i t u d e .
C h a n g e s i n c o n c e n t r a t i o n of t h i s
d e g r e e s h o u l d b e a b l e , p o t e n t i a l l y , to cause m a j o r alterations i n p r o t e i n s . Furthermore, changes.
s u c h alterations n e e d
not
be
confined
to
noncovalent
Substances c a p a b l e of r e a c t i n g c o v a l e n t l y w i t h a p r o t e i n m a y
u n d e r g o s u c h reactions w h e n p u s h e d b y t h e mass a c t i o n of t h e i r i n c r e a s e d concentrations. Reactions
in Frozen Aqueous
Systems.
Particularly
d u r i n g the
sixties, t h e r e w a s a w a v e of c o n c e r n a b o u t rates a n d m e c h a n i s m s
of
c h e m i c a l reactions that o c c u r i n t h e " f r o z e n state." E a r l i e r observations o f c h e m i c a l changes w e r e l a r g e l y a c c i d e n t a l a n d f r e q u e n t l y h e l d t o b e Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
o n l y of n u i s a n c e v a l u e .
T h e one m a j o r e x c e p t i o n c o n c e r n e d
cryobio-
l o g i c a l i n q u i r i e s i n t o t h e causes of f r e e z i n g i n j u r y . I n these cases, h o w ever, t h e c o m p l e x i t y of the m a t e r i a l effectively m a s k e d t h e c h e m i c a l roots of t h e m e c h a n i s m . reactions h a v e
E v e n t h o u g h most
involved low
studies of
molecular weight
"frozen"
chemical
reactants, t h e y
merit
c o n s i d e r a t i o n b e c a u s e t h e i r c o n c e p t u a l f r a m e w o r k is c e r t a i n l y a p p l i c a b l e to c o m p l e x b i o m o l e c u l e s or other b i o m a t t e r . M u c h of the interest i n these reactions s t e m m e d f r o m t h e a t t r a c t i v e ness of t h e p o s s i b i l i t y that s p e c i a l p r o p e r t i e s of i c e m a y b e r e s p o n s i b l e for novel reaction mechanisms.
F o r instance, p r o t o n m o b i l i t y is h i g h e r
i n ice t h a n i n l i q u i d w a t e r b y one o r t w o orders o f m a g n i t u d e a n d t h e effective d i e l e c t r i c constant i n ice is l o w e r t h a n t h a t of w a t e r b y a b o u t a n o r d e r of m a g n i t u d e (47).
U n d e r such conditions, mechanisms involv-
i n g p r o t o n t r a n s p o r t or c h a r g e i n t e r a c t i o n s m a y c h a n g e , e v e n q u a l i t a t i v e l y . C h a n g e s i n m e m b r a n e p e r m e a b i l i t y , for i n s t a n c e , m a y reflect changes i n dielectric properties of membranes resulting f r o m altered proton behavior at l o w t e m p e r a t u r e (48).
A n e n t i r e l y different s p e c u l a t i o n has
been
a d v a n c e d r e g a r d i n g the p o s s i b i l i t y of r e c i p r o c a l effects b e t w e e n i c e - l i k e structures a n d t h e s t a b i l i z a t i o n of e l e c t r o n i c a l l y e x c i t e d states of b i o m o l e cules, thus g i v i n g rise to mechanism
a hypothetical, novel energy
transduction
(49).
A m a j o r p o i n t w a s m a d e after a c r i t i c a l r e v i e w of n u m e r o u s reports o n r e a c t i o n rates i n f r o z e n systems (50).
Kinetic-mechanistic "surprises"
i n " f r o z e n " systems m a y n o t r e q u i r e e x c e p t i o n a l hypotheses. t i o n effects m a y a c c o u n t for t h e m .
Concentra-
E v e n i f a system appears to
be
c o m p l e t e l y s o l i d i f i e d a n d , therefore, n o t a m e n a b l e to analysis i n terms of unfrozen l i q u i d "puddles" (51), a l i q u i d phase should still be considered a p o s s i b i l i t y . A case i n p o i n t is p r o v i d e d b y the efficient e l e c t r o n transfer o b s e r v e d b e t w e e n ferrous a n d f e r r i c ions i n a n a q u e o u s system f r o z e n b e l o w its p u t a t i v e eutectic p o i n t (52).
T h i s s e e m e d to r e q u i r e a n i c e
s t r u c t u r e i n o r d e r to b r i d g e t h e d i s t a n c e b e t w e e n reactants t h a t w e r e c a l c u l a t e d to b e too f a r a p a r t f o r significant r e a c t i v i t y . H o w e v e r , i t w a s p o i n t e d out t h a t the a s s u m e d e u t e c t i c p o i n t w a s b a s e d o n l y o n t h e m a j o r
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
12
PROTEINS A T L O W
TEMPERATURES
solute c o m p o n e n t , w h e r e a s m i n o r c o m p o n e n t s — t h e reactants, i n t h i s case — c o u l d h a v e l o w e r e d t h e effective
eutectic p o i n t b e l o w
t e m p e r a t u r e , m a k i n g t h e a s s u m p t i o n of fluous
the r e a c t i o n
a special mechanism
super-
(50).
E l u c i d a t i o n of m e c h a n i s m s of f r o z e n reactions w i l l be h i n d e r e d i f t h e coexistence
of l i q u i d a n d s o l i d phases is v i e w e d necessarily as a
t h e r m o d y n a m i c a l l y defined concentrations.
phenomenon,
i m p l y i n g stable phases
and
F r o z e n reactions c o u l d o c c u r i n a l i q u i d p h a s e t h a t is
o n l y of t r a n s i e n t significance.
I n t h e t r i v i a l case, " p u d d l e s " m a y exist
s i m p l y b e c a u s e f r e e z i n g r e q u i r e s finite t i m e . I n o t h e r cases, m o r e sophist i c a t e d i n s i g h t i n t o t h e d y n a m i c s of t h e f r e e z i n g process m a y b e n e e d e d . Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
F o r e x a m p l e , transient p u d d l e s m a y exist i n a v a r i a b l e m a n n e r d e p e n d i n g o n t h e rate of c o o l i n g .
U n f o r t u n a t e l y , t h e r e q u i r e d i n s i g h t is elusive
because the process is too c o m p l e x . A h i g h l y r e l e v a n t , t h o u g h t f u l analysis of the d i s t i n c t i o n b e t w e e n c o o l i n g k i n e t i c s (i.e. t e m p e r a t u r e c h a n g e ) a n d f r e e z i n g k i n e t i c s (i.e.
solidification)
is a v a i l a b l e ( 5 3 ) .
A n important
feature of this d i s t i n c t i o n is t h a t f r e e z i n g v e l o c i t y d e p e n d s o n t h e a b i l i t y of t h e system to dissipate t h e heat of c r y s t a l l i z a t i o n . T h i s r e q u i r e s t i m e , d u r i n g w h i c h the s u p e r c o o l e d l i q u i d m u s t serve as a t e m p o r a r y heat sink w h i l e i t exists e n t r a p p e d w i t h i n a " s p o n g y " ice s t r u c t u r e ( 5 4 ) .
These
l i q u i d p o o l s c a n b e the m e d i u m i n w h i c h c h e m i c a l reactions t a k e p l a c e u n d e r c o n d i t i o n s t h a t are l a r g e l y i n d e t e r m i n a t e . F o r e x a m p l e , t h e u n i f o r m i t y of this s o l u t i o n i n terms of concentrations a n d t e m p e r a t u r e c a n n o t b e t a k e n for g r a n t e d , a n d a n y c o n c e n t r a t i o n a n d t h e r m a l g r a d i e n t s are, f o r a l l p r a c t i c a l purposes, b e y o n d p r e c i s e , q u a n t i t a t i v e d e s c r i p t i o n .
In
a d d i t i o n , r e l a t i v e l y l i t t l e c o n t r o l c a n b e exercised over the rate of heat w i t h d r a w a l a n d this d e t e r m i n e s the size of t h e l i q u i d p o o l s a n d
how
closely t h e ratios of the s o l i d a n d l i q u i d phases a p p r o a c h e q u i l i b r i u m . T h e r e also m a y b e i r r e g u l a r t h e r m a l c o n d u c t i v i t y gradients i n t h e system w h i c h , together w i t h features of gross g e o m e t r y
( surf a c e / v o l u m e
ratio
a n d s h a p e ) , w i l l h a v e a m a j o r i m p a c t o n the m a n n e r a n d s p e e d
with
w h i c h the heat of c r y s t a l l i z a t i o n is finally t a k e n u p b y t h e c o o l i n g source. T h i s is not a n e n c o u r a g i n g p i c t u r e b u t i t is a r e a l i s t i c o u t l i n e of
the
p r o b l e m s t h a t c a n n o t b e i g n o r e d — a t least not i n those cases i n w h i c h r a p i d , c o n c e n t r a t i o n - d r i v e n changes
m a y occur i n l i q u i d lacunae that
exist ( p e r m a n e n t l y or t r a n s i e n t l y ) w i t h i n the g r o w i n g ice. T h e r e are not m a n y reports of covalent, f r e e z i n g - i n d u c e d
changes
t h a t are r e l e v a n t to p r o t e i n c h e m i s t r y . A f e w examples c a n , h o w e v e r ,
be
c i t e d . A f r e e z i n g - d e p e n d e n t e n h a n c e m e n t of a d d i t i o n reactions i n v o l v i n g t h e f o r m y l groups of h e m e has b e e n n o t e d ( 5 5 ) .
Presumably, a concen-
t r a t i o n effect operates here, expressed t h r o u g h a p H shift t o w a r d the r e a c t i o n o p t i m u m . O f p e r h a p s greater significance is the h y p o t h e s i s t h a t f r e e z i n g i n j u r y of p r o t e i n s m a y c o m e a b o u t t h r o u g h t h e f o r m a t i o n of
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
1.
Protein
TABORSKY
13
Alterations
intermolecular disulfide bonds ( b y
a i r o x i d a t i o n or b y d i s u l f i d e i n t e r -
c h a n g e ) , p r o m o t e d b y the f r e e z i n g - i n d u c e d u n f o l d i n g a n d c o n c e n t r a t i o n of p r o t e i n s ( 5 6 ) .
F o r e x a m p l e , a set of e n z y m e s k n o w n to b e i n a c t i v a t e d
b y f r e e z i n g w a s r e c o g n i z e d some t i m e ago as b e i n g of the s u l f h y d r y l v a r i e t y . C r y o p r o t e c t i o n w a s afforded for some o f these e n z y m e s b y t h e a d d i t i o n of m e r c a p t o e t h a n o l ( 5 7 ) .
D e n a t u r a t i o n of m y o f i b r i l l a r p r o t e i n s
u p o n f r o z e n storage w a s a t t r i b u t e d t o the p r e s u m e d o x i d a t i o n of s u l f h y d r y l groups ( w h i c h w e r e s h o w n to u n d e r g o a loss as a c o n s e q u e n c e of freezing)
(58).
M o r e r e c e n t l y , o x i d a t i o n of a s u l f h y d r y l g r o u p i n a c t i n
w a s d e m o n s t r a t e d to o c c u r o n f r e e z i n g , r e s u l t i n g i n f o r m a t i o n of a d i m e r (59) . T h e freezing-induced inactivation could be reversed, or prevented, Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
i f a r e d u c i n g agent w a s a d d e d . H o w e v e r , i t seems t h a t u s i n g m e r c a p t a n s as c r y o p r o t e c t a n t s
w o u l d be counterproductive
whenever
the protein
d e p e n d s for its i n t e g r i t y o n the intactness of its d i s u l f i d e b r i d g e s . mercaptans enhanced
are d e s i r a b l e , t h e i r r e a c t i v e by
the
concentration
effect
effectiveness
associated
When
can usually
with
freezing.
be For
e x a m p l e , significant alterations o f p e a n u t p r o t e i n s c a n b e p r o d u c e d
by
r e d u c i n g agents, a n d t h e i r a d d i t i o n p r i o r to f r o z e n storage of s u c h p r o t e i n solutions c a n p r o m o t e alterations that are d e p e n d e n t o n r e d u c i n g agents ( 6 0 ) . W h e n e v e r p r o t e i n s are m o r e stable i n a r e d u c i n g e n v i r o n m e n t , this approach may be useful. A
final
comment should be made.
P r o t e i n structure is m a i n t a i n e d
b y m a n y " w e a k " interactions. D u r i n g freezing, w e must be prepared for the p o s s i b i l i t y t h a t c o n f o r m a t i o n - m a i n t a i n i n g forces m a y b e d r i v e n to seek a n e w b a l a n c e , v i a a c o n f o r m a t i o n a l adjustment.
This could occur
i n response to i n t e r a c t i o n of the p r o t e i n w i t h " l i g a n d s " present i n t h e s o l u t i o n , e s p e c i a l l y i f these l i g a n d s m i m i c the r o l e of p r o t e i n
groups
i n v o l v e d i n w e a k interactions i n the n a t i v e structure. T h e s e l i g a n d s m a y c o m p e t e w i t h i n t r a m o l e c u l a r l y i n t e r a c t i n g groups. concentration
of
such ligands m a y
The freezing-induced
result i n significant
conformation
changes e v e n w i t h l i g a n d s t h a t w o u l d , u n d e r " n o r m a l , " m o r e d i l u t e c o n d i t i o n s b i n d too w e a k l y to h a v e a n effect.
( F o r a relevant discussion,
see R e f . 6 1 ) . Cryoenzymology (62).
R e c e n t l o w t e m p e r a t u r e studies of e n z y m e s
m e r i t separate c o n s i d e r a t i o n .
T h e y w i l l be g i v e n s p e c i a l emphasis i n a
later c h a p t e r of this v o l u m e .
These investigations have opened a n e w
w i n d o w t h r o u g h w h i c h w e c a n g a i n insights i n t o the d y n a m i c s of e n z y m e a c t i o n w i t h a r e s o l v i n g p o w e r u n a t t a i n a b l e , or a t t a i n a b l e o n l y w i t h diffic u l t y , at " n o r m a l " temperatures. cryosolvents
T h i s c a p a b i l i t y hinges o n t h e use
t h a t p e r m i t a t t a i n m e n t of
very
low
temperatures
of
while
a v o i d i n g the c o m p l i c a t i o n s of the f o r m a t i o n a n d p r e s e n c e of a s o l i d phase. T h e t o p i c w a s r e c e n t l y r e v i e w e d a n d t h e results of
cryoenzymological
studies w e r e i n t e g r a t e d w i t h results g a i n e d f r o m i n v e s t i g a t i o n s of e n z y m e
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
14
PROTEINS A T L O W T E M P E R A T U R E S
d y n a m i c s i n t h e c r y s t a l l i n e state (63,
64).
T h e m a j o r a t t r a c t i o n of t h i s
a p p r o a c h lies i n its p o t e n t i a l f o r y i e l d i n g i n f o r m a t i o n a b o u t
enzymic
processes u n d e r c o n d i t i o n s w h e r e o t h e r w i s e i n a c c e s s i b l e i n t e r m e d i a t e s a c c u m u l a t e a n d b e c o m e a m e n a b l e to c h a r a c t e r i z a t i o n . O b v i o u s l y , a r t i facts of d o u b t f u l significance to t h e t r u e b i o l o g i c a l m e c h a n i s m c o u l d b e e x p e c t e d to f o r m i n t h e p r e s e n c e of o r g a n i c solvents. H o w e v e r , c a r e f u l assessment of s u c h u n d e s i r e d effects is p o s s i b l e a n d t h e r e is a l r e a d y a n a p p r e c i a b l e n u m b e r of e n z y m i c systems f o r w h i c h m e c h a n i s t i c a l l y i m p o r t a n t features of t h e c a t a l y t i c process h a v e b e e n i d e n t i f i e d
(63).
T h e p o s s i b i l i t y of p r e p a r i n g p r o t e i n crystals i n e q u i l i b r i u m w i t h cryosolvents Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
X-ray
m u t u a l l y enhances the v a l u e of c r y s t a l analysis b y
(64)
d i f f r a c t i o n at l o w
approach.
i n t e r m e d i a t e forms respectively
temperatures
a n d of
the
cryoenzymological
B y this means i t has b e c o m e p o s s i b l e to c o m p a r e r e a c t i v e trapped i n the
c r y s t a l l i n e state a n d i n s o l u t i o n ,
(63).
Cryosolvents
and Protection Against Freezing Injury,
Cryosol-
vents c a n assist t h e b i o l o g i s t w h o s e g o a l is to p r o t e c t b i o l o g i c a l systems f r o m f r e e z i n g i n j u r y a n d t h e r e b y e n a b l e l o n g - t e r m p r e s e r v a t i o n of f u n c t i o n a l l y i n t a c t tissues a n d c e l l s .
P r o t e c t i v e cryosolvents m a y n o t a l t e r
the p r o t e i n s i n a p a r t i c u l a r l y significant m a n n e r , r a t h e r t h e y h e l p assure t h a t the p r o t e i n s i n t e g r i t y r e m a i n s essentially unaffected.
T h e effects of
cryoprotectants w i l l not be completely understood u n t i l i t becomes more f u l l y c l e a r w h a t t h e i r effects m a y b e o n t h e s t r u c t u r e o f t h e a q u e o u s m e d i u m o n w h i c h , i n t u r n , the c o n f o r m a t i o n a l features of t h e p r o t e i n c o m p o n e n t so i n t i m a t e l y d e p e n d .
I n addition, the eventual explanation
of c r y o p r o t e c t i o n i n m o l e c u l a r terms w i l l r e q u i r e m o r e i n s i g h t i n t o t h e n a t u r e of the d i r e c t i n t e r a c t i o n s b e t w e e n t h e p r o t e i n a n d t h e p r o t e c t i v e solvent c o m p o n e n t .
( R e l e v a n t discussions are p r o v i d e d , f o r e x a m p l e , i n
References 7, 65, 66, 67).
A n o t h e r aspect of the effectiveness of c r y o p r o -
tectants is t h e fact t h a t t h e y p e n e t r a t e m e m b r a n e s w i t h ease a n d at least p a r t of t h e i r f u n c t i o n m a y b e to e x t e n d t h e r a n g e of t e m p e r a t u r e s o v e r w h i c h the c e l l contents c a n exist i n a l i q u i d state a n d to a v o i d d e v e l o p m e n t of d e l e t e r i o u s l y h i g h c o n c e n t r a t i o n s of c e l l u l a r constituents d u r i n g f r e e z i n g . S e l e c t i o n of these p r o t e c t i v e cryosolvents is l i k e l y t o b e b a s e d i n c r e a s i n g l y o n i n f o r m a t i o n o b t a i n e d f r o m c r y o e n z y m o l o g i c a l studies t h a t r e v e a l f u n d a m e n t a l characteristics of c r y o s o l v e n t - p r o t e i n i n t e r a c t i o n s as a "by-product." T h e m a t t e r of c r y o p r o t e c t i o n , w i t h c l i n i c a l a p p l i c a t i o n s i n m i n d , w i l l u n d o u b t e d l y b e c o m e b e t t e r u n d e r s t o o d w i t h t i m e . O b v i o u s l y , measures of c e l l o r tissue v i a b i l i t y m u s t b e t h o u g h t of w i t h m o r e s u b t l e a n d s t r i n g e n t c r i t e r i a i n m i n d t h a n those n o r m a l l y u s e d i n m o s t studies of tissue p r e s e r v a t i o n . A s s e s s i n g v i a b i l i t y i n terms of one o r a f e w
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
bio-
1.
Protein
TABORSKY
15
Alterations
c h e m i c a l p a r a m e t e r s r a t h e r t h a n i n terms of a w h o l e s w e e p of p h y s i o l o g i c a l characteristics o f a g i v e n tissue spells t h e difference
between
a d e q u a c y f o r a l i m i t e d p u r p o s e , s u c h as i n v i t r o e x p e r i m e n t s , a n d s u i t a b i l i t y for, say, tissue t r a n s p l a n t a t i o n . T h e c o m p l e x i t y of t h i s p r o b l e m w i l l increase f u r t h e r w h e n c o n s i d e r a t i o n is g i v e n to p o t e n t i a l i n t e r a c t i o n s b e t w e e n cryoprotectants a n d other p h a r m a c o l o g i c a l l y a c t i v e agents a n d t o t h e m e t a b o l i c state of t h e tissue. A l t h o u g h t h e art of c r y o p r o t e c t i o n is n o t y e t at a p o i n t w h e r e these considerations c a n b e effectively d e a l t w i t h , progress is b e i n g m a d e
(68).
Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
Proteins in the Presence of
Ice
A c r i t i c a l r e l a t i o n s h i p exists b e t w e e n w a t e r a n d p r o t e i n ( 6 9 ) .
I have
f o u n d i t c o n v e n i e n t to d e a l e a r l i e r w i t h one m a n i f e s t a t i o n o f t h i s r e l a t i o n s h i p , n a m e l y h y d r o p h o b i c i n t e r a c t i o n s . I t seems o b v i o u s , h o w e v e r , t h a t this r e l a t i o n s h i p s h o u l d be affected b y a n y significant alterations i n t h e state of t h e a q u e o u s c o m p o n e n t , regardless
of
w h e t h e r t h e w a t e r is
a t t e m p t i n g to a v o i d contact w i t h n o n p o l a r groups o r is a t t r a c t e d to p o l a r groups. A l t h o u g h this assertion is o b v i o u s l y t r u e , difficulties arise w h e n a r i g o r o u s analysis is a t t e m p t e d .
The problem
begins w i t h our l i m i t e d
u n d e r s t a n d i n g of w a t e r i t s e l f — m o r e t h a n one m o d e l of w a t e r s t r u c t u r e can be
fitted
to a v a i l a b l e d a t a (70).
F u r t h e r m o r e , theories of
p r o t e i n interactions are i n c o m p l e t e a n d t e n t a t i v e (14).
water-
T h u s , an accurate
d e s c r i p t i o n of w a t e r - p r o t e i n i n t e r a c t i o n s i n c o m p l e x b i o l o g i c a l systems is n o t yet p o s s i b l e
(71).
[It is n o t e w o r t h y t h a t the authors of a
recent
r e v i e w of t h e role of solvent i n t e r a c t i o n s i n p r o t e i n c o n f o r m a t i o n compelled
to n o t e t h a t t h e " v e r i t a b l e j u n g l e of d a t a a n d
produced
b y m a n y investigators " w o r k i n g i n closely a l l i e d
felt
hypotheses" fields"
w i t h a " g e n e r a l l a c k o f c o o r d i n a t i o n " m i g h t i n v i t e the c o n s i d e r a t i o n
but of
" a m o r e p u r p o s e f u l , joint attack o n some of t h e p r o b l e m s " w h i c h " m a y w e l l be timely a n d y i e l d valuable dividends"
(13).]
A g a i n s t this s o m e w h a t f o r b i d d i n g b a c k g r o u n d , I w i l l engage i n a c u r s o r y r e v i e w of some of t h e p r o b l e m s associated w i t h p r o t e i n - w a t e r i c e systems w h e r e i n ice is suggested, o r a c k n o w l e d g e d , to h a v e a r o l e i n p r o t e i n alterations. A t this p o i n t , a t t e n t i o n w i l l b e g i v e n to t h e effects of f r e e z i n g o n h y d r a t i o n of p r o t e i n s .
S u c h effects m u s t l e a d to alterations
of p r o t e i n s t r u c t u r e i f t h e h y d r a t i o n s h e l l p l a y s a n i n t e g r a l r o l e i n m a i n t e n a n c e of p r o t e i n structure. ( H y d r o p h o b i c
interactions have been dealt
w i t h a l r e a d y i n the context of p r o t e i n b e h a v i o r i n c o l d solutions. I w i l l s i m p l y a d d here t h a t i t is c l e a r l y u n a v o i d a b l e t h a t d i m i n i s h i n g t h e l i q u i d e n v i r o n m e n t of t h e p r o t e i n b y f r e e z i n g w i l l r e m o v e t h e r a i s o n d'etre of these i n t e r a c t i o n s a n d w i l l therefore w e a k e n this f o r m of s t r u c t u r e s t a b i l i -
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
16
PROTEINS A T L O W
zation.)
TEMPERATURES
O u r d i s c u s s i o n of f r e e z i n g effects o n p r o t e i n h y d r a t i o n c a n b e
b r i e f since m u c h o f t h e p e r t i n e n t i n f o r m a t i o n a n d m a n y of t h e r e l e v a n t ideas h a v e b e e n t h o u g h t f u l l y r e v i e w e d q u i t e r e c e n t l y ( 1 5 , 67)
and will
be dealt w i t h later i n this volume. Protein Dehydration U p o n Freezing.
M o s t of t h e c u r r e n t m o d e l s
of p r o t e i n h y d r a t i o n p o s t u l a t e t h e existence of s e v e r a l classes of w a t e r molecules
t h a t are d i s t i n g u i s h e d b y
different
degrees of
"structure,"
m o b i l i t y , a n d s t r e n g t h of i n t e r a c t i o n w i t h the p r o t e i n . T a b l e I I I p r o v i d e s an "orders-of-magnitude"-type
s u m m a r y of these classes.
"Site-bound"
w a t e r consists of w a t e r m o l e c u l e s b o u n d i n d i v i d u a l l y a n d s t o i c h i o m e t r i c a l l y to specific, t y p i c a l l y c h a r g e d or p o l a r sites. T h i s w a t e r is b o u n d w i t h Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
r e l a t i v e l y great s t r e n g t h a n d e x h i b i t s g r e a t l y r e d u c e d m o b i l i t y c o m p a r e d to b u l k w a t e r . " S u r f a c e " w a t e r is w a t e r adjacent to t h e p r o t e i n s t r u c t u r e , held w i t h moderate
strength, intermolecularly hydrogen-bonded,
and
e x h i b i t i n g h i n d e r e d m o b i l i t y . W h i l e " w a t e r of h y d r a t i o n " m u s t s t i l l b e c o n s i d e r e d as a n o p e r a t i o n a l l y d e f i n e d t e r m (different "classes" of w a t e r b e i n g identified differently, d e p e n d i n g on the particular experimental m e t h o d chosen to reveal t h e m ) , most experimental determinations
of
p r o t e i n h y d r a t i o n are l i k e l y to d e a l , m o r e o r less, w i t h these t w o categories
Table III. Classes of Water Molecules in Protein " H y d r a t i o n Shells""
Class Protein-bound site-bound surface bulk-like
Binding strong medium loose
Rota tional Relaxation Time (sec) 10~ 10" 10'
6 9
1 1
Monolayer
—
—
Protein-free liquid ice
— —
10" 10"
Molecules of Water per Residue
Degree of Hydra tion (g/g)
Freezability
0.1-0.5 1-3
0.02-0.1 0.2 - 0 . 6
—
—
— —
4-7 11
5
— —
0.7
-1.2
— —
+
—
+
—
Information collected in this table is based on data from Kuntz and Kauzmann (67) and from Richards (16). Numerical values given here represent approximations based on numerous proteins and diverse experimental techniques. The class desig nated as Monolayer is included for purposes of comparison with "Surface" water in particular. The latter is, presumably, an actual layer of uneven thickness that is variable from protein to protein. The former is an idealized concept of a uniform layer, one molecule in thickness, covering the protein surface. "Freezability" denotes whether or not a particular class of water is capable of transition into normal ice. β
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
1.
TABORSKY
of w a t e r .
Protein
17
Alterations
I t is n o t e w o r t h y f o r o u r purposes t h a t " s i t e - b o u n d w a t e r " or
" s u r f a c e w a t e r " is n o t c a p a b l e of f o r m i n g n o r m a l i c e — i t is m o r e
mobile
t h a n w a t e r m o l e c u l e s i n ice, e v e n a t l o w t e m p e r a t u r e s , b u t i t is less m o b i l e t h a n w a t e r i n t h e b u l k solvent at t h e same t e m p e r a t u r e
(67).
A l t h o u g h w a t e r of h y d r a t i o n appears to b e " s t r u c t u r e d , " i t is not " i c e - l i k e " (72).
T h e t h i r d class, d e s i g n a t e d as " b u l k - l i k e , " is i n most w a y s i n d i s -
tinguishable
from
b u l k solvent.
Its existence
is a c k n o w l e d g e d
only
b e c a u s e i t m a y c o n t r i b u t e to s o m e of the h y d r o d y n a m i c p r o p e r t i e s
of
t h e p r o t e i n . P r e s u m a b l y , t h e d e m a r c a t i o n b e t w e e n " f r e e " solvent w a t e r a n d " h y d r a t i o n " w a t e r is not a sharp one.
T h e " b u l k - l i k e " w a t e r is
e n v i s a g e d as r e p r e s e n t i n g t h e t r a n s i t i o n f r o m one to the other. Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
It s h o u l d b e stressed t h a t this classification is a n o v e r s i m p l i f i c a t i o n . T h e p r o p e r t i e s of w a t e r of h y d r a t i o n most l i k e l y c h a n g e m o r e g r a d u a l l y t h a t is i m p l i e d b y "classes" (67,
73).
N e v e r t h e l e s s , t h e y are u s e f u l i n
that t h e y f a c i l i t a t e a reasonable c o n c e p t u a l i z a t i o n of m a n y of the e x p e r i m e n t a l d a t a t h a t b e a r o n p r o t e i n h y d r a t i o n . B u t i t is p r u d e n t to k e e p i n m i n d that these classes p r o b a b l y represent a v e r a g e d segments of a c o n t i n u u m of w a t e r structures. I n a n y case, w h a t e v e r m a y b e its p r e c i s e d e f i n i t i o n , the r e a l i t y of the h y d r a t i o n s h e l l is p r o f u s e l y d o c u m e n t e d
(67).
I t m u s t b e v i e w e d as a n i n t e g r a l p a r t of the p r o t e i n , t h e f u n c t i o n a l l y significant e n t i t y . I n d e e d , p r o t e i n h y d r a t i o n is of c r i t i c a l i m p o r t a n c e to t h e protein's f u n c t i o n a l i n t e g r i t y i n s o f a r as t h i s f u n c t i o n is a n i n h e r e n t m o l e c u l a r p r o p e r t y — a specific m a n i f e s t a t i o n of p r o t e i n structure.
The
r e a l i t y o f t h e h y d r a t i o n s h e l l appears also f r o m the v a n t a g e p o i n t of a r e a c t i v e l i g a n d to w h i c h the h y d r a t i o n s h e l l seems to represent a p h y s i c a l b a r r i e r to b e s u r m o u n t e d before t h e f u n c t i o n a l l y significant, d i r e c t i n t e r action between protein and l i g a n d can be accomplished.
T h i s has b e e n
s h o w n , f o r e x a m p l e , w i t h respect to t h e i n t e r a c t i o n b e t w e e n
myoglobin
a n d o x y g e n , or c a r b o n d i o x i d e , w h e r e t h e i n i t i a l association
between
l i g a n d a n d p r o t e i n is seen as a process t h a t is slower t h a n d i f f u s i o n l i m i t e d a n d is a t t r i b u t e d to l i g a n d e n t r y f r o m b u l k solvent t h r o u g h t h e h y d r a t i o n s h e l l , a process n o t i c e a b l e
d o w n to t e m p e r a t u r e s as l o w as
about —60° ( i n glycerol-water mixtures)
(74).
I n t e r p r e t i n g d a t a r e l a t i n g to the effects of f r e e z i n g o n p r o t e i n i n t e g r i t y a n d p r o t e i n h y d r a t i o n is difficult since most studies p r o v i d e
inferences
rather t h a n proof. T h e closest to " p r o o f are those studies i n v o l v i n g t h e attributes of d r i e d p r o t e i n s a n d t h e i r r e l a t i o n to p r o t e i n s i n f r o z e n systems. W h a t seems necessary is to s h o w t h a t d i s t u r b a n c e of the h y d r a t i o n s h e l l , p e r h a p s b y ice crystals or b y m o r e subtle changes i n t h e structure of w a t e r of h y d r a t i o n , has n o t a b l e consequences o n p r o t e i n structure. T h a t the d r y i n g of p r o t e i n s has major c o n s e q u e n c e s of this sort has b e e n s h o w n . T h i s is, of course, as w e w o u l d expect.
I f the m o r e i n t i m a t e l y b o u n d
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
18
PROTEINS A T L O W T E M P E R A T U R E S
l a y e r s of t h e h y d r a t i o n s h e l l are r e m o v e d , the o r i g i n a l p r o t e i n c o n f o r m a t i o n w o u l d h a v e to a c c o m m o d a t e l a r g e stresses p r o d u c e d b y t h e s t r u c t u r a l v o i d s . T r a n s c o n f o r m a t i o n or d e n a t u r a t i o n w o u l d b e t h e a p p r o p r i a t e a n d accessible response of t h e p r o t e i n to s u c h stresses
(67).
S o m e examples m a y serve to s u p p o r t this a r g u m e n t . T h e h e m e i r o n of c y t o c h r o m e c experiences a l i g a n d exchange
(replacing a methionine
b y , p e r h a p s , a l y s i n e s i d e c h a i n ) u p o n r e m o v a l of w a t e r b y l y o p h i l i z a t i o n (75).
B o t h , d e s i c c a t i o n a n d f r e e z i n g of catalase h a v e s i m i l a r consequences
o n t h e a c t i v i t y of t h e e n z y m e (76).
F r e e z i n g a n d t h a w i n g a p p e a r to alter
c e r t a i n p h y s i c a l - c h e m i c a l p r o p e r t i e s of some p r o t e i n s a n d s i m i l a r
but
greater changes are o b s e r v e d d u r i n g f r e e z e - d r y i n g , w h i c h is p r e s u m a b l y
Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
a m o r e d r a s t i c m e t h o d f o r affecting t h e h y d r a t i o n s h e l l (77).
Thermal
transitions a n d i r r e v e r s i b l e s t r u c t u r a l changes o c c u r i n t h e l i p o p r o t e i n of e g g y o l k d u r i n g f r e e z i n g a n d these changes are s t r o n g l y d e p e n d e n t w a t e r c o n t e n t w h e r e w a t e r is r e d u c e d b e l o w a c r i t i c a l v a l u e of
on
20%
( w h i c h corresponds a p p r o x i m a t e l y to t h e t w o " n o n f r e e z a b l e " classes of w a t e r i n T a b l e I I I ) (78).
T h e r e are, of course, n u m e r o u s — m o s t l y c a s u a l
— r e f e r e n c e s i n t h e l i t e r a t u r e to p r o t e i n d e n a t u r a t i o n , or e n z y m e i n a c t i v a t i o n , d u r i n g f r o z e n storage.
T h e s e observations are f r e q u e n t l y
coupled
w i t h the suggestion that the extensive ( o r c o m p l e t e ? ) t r a n s i t i o n of w a t e r to i c e affected o r d e s t r o y e d t h e h y d r a t i o n s h e l l of t h e p r o t e i n thus c a u s i n g a structural change.
T h e s e suggestions are f o r t h e most p a r t b a s e d o n
inadequate experimental evidence. " U n e x p l a i n e d " Effects.
S o m e observations are d i f f i c u l t t o a t t r i b u t e
t o a n y of t h e f r e e z i n g m e c h a n i s m s c o n s i d e r e d so f a r . M o s t a m e n a b l e to conceptual accommodation
are those cases w h e r e a p a r t i c u l a r r e a c t i v e
i n t e r m e d i a t e , or a p a r t i c u l a r c o n f o r m e r , appears to h a v e b e e n " t r a p p e d . " T h i s is b e l i e v e d to o c c u r at v e r y l o w t e m p e r a t u r e s w h e r e m o b i l i t y at t h e a t o m i c l e v e l is severely l i m i t e d p a r t l y b e c a u s e of l i t t l e t h e r m a l m o t i o n a n d p a r t l y b e c a u s e of t h e p h y s i c a l c o n s t r a i n t p r o v i d e d b y the glassy or i c y structures of t h e m e d i u m . N o r m a l l y u n s t a b l e f r e e r a d i c a l d e r i v a t i v e s of p r o t e i n s c a n b e s t u d i e d b y t r a p p i n g t h e m at l o w t e m p e r a t u r e s 79).
T h i s t e c h n i q u e also c a n b e u s e d to s t a b i l i z e w h a t a p p e a r to
(e.g. be
specific c o n f o r m a t i o n a l isomers of n o r m a l structures. F o r e x a m p l e , this a p p r o a c h has e n a b l e d t h e d e t e c t i o n of a n a m m o n i a - c a t a l a s e c o m p l e x (SO), conformers
of t h e i r o n p r o t e i n s c o n a l b u m i n a n d t r a n s f e r r i n ( 8 1 ) , a n d a
c o n f o r m e r of t h e
flavoprotein
L - a m i n o a c i d o x i d a s e (82,
83).
A n i n t e r e s t i n g s p e c i a l case is p r o v i d e d b y aldolase. I f f r o z e n i n the presence
of a l k y l a t i n g agents, i t u n d e r g o e s
alkylation
(84).
inactivation b y sulfhydryl
H o w e v e r , this i n a c t i v a t i o n a p p e a r s
to o c c u r
during
t h a w i n g , c o n d i t i o n e d s u p p o s e d l y b y c o n f o r m a t i o n a l stresses t h a t d e v e l o p d u r i n g f r o z e n storage.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
1.
Protein
TABORSKY
Protein Alterations with Dynamic
19
Alterations
and Behavior
Aspects of
Associated
Freezing
I t seems a p p r o p r i a t e to d e a l s o m e w h a t
more
explicitly w i t h
the
d y n a m i c aspects of the f r e e z i n g process i n contrast to the effects of a g i v e n state of a c o l d o r f r o z e n system.
T h i s is p r o b a b l y also t h e best
p l a c e to a c k n o w l e d g e a m a j o r o m i s s i o n t h r o u g h o u t t h i s o v e r v i e w .
None
of t h e d i s c u s s i o n has d e a l t s p e c i f i c a l l y w i t h the process of t h a w i n g .
It
m u s t b e t a k e n f o r g r a n t e d t h a t s o m e " f r e e z i n g " effects are i n r e a l i t y " t h a w i n g " effects a l t h o u g h i n v e r y f e w cases is t h e r e c o n c l u s i v e on this point.
evidence
I t c a n b e a s s u m e d that w h a t e v e r a r g u m e n t s m a y
be
Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
r e a s o n a b l y a d v a n c e d r e g a r d i n g the d y n a m i c s of f r e e z i n g a n d its conseq u e n c e s also m a y b e a d v a n c e d , b y s u i t a b l e extension, i n v e r s i o n , o r i n f e r ence, to t h e d y n a m i c s of the m e l t i n g process.
Undoubtedly, "melting
effects" are r e a l , h o w e v e r n e g l e c t e d t h e i r separate c o n s i d e r a t i o n m a y be. Protein Antifreezes.
A n i n t e r e s t i n g g r o u p of p r o t e i n s m e r i t s s p e c i a l
n o t i c e n o t because f r e e z i n g affects
t h e m b u t b e c a u s e t h e y affect
the
f r e e z i n g process. F i s h e s i n h a b i t i n g p o l a r w a t e r s h a v e r e c e n t l y b e e n s h o w n to possess u n u s u a l l y s t r u c t u r e d , a l a n i n e - r i c h s e r u m g l y c o p r o t e i n s depress t h e f r e e z i n g p o i n t of aqueous process ( 8 5 , 86). m u s s e l (87).
that
systems b y s o m e n o n c o l l i g a t i v e
S i m i l a r antifreeze proteins also h a v e b e e n f o u n d i n t h e
T h e s e p r o t e i n s h a v e a m a r k e d effect o n the m o d e of
ice
g r o w t h , i n d i c a t i n g t h a t t h e y m a y exert t h e i r f r e e z i n g i n h i b i t i o n b y
be-
c o m i n g a d s o r b e d onto p a r t i c u l a r facets o f t h e g r o w i n g i c e c r y s t a l . T h e presence according
of antifreeze p r o t e i n s i n fish b l o o d has b e e n s h o w n to v a r y to a n a n n u a l c y c l e
Circular dichroic
(88).
measurements
i n d i c a t e t h a t some antifreeze p r o t e i n s are d i s o r d e r e d i n s o l u t i o n w h i l e others h a v e a great h e l i x c o n t e n t — s u g g e s t i n g t h a t t h e r e is n o p a r t i c u l a r c o n f o r m a t i o n to w h i c h the antifreeze p r o p e r t y c a n be a t t r i b u t e d
(89).
S t u d i e s i n v o l v i n g R a m a n s p e c t r a t e n d to c o n f i r m t h i s suggestion
and
i n d i c a t e also that these p r o t e i n s d o not affect the b u l k p r o p e r t i e s of w a t e r or i c e t h a t exist i n t h e i r presence ( 9 0 ) . copolymer—modeling
the natural
A synthetic alanine-aspartic a c i d
antifreeze
proteins—was
shown
to
depress the f r e e z i n g p o i n t of w a t e r t o a b o u t o n e - t h i r d t h e extent of t h e antifreeze p r o t e i n s of fish (91).
I t is n o t e w o r t h y t h a t t h i s p o l y p e p t i d e
c o n t a i n e d no c a r b o h y d r a t e sidechains as d o the n a t u r a l a n t i f r e e z e p r o t e i n s . I t is n o t k n o w n w h e t h e r s u c h n a t u r a l c r y o p r o t e c t a n t s o c c u r w i d e l y d i s t r i b u t e d a m o n g a n i m a l species.
H o w e v e r , a relevant experiment was
c o n d u c t e d w i t h b r a i n slices, f r o m w a r m - a d a p t e d a n d h i b e r n a t i n g h a m sters, b e f o r e a n d after f r e e z i n g (92).
T i s s u e slices f r o m t h e h i b e r n a t i n g
h a m s t e r e x h i b i t e d h i g h e r t h a n n o r m a l o x y g e n c o n s u m p t i o n rates after freezing.
T h i s r e s u l t d i d n o t o c c u r w i t h slices f r o m t h e w a r m - a d a p t e d
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
20
PROTEINS A T L O W
TEMPERATURES
a n i m a l . T h e s e e x p e r i m e n t s p r o m p t e d t h e suggestion t h a t , i n t h e h i b e r n a t i n g a n i m a l , m e m b r a n e p r o t e i n s of t h e b r a i n m a y b e m o d i f i e d i n a w a y t h a t enhances t h e i r antifreeze p o t e n t i a l . T w o e a r l y observations m a y h a v e s o m e r e l e v a n c e to t h e m e c h a n i s m b y w h i c h a n t i f r e e z e p r o t e i n s act. P o l y m e r gels of h i g h l y r a m i f i e d , n e t - l i k e structures h a v e b e e n s h o w n to depress t h e f r e e z i n g p o i n t of w a t e r a n d cause t h e ice crystals to assume a d o m i n a n t g r o w t h o r i e n t a t i o n ( 9 3 ) . is also n o t e w o r t h y ,
perhaps, that certain amino
n u c l e a t o r s w h e r e a s others are n o t
acids
are
good
It ice
(94).
Events O c c u r r i n g at or N e a r the Water—Ice Interface.
It would
Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
t a k e us too f a r afield to a t t e m p t to d e a l i n d e t a i l w i t h theories a n d s p e c u lations c o n c e r n i n g the s m a l l z o n e e x i s t i n g b e t w e e n s u p e r c o o l e d
liquid
a n d the g r o w i n g i c e mass. B u t , i n v i e w of the p o t e n t i a l i m p o r t a n c e this z o n e m a y h a v e w i t h r e g a r d to f r e e z i n g effects, some d i s c u s s i o n of i t is appropriate.
I already acknowledged
t h e significance of this i n t e r f a c e
w h e n c o n s i d e r a t i o n w a s g i v e n to the increase i n solute c o n c e n t r a t i o n t h a t o c c u r s w h e n solutes are rejected b y the g r o w i n g i c e crystals. A l s o , the e a r l i e r d i s c u s s i o n of factors t h a t i n f l u e n c e t h e f o r m a t i o n of t r a n s i e n t l y existing, concentrated
" p u d d l e s " h a d clear implications regarding this
interface. I s h a l l n o w c o n s i d e r this i n t e r f a c e i n m o r e d e t a i l . O f h i s t o r i c a l interest is a r e v i e w of a century's w o r t h of e x p e r i m e n t a n d t h o u g h t d i r e c t e d at the n a t u r e of the ice surface
(95).
A
major
c o n c l u s i o n i n this r e v i e w is t h a t a t r a n s i t i o n l a y e r of w a t e r m o l e c u l e s does i n f a c t exist at t h e ice surface. T h i s r e v i e w is c o n c e r n e d , h o w e v e r , w i t h interfaces b e t w e e n i c e a n d t h e v a p o r p h a s e or a n o t h e r s o l i d phase.
More
d i r e c t l y p e r t i n e n t to o u r purposes is another f a s c i n a t i n g r e v i e w t h a t takes a d e t a i l e d l o o k at the i n t e r f a c e "as seen f r o m the l i q u i d s i d e " ( 9 6 ) .
This
assessment of r e l e v a n t e v i d e n c e also results i n the firm c o n c l u s i o n t h a t a n i n t e r f a c e l a y e r w i t h s p e c i a l p r o p e r t i e s exists. O f p a r t i c u l a r i m p o r t a n c e to t h e present d i s c u s s i o n is t h e n o t i o n t h a t t h e t r a n s i t i o n l a y e r consists of water molecules i n an oriented, polar arrangement.
T h e p o l a r i z a t i o n of
this l a y e r is a s c r i b e d to t h e n e e d to r e l i e v e strains i n t h e i c e l a t t i c e . T h e s e strains arise f r o m the e n l a r g i n g of t h e n o r m a l h y d r o g e n - o x y g e n angles i n o r d e r to fit the r e q u i r e m e n t s of the t e t r a h e d r a l s t r u c t u r e i n ice. T h i s s t r a i n r e l i e f process w o u l d result, a m o n g other t h i n g s , i n t h e m a i n t e n a n c e of a n e l e c t r i c p o t e n t i a l b e t w e e n t h e l i q u i d a n d s o l i d phases a n d w o u l d a c c o u n t for the experimentally observed
selective i n c o r p o r a t i o n of ions i n t h e
ice structure. T h e n o t i o n of a p o l a r , o r i e n t e d i n t e r f a c e l a y e r of w a t e r m o l e c u l e s — w h i l e b a s e d o n a n a d h o c a r g u m e n t — i s consistent w i t h e x p e r i m e n t a l d a t a . I t is i n a c c o r d , f o r e x a m p l e , w i t h the l a r g e e l e c t r i c p o t e n t i a l s t h a t d e v e l o p
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
1.
Protein
TABORSKY
21
Alterations
across t h e w a t e r - i c e interface d u r i n g f r e e z i n g of d i l u t e salt solutions ( 9 7 ) . T h i s o c c u r r e n c e p r o b a b l y results f r o m t h e often d e m o n s t r a t e d i n c o r p o r a t i o n of ions ( i n most cases, a n i o n s ) i n t o t h e i c e (e.g.
selective
98-106).
Some time ago, I observed a freezing-induced conformational change i n a p r o t e i n t h a t a p p e a r e d to b e associated w i t h selective r e j e c t i o n of ions at t h e l i q u i d - i c e i n t e r f a c e (107).
T h e results o f t h i s s t u d y a p p e a r e d t o
m a k e a g o o d case f o r t h e c l a i m t h a t s u c h solute r e d i s t r i b u t i o n s m a y h a v e i m p o r t a n t effects o n proteins d u r i n g f r e e z i n g , p a r t i c u l a r l y since a v e r y high
concentration
of protons
m a y develop
i n the interface
region.
A l t h o u g h this c o n c e n t r a t i o n of protons is t r a n s i e n t , i t p r e s u m a b l y persists for t h e d u r a t i o n of c r y s t a l g r o w t h . Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
T h e r e a l i t y o f a n interface r e g i o n i n w h i c h solute concentrations m a y b e h i g h d i n i n g t h e f r e e z i n g process w a s s h o w n b y d i r e c t measurements. I t w a s f o u n d that t h e i n t e r f a c e l a y e r m a y h a v e a thickness o n t h e o r d e r of 100-1000 n m , t h e exact v a l u e v a r y i n g i n v e r s e l y w i t h t h e rate of i c e propagation
(108).
I t has also b e e n suggested that as t h e i c e surface grows, t h e solutee n r i c h e d l a y e r just a h e a d of i t w i l l assume a l o w e r f r e e z i n g p o i n t t h a n t h e s o l u t i o n of l o w e r c o n c e n t r a t i o n t h a t exists f u r t h e r a w a y f r o m t h e i c e surface. T h i s s i t u a t i o n w o u l d b e most l i k e l y to o c c u r d u r i n g r a p i d f r e e z i n g w h e n t h e diffusive r e d i s t r i b u t i o n o f solute ( r e j e c t e d b y t h e i c e ) is s l o w c o m p a r e d w i t h t h e rate of its c o n c e n t r a t i o n b u i l d - u p . T h i s c o u l d l e a d to nucleation i n advance
of t h e f r e e z i n g b o u n d a r y ,
thereby
causing
e n t r a p m e n t of c o n c e n t r a t e d s o l u t i o n pools w i t h i n t h e i c e s t r u c t u r e
(109).
I t s h o u l d b e n o t e d t h a t o n a gross scale this w o u l d encourage
more
u n i f o r m solute d i s t r i b u t i o n i n t h e i c e b u t o n a m i c r o s c a l e ( w h i c h w o u l d b e r e l e v a n t f o r m o l e c u l a r i n t e r a c t i o n s ) t h e system w o u l d b e d e c i d e d l y heterogeneous a n d c o n c e n t r a t i o n effects s h o u l d b e great. It seems u s e f u l to c o n c l u d e this section w i t h d a t a i l l u s t r a t i n g t h e effects of v a r i o u s solutes o n t h e p r o p a g a t i o n rates of i c e ( T a b l e I V ) . D i s c u s s i o n of t h e effects that solutes h a v e o n t h e r e l a t i o n s h i p b e t w e e n i c e g r o w t h rate a n d t h e degree of s u p e r c o o l i n g is a v a i l a b l e (III).
A more
recent
elsewhere
d i s c u s s i o n of e q u i l i b r i u m a n d n o n e q u i l i b r i u m
aspects of f r e e z i n g p r o v i d e s a m o s t h e l p f u l a i d i n t h e i n t e g r a t e d c o n s i d e r a t i o n of aqueous
solutions subjected
reference to b i o l o g i c a l systems
to f r e e z i n g , w i t h p a r t i c u l a r
(112).
Possible "Interface Effects" on Proteins.
I n t e r f a c e effects t h a t arise
d u r i n g g r o w t h of i c e crystals c a n influence proteins b u t t h i s issue is rarely addressed i n a direct fashion. D u r i n g freezing, the egg yolk protein p h o s v i t i n has b e e n s h o w n to u n d e r g o t o w a r d a n o r d e r e d structure.
a major conformational
T h i s is caused
change
b y the transiently h i g h
c o n c e n t r a t i o n of protons s h o w n to exist i n t h e i c e - l i q u i d i n t e r f a c e r e g i o n
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
22
PROTEINS A T L O W T E M P E R A T U R E S
Table I V .
Retardation of Ice Propagation by Diverse Rate
of Ice Growth Solute
Solute Acetates lithium sodium potassium ammonium Chlorides lithium
Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
sodium
Solutes"
(cm/sec)
at 1
0%
10%
1.41
0.13 0.33 0.62
2.76 2.69 1.74 1.32
Given
Concentration "
0.35 0.10 0.48
potassium
3.09 2.82
ammonium
2.09
0.54
Thiocyanates sodium potassium
3.02
0.85
2.82
—
ammonium
2.09
0.96
acetic glycolic
2.14 2.14
0.76 0.83
malic citric
1.66
0.78 0.60
1.08
Acids
aminoacetic
1.29 2.19
—
Alcohols methanol
1.20
0.25
ethanol
0.43
propanol glycerol
0.54 1.38
0.09 0.12
Sugars glucose fructose sucrose
1.02 1.20 0.85
0.41 0.38 0.46 0.36
Proteins lysozyme albumin N o n e (pure water)
0.81 0.76
0.56
ca. 7
—
—
"Original data from Lusena (110). In the original article, values were i n logarithmic form. Above data were recalculated to give dimensions of velocity. A l l experiments carried out with solutions supercooled 10° below their respective freezing points. The data have relative significance. A11 experiments yielded a biphasic relationship between the logarithm of the rate of ice growth and the concentration of the solute. A t low concentrations of all solutes, the rate of ice growth fell drastically within a narrow concentration range. Further rate diminution occurred over a range of higher concentrations where the log rate vs. concentration relationship was linear. Extrapolation of the linear portion of this linear relationship to zero concentration produces the values listed under the heading " 0 % . " T h e data i n the " 1 0 % " concentration column reflect growth rates which tend to be associated with the lower end of the concentration range i n which the linear relationship holds. &
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
1.
TABORSKY
Protein
23
Alterations
during crystal formation
(113).
I t is also n o t e w o r t h y
that a highly
ordered p o l y m e r forms d u r i n g freezing of a solution of polyadenylic a c i d . T h i s t r a n s c o n f o r m a t i o n m a y also b e a n " i n t e r f a c e effect"
(114).
W h e n p r o t e i n alterations o c c u r as a r e s u l t of e x p e r i m e n t a l c o n d i t i o n s t h a t a r e e x p e c t e d t o i n f l u e n c e t h e d y n a m i c s o f t h e f r e e z i n g process, i t seems reasonable to p o s t u l a t e t h a t i n t e r f a c e effects m a y b e o p e r a t i v e . H o w e v e r , s u c h experiments a r e r a r e l y d e s i g n e d f o r t h e p u r p o s e o f e l u c i d a t i n g t h e m e c h a n i s m b y w h i c h f r e e z i n g causes p r o t e i n a l t e r a t i o n . T h e r e fore, t h e m e c h a n i s m r e m a i n s l a r g e l y a m a t t e r o f conjecture.
F r o m among
t h e m a n y c a n d i d a t e s f o r a n i n t e r f a c e effect, a f e w w i l l b e c i t e d — e s s e n t i a l l y r a n d o m l y — s i m p l y to u n d e r p i n t h e suggestion t h a t these
effects
Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
m a y h a v e a b r o a d e r significance i n t h e context of p r o t e i n c r y o c h e m i s t r y t h a n is g e n e r a l l y a c k n o w l e d g e d . T h e p o s s i b i l i t y o f i n t e r f a c e effects h a s b e e n s p e c i f i c a l l y n o t e d i n a study i n v o l v i n g freezing of lipoamide dehydrogenase
(115).
This possi
b i l i t y w a s also m e n t i o n e d i n a s t u d y o f c o n a l b u m i n a n d t r a n s f e r r i n , r e f e r r e d to e a r l i e r (81).
A n i n t e r f a c e m e c h a n i s m also m a y b e o p e r a t i v e
w i t h r e g a r d to f r e e z i n g - i n d u c e d alterations of p h y c o e r y t h r i n (116), dehydrogenase
(117),
catalase (118),
w e r e r e f e r r e d to e a r l i e r (22).
lactic
a n d o t h e r p r o t e i n s , some of w h i c h
F i n a l l y , i t m a y be noted that interface
effects, e s p e c i a l l y t h e t r a n s i e n t d i s t r i b u t i o n of solutes, m a y u n d e r l i e s o m e of t h e a n o m a l o u s k i n e t i c s t h a t h a v e b e e n d e s c r i b e d f o r c e r t a i n reactions i n t h e " f r o z e n state"
(119).
Conclusions I set o u t t o g i v e a n o v e r v i e w o f f r e e z i n g - i n d u c e d alterations o f p r o teins. I a p p r o a c h e d t h e task w i t h a bias t h a t , I h o p e , b e c a m e c l e a r as the d i s c u s s i o n p r o g r e s s e d .
I t seems to m e t h a t i n q u i r i e s i n t o p r o t e i n
b e h a v i o r at l o w t e m p e r a t u r e s a n d i n f r e e z i n g systems a r e r i p e f o r m o r e s h a r p l y focussed studies o f t h e m e c h a n i s m s b y w h i c h " f r e e z i n g operate.
of l o w t e m p e r a t u r e exposure. provide
effects"
A massive a m o u n t o f d a t a exists c o n c e r n i n g t h e consequences A common
i n s i g h t i n t o u n d e r l y i n g causes.
deficiency
is t h e f a i l u r e t o
Intellectually satisfying a n d
p r a c t i c a l l y u s e f u l g e n e r a l i z a t i o n s a r e n e e d e d a n d these s h o u l d e m e r g e i n the f u t u r e . I n d e e d , t h e b r o a d r a n g e o f topics i n c l u d e d i n this s y m p o s i u m m a k e s i t e v i d e n t t h a t o n - g o i n g investigations a r e effectively m o v i n g t o w a r d this goal.
Literature Cited 1. Meryman, H . T., Ed. "Cryobiology"; Academic: London and New York, 1966; pp vii-x. 2. Rey, L. R. Ann. Ν. Y. Acad. Sci. 1960, 85, 510. 3. Polge, C.; Smith, A. U.; Parkes, A. S. Nature (London) 1949, 164, 666.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
24
PROTEINS AT LOW TEMPERATURES
4. Nash, T. In "Cryobiology"; Meryman, H . T., Ed.; Academic: London and New York, 1966; p 179. 5. Doucou, P. Biochimie 1971, 53, 1135. 6. Fink, A. L. Acc. Chem. Res. 1977,10, 233. 7. Edelhoch,H.;Osborne, J. C., Jr. Adv. Protein Chem. 1976, 30, 183. 8. Brandts, J. F. J. Am. Chem. Soc. 1964, 86, 4302. 9. Brandts, J. F.; Hunt, L. J. Am. Chem. Soc. 1967, 89, 4826. 10. Brandts, J. F.; Oliveira, R. J.; Westort, C. Biochemistry 1970, 9, 1038. 11. Zipp, Α.; Kauzmann, W. Biochemistry 1973, 12, 4217. 12. Franks, F. Philos. Trans. R. Soc. London, Ser. Β 1977, 278, 89. 13. Franks, F.; Eagland, D. CRC Crit. Rev. Biochem. 1975, 3, 165. 14. Scheraga, H. A. Ann. Ν. Y. Acad.Sci.1977, 303, 2. 15. Richards, F. M. Annu. Rev. Biophys. Bioeng. 1977, 6, 151. 16. Sizer, I. W.; Josephson, E. S. Food Res. 1942, 7, 201. 17. Kavanau, J. L . J. Gen. Physiol. 1950, 34, 193. 18. Maier, V. P.; Tappel, A. L.; Volman, D. H. J. Am. Chem. Soc. 1955, 77, 1278. 19. Hultin, E. Acta Chem. Scand. 1955, 9, 1700. 20. Tappel, A. L . In "Cryobiology"; Meryman, H. T., Ed.; Academic: Lon don and New York, 1966; p 163. 21. Markert, C. L . Science 1963, 140, 1329. 22. Chilson, O. P.; Costello, L . Α.; Kaplan, N. O. FedProc.,Fed. Am. Soc. Exp. Biol. 1965, 24, S-55. 23. El-Negoumy, A. M. J. DairySci.1974, 57, 1170. 24. Hood, L. F.; Seifried, A. S. J. FoodSci.1974, 39, 121. 25. Hasiak, R. J. Vadehra, D. V.; Baker, R.C.;Hood, L. J. FoodSci.1972, 37, 913. 26. Smith, M. B.; Back, J. F. Biochim. Biophys. Acta 1975, 388, 203. 27. Sato, Y.; Aoki, T. Agric. Biol. Chem. 1975, 39, 29. 28. Sato, Y.; Takagaki, Y. Agric.Biol.Chem. 1976, 40, 49. 29. Chang, C. H.; Powrie, W. D.; Fennema, O. J. Food Sci. 1977, 42, 1658. 30. Parkinson, T. L. J. Sci. Food Agric. 1977, 28, 806. 31. Grek, A. M.; Lugovoi, V. I.; Bondarenko, T. P.; Morozov, I. A. Aktual. Vopr. Kriobiol. Kriomed., Mater. Simp. 1974, 43; Chem. Abstr. 1976, 84, 146529. 32. Skrabut, Ε. M.; Crowley, J. P.; Catsimpoolas, N.; Valeri, C. R. Cryo biology 1976, 13, 395, 33. Jackson, W. M.; Kostyla, J.; Nordin, J. H.; Brandts, J. F. Biochemistry 1973, 12, 3662. 34. Araki, T. Biochim. Biophys. Acta 1977, 496, 532. 35. Dzhafarov, A. I.; Kol's, O. R. Biofizika 1976, 21, 653; Chem. Abstr. 1976, 85, 107064. 36. Stahl, W. L.; Swanson, P. D. Neurobiology 1975, 5, 393. 37. Van den Berg, L.; Rose, D. Arch. Biochem. Biophys. 1959, 81, 319. 38. Van den Berg, L. J. Dairy Sci. 1961, 44, 26. 39. Van den Berg, L. Cryobiology 1966, 3, 236. 40. Soliman, F. S.; Van den Berg, L. Cryobiology 1971, 8, 73. 41. Van den Berg, L.; Soliman, F. S. Cryobiology 1969, 6, 93. 42. Pincock, R. E.; Lin, W.-S. J. Agric. Food Chem. 1973, 21, 2. 43. Sheppard, H.; Tsien, W. H. Biochim. Biophys. Acta 1974, 341, 489. 44. Janson, J.C.;Ersson, B.; Porath, J. Biotechnol. Bioeng. 1974, 16, 21. 45. Orii, Y.; Morita, M. J. Biochem. (Tokyo) 1977, 81, 163. 46. Posey, J.C.;Smith, H. A. J. Am. Chem. Soc. 1957, 79, 555. 47. Eigen, M.; DeMaeyer, L. Proc. R. Soc. London, Ser. A 1958, 247, 505. 48. VonHippel, A. R.; Runck, A. H.; Westphal, W. B. Gov. Rep. Announce. (U.S.) 1974, 74, 59. 49. Szent-Gyorgyi, A. Science 1956, 124, 873. ;
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
1.
TABORSKY
Protein Alterations
Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
50. 51. 52. 53. 54. 55. 56.
25
Pincock, R. E . Ace. Chem. Res. 1969, 2, 97. Wang, S. Y. Nature (London) 1961, 190, 690. Horne, R. A. J. Inorg. Nucl. Chem. 1963, 25, 1139. Luyet, B. J. Biodynamica 1957, 7, 293. Macklin, W. C.; Ryan, B. F. J. R. Meteorol. Soc. 1962, 88, 548. Orii, Y.; Iizuka, T. J. Biochem. (Tokyo) 1975, 77, 1123. Levitt, J. In "Cryobiology"; Meryman, H . T., Ed.; Academic: London and New York, 1966; p 495. 57. Levitt, J. Cryobiology 1966, 3, 243. 58. Khan, A. W.; Davidkova, E.; Van den Berg, L . Cryobiology 1968, 4, 184. 59. Ishiwata, S. J. Biochem. (Tokyo) 1976, 80, 595. 60. Cherry, J. P.; Ory, R. L . J. Agric. Food Chem. 1973, 21, 656. 61. Weber, G. Adv. Protein Chem. 1975, 29, 1. 62. Fink, A. L. Biochemistry 1976, 15, 1580. 63. Makinen, M. W.; Fink, A. L . Annu. Rev. Biophys. Bioeng. 1977, 6, 301. 64. Petsko, G. A. J. Mol. Biol. 1975, 96, 381. 65. Franks, F. Philos. Trans. R. Soc. London, Ser. Β 1977, 278, 33. 66. Timasheff, S. N. Acc. Chem. Res. 1970, 3, 62. 67. Kuntz, I. D., Jr.; Kauzmann, W. Adv. Protein Chem. 1974, 28, 239. 68. Shlafer, M. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1977, 36, 2590. 69. Hagler, A. T.; Scheraga, Η. Α.; Nemethy, G. Ann. Ν. Y. Acad. Sci. 1973, 204, 51. 70. Eisenberg, D.; Kauzmann, W. "The Structure and Properties of Water"; Oxford University Press: New York and Oxford, 1969; pp 254 ff. 71. Drost-Hansen, W. Ann. N. Y. Acad. Sci. 1973, 204, 100. 72. Sussman, M. V.; Chin, L. Science 1966, 151, 324. 73. Parungo, F. P.; Wood, J. J. Atmos. Sci. 1968, 25, 154. 74. Austin, R. H.; Beeson, K. W.; Eisenstein, L.; Frauenfelder, H.; Gunsalus, I. C. Biochemistry 1975, 14, 5355. 75. Aviram, I.; Schejter, A. Biopolymers 1972, 11, 2141. 76. Darbyshire, B. Cryobiology 1974, 11, 148. 77. Hanafusa, N. Bull. Inst. Int. Froid, Annexe 1973, 5, 9; Chem. Abstr. 1974, 81, 165554. 78. Smith, M. B.; Back, J. F. Biochim. Biophys. Acta 1975, 388, 203. 79. Bray, R. C.; Lowe, D. J.; Capeillere-Blandin, C.; Fielden, Ε. M. Biochem. Soc. Trans. 1973, 1, 1067. 80. Ehrenberg, Α.; Estabrook, R. W. Acta Chem. Scand. 1966, 20, 1667. 81. Price, Ε. M.; Gibson, J. F. J.Biol.Chem. 1972, 247, 8031. 82. Curti, B.; Massey, V.; Zmudka, M. J.Biol.Chem. 1968, 243, 2306. 83. Coles, C. J.; Edmondson, D. E.; Singer, T. P. J. Biol. Chem. 1977, 252, 8035. 84. Friedrich, P.; Foldi, J.; Varadi, K. Acta Biochim. Biophys. 1974, 9, 1. 85. Raymond, J. Α.; Lin, Y.; DeVries, A. L. J. Exp. Zool. 1975, 193, 125. 86. Raymond, J. Α.; DeVries, A. L . Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 2589. 87. Theede, H.; Schneppenhelm, R.; Beress, L. Mar. Biol. 1976, 36, 183. 88. Fletcher, G. L. Can. J. Zool. 1977, 55, 789. 89. Raymond, J. Α.; Radding, W.; DeVries, A. L . Biopolymers 1977, 16, 2575. 90. Tomimatsu, Y.; Scherer, J. R.; Yeh, Y.; Feeney, R. E . J. Biol. Chem. 1976, 251, 229. 91. Ananthanarayanan, V. S.; Hew, C. L. Nature (London) 1977, 268, 560. 92. Tower, D. B.; Goldman, S. S.; Young, Ο. M. J. Neurochem. 1976, 27, 285. 93. Kuhn, W.; Bloch, R.; Laeuger, P. Kolloid-Z. 1963, 193, 1. 94. Barthakur, N.; Maybank, J. Nature (London) 1963, 200, 866. 95. Jellinek, H. H. G. J. Colloid Interface Sci. 1967, 25, 192. 96. Drost-Hansen, W. J. Colloid Interface Sci. 1967, 25, 131.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
26
97. 98. 99. 100. 101. 102. 103. 104. 105. 106.
Downloaded by 80.82.77.83 on May 17, 2018 | https://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch001
107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119.
PROTEINS A T L O W T E M P E R A T U R E S
Workman, E . J.; Reynolds, S. E . Phys. Rev. 1950, 78, 254. Lodge, J. P.; Baker, M. L.; Pierrard, J. M. J. Chem. Phys. 1956, 24, 716. Jaccard, C.; Levi, L . Z. Angew. Math. Phys. 1961, 7, 70. Heinmets, F. Trans. Faraday Soc. 1962, 58, 788. DeMicheli, S. M.; Iribarne, J. V. J. Chim. Phys., Phys.-Chim. Biol. 1963, 60, 767. Gross, G. W. J. Geophys. Res. 1965, 70, 2291. Parreira, H. C.; Eydt, A. J. Nature (London) 1965, 208, 33. Anantha, N. G.; Chalmers, B. J. Appl. Phys. 1967, 38, 4416. LeFebre, V. J. Colloid Interface Sci. 1967, 25, 263. Pruppacher, H . R.; Steinberger, E . H.; Wang, T. L . J. Geophys. Res. 1968, 73, 571. Taborsky, G. J.Biol.Chem. 1970, 245, 1063. Terwilliger, J. P.; Dizio, S. F. Chem. Eng. Sci. 1970, 1331. Himes, R. C.; Miller, S. E.; Mink, W. H.; Goering, H . L. Ind. Eng. Chem. 1959, 51, 1345. Lusena, C. V. Arch. Biochem. Biophys. 1955, 51, 277. Pruppacher, H. R. J. Colloid Interface Sci. 1967, 25, 285. MacKenzie, A. P. Philos. Trans. R. Soc. London, Ser. Β 1977, 278, 167. Taborsky, G. J.Biol.Chem. 1970, 245, 1054. Zimmerman, S. B.; Coleman, N. F. Biopolymers 1972, 11, 1943. Visser, J. Meded. Landbouwhogesch. Wageningen 1970, 70-7, 90. Leibo, S. P.; Jones, R. F. Arch. Biochem. Biophys. 1964, 106, 78. Greiff, D.; Kelly, R. T. Cryobiology 1966, 2, 335. Fishbein, W. N.; Winkert, J. W. Cryobiology 1977, 14, 389. Oakenfull, D. G. Aust. J. Chem. 1972, 25, 769.
RECEIVED June 16,
1978.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.