Proteins at Interfaces - American Chemical Society

surfaces). 5) Sa, PI, P2, Sa (2 proteins competing in a narrow space between ... a drop will be held by i t s hydrophobic skin surface, and where i t ...
1 downloads 0 Views 2MB Size
Chapter 10

Why Plasma Proteins Interact at Interfaces

Proteins at Interfaces Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SANTA BARBARA on 04/08/19. For personal use only.

L. Vroman and A. L . Adams Interface Laboratory, Veterans Administration Medical Center, 800 Poly Place, Brooklyn, NY 11209

We found certain proteins able to deposit multimole­ cular layers between 2 surfaces separated at a dis­ ance inversely proportional to protein concentration. "Excess" deposited in wider gaps soon redissolves, perhaps by "self-removal". Blood plasma injected be­ tween a convex lens and a clot-promoting (glass or oxidized metal) surface leaves concentric rings of proteins. These apparently displace each other in the following sequence: albumin, immunoglobulin G, fibrin­ ogen and fibronectin, high molecular weight kininogen and factor XII - i.e. from most concentrated to least concentrated protein. Computer programs based on "self­ -removal" and physiological protein concentrations only, do yield realistic models; experiments with binary protein solutions indicate that more specific properties of each protein are involved in this interaction.

Each o f o u r p r o t e i n s e v o l v e d a l o n g w i t h t h e s t r u c t u r e s t h a t a r e r e p r o d u c i n g i t and a l o n g w i t h t h e m o b i l e c e l l membranes and subc e l l u l a r o b j e c t s t h a t i t must, from i t s b i r t h t o i t s d e a t h , e x i s t with. In sharp c o n t r a s t t o t h i n g s i n v i v o , most l a b o r a t o r y s u r f a c e s a r e c r e a t e d t o be a) u n i f o r m , so t h a t they w i l l a l l o w v e r y few c h o i c e s o f s c e n e r y f o r a p r o t e i n m o l e c u l e t o a t t a c h i t s e l f anywhere on them, and b) unchanging, r e m a i n i n g so r i g i d and so cons t a n t w i t h time t h a t they w i l l n o t adapt t o t h e s u b m o l e c u l a r des i r e s o f the p r o t e i n they a d s o r b : t h e p r o t e i n m o l e c u l e w i l l have to adapt t o t h e a r t i f i c i a l s u b s t r a t e i n s t e a d . Such l a r g e , u n i f o r m and uncompromising m a t e r i a l s u r f a c e s f o r c e t h e p r o t e i n s o l u t i o n t o d e p o s i t a measurably l a r g e number o f u n i f o r m l y a d a p t i n g m o l e c u l e s . T h e i r s y n c h r o n i z e d b e h a v i o r w i l l thus be a m p l i f i e d enough t o be measurable b u t may n o t r e p r e s e n t p h y s i o l o g i c a l e v e n t s . C e l l membranes have e v o l v e d t o be most u n l i k e any manmade s u r f a c e n o t o n l y by becoming v a r i a b l e and a d a p t a b l e on a m o l e c u l a r

This chapter not subject to US. copyright Published 1987 American Chemical Society

10. VROMAN AND ADAMS

Why Plasma Proteins Interact

155

arid submolecular scale, but also by their becoming dotted with r e ceptors for s p e c i f i c proteins. Thus, l i v i n g c e l l s may adsorb and r e t a i n only s p e c i f i c proteins out of their physiological l i q u i d environment and only under very s p e c i f i c conditions. Caught within the r e l a t i v e l y dense structure of a c e l l , or i n the varying and often narrow spaces among c e l l s , a protein molecule must be expected to encounter a number of situations, each of which deserves to be imitated with simplifying models i n the laboratory. Limiting ourselves to 2 proteins (PI and P2), and 2 kinds of surfaces (Sa and Sb), we may l i s t the following choice of possible interactions (commas separating non-preadsorbed proteins). 1) PI, Sa and PI, PISa 2) PI, P2Sa (where P2 i s adsorbed onto Sa) 3) PI, P2, Sa (competition for 1 surface) 4) Sa, PI, Sa (1 protein i n a narrow space between i d e n t i c a l surfaces) 5) Sa, PI, P2, Sa (2 proteins competing i n a narrow space between i d e n t i c a l surfaces) 6) Sa, PI, Sb (2 d i f f e r e n t surfaces competing for 1 protein) 7) Sa, PI, P2, Sb 8) SaPl, SaPl (interaction among 2 mobile i d e n t i c a l p a r t i c l e s coated with the same protein) 9) SaPl, SaP2 10) SaPl, SbPl (interaction among 2 surfaces carrying the same protein) 11) SaPl, SbP2 12) SaPl, P2, SbPl Somewhat more physiological conditions can be created by r e placing at least 1 of the 2 proteins by blood plasma. The a b i l i t y of a surface to adsorb a certain protein, e.g. a c l o t t i n g factor, out of normal plasma, appears to be demonstrated by the following deceptively simple manipulations. Incubate normal citrated " i n t a c t " plasma (plasma that had never been i n contact with a negatively charged, high free energy surface such as glass) i n a glass test tube. Rinse the tube out and place citrated plasma i n i t from a patient who lacks c l o t t i n g factor XII. After adding calcium chloride, we w i l l find the c l o t t i n g time of this d e f i c i e n t plasma to be corrected by the adsorabte that the normal plasma had l e f t on the glass (1). We cannot help but conclude that normal plasma deposits factor XII on glass. Finding one protein deposited by plasma should not lead us to believe - as I unfortunately did for many years - that no other protein w i l l be present at other locations on the surface at the same time, or at the same location at other times. Having detected factor XII at coagulation-activating surfaces, i t took us 5 years plus Dr. S. Witte's suggestion before we started looking f o r f i b r i n ogen being deposited by plasma. We did find i t , and another 12 years l a t e r we found evidence of an entire s h i f t i n g population of proteins replacing one another at the solid/plasma interface. In the following description of early studies as well as of our recent findings, I w i l l use the c l a s s i f i c a t i o n of protein/surface interactions given above. Among the proteins to be discussed fibrinogen w i l l be prominent, not only because of our own work, but also because this work f i t s rather well within the context of others' studies showing protein, plasma and c e l l u l a r (platelet) interactions.

156

PROTEINS AT INTERFACES

ONE P R O T E I N ON ONE SURFACE a) The a i r i n t e r f a c e Most p r o t e i n s o l u t i o n s tend t o form a monomolecular l a y e r a t t h e i r a i r / l i q u i d i n t e r f a c e a t a r a t e depending on t h e i r c o n c e n t r a ­ t i o n . A p o l a r a m i n o a c i d r e s i d u e s w i l l become e x p o s e d o n t h e s u r f a c e of t h e f i l m t h a t f a c e s a i r . T h e r e f o r e , one c a n i m a g i n e t h a t a drop of p r o t e i n s o l u t i o n suspended i n a i r w i l l r a p i d l y form a s k i n i n w h i c h i t w i l l be t r a p p e d . I f p l a c e d onto a hydrophobic s o l i d , such a drop w i l l be h e l d by i t s hydrophobic s k i n s u r f a c e , and where i t i s f o r c e d t o r o l l a l o n g , t h e drop w i l l "break o u t o f i t s bag" o f s k i n , l e a v i n g p i e c e s o f s k i n s t u c k i n i t s t r a i l w h i l e f o r m i n g a new b a g . We d e t e c t e d t h e p h e n o m e n o n e . g . b y o b s e r v i n g t h e i n t e r f e r e n c e c o l o r p a t t e r n l e f t by p r o t e i n d r o p s l a n d i n g on and r o l l i n g o v e r f e r r i c stéarate p o l i s h e d a n o d i z e d t a n t a l u m s l i d e s . This Blodgett-Langmuir t r a n s f e r i s almost instantaneous (30). To o b s e r v e a d s o r p t i o n f r o m b u l k s o l u t i o n , we m u s t i n s e r t t h e h y d r o ­ p h o b i c s u b s t r a t e i n t o t h e a q u e o u s medium b e f o r e a d d i n g p r o t e i n . Under s u c h c o n d i t i o n s , t h e r e c o r d i n g e l l i p s o m e t e r shows a d s o r p t i o n r a t e s o u t o f b u l k s o l u t i o n s onto hydrophobic s u b s t r a t e s that a r e n o t u n l i k e t h o s e o n h y d r o p h i l i c o n e s ( 2 ) . Where t h e h y d r o p h o b i c s o l i d s l i d e i s then d i p p e d deeper i n t o t h e c o n t a i n e r o f p r o t e i n , d a t a and r e c o r d i n g s show t h a t t h e s l i d e h a s g a i n e d t h i c k n e s s i n s t a n t a n e o u s l y a n d m u s t t h e r e f o r e h a v e d r a g g e d a s u r f a c e f i l m down i n t o t h e l i g h t path. T h i s f i l m may a p p e a r n o t much t h i n n e r t h a n t h e o n e t h a t h a d b e e n more s l o w l y a d s o r b e d o u t o f t h e b u l k s o l u t i o n ( 2 ) . P r o t e i n s adsorbed onto a hydrophobic s o l i d tend t o render i t m o r e h y d r o p h i l i c , w h i l e t h e same p r o t e i n s a d s o r b e d o n t a h y d r o p h i l i c s o l i d t e n d t o r e n d e r i t more h y d r o p h o b i c . On t h e d r i e d f i l m o f a d sorbate, the contact angle of a water d r o p l e t , o r the s c a t t e r i n g of l i g h t by condensing water vapor, appears t o demonstrate t h i s prop­ e r t y ( 3 ) , b u t t h e shape o f these s l o w l y s p r e a d i n g d r o p l e t s i s a f ­ f e c t e d by p r o t e i n b e i n g "scooped up" a t t h e i r advancing a i r / w a t e r / solid interfaces (4). Among p l a s m a p r o t e i n s we s t u d i e d a t s o l u t i o n / a i r i n t e r f a c e s , f i b r i n o g e n behaved most r e m a r k a b l y . Compressed i n a s u r f a c e f i l m b a l a n c e ( 5 ) , f i b r i n o g e n tended t o form a c o h e s i v e f i l m t h a t c o u l d be l i f t e d o f f t h e i n t e r f a c e w i t h a h y d r o p h o b i c s l i d e ( 6 ) . The f i n d i n g s u g g e s t s t h a t f i b r i n o g e n may f o r m p o l y m e r - l i k e c o m p l e x e s a t c e r t a i n i n t e r f a c e s e v e n i n a b s e n c e o f t h r o m b i n ( 7 ) , t h e enzyme n o r m a l l y needed t o p o l y m e r i z e f i b r i n o g e n i n t o f i b r i n . b ) One p r o t e i n a t t h e l i q u i d / s o l i d i n t e r f a c e ( P I , S a a n d P I , P I S a ) T h o u g h we r e a l i z e d e a r l y ( 2 ) t h a t a d s o r p t i o n o f p r o t e i n s may b e l e s s r e v e r s i b l e t h a n we h a d e x p e c t e d , o t h e r t e c h n i q u e s t h a n o u r s w e r e r e q u i r e d t o show t h a t a t l e a s t f i b r i n o g e n a d s o r b e d o n t o c e r t a i n s u r f a c e s (8) w i l l be exchanged w i t h f i b r i n o g e n m o l e c u l e s i n s o l u t i o n Since e l u t a b i l i t y appears t o decrease w i t h increased time o f r e s i ­ d e n c e a t t h e i n t e r f a c e ( 9 ) , some g r a d u a l c h a n g e i n c o n f o r m a t i o n may occur as t h e adsorbed molecule perhaps i n c r e a s e s i t s a r e a o f c o n t a c t w i t h t h e immobile s u b s t r a t e . We h a v e some e v i d e n c e t h a t f i b r i n o g e n , a d s o r b e d o n t o c e r t a i n s u b s t r a t e s , w i l l b e a b l e t o a d s o r b a mono-

10.

157

Why Plasma Proteins Interact

VROMAN AND ADAMS

c l o n a l a n t i b o d y t o p a r t o f i t s Ε d o m a i n , w h i l e t h e same a n t i b o d y does not b i n d f i b r i n o g e n i n s o l u t i o n . This i n d i c a t e s that adsorp­ t i o n can expose a group o f amino a c i d s t h a t i s n o r m a l l y not exposed i n s o l u t i o n (10). ONE

P R O T E I N ON TWO I D E N T I C A L SURFACES ( S a P l , F l , S a e t c . )

The f a c t t h a t a f i l m o f p r o t e i n a d s o r b e d o n t o 1 s u r f a c e c a n still adhere t o another s u r f a c e i s proved simply by e x p o s i n g the f i l m t o a s u s p e n s i o n o f s o l i d p a r t i c l e s , e.g. o f a m e t a l o x i d e s u s p e n s i o n . Many p r o t e i n f i l m s a r e i n t e n s e l y " s t a i n e d " ( c o a t e d ) b y c h r o m i u m o x i d e o r i r o n o x i d e s u s p e n s i o n s (2, 29). We s t u d i e d t h e e f f e c t o f a much w i d e r s p a c e b e t w e e n t w o i d e n t i ­ c a l s u r f a c e s upon a d s o r p t i o n o f a p r o t e i n a s f o l l o w s . We p l a c e d a p l a n a r - c o n v e x l e n s ( r a d i u s o f c u r v a t u r e between about 150 and 2 0 0 0 mm) o n a g l a s s s l i d e , a n d i n j e c t e d a s o l u t i o n o f t h e p r o t e i n b e t w e e n them. A f t e r i n c u b a t i o n a t room t e m p e r a t u r e f o r a b o u t 10 m i n , we t i l t e d t h e s l i d e a n d r i n s e d i t w i t h b u f f e r w h i l e t h e l e n s was a l l o w e d t o s l i p o f f . The d e n s i t y d i s t r i b u t i o n p a t t e r n o f a d ­ s o r b e d p r o t e i n c o u l d b e ( b u t o f t e n need not be) e n h a n c e d b y e x p o s u r e t o a m a t c h i n g a n t i s e r u m ; a f t e r r i n s i n g a g a i n the s l i d e was u s u a l l y s t a i n e d w i t h c o n c e n t r a t e d Coomassie Blue. Under t h e s e c o n d i t i o n s albumin, c e r t a i n preparations o f p u r i f i e d f i b r i n o g e n anda l l prepar­ a t i o n s o f p u r i f i e d i m m u n o g l o b u l i n G ( I g G ) we t e s t e d , d e p o s i t e d not o n l y a p r e s u m a b l y m o n o m o l e c u l a r l a y e r , b u t a l s o a r i n g o f much g r e a t e r t h i c k n e s s a t a d i s t a n c e from the l e n s c e n t e r c o r r e s p o n d i n g t o a n a b o u t 10 t o 20 m i c r o n s t h i c k n e s s o f l i q u i d f o r s o l u t i o n s c o n ­ t a i n i n g a b o u t 8 mg/ml o f t h e p r o t e i n ( 1 1 ) . More d i l u t e d s o l u t i o n s deposited rings o f greater diameter. D i r e c t observation o f IgG i n j e c t e d as described, and s e r i a l experiments i n t e r r u p t e d from 1 t o about 4 sec a f t e r i n j e c t i o n , s h o w e d t h a t a t h i c k l a y e r i s d e p o s i t e d o u t o f a n a p p r o x i m a t e l y 8 mg/ m l b u f f e r s o l u t i o n (pH 7.4) w i t h i n a b o u t 2 t o 3 s e c e x c e p t n e a r t h e c e n t e r , w h e r e t h e l i q u i d l a y e r i s s o t h i n t h a t t h e amount o f I g G per surface area i s b a r e l y s u f f i c i e n t t o deposit a monolayer and i s then depleted. T h i s c r e a t e s the " h o l e i n the doughnut". Ati t s immediate p e r i p h e r y , the l i q u i d l a y e r i s t h i c k enough t o s u p p l y t h e amount o f p r o t e i n n e e d e d f o r " e x c e s s " d e p o s i t i o n o f t h e t h i c k r i n g , a t w h i c h p o i n t the l i q u i d above t h i s a r e a i s a l s o d e p l e t e d and the thick ring i s stabilized. More p e r i p h e r a l l y , a d d i t i o n a l p r o t e i n m o l e c u l e s are a v a i l a b l e t o c o l l i d e w i t h the t h i c k d e p o s i t and desorb the excess. I t s h o u l d be noted that the c o n d i t i o n s r e q u i r e d t o y i e l d a rather stable multimolecular l a y e r are s t r i c t l y l i m i t e d t o r e l a t i v e l y high concentrations o f p r o t e i n i n spaces over a narrow r a n g e ( e . g . more t h a t 10 a n d l e s s t h a n 20 m i c r o n s f o r s o l u t i o n s o f a b o u t 5 mg/ml f o r a t l e a s t s e v e r a l p r o t e i n s ) . These f i n d i n g s would support those o f o t h e r s t h a t p r o t e i n s such as f i b r i n o g e n (12) a n d p h o s p h o r y l a s e b (13) can i n t e r c h a n g e a d s o r b e d molecules w i t h those i n s o l u t i o n even though, f a c i n g a p r o t e i n - f r e e s o l u t i o n , the a d s o r b e d m o l e c u l e s do not d e s o r b s p o n t a n e o u s l y . TWO P R O T E I N S ON ONE SURFACE a)

One p r o t e i n p r e a d s o r b e d

Turnit

demonstrated

that

(SaPl, P2)

ellipsometry

i s s u i t a b l e f o r showing

the

158

PROTEINS AT INTERFACES

i n t e r a c t i o n s o f a p r e a d s o r b e d enzyme w i t h a s o l u t i o n o f i t s p r o t e i n s u b s t r a t e ( 1 3 ) . We f o u n d t h a t p r e a d s o r b e d t h r o m b i n w i l l a d s o r b w h a t appears t o be a monomolecular l a y e r o f f i b r i n o g e n o u t o f f i b r i n o g e n s o l u t i o n , b u t w i l l c o n t i n u e t o c r e a t e f i b r i n monomer s o t h a t t h e s o l u t i o n w i l l c l o t ( 2 ) , m a i n l y o r most r a p i d l y a t t h e s i t e o f a d s o r b ­ ed t h r o m b i n . A n t i b o d i e s a r e d e p o s i t e d out of s o l u t i o n onto preadsorbed a n t i ­ gens a s p a r t o f c o u n t l e s s r o u t i n e s , i n c l u d i n g e l l i p s o m e t r y , i n meth­ ods i n t e n d e d t o i d e n t i f y t h e p r e a d s o r b e d a n t i g e n o r t o q u a n t i t a t e antibody potency o r antigen concentration. Where a n t i g e n i s m o r e densely packed than t h e d e t e c t i n g immunoglobulin can be, t h e p r o p o r ­ t i o n a l i t y between s u r f a c e c o n c e n t r a t i o n o f a n t i g e n and i t s a b i l i t y to adsorb antibody i s disturbed. I n general, preadsorbed antigens r e t a i n t h e i r a b i l i t y t o a d s o r b p o l y c l o n a l a n t i b o d i e s , a n d we r e l y o n t h i s a b i l i t y r o u t i n e l y (4, 11, 14). In our experience, unless the preadsorbed p r o t e i n has a s p e c i ­ f i c (enzyme/substrate, antigen/antibody) r e l a t i o n s h i p with the d i s s o l v e d o n e , t h e p r e a d s o r b e d p r o t e i n w i l l a d s o r b l i t t l e o r no other protein. Where t h e e l l i p s o m e t e r shows i n c r e a s e d o p t i c a l f i l m t h i c k n e s s upon exposure o f , e . g . , a p r e a d s o r b e d l a y e r o f a l b u ­ min t o f i b r i n o g e n , such i n t e r a c t i o n s o c c u r a t t h e expense o f t h e a b i l i t y o f the preadsorbed albumin t o adsorb antibody t o albumin (14). T h i s i n d i c a t e s t h a t exchange - i n t h i s case by t h e l a r g e r species - took place. A n o t a b l e e x c e p t i o n may b e t h e a b i l i t y o f plasma t o d e p o s i t a thus f a r u n i d e n t i f i e d p r o t e i n onto preadsorbed i m m u n o g l o b u l i n s ( I g G ) ( 1 5 ) , b u t h e r e t o o , some s p e c i f i c i n t e r a c t i o n s may t a k e p l a c e . O u t o f t h e h u n d r e d s o f p r o t e i n s t h a t o u r p l a s m a c o n t a i n s , we must e x p e c t t h a t f o r a random c h o i c e o f most p a i r s , t h e d i s s o l v e d species of protein facing a surface completely occupied with the p r e a d s o r b e d s p e c i e s o f p r o t e i n , c a n o n l y be d e p o s i t e d by d i s p l a c i n g the preadsorbed species. Many e x p e r i m e n t s h a v e b e e n p u b l i s h e d t o s h o w how o n e p r o t e i n c a n " i n h i b i t " s u r f a c e a c t i v a t i o n o f a c l o t t i n g f a c t o r such as h i g h molecular weight k i n i n o g e n o r f a c t o r X I I , w h i l e i n f a c t t h e s u r f a c e i s merely b l o c k e d n o n s p e c i f i c a l l y by preadsorption of a protein that i snot easily displaced. b) B o t h p r o t e i n s d i s s o l v e d i n i t i a l l y ( S a , P I , P 2 ) . In s e v e r a l s e r i e s of binary mixtures, r e l a t i v e c o n c e n t r a t i o n o f e a c h p r o t e i n i n s o l u t i o n d e t e r m i n e d w h i c h was a d s o r b e d most ( 1 5 ) , but r e l a t i o n s h i p s were n o t s i m p l y p r e d i c t a b l e . F o r example, judged by o p t i c a l t h i c k n e s s o f d e p o s i t e d a n t i b o d y , a d s o r p t i o n o f f i b r i n o g e n i n p r e s e n c e o f I g G r a p i d l y r o s e t o i t s maximum a s t h e r e l a t i v e c o n ­ c e n t r a t i o n o f f i b r i n o g e n was i n c r e a s e d , w h i l e i n p r e s e n c e o f a l b u m i n f i b r i n o g e n a d s o r p t i o n increased almost l i n e a r l y as t h e p r o p o r t i o n o f f i b r i n o g e n t o a l b u m i n i n s o l u t i o n was i n c r e a s e d ( 1 5 ) . Those o f u s v e n t u r i n g o v e r t h e edge o f p u r e p r o t e i n s t u d i e s i n ­ t o t h e f i e l d o f l i f e by s t u d y i n g more t h a n one p r o t e i n a t a t i m e , w i l l soon face c r i t i c i s m from workers i n both f i e l d s : that o u r s y s t e m s a r e n o t s i m p l e enough t o a p p l y known l a w s o f a d s o r p t i o n , and t h a t t h e y a r e n o t complex enough t o m i m i c t h e b e h a v i o r o f t h e same p r o t e i n s i n p r e s e n c e o f b l o o d o r b l o o d p l a s m a . Most work p u b l i s h e d r e c e n t l y b y o t h e r s , some o f w h i c h i s i n c l u d e d i n t h i s

10.

VROMAN AND ADAMS

159

Why Plasma Proteins Interact

i s s u e , u s e s more s o p h i s t i c a t e d t o o l s a n d a n a l y s e s t h a n o u r s , a l l o w i n g a view o f i n c r e a s i n g l y submolecular d e t a i l and r e v e a l i n g more and more i n d i v i d u a l d i f f e r e n c e s i n r a t e a n d e x t e n t o f c o n f o r ­ m a t i o n changes upon a d s o r p t i o n and i n t e r a c t i o n . ONE

OR TWO PROTEINS ON TWO SURFACES

(SaPl, SbPl

and SaPl,

SbP2)

We f o u n d t h a t o n e s u r f a c e ( S a ) s u c h a s F e 2 0 3 p o w d e r w i l l a d h e r e t o f i b r i n o g e n t h a t i s adsorbed out o f a s o l u t i o n onto a second s u r f a c e (Sb) s u c h a s a g l a s s s l i d e . Fibrinogen adsorbed onto a f l a t surface e v e n c o a t s i t s e l f t o some d e g r e e w h e n t h e c o a t i n g p o w d e r a l s o h a d been coated w i t h e i t h e r f i b r i n o g e n o r another p r o t e i n . The powders we t e s t e d ( i r o n o x i d e s , c h r o m i u m o x i d e a n d u l t r a m a r i n e ) a d h e r e d m o s t to surfaces c a r r y i n g f i b r i n o g e n , l e s s t o those c a r r y i n g IgG and l e a s t t o those c a r r y i n g albumin, and t h i s a b i l i t y t o coat surfaces appeared t o be reduced by c o a t i n g the p a r t i c l e s w i t h a p r o t e i n . Though t h e r e i s a p o s s i b i l i t y t h a t the p r o t e i n a d s o r b e d o n one s u r f a c e "sees through" the p r o t e i n c o a t i n g o f the other s u r f a c e , i t seems more l i k e l y t h a t i t s e e s t h r o u g h h o l e s i n t h e i m p e r f e c t coat­ ing. H o l e s may a f f e c t s t u d i e s o f S a P l , S a P l i n t e r a c t i o n s ( 1 6 ) , a n d cause aggregation o f p a r t i c l e s w h i l e being coated (17). V e r y s i m p l e e x p e r i m e n t s a r e a b l e t o show t h e r a t h e r c o m p l e x e v e n t s o c c u r r i n g when a p r o t e i n i s e x p o s e d t o 2 s u r f a c e s a t o n c e . F o r e x a m p l e , when f i b r i n o g e n s o l u t i o n i s i n t r o d u c e d t o a g l a s s t e s t tube c o n t i n i n g an i r o n oxide suspension, the s u s p e n s i o n w i l l tend to aggregate andboth s i n g l e andaggregated p a r t i c l e s w i l l adhere t o the w a l l . U s i n g o u r n o t a t i o n s ( S a r e p r e s e n t i n g t h e p a r t i c l e s , Sb t h e t e s t t u b e w a l l , a n d P I t h e f i b r i n o g e n ) , we may a s s u m e t h e f o l ­ lowing i n t e r a c t i o n s take place. S a , S b , P I -> S a P l , S b P l , P I -> SaPISb (Sa a d h e r e s t o P I S b a n d S a P l a d h e r e s t o S b ) , S a P l S a ( p a r t i c l e s c l u m p ) -> SaPlSaPlSb

(clumps adhere t o p r o t e i n - c o a t e d

t e s t tube w a l l ,

PISb).

PLASMA AT I N T E R F A C E S As we e x p a n d o u r o b s e r v a t i o n s f r o m t h e b e h a v i o r o f a few p r o t e i n s t o t h a t o f p l a s m a , we may b e g i n t o f e e l j u s t i f i e d i n a s k i n g w h y t h e s y s t e m p e r f o r m s r a t h e r t h a n how i t d o e s . T h e q u e s t i o n "Why d o plasma p r o t e i n s i n t e r a c t a t i n t e r f a c e s ? " can t h e n be i n t e r p r e t e d t o mean: " w h a t a s p e c t s o f t h e b e h a v i o r a n d i n t e r a c t i o n s among p u r i f i e d plasma p r o t e i n s can be seen a s w e l l i n t h e i r n a t u r a l h a b i t a t - t h e plasma -, a n d can t h e s e a s p e c t s be ' e x p l a i n e d ' a s b e i n g b e n e f i c i a l t o o u r s u r v i v a l ? " What t h u s f a r h a d a p p e a r e d a s s e n s e l e s s l y com­ p l e x b e h a v i o r o f p u r i f i e d p r o t e i n s a t i n t e r f a c e s may b e c o m e m o r e r e a s o n a b l e i n t h e c o n t e x t o f many p l a s m a p r o t e i n s i n t e r a c t i n g a t t h e m o t t l e d s u r f a c e s o f c e l l s i n a way t h a t w i l l a l l o w the s u r v i v a l of t h e i r host. M e a n w h i l e , we w i l l d i s c o v e r t h a t p u r i f i e d p r o t e i n s behave u n l i k e t h e i r s i b b l i n g s i n v i v o and that i n the eyes o f o u r plasma a p u r i f i e d p r o t e i n adsorbed out o f an a r t i f i c i a l s o l u t i o n w i l l n o t l o o k l i k e a f i l m o f t h e same p r o t e i n d e p o s i t e d b y t h e plasma i t s e l f .

PROTEINS AT INTERFACES

160 a)

P l a s m a a t one i n t e r f a c e .

Our own s t u d i e s o f human c i t r a t e d i n t a c t p l a s m a a t a c t i v a t i n g surfaces ( g l a s s , anodized tantalum, o x i d i z e d s i l i c o n ) r e s u l t e d i n the f o l l o w i n g f i n d i n g s . I n t h e e l l i p s o m e t e r , p l a s m a e v e n when d i l u t e d a b o u t 1 5 0 - f o l d , deposits immunologically i d e n t i f i a b l e fibrinogen but the f i l m loses i t s a b i l i t y t o adsorb antibody t o f i b r i n o g e n w i t h i n minutes under these c o n d i t i o n s . The l o s s i s p r o b a b l y n o t caused by t h e p l a s m a ' s p r o t e o l y t i c a c t i v i t y ( 1 8 ) a n d o c c u r s m o r e s l o w l y a t 10C t h a n a t 37C ( 1 9 ) . A t room t e m p e r a t u r e , u n d i l u t e d p l a s m a d e p o s i t s f i b r i n ­ o g e n w i t h i n a b o u t 2 s e c a n d t h e l o s s o c c u r s w i t h i n 30 s e c . M o r e r e c e n t l y , we f o u n d t h a t t h e f i b r i n o g e n i s r e p l a c e d b y h i g h m o l e c u l a r w e i g h t k i n i n o g e n (HMK) ( 2 0 , 2 1 ) . S t u d i e s w i t h r a d i ­ o l a b e l e d f i b r i n o g e n rather than w i t h a n t i b o d i e s t o f i b r i n o g e n r e ­ c e n t l y c o n f i r m e d t h a t plasma d e p o s i t s f i b r i n o g e n and t h e n removes i t ( 2 2 , 2 3 ) . We f o u n d t h e e v e n t d o e s n o t o c c u r o n v a r i o u s h y d r o ­ phobic s u r f a c e s : o t h e r s found i t d i d ( 2 4 ) . These experiments imply t h a t f i b r i n o g e n , a p r o t e i n present a t a c o n c e n t r a t i o n o f a b o u t 2 t o 3 mg p e r m l p l a s m a , i s d e p o s i t e d a n d t h e n r e p l a c e d b y a p r o t e i n (HMK) p r e s e n t a t a c o n c e n t r a t i o n about 2 orders o f magnitude l e s s . The p o s s i b l e s i g n i f i c a n c e o f t r a c e p r o t e i n s and t h e i r i n a b i l i t y t o cover o r d i s p l a c e c o a t i n g s o f r e l ­ a t i v e l y abundant p r o t e i n s i n narrow spaces i s d i s c u s s e d below. b)

P l a s m a between two s u r f a c e s . In spaces between a c t i v a t i n g s u r f a c e s t h a t a r e l e s s than about 20 m i c r o n s b u t m o r e t h a n a b o u t 3 m i c r o n s a p a r t , n o r m a l i n t a c t p l a s m a w i l l s t i l l c o n t a i n enough f i b r i n o g e n t o c r e a t e a c o n f l u e n t c a r p e t , b u t w i l l l a c k t h e c o n c e n t r a t i o n o f HMK p e r u n i t o f s u r f a c e a r e a t o displace this fibrinogen film. A s a r e s u l t , t h e p l a s m a when i n ­ j e c t e d between a f l a t a c t i v a t i n g s u r f a c e and a convex l e n s r e s t i n g b e l l y - d o w n upon t h e s u r f a c e w i l l l e a v e a d i s k o f f i b r i n o g e n where t h e p l a s m a o c c u p i e s a s p a c e o f a b o u t 3 t o 20 uM w i d e ( 2 5 ) . Dilu­ t i o n o f plasma causes i t t o leave a correspondingly l a r g e r d i s c of f i b r i n o g e n ( r e q u i r i n g a t h i c k e r l a y e r o f plasma t o c o n t a i n enough HMK p e r s u r f a c e a r e a ) w i t h a c e n t r a l h o l e t h a t c o n t a i n s o t h e r p r o ­ teins (26). M o r e d e t a i l e d s t u d i e s ( u s i n g l e n s e s o f a b o u t 147mm r a d i u s o f curvature) indicated that a s e tof concentric rings of proteins i s l e f t by plasma under these c o n d i t i o n s . D i l u t e d t o a b o u t .02 t o .01% i t w i l l l e a v e a l b u m i n c e n t r a l l y , s u r r o u n d e d by i m m u n o g l o b u l i n s ( I g G ) : a t a b o u t 1%, i t w i l l l e a v e a c e n t r a l d i s k o f I g G s u r r o u n d e d by f i b r o n e c t i n a n d f i b r i n o g e n , w h i l e a t a b o u t 2 0 % , i t w i l l l e a v e a s o l i d d i s c o f f i b r i n g o e n w i t h a c e n t r a l h o l e c o n t a i n i n g IgG s u r ­ rounded by a f i n e l i n e o f f i b r o n e c t i n ( 1 1 ) . c)

Plasma a t a p r o t e i n - c o a t e d i n t e r f a c e An o v e r v i e w o f o u r d a t a o n t h e e f f e c t o f p l a s m a o n p r e - a d s o r b e d f i b r i n o g e n ( e . g . 1 4 , 1 5 , 28) shows i n t a c t r a t h e r t h a n a c t i v a t e d plasma i s a b l e t o d i s p l a c e preadsorbed f i b r i n o g e n , b u t under c e r t a i n c o n d i t i o n s (degree o f p a c k i n g ? ) p r e - a d s o r b e d f i b r i n o g e n i s removed more s l o w l y t h a n t h e f i b r i n o g e n t h a t h a d b e e n d e p o s i t e d by t h e plasma i t s e l f . M o s t r e m a r k a b l e w e r e t h e i n t e r a c t i o n s we f o u n d o c c u r r i n g w h e n p l a s m a came i n c o n t a c t w i t h I g G p r e a d s o r b e d o n t o a w e t t a b l e ( o x i -

10.

VROMAN AND ADAMS

Why Plasma Proteins Interact

161

d i z e d s i l i c o n c r y s t a l ) s u r f a c e i n t h e e l l i p s o m e t e r . The plasma d e ­ p o s i t e d a l a y e r about a s o p t i c a l l y t h i c k a s was t h e o r i g i n a l I g G f i l m ; t h e n , i f t h e p l a s m a was i n t a c t , i t w o u l d remove more t h a n t h e amount i t h a d d e p o s i t e d ( 1 5 ) . The m a t t e r d e p o s i t e d was n o t removed i f t h e plasma had been a c t i v a t e d , and c o u l d n o t be d i s t i n g u i s h e d i m m u n o l o g i c a l l y f r o m t h e u n d e r l y i n g I g G . I n r e t r o s p e c t , we b e l i e v e t h e e v e n t may b e r e l a t e d t o t h e d e p o s i t i o n o f I g G o n t o p o f I g G t h a t we o b s e r v e d i n o u r l e n s - o n - s l i d e e x p e r i m e n t s d e s c r i b e d a b o v e : i n p r e s e n c e o f s u f f i c i e n t I g G , i t removed i t s e l f . This would n o t e x ­ p l a i n why a c t i v a t e d p l a s m a w a s u n a b l e t o r e m o v e i t s own d e p o s i t f r o m the IgG s u b s t r a t e . d.

More complex systems i n v o l v i n g plasma When c o n t a c t o f p l a s m a i s i n t e r r u p t e d a f t e r i t h a s depos­ i t e d f i b r i n o g e n b u t b e f o r e i t r e p l a c e d t h e f i b r i n o g e n w i t h HMK, a n d the s u r f a c e i s then coated w i t h a metal o x i d e (one o f t h e i r o n o x i d e s , o r chromium o x i d e ) powder, subsequent re-exposure t o i n t a c t plasma w i l l cause t h e oxide t obe l i f t e d o f f wherever i t had been deposited on t h e f i b r i n o g e n f i l m . T h i s l i f t - o f f c a n s e r v e t o demon­ s t r a t e displacement o f one p r o t e i n by another as f o l l o w s . I n t a c t plasma i s i n j e c t e d between l e n s and s l i d e , incubated andr i n s e do f f as d e s c r i b e d e a r l i e r . A t t h i s p o i n t , t h e e n t i r e s l i d e w i l l have b e e n e x p o s e d t o p l a s m a u n d e r v a r i o u s c o n d i t i o n s . Where t h e p l a s m a had r e s i d e d i n t h e p e r i p h e r a l (wide) a r e a under t h e l e n s , t h e r e w i l l b e HMK. C e n t r a l l y ( i n t h e n a r r o w a r e a ) , a s w e l l a s w h e r e c o n t a c t was b r i e f ( d u r i n g t h e r i n s e , b e y o n d t h e a r e a o f r e s i d e n c e a n d i n t h e r e f i l l a b l e " s c r a t c h " l e f t by the lens w h i l e s l i d i n g o f f ) , f i b r i n o g e n w i l l be present. Such a s l i d e w i l l c o a t i t s e l f e n t i r e l y when e x ­ posed t o a suspension o f t h e metal oxide. Subsequent exposure o f the e n t i r e coated s l i d e t o plasma a s d e s c r i b e d above w i l l cause r e ­ moval o f o x i d e where i t h a d r e s i d e d on f i b r i n o g e n b u t n o t where i t h a d r e s i d e d o n HMK. A s a r e s u l t , o n l y a r i n g o f o x i d e r e m a i n s , c o r r e s p o n d i n g t o t h e l o c a t i o n o f HMK t h a t h a d b e e n d e p o s i t e d b y t h e o r i g i n a l ( i n j e c t e d ) plasma. P l a s m a l a c k i n g k i n i n o g e n s was u n a b l e t o remove t h e o x i d e ( 2 9 ) . e.

Plasma i n f l o w between s u r f a c e s When a 1 % s o l u t i o n o f n o r m a l i n t a c t p l a s m a i n V e r o n a l b u f f e r was i n j e c t e d b e t w e e n a n a n o d i z e d t a n t a l u m - s p u t t e r e d s l i d e a n d a c o n v e x l e n s o f a b o u t 2000mm r a d i u s o f c u r v a t u r e , t h e p l a s m a l e f t a teardrop-shaped r i n g o f albumin on t h e s l i d e , i t s " t a i l " p o i n t i n g away f r o m t h e s i t e o f i n j e c t i o n ( 2 6 ) . I na stagnation point flow chamber p l a s m a c r e a t e d t h e f o l l o w i n g p a t t e r n . I n t h e narrow areas around t h e metal t i p s t h a t supported t h e cover s l i p , and along l i n e s ( " t a i l s " ) p o i n t i n g t o t h e p e r i p h e r y o f t h e chamber t h u s i n d i c a t i n g the d i r e c t i o n o f f l o w , u n d i l u t e d i n t a c t plasma took longer than i t d i d e l s e w h e r e t o d e p o s i t f i b r i n o g e n a n d t h e n t o o k l o n g e r (more t h a n 5 m i n ) t o remove i t ( 2 7 ) . Under i d e n t i c a l c o n d i t i o n s , h e p a r i n i z e d b l o o d d e p o s i t e d p l a t e l e t s where plasma would l e a v e f i b r i n o g e n . WONDERING HOW AND WHY P R O T E I N S I N PLASMA AT SURFACES INTERACT I f o u r o b s e r v a t i o n s a r e c o r r e c t , plasma d e p o s i t s a sequence o f pro­ t e i n s , t h e more abundant b e i n g a d s o r b e d f i r s t a n d t h e n b e i n g r e -

162

PROTEINS AT INTERFACES

p l a c e d by l e s s a b u n d a n t o n e s - a t l e a s t o n s u r f a c e s t h a t c a n a c t i ­ vate c l o t t i n g . A t t h e h i g h e s t d i l u t i o n s t e s t e d (.05 t o . 1 % ) , n o r m a l p l a s m a a p p e a r s t o d e p o s i t a l b u m i n f i r s t , and s l o w l y r e p l a c e s i t w i t h immunoglobulins (IgG). We s u g g e s t t h a t i n u n d i l u t e d p l a s m a t o o , a l b u m i n w o u l d be d e p o s i t e d f i r s t , t o be r e p l a c e d by I g G , w h i c h i s r e p l a c e d by f i b r i n o g e n and f i b r o n e c t i n , a l l w i t h i n a f e w s e c o n d s : and f i n a l l y , t h e l a t t e r a r e r e p l a c e d by HMK and f a c t o r X I I i n a m e a s u r a b l e amount o f t i m e . Thus, the behavior of a very complex m i x t u r e s u c h as p l a s m a d i f f e r s m a r k e d l y f r o m t h a t d e s c r i b e d f o r more simple mixtures (31). On t h i s r a t h e r n a r r o w b a s i s o f t h e 4 t o 6 p r o t e i n s s t u d i e d s o f a r , we c a n b u i l d t h e h y p o t h e s i s t h a t t h e r e i s a c o r r e l a t i o n b e t w e e n t h e c o n c e n t r a t i o n o f e a c h p r o t e i n i n t h e p l a s m a and i t s r a t e s o f b o t h a d s o r p t i o n and d e s o r p t i o n . Two p o s s i b l e c a u s e s o f t h i s c o r r e ­ l a t i o n can t h e n be considered. a) T h e r e i s an i n v e r s e c o r r e l a t i o n b e t w e e n t h e n o r m a l l y o c c u r r i n g c o n c e n t r a t i o n s o f p l a s m a p r o t e i n s and t h e i r d e s o r p t i o n constants. T h i s w o u l d mean o u r p r o t e i n s e v o l v e d i n s u c h a way t h a t t h e r a r e ones would s t i c k l a t e s t but l o n g e s t : i t would imply t h a t t h e r e i s some p u r p o s e o f t h i s d i c t a t e d s e q u e n c e t o t h e s u r v i v a l o f t h e h o s t . b ) I n s t e a d , t h e r e may be a s i n g l e m e c h a n i s m t h a t c a n n o t h e l p b u t l i n k each p r o t e i n ' s c o n c e n t r a t i o n w i t h i t s r a t e s of a d s o r p t i o n and d e s o r p t i o n , e . g . b y means o f two r u l e s : 1) E a c h a d s o r b e d p r o t e i n m o l e c u l e c a n o n l y be r e m o v e d b y one o r m o r e m o l e c u l e s o f t h e same s p e c i e s p r e s e n t i n t h e b u l k s o l u t i o n , perhaps b r i e f l y forming a dimer or l a r g e r aggregate w i t h the ad­ s o r b e d mate a f t e r w h i c h the p a i r or complex i s d e s o r b e d . This m o d e l w o u l d be s u g g e s t e d by o u r e x p e r i m e n t s on p r e s u m a b l y p u r e p r o ­ t e i n s f o r m i n g t h i c k r i n g s b e t w e e n l e n s and s l i d e , as d e s c r i b e d ( u n d e r "one p r o t e i n o n two i d e n t i c a l s u r f a c e s " ) . 2) The l o n g e r a p r o t e i n m o l e c u l e r e s i d e s o n a s u r f a c e , t h e s t r o n g e r i t i s bound and t h e more e n e r g y ( e . g . c o l l i s i o n s o r t i m e s p e n t w i t h a mate) i s r e q u i r e d f o r d e s o r p t i o n . We h a v e w r i t t e n a s i m p l e home c o m p u t e r p r o g r a m i n c o r p o r a t i n g t h e s e 2 r u l e s , so t h a t a t more o r l e s s n o r m a l c o n c e n t r a t i o n s o f a l b u m i n , I g G , f i b r i n o g e n , HMK a n d f a c t o r X I I t h e s e p r o t e i n s w i l l d i s p l a c e each other i n the sequence found e x p e r i m e n t a l l y . The pro­ gram d i s p l a y s the p r o t e i n s as i f g r a d u a l l y c o l l a p s i n g w i t h i n c r e a s e d t i m e o f r e s i d e n c e , a n d r e c o v e r i n g w h e n h i t and j o i n e d w i t h a m a t e u n t i l the p a i r i s desorbed. T h i s model r e p r e s e n t s the s i m p l e s t of p o s s i b l e s i t u a t i o n s : p l a s m a on a u n i f o r m , f l a t s u r f a c e w i t h m i n i m a l flow. I f p l a s m a d i l u t i o n , n a r r o w s p a c e s and l e s s " a c t i v a t i n g " (more a p o l a r ? ) s u r f a c e s a l l d e l a y t h e s e q u e n c e o f p r o t e i n i n t e r a c ­ t i o n s a t t h e i n t e r f a c e , t h e n t h e s e e v e n t s w i l l be l e s s s y n c h r o n i z e d on p h y s i c a l l y r o u g h and c h e m i c a l l y n o n - u n i f o r m d e v i c e s e v e n when i n t r o d u c e d r a p i d l y t o b l o o d , and e v e n i f t h e 2 s i m p l e r u l e s g i v e n above were the o n l y ones g o v e r n i n g these i n t e r a c t i o n s . I t a p p e a r s m o s t l i k e l y t h a t t h e r e l a t i o n s h i p we p r e s u m e d t o e x i s t between the p h y s i o l o g i c a l c o n c e n t r a t i o n s of p r o t e i n s i n our p l a s m a and t h e i r s u r f a c e p r o p e r t i e s does n o t h o l d t r u e f o r most o f t h e p r o t e i n s we h a v e n o t y e t s t u d i e d . The f a c t t h a t p l a s m a i n j e c t e d b e t w e e n a l e n s and a s l i d e l e a v e s c o n c e n t r i c r i n g s o f a l l p r o t e i n s we h a v e l o o k e d f o r - e v e n i n c l u d i n g t r a c e s o f c o m p l e m e n t f a c t o r s , p l a s m i n o g e n and p r e a l b u m i n ( u n p u b l i s h e d f i n d i n g s ) - s u g g e s t s t h a t

10.

VROMAN AND ADAMS

Why Plasma Proteins Interact

163

many p r o t e i n s we h a v e n o t y e t l o o k e d f o r a r e a l s o d e p o s i t e d , i n t h e i r own t i m e , c o n d i t i o n s o f f l o w a n d m i c r o m e t e r s o f s p a c e b e t w e e n interfaces. The p h y s i o l o g i c a l s i g n i f i c a n c e o f t h e i r presence a t t h e i n t e r f a c e w i l l l i e i n t h e i r t i m e o f a r r i v a l : i t may c o i n c i d e w i t h the a r r i v a l o f a c e l l c a r r y i n g r e c e p t o r s f o r t h a t p r o t e i n . The adsorbed p r o t e i n m o l e c u l e , l i k e a word o f t e x t , w i l l then be s t r e s s e d by the c e l l and the c o n t e x t o f the t e x t w i l l change. An i n c r e a s e d l y c o m p l e x s c e n e r y w i l l grow o u t o f more o r l e s s s y n c h r o n ­ i z e d e v e n t s t h a t o c c u r upon i n t r o d u c t i o n o f a u n i f o r m but rough s u r f a c e i n t o the blood. T h i s g r o w t h c a n b e d e p i c t e d ( f i g . 1) a s i f p r o g r e s s i n g from near t o f a r d i s t a n c e , w i t h i t s d i s t a n t complex­ i t y o f c e l l behavior and f i b r i n formation m e r c i f u l l y b l u r r e d by p e r s p e c t i v e and environmental haze.

F i g u r e 1. A d r a w i n g s h o w i n g e v e n t s t h a t may o c c u r w h e n b l o o d comes i n c o n t a c t w i t h a r o u g h , a c t i v a t i n g s u r f a c e . T i m e i s shown a s i f p r o g r e s s i n g f r o m n e a r e s t t o d i s t a n t s c e n e r y . A l b u m i n (drawn egg-shaped) b e g i n s t o be d e p o s i t e d i n the most open a r e a s , then a l s o i n the narrow v a l l e y s . I t i s followed by i m m u n o g l o b u l i n s (IgG) (drawn Y - s h a p e d ) . On o p e n a r e a s w h e r e I g G has r e p l a c e d a l b u m i n , g r a n u l o c y t e s a d h e r e . F a r t h e r away, where IgG i s d i s p l a c e d b y f i b r o n e c t i n (drawn a s a n a r r o w band o f f a t h o o k s ) , m o n o c y t e s a d h e r e , w h i l e more d i s t a n t l y f i b r i n o g e n h a s d i s p l a c e d I g G , p l a t e l e t s become a t t a c h e d a n d b e g i n t o l i b e r a t e their products. On t h e f a r m o u n t a i n p e a k s , h i g h m o l e c u l a r w e i g h t k i n i n o g e n has d i s p l a c e d f i b r i n o g e n and i n t e r a c t s w i t h o t h e r f a c t o r s and w i t h p l a t e l e t p r o d u c t s t o f o r m s t r a n d s o f p l a s m a blown f i b r i n .

164

PROTEINS AT INTERFACES

U n f o r t u n a t e l y , i t i s t h i s b l i s s f u l haze t h a t w i l l keep us from s e e i n g t h e d e t a i l s we need f o r u n d e r s t a n d i n g the beauty o f t h i s scenery.

Literature Cited 1. Vroman, L. Ph.D. Thesis, Rijksuniversiteit Utrecht, Netherlands, 1958. 2. Vroman, L. Thrombos. Diathes. Haemorrh. 1964, 10, 455-493. 3. Vroman, L. Nature 1962, 196,476-477. 4. Adams, A.L.; Fischer, G.C.; Vroman, L. J. Colloid Interface Sci. 1978, 65, 468-478. 5. Vroman, L; Kanor, S.; Adams, A.L. Rev. Sci. Instrum. 1968, 39, 278-279. 6. Vroman, L.; Adams, A.L.; Klings, M.; Fischer, G.C. DCIEM Conf. Ρroc.#73-CP-960,Downsview, Ont., 1973, 49-70. 7. Copley, A.L. Ann. New York Acad. Sci. 1983, 416, 377-395. 8. Brash, J.; Davidson, V.J. Thromb. Res. 1981, 9, 249-259. 9. Bohnert, J.L.; Horbett, T. J. Colloid Interface Sci. 1986, 111, 363-377. 10. Kudryk, B.J.; Vroman, L. To be published. 11. Vroman, L; Adams, A.L. J. Colloid Interface Sci. 1986, 111, 391-402. 12. Brash, J.L; Uniyal, S. Plastics Med. Surg. 1979, 3, 29-1-29-7. 13. Jennissen, H.P. J. Colloid Interface Sci. 1986, 111, 570-577. 14. Vroman, L . ; Adams, A.L; Klings, M. Feder. Proc. 1971, 30, 1494-1502. 15. Vroman, L.; Adams, A.L.; Klings, M.; Fischer, G.C. Adv. Chem. Series 1975, 145, 255-289. 16. Klein, J. J. Colloid Interface Sci. 1986, 111, 305-313. 17. Silberberg, A. J. Colloid Interface Sci. 1986, 111, 486-495. 18. Vroman, L.; Adams, A.L. Thromb. Diathes. Haemorrh. 1967, 18, 510-524. 19. Vroman, L.; Adams, A.L. J. Biomed. Mater. Res. 1969, 3, 43-67. 20. Vroman, L.; Adams, A.L.; Fischer, G.C.; Munoz, P.C. Blood 1980, 55, 156-159. 21. Schmaier, A.H.; Silver, L . ; Adams, A.L.; Fischer, G.C.; Munoz, P.C.; Vroman, L. Thromb. Res. 1983, 33, 51-67. 22. Brash, J.L.; ten Hove, P. Thromb. Haemostas. 1984, 51, 326330. 23. Horbett, T.A. Thromb. Haemostas. 1984, 51, 174-181. 24. Horbett, T.A.; Cheng, C.M.; Ratner, B.D.; Hoffman, A.S.; Hanson, S.R. J. Biomed. Mater. Res. 1986, 20, 739-772. 25. Adams, A.L; Fischer, G.C.; Munoz, P.C.; Vroman, L. J. Biomed. Mater. Res. 1984, 18, 643-654. 26. Vroman, L.; Adams, A.L.; Fischer, G.C.; Munoz, P.C; Stanford, M. Adv. Chem. Series 1982, 199, 265-276. 27. Stanford, M.F.; Munoz, P.C.; Vroman, L. Ann. N.Y. Acad. Sci. 1983, 416, 504-512. 28. Vroman, L. Bull. N.Y. Acad. Med. 1976, 48, 302-312. 29. Vroman, L.; Adams, A.L; Brakman, M. Haemostasis 1985, 15, 300-303. 30. Blodgett, K.B.; Langmuir, I. Phys. Rev. 1937, 51, 964. 31. Horbett, T.A. Personal communication, 1986. RECEIVED January 3, 1987