6 Chemical Reactions in Proteins Irradiated at
Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
Subfreezing Temperatures IRWIN A. TAUB and JOHN W. HALLIDAY Food Engineering Laboratory, U. S. Army Natick Research and Development Command, Natick, MA 01760 MICHAEL D. SEVILLA Department of Chemistry, Oakland University, Rochester, MI 48063
The course of chemical reactions in irradiated proteins is determined by factors that influence the reactivity of the primary free radicals, the kind of protein radicals formed, and the decay of these protein radicals to stable products. To understand these reactions, basic radiation chemical concepts are considered, chemical changes in several repre sentative proteins irradiated under different conditions are compared, and results from optical and electron spin reso nance studies on model systems are presented. Among the reactions described are those involving cation, anion, and α-carbon radicals of amino acids and peptides. Analogous reactions common to proteins are then summarized. These mechanistic considerations have important implications for the irradiation of hydrated muscle proteins at —40°C and for radiation sterilization of foods.
r
T he n
c h e m i c a l reactions
occurring i n a protein system exposed
i o n z i n g r a d i a t i o n a r e affected b y s e v e r a l factors.
to
T h e nature of the
p r o t e i n , i t s state o f h y d r a t i o n , t h e p h a s e a n d t e m p e r a t u r e o f t h e s y s t e m , a n d t h e presence
of r e a c t i v e c o m p o u n d s
are particularly important
factors. P r o t e i n s c o n t a i n i n g d i s u l f i d e g r o u p s , m e t a l ions, o r l a r g e p r o p o r tions of aromatic or heterocyclic amino acids w i l l undergo
reactions
d i f f e r i n g f r o m those w i t h o u t these constituents. P r o t e i n s t h a t a r e h y d r a t e d 0-8412-0484-5J79J33-180-109$8.00J0 © 1979 American Chemical Society Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
110
PROTEINS A T L O W T E M P E R A T U R E S
u n d e r g o different c h e m i c a l a n d p h y s i c a l processes t h a n p r o t e i n s t h a t are d e s i c c a t e d . M o s t i m p o r t a n t , h o w e v e r , is t h e p h y s i c a l state: fluid solutions a r e m u c h m o r e s u s c e p t i b l e to r a d i a t i o n i n d u c e d changes
than frozen
aqueous systems. T e m p e r a t u r e , p a r t i c u l a r l y as i t affects t h e v i s c o s i t y of t h e m e d i u m , c a n c h a n g e the c h e m i c a l consequences m a r k e d l y . Solutes i n these systems, s u c h as o x y g e n o r m e t a l ions, c a n alter t h e course of t h e reactions as w e l l .
Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
I r r a d i a t i o n i n i t i a t e s a series of reactions as a c o n s e q u e n c e of electrons b e i n g ejected a n d b o n d s i n t h e p r o t e i n b e i n g r u p t u r e d . V a r i o u s i o n i c and
free r a d i c a l i n t e r m e d i a t e s are g e n e r a t e d
that ultimately become
s t a b i l i z e d b y the f o r m a t i o n of c o v a l e n t l y b o n d e d c o m p o u n d s .
Reactions
of t h e p r i m a r y r a d i c a l s c a n generate other r a d i c a l s a n d these i n t u r n c o m b i n e to f o r m the final p r o d u c t s . A n y factor t h a t affects t h e rates a n d routes of these i n t e r m e d i a t e s w i l l i n f l u e n c e w h i c h p r o d u c t s a r e f o r m e d . F o r t h e p r o t e i n s of interest h e r e , t h e final effects m i g h t b e o b s e r v a b l e as v a l e n c e c h a n g e , d e a m i n a t i o n , d e c a r b o x y l a t i o n , d i s u l f i d e loss or f o r m a t i o n , c h a i n d e g r a d a t i o n or a g g r e g a t i o n , or m o d i f i c a t i o n of i n d i v i d u a l a m i n o a c i d moieties. An
u n d e r s t a n d i n g of these reactions a n d h o w
t h e y are
affected,
p a r t i c u l a r l y b y i r r a d i a t i o n at s u b f r e e z i n g t e m p e r a t u r e s , c a n b e
achieved
b y considering certain basic concepts a n d major experimental observations. C o n s e q u e n t l y , t h e basic r a d i a t i o n c h e m i c a l concepts, t h e t e c h n i q u e s u s e d to d i s c e r n i n t e r m e d i a t e species a n d t h e i r e v e n t u a l p r o d u c t s ,
the
major
the
findings
o n s u c h p r o t e i n s as m y o g l o b i n
and myosin, and
g e n e r a l i z e d reactions of p r i m a r y a n d s e c o n d a r y r a d i c a l s as g l e a n e d f r o m studies o n a m i n o a c i d a n d p e p t i d e s i m p l i c a t i o n s of these f i n d i n g s , t h o u g h
w i l l be
considered
herein.
The
g e n e r a l l y r e l e v a n t to r a d i a t i o n
b i o l o g y , r e d o x processes i n b i o c h e m i s t r y , a n d p r o t e i n d y n a m i c s , w i l l b e d i s c u s s e d i n r e l a t i o n to l o w t e m p e r a t u r e r a d i a t i o n s t e r i l i z a t i o n of h i g h p r o t e i n foods. Basic
Radiation
Chemical
Concepts
Energy Deposition and Free Radical Distribution.
T h e interaction
of p e n e t r a t i n g g a m m a r a y s o r h i g h e n e r g y electrons w i t h the
valence
shells of the atoms c o m p r i s i n g t h e m o l e c u l e s of t h e c o n d e n s e d
medium
results i n e n e r g y b e i n g d e p o s i t e d i n the m e d i u m .
T h e s e electrons
can
b e p r o d u c e d d i r e c t l y i n m a c h i n e sources s u c h as a l i n e a r accelerator or a V a n d e G r a a f f accelerator, a n d w o u l d h a v e energies t y p i c a l l y i n t h e r a n g e of 2 - 1 0 M e V . G a m m a r a y s , s u c h as those f r o m c o b a l t - 6 0 o r c e s i u m 137 sources, as a c o n s e q u e n c e of i n t e r a c t i n g v i a the C o m p t o n process produce
energetic
electrons
as w e l l .
Because
of its c h a r g e , i t is t h e
e l e c t r o n t h a t is p a r t i c u l a r l y e xective i n e x c i t a t i o n a n d i o n i z a t i o n processes.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Irradiated
111
Proteins
6.
TAUB E T A L .
By
successive i o n i z a t i o n acts, the p r i m a r y e l e c t r o n g r a d u a l l y b e c o m e s
degraded
i n energy a n d c o n c o m i t t a n t l y p r o d u c e s
also c a p a b l e of i o n i z i n g the m o l e c u l e s .
secondary
electrons,
U l t i m a t e l y , these p r i m a r y , sec-
o n d a r y , a n d t e r t i a r y , etc. electrons c a n n o l o n g e r cause i o n i z a t i o n s , a n d lose t h e i r r e m a i n i n g e n e r g y
v i a electronic, vibrational, a n d rotational
e x c i t a t i o n . A n e n e r g e t i c a l l y d e g r a d e d e l e c t r o n m i g h t b e d r a w n b a c k to the positive i o n formed u p o n ionization, m i g h t be t r a p p e d if the meDownloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
d i u m is p o l a r a n d b e c o m e s o l v a t e d , o r m i g h t react w i t h a n i m p u r i t y of h i g h e l e c t r o n affinity. S o m e of the e x c i t e d m o l e c u l e s f o r m e d d i r e c t l y o r produced
u p o n e l e c t r o n - p o s i t i v e i o n r e a c t i o n w i l l dissociate
into
free
radicals.
T h e o v e r a l l effect is the i n i t i a l f o r m a t i o n of ions a n d
free
r a d i c a l s n o n u n i f o r m l y d i s t r i b u t e d i n regions c a l l e d spurs a l o n g the t r a c k of the i o n i z i n g p a r t i c l e . T h e d i s t r i b u t i o n of these p r i m a r y species a n d t h e i r e v e n t u a l fate is d e t e r m i n e d b y the n a t u r e a n d state of the m e d i u m .
I f t h e v i s c o s i t y is
e x t r e m e l y h i g h as i n solids or glasses, t h e d i s t r i b u t i o n r e m a i n s n o n u n i f o r m a n d the reactions that o c c u r i n v o l v e species w i t h i n the same, or closely r e l a t e d , spur.
I f the v i s c o s i t y is l o w , s u c h as i n a
fluid
system, these
species t e n d to diffuse a p a r t a n d l e a d to a u n i f o r m d i s t r i b u t i o n t h r o u g h out t h e m e d i u m . I n this case, the reactions c o n f o r m to k i n e t i c l a w s f o r a h o m o g e n e o u s system. T h e y i e l d of a n y species f o r m e d as a d i r e c t c o n s e q u e n c e of
the
e n e r g y b e i n g a b s o r b e d b y t h e c o m p o n e n t m o l e c u l e s is g i v e n i n t e r m s of a G - v a l u e , w h i c h is defined as t h e n u m b e r of ions, free r a d i c a l s , or e x c i t e d m o l e c u l e s f o r m e d for every 100 e V of energy a b s o r b e d .
G-values
m a y also b e g i v e n for the stable p r o d u c t s t h a t are e v e n t u a l l y f o r m e d . F o r w a t e r , r a d i o l y s i s leads to t h e f o r m a -
Direct Effect on Water.
t i o n of species w i t h r a t h e r s p e c i a l features t h a t h a v e b e e n the subject of considerable
i n v e s t i g a t i o n (1,2,3).
E q u a t i o n 1 describes
the
overall
effect:
H
2
0 — ~ — >
(H 0 ) e 2
+
;
a q
-,OH-,H 0 ,H-,H ,H 0 +
3
2
2
2
(1)
T h e m o l e c u l a r i o n of w a t e r is s h o w n i n parenthesis b e c a u s e it r a p i d l y converts to O H - a n d H 0 . T h e s o l v a t e d e l e c t r o n (2), 3
+
c o r r e s p o n d i n g to
a n e l e c t r o n b o u n d to several w a t e r m o l e c u l e s i n a fluid system, is d e s i g n a t e d here as e ", b u t w i l l also be d e n o t e d as e ~ f o r a n e l e c t r o n b o u n d i n aq
other p o l a r m e d i a .
s
I t is h i g h l y m o b i l e , has a b r o a d , intense a b s o r p t i o n
s p e c t r u m w i t h a m a x i m u m at 720 n m , a n d is a p o w e r f u l r e d u c t a n t .
The
h y d r o x y l r a d i c a l , O H - , is also v e r y m o b i l e a n d is a s t r o n g o x i d a n t ; i t exhibits a w e a k a b s o r p t i o n i n the 240 n m r e g i o n .
T h e hydrogen atom,
H ·, is a r e d u c t a n t a n d exhibits o n l y a w e a k a b s o r p t i o n i n t h e u l t r a v i o l e t
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
112
PROTEINS A T L O W
TEMPERATURES
r e g i o n . A l l three r a d i c a l s h a v e b e e n d e t e c t e d a n d c h a r a c t e r i z e d b y v i r t u e of t h e i r e l e c t r o n s p i n resonance
( E S R ) spectra. E v i d e n c e f o r a n u n s o l -
v a t e d e l e c t r o n is extensive a n d is b a s e d o n c h e m i c a l a n d c o n d u c t o m e t r i c measurements, w h i c h w i l l be mentioned below.
G-values for the
e ", aQ
O H - , a n d H - u n i f o r m l y d i s t r i b u t e d i n w a t e r at r o o m t e m p e r a t u r e are 2.8, 2.7, a n d 0.55, r e s p e c t i v e l y ; G - v a l u e s f o r these same species i n i c e at — 5 ° C are a p p r o x i m a t e l y 0.3, 1.0, a n d 0.7, r e s p e c t i v e l y . Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
For
p r o t e i n s o r o t h e r o r g a n i c constituents, r a d i o l y s i s p r e s u m a b l y
leads to analogous species, a l t h o u g h these h a v e not b e e n
unequivocably
e s t a b l i s h e d . E q u a t i o n 2 describes the o v e r a l l effect:
PH
( P H ) , e", Ρ ·, P H +
2
+
, Η •, H , P 2
(2)
2
T h e g e n e r a l i z e d p r o t e i n m o l e c u l e is s h o w n as P H . T h e e" is left u n s p e c i fied; its fate w o u l d d e p e n d o n the m e d i u m a n d other c o n d i t i o n s . A s w i l l b e d e s c r i b e d l a t e r , there are s e v e r a l free r a d i c a l s t h a t h a v e b e e n d e t e c t e d , b u t t h e g e n e r a l d e s i g n a t i o n P - is a l l t h a t is n e e d e d here. EfFect o f P h a s e , T e m p e r a t u r e , S o l u t e s , a n d D o s e o n t h e R a d i o l y s i s . S i n c e t h e p r i m a r y r a d i c a l species m u s t diffuse to other r a d i c a l species or m o l e c u l e s i n the system to transfer o r share electrons a n d b e c o m e stable, t h e phase a n d t e m p e r a t u r e , because t h e y affect v i s c o s i t y , d e t e r m i n e w h i c h reactions w i l l o c c u r .
T h o s e reactions i n v o l v i n g the p r i m a r y species
the m o l e c u l e s not d i r e c t l y affected species—secondary
and
b y t h e r a d i a t i o n g i v e rise to
new
r a d i c a l s — w h i c h are c o n s i d e r e d as b e i n g a n i n d i r e c t
c o n s e q u e n c e of t h e r a d i o l y s i s . I n fluid aqueous systems, e ", O H - , a n d aq
Η · r e a d i l y react w i t h e a c h o t h e r a n d w i t h solutes, e v e n those present at l o w concentrations impeded
by
(~
10"
4
the r i g i d i t y of
M).
I n f r o z e n systems, s u c h reactions are
the m e d i u m .
I n d i r e c t consequences
l i m i t e d to systems w i t h v e r y h i g h solute concentrations
1M)
are
a n d at
t e m p e r a t u r e s n e a r 0 ° C , b o t h factors c o n t r i b u t i n g to f o r m a t i o n of a m o r p h o u s or
fluid-like
regions.
Studies of the r e a c t i o n of e " w i t h v a r i o u s s
solutes i n p o l y c r y stalline systems at — 40 ° C h a v e s h o w n t h a t G - v a l u e s f o r p r o d u c t s are o n l y a b o u t 1 %
to 1 0 %
of t h e c o r r e s p o n d i n g
values
f o u n d f o r fluid systems ( 4 , 5 , 6 ) . W h e n c h l o r o a c e t i c a c i d w a s u s e d as a p r o b e f o r the electrons, the G - v a l u e f o r C I " f o r m a t i o n i n c r e a s e d a p p r o x i m a t e l y 0.03 to 0.8 as t h e c h l o r o a c e t i c
acid concentration
from was
i n c r e a s e d f r o m 10" M to 1 M . S i m i l a r l y , studies of reactions of O H · i n 2
p o l y c r y s t a l l i n e ice at — 4 0 ° C h a v e s h o w n t h a t t h i s species is e v e n m o r e r e s t r i c t e d t h a n e f i n its a b i l i t y to m i g r a t e a n d r e a c t ( 4 ) . m e n t s i n v o l v e d u s i n g f e r r o c y a n i d e as a p r o b e f o r Ο Η · . e s t i m a t e d that o n l y 4 %
of the a v a i l a b l e Ο Η ·
These experi I t has
can be scavenged
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
been using
6.
Irradiated
TAUB E T A L .
113
Proteins
0.5 M f e r r o c y a n i d e , t h e h i g h e s t p r a c t i c a l c o n c e n t r a t i o n o b t a i n a b l e . s e q u e n t l y , the o v e r a l l c h e m i c a l c h a n g e
Con
i n a f r o z e n or s o l i d system is
s i g n i f i c a n t l y r e d u c e d b y l i m i t i n g t h e i n d i r e c t f o r m a t i o n of o t h e r species. T h e course of p r i m a r y species reactions i n a fluid s y s t e m , w h i c h is d e p e n d e n t u p o n t h e rate constants f o r r e a c t i o n (see T a b l e I )
a n d the
c o n c e n t r a t i o n s of r e a c t i v e solutes, d e t e r m i n e s t h e n a t u r e of t h e i n d i r e c t effects.
T h e solutes c o u l d b e i n t r o d u c e d d i r e c t l y or c o u l d b e f o r m e d as a
Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
c o n s e q u e n c e of t h e r a d i o l y s i s . F o r systems i n w h i c h h o m o g e n e o u s k i n e t i c laws apply, the predominant
r e a c t i o n is d e t e r m i n e d
by
competition
p r i n c i p l e s : t h e r e a c t i o n i n v o l v i n g t h e h i g h e s t p r o d u c t of r a t e constant k times concentration predominates.
I f a r e a c t i v e p r o d u c t is f o r m e d i n t h e
r a d i o l y s i s w i t h a r e a s o n a b l y h i g h G - v a l u e , i t w i l l t e n d to c o m p e t e as t h e dose is i n c r e a s e d . Table I. Rate Constants for Reaction of Primary Water Radicals w i t h Some Amino Acids and Peptides in F l u i d Aqueous Solutions' k , M'
1
Amino
AddJPeptide
Glycine Glycylglycine Alanine Lysine Arginine Aspartic acid Histidine Phenylalanine Tryptophan Methionine Cysteine Cystine e
e' χ Χ Χ χ Χ Χ Χ Χ Χ χ Χ Χ
(pH)
1
OH-
aq
8.2 3.7 5.9 2 1.8 1 6 1.5 4.0 3.5 8.7 1.3
s
10 10 10 10 10 10 10 10 10* 10 10 10 6
8
6
7
8
7
7
8
7
9
1 0
(6.4) (6.4) (6.4) (7) (6) (7.3) (7) (6.8) (6.8) (6.0) (6.3) (6.1)
1.6 4.4 4.7 6.0 3.5 2.1 5.0 6.6 1.4 — — —
Χ χ Χ Χ Χ χ Χ Χ Χ
10 10 10 10 10 10 10 10 10
H(5.2) (5.2) (6) (2) (6.5-7.5) (6.8) (6-7)
7 8 7 8 9 7 9 9 1 0
(6.1)
9 2.6 2.9 1.6 4.9 2.9 2.5 8.0 2.3 — 4 8
Χ Χ Χ Χ Χ Χ Χ Χ Χ
10 10 10 10 10 10 10 10 10
(7)
4 6 5 6 6
(7) (7)
6
8
Χ 10 Χ 10
8 9
9 9
FromRefs.2,S,£2,50.
Major Pbysicochemical
and Analytical
Techniques
Techniques for Examining and Characterizing Irradiated Proteins. S e v e r a l t e c h n i q u e s h a v e b e e n e m p l o y e d to detect t h e presence of i n t e r m e d i a t e species i n t h e i r r a d i a t e d p r o t e i n o r t o c h a r a c t e r i z e t h e b r o u g h t a b o u t i n its s t r u c t u r e o r c o m p o s i t i o n .
changes
O p t i c a l techniques
have
b e e n u s e d b o t h f o r d e t e c t i n g i n t e r m e d i a t e s as w e l l as f o r d e t e r m i n i n g final
changes.
Because
o n l y species
w i t h u n p a i r e d electrons
can
be
d e t e c t e d b y E S R , this t e c h n i q u e has b e e n a p p l i e d f o r d e t e c t i n g i n t e r mediates
d i r e c t l y or, most r e c e n t l y , f o r d i s c e r n i n g t h e i r n a t u r e after
t r a p p i n g w i t h stable free r a d i c a l s ( 7 ) .
A m o n g the more standard bio-
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
114
PROTEINS A T L O W
TEMPERATURES
c h e m i c a l approaches for c h a r a c t e r i z i n g the p e r m a n e n t m o d i f i c a t i o n s i n t h e p r o t e i n are t h e e l e c t r o p h o r e t i c m e t h o d s , c h e m i c a l analyses of p r o d ucts or constituent moieties, a n d several s t r u c t u r e - r e l a t e d m e t h o d s . trophoresis, isoelectric focusing,
and chromatographic
Elec
separations
are
u s e f u l f o r d i s c e r n i n g changes d u e to loss or m o d i f i c a t i o n of moieties t h a t i n f l u e n c e size, shape, a n d c h a r g e o n t h e p r o t e i n . A m i n o a c i d analyses, S H g r o u p analysis, a n d d e t e r m i n a t i o n of a m i d e a n d f a t t y a c i d p r o d u c t s Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
p e r t a i n to s i m i l a r m o d i f i c a t i o n s .
Experiments involving enzymatic activ
i t y , s e d i m e n t a t i o n rates, a n d b i n d i n g of r a d i o a c t i v e labels also p e r t a i n to s t r u c t u r a l alterations or specific m o i e t y m o d i f i c a t i o n s . analysis of p e r m a n e n t changes
I n g e n e r a l , the
is r e l a t i v e l y i n s e n s i t i v e , a n d v e r y h i g h
doses, o f t e n i n t h e r a n g e of 3000 k G y ( 1 M r a d =
10 k G y ) , m u s t b e u s e d .
C o n s i d e r a b l y greater s e n s i t i v i t y is a v a i l a b l e a n d a m o r e d i r e c t u n d e r s t a n d i n g of the c h e m i s t r y is p o s s i b l e i f one uses the t e c h n i q u e s r e c e n t l y d e v e l o p e d for s t u d y i n g the i n t e r m e d i a t e s . Detection i r r a d i a t i n g (8) lived
of
Transient
intermediates
properties.
(Short-Lived)
By
Intermediates.
pulse
a system, i t is possible to detect t h e presence of short
The
and
to
technique
characterize involves
their structural and kinetic
the use
of
electron
accelerators
c a p a b l e of d e l i v e r i n g a h i g h dose to a system i n a t i m e t h a t is short c o m p a r e d to the l i f e t i m e of the species b e i n g s t u d i e d . T y p i c a l l y , s u c h m a c h i n e s d e l i v e r doses of a b o u t 200 G y ( 1 k r a d =
10 G y ) i n a square
w a v e p u l s e l a s t i n g a b o u t 1 Jxs. F o r systems i n w h i c h i n t e r m e d i a t e is f o r m e d w i t h a G - v a l u e of 3, t h e instantaneous c o n c e n t r a t i o n after t h e p u l s e is 6 χ
10'
5
M.
If the species
has a r e l a t i v e l y h i g h e x t i n c t i o n
coefficient ( ~ 1 0 M " c m ) , i t c a n b e m o n i t o r e d w i t h fast 3
metric techniques.
1
- 1
spectrophoto-
T h i s o p t i c a l a p p r o a c h has b e e n u s e d p r i m a r i l y f o r
aqueous solutions; b u t i t has also b e e n a p p l i e d to aqueous glasses
(9).
W h e r e the m a g n e t i c resonance p r o p e r t i e s of t h e r a d i c a l s d o not l e a d to b r o a d fines, E S R c a n also b e u s e d (10,11,12).
Provided a particular
species has a r e a s o n a b l y h i g h o r sufficiently different c o n d u c t i v i t y , electro c h e m i c a l d e t e c t i o n is e s p e c i a l l y effective f o r c h a r g e d i n t e r m e d i a t e s
(13).
A r e c e n t v a r i a t i o n o n these t e c h n i q u e s has b e e n d e s c r i b e d b y W a r m a n (14) , i n w h i c h microwave
devices
u n s o l v a t e d electrons i n ice.
A l t h o u g h not c o n s i d e r e d a p u l s e d o r fast
are u s e d to d e t e c t h i g h - m o b i l i t y
reaction approach, the technique developed (15) , involving continuous e s p e c i a l l y effective.
by Eiben and
Fessenden
irradiation a n d i n situ E S R detection,
is
W i t h this t e c h n i q u e , r a d i c a l s t h a t h a v e a t t a i n e d a
r e q u i s i t e steady-state c o n c e n t r a t i o n c a n b e e x a m i n e d , a n d a s u b s t a n t i a l catalogue of spectra f o r free r a d i c a l s i n fluid aqueous solutions has b e e n compiled. I n systems
of
h i g h v i s c o s i t y , t h e free r a d i c a l s of interest i n p r o t e i n r a d i o l y s i s c a n
be
Detection of Trapped or Stabilized Intermediates.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
6.
TAUB
Irradiated
E T AL.
115
Proteins
i m m o b i l i z e d a n d e x a m i n e d w i t h s t a n d a r d o p t i c a l or E S R t e c h n i q u e s . Transparent media must be used for examining the radicals optically a n d for g e n e r a t i n g t h e m p h o t o l y t i c a l l y ( 1 6 ) .
A q u e o u s glasses m a d e f r o m
h y d r o x i d e , p e r c h l o r a t e , or e t h a n e d i o l solutions are u s e d at l o w t e m p e r a tures (
2
Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
CH
L
2
0·
F o r t h e t r i p e p t i d e , P h e G l y G l y , i n w h i c h the c a t i o n is n o t
favorably
d i s p o s e d f o r c h a r g e transfer, o n l y t h e ττ-cation r a d i c a l of p h e n y l a l a n i n e is observed
( t h i s species w o u l d r e a d i l y h y d r o l y z e i n w a t e r to f o r m
the
O H - a d d u c t r a d i c a l of p h e n y l a l a n i n e ) . T h e s e results h a v e a d i r e c t b e a r i n g o n t h e reactions i n a n i r r a d i a t e d system. R a d i o l y t i c studies o n ices c o n t a i n i n g p e p t i d e s acids h a v e b e e n
conducted
recently
(51)
c a t i o n i c processes. ( E l e c t r o n s g e n e r a t e d
and N-acetylamino
that p r o v i d e
evidence
concurrently w i t h the
for
solute
cations p a r t i c i p a t e i n reactions d e s c r i b e d b e l o w , b u t those f o r m e d i n the i c e d o not c o n t r i b u t e t o t h e o b s e r v e d reactions. ) T h e a p p e a r a n c e of t h e d e c a r b o x y l a t e d species, t h e y i e l d of w h i c h d e p e n d s o n t h e n a t u r e of t h e c o m p o u n d , p r o v i d e s this e v i d e n c e . A t — 1 9 6 ° C , a p p r o x i m a t e l y 2 5 % jof t h e r a d i c a l s o b s e r v e d f o r N - a c e t y l a l a n i n e corresponds indicating that C 0
2
to
CH CONDCCH , 3
3
has b e e n lost. F o r the d i p e p t i d e G l y A l a , t h e d e c a r
b o x y l a t e d r a d i c a l is o b s e r v e d to b e e q u i v a l e n t i n y i e l d to t h e f r o m t h e e l e c t r o n r e a c t i o n , i n d i c a t i n g a n efficient m e c h a n i s m f o r
product decar
b o x y l a t i o n . T h e findings f o r other d i p e p t i d e s are v e r y s i m i l a r . C o n s i s t e n t w i t h the p h o t o l y t i c results, t h e extent of d e c a r b o x y l a t i o n is p H d e p e n d e n t , r e f l e c t i n g a n i n f l u e n c e of c h a r g e state o n the m e c h a n i s m . T h e s e c o m p e t i t i v e p a t h w a y s f o r r e a c t i o n of c a t i o n i c species
imply
t h a t s e v e r a l different r a d i c a l s c o u l d b e f o r m e d i n p r o t e i n s , d e p e n d i n g o n
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
6.
TAUB
E T AL.
Irradiated
127
Proteins
their structure a n d the conditions.
T h e e v o l u t i o n of C 0
2
t h a t has b e e n
o b s e r v e d c a n b e u n d e r s t o o d as a r i s i n g f r o m s u c h c a t i o n i c p r e c u r s o r s .
The
f o r m a t i o n of O H - a d d u c t s of p h e n y l a l a n i n e moieties a n d f o r m a t i o n o f t h e p h e n o x y l r a d i c a l s f r o m t y r o s i n e moieties m i g h t also r e s u l t f r o m
such
cations a n d n e e d to b e i n v e s t i g a t e d . O x i d a t i o n of t h e a m i n o a c i d moieties i n i r r a d i a t e d aqueous
systems
b y r e a c t i o n w i t h O H - is w e l l e s t a b l i s h e d f o r fluid systems, b u t i t is n o t Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
l i k e l y to b e e n c o u n t e r e d i n f r o z e n systems. OH-
B e i n g a strong oxidant, the
reacts b y e l e c t r o n transfer. I t also a d d s r e a d i l y to d o u b l e b o n d s
a n d abstracts H f r o m C — Η , r e a c t i o n r a t e constants.
Ν—Η,
s o l u t i o n has b e e n p u b l i s h e d ( 5 2 )
of rate constants f o r
aqueous
a n d a f e w r e p r e s e n t a t i v e values
a m i n o a c i d s are s h o w n i n T a b l e I . p r e d o m i n a n t sites f o r
and S — H bonds, but w i t h lower
A compendium
reaction i n amino
acids a n d peptides
w h i l e abstraction from
the peptide
backbone
is less
the
can
i n f e r r e d f r o m these v a l u e s , w h i c h i n d i c a t e t h a t t h e r i n g groups favored,
for
A s discussed b y S i m i c (53),
be are
likely.
H y d r o x y l a t i o n of the p h e n y l a l a n i n e r i n g also occurs as w a s f o u n d f o r t h e prototype reaction w i t h benzene
F o r m a t i o n of p h e n o x y l r a d i c a l
(54).
f o l l o w i n g O H - a d d i t i o n to t y r o s i n e s h o u l d b e s i m i l a r t o t h e m e c h a n i s m e s t a b l i s h e d for p h e n o l (55)
i n w h i c h e l i m i n a t i o n of w a t e r occurs as is
shown i n reaction 12:
—CHRCONHCHCONH— CH
2
OH (12)
CH
2
+
H 0 2
H o w e v e r , these a d d u c t f o r m a t i o n reactions a r e n o t e x p e c t e d to o c c u r w i t h m u c h efficiency
i n f r o z e n , h y d r a t e d p r o t e i n s , b e c a u s e of
the
m o b i l i t y of O H · i n t h e r i g i d m a t r i x .
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
limited
PROTEINS A T L O W
128
TEMPERATURES
F o r m a t i o n o f α-carbon r a d i c a l s e i t h e r f r o m c a t i o n d e c o m p o s i t i o n
or
t h r o u g h a b s t r a c t i o n of H b y O H - is c o n s i d e r e d h e r e b e c a u s e i t c a n b e c o n s t r u e d f o r m a l l y as loss of a n e l e c t r o n f o l l o w e d b y p r o t o n t r a n s f e r . I f t h e c a t i o n deprotonates f r o m t h e p e p t i d e c h a i n b y transfer t o of
components
h i g h p r o t o n affinity t h e n t h e α-carbon r a d i c a l is f o r m e d
directly.
A b s t r a c t i o n b y O H · i n fluid systems gives t h e same result. ( A b s t r a c t i o n of H b y H ·
is also p o s s i b l e i n b o t h fluid a n d f r o z e n
Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
systems. R a t e constants f o r H - w i t h a m i n o a c i d s are k n o w n (56,57)
and
the intermediates formed have been characterized ( 5 3 ) . ) Accept
Electron Acceptance: Reduction and A d d u c t Formation.
ance of electrons at specific sites o n a m i n o acids a n d p e p t i d e s d e p e n d s o n t h e i r r e a c t i v i t i e s a n d p r o d u c e s different c h e m i c a l consequences.
Among
t h e sites of p a r t i c u l a r i m p o r t a n c e a r e t h e t e r m i n a l a m i n o a n d c a r b o x y l g r o u p s , the r i n g g r o u p s , t h e p e p t i d e c a r b o n y l , a n d t h e s u l f u r
bonds.
R e a c t i v i t i e s of these are reflected i n the rate constants f o r r e a c t i o n of s o l v a t e d electrons w i t h i n d i v i d u a l a m i n o a c i d s i n aqueous s o l u t i o n s , as s h o w n i n T a b l e I a n d as d i s c u s s e d b y S i m i c ( 5 3 ) .
M o r e detailed informa
t i o n , h o w e v e r , r e g a r d i n g t h e stepwise p r o g r e s s i o n f r o m a t t a c h m e n t to specific r a d i c a l f o r m a t i o n has b e e n o b t a i n e d f r o m l o w t e m p e r a t u r e studies. ATTACHMENT
TO
AMINO
GROUP.
The
electron
reacts
with
the
p r o t o n a t e d t e r m i n a l a m i n o g r o u p i n a l i p h a t i c a m i n o a c i d s , l e a d i n g to d e a m i n a t i o n (53,58).
T h e rate constants i n s o l u t i o n d e p e n d o n p H , k
d e c r e a s i n g as p H is i n c r e a s e d .
E S R studies o n e l e c t r o n r e a c t i o n w i t h
a m i n o a c i d s i n n e u t r a l glasses at
indicate that dissociative at
—196°C
t a c h m e n t r e a d i l y occurs p r o d u c i n g a f a t t y a c i d r a d i c a l : e." +
+
N H C H R C O O " -> N H 3
3
+
-CHRCOO"
(13)
T h e f o r m a t i o n of a m m o n i a does n o t necessarily i m p l y d i r e c t r e a c t i o n w i t h the N H +
3
group.
ATTACHMENT TO T H E CARBOXYLATE
GROUP.
I n b a s i c systems w h e r e
t h e a m i n o g r o u p is n o t p r o t o n a t e d , a t t a c h m e n t occurs o n t h e c a r b o x y l a t e i o n , as e v i d e n c e d f r o m E S R studies o n h y d r o x i d e glasses (16).
At — 196°C
s p e c t r a are o b s e r v e d f o r t h e d i a n i o n r a d i c a l of s e v e r a l a m i n o a c i d s .
At
h i g h e r t e m p e r a t u r e s , t h e f a t t y a c i d r a d i c a l s are f o r m e d , i n d i c a t i n g t h a t d e a m i n a t i o n has t a k e n p l a c e : H 0 2
e.- + N H C H R C 0 - - » 2
N H
2
3
+
NH CHRC0 2
2
=
-
-CHRCOjf+ OH-
(14)
T h e t w o - s t e p s e q u e n c e d e m o n s t r a t e d f o r f r o z e n systems c o u l d also o c c u r i n fluid systems, b u t at rates too fast to observe.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
6.
TAUB
E T AL.
Irradiated
τ Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
129
Proteins
•
Τ \
r
Irradiated
ι ι
1—
__ι
250 300 WAVELENGTH, nm
Figure 5. Optical spectrum of hydrogen adduct of phenylalanine in an ethanediol-water glass at —196°C. Glass was formed from an equimolar mixture of ethanediol and water containing 4 X 10~ M phenylalanine, irradiated to ap proximately 4 kGy, and exposed at —196°C to visible light to bleach trapped electrons. Solid curve corresponds to phenylalanine in the unirradiated glass; dotted curve is displaced vertically for clarity and corresponds to the NH CH(CH (C H )-)CO ' radical 2
+
2
6
6
B
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
3
130
PROTEINS A T L O W
ATTACHMENT
TO
TEMPERATURES
Electrons
GROUPS.
AROMATIC AND HETEROCYCLIC
r e a c t m o r e r a p i d l y w i t h h i s t i d i n e , t r y p t o p h a n , p h e n y l a l a n i n e , a n d tyrosine than w i t h the aliphatic amino acids, f o r m i n g radicals i n v o l v i n g the r i n g groups.
S u c h e l e c t r o n - a d d u c t r a d i c a l s r e a d i l y p r o t o n a t e i n a q u e o u s sys-
tems ( 5 9 ) g i v i n g t h e e q u i v a l e n t of a n H - a d d u c t r a d i c a l . S i m i l a r reactions o c c u r i n f r o z e n systems f o r w h i c h extensive E S R e v i d e n c e has obtained ( I S ) .
w a t e r - e t h a n e d i o l glass (60) Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
been
O p t i c a l e v i d e n c e for t h e H - a d d u c t of p h e n y l a l a n i n e i n a is s h o w n i n F i g u r e 5. R e a c t i o n 1 5 i n d i c a t e s
the s e q u e n c e :
e." +
+
NH CHC0 " 3
2
+
NH CHC0 3
+
2
NH CHC0 - + OH3
2
o. ÇH
(15)
2
A t t a c h m e n t to t h e r i n g is n o t t h e e x c l u s i v e fate of t h e e l e c t r o n , b u t i t is p a r t i c u l a r l y c o m p e t i t i v e w i t h other p a t h w a y s for r e a c t i o n . ATTACHMENT
TO
T H E PEPTIDE
CARBONYL.
AS
the peptide
increases, t h e rate constant f o r e l e c t r o n r e a c t i o n increases (61),
length
indicating
t h a t r e a c t i o n o c c u r s at a p e p t i d e c a r b o n y l . T h e r e s u l t i n g r a d i c a l c a n b e p r o t o n a t e d d e p e n d i n g o n the p K f o r t h e f o l l o w i n g e q u i l i b r i u m (62) : H *± +
—CHRCHNR— I 0"
—CHRCNHR— . I OH
(16)
E S R e v i d e n c e f o r this e l e c t r o n a d d u c t of t h e c a r b o n y l g r o u p i n f r o z e n solutions of a c e t y l a m i n o acids a n d d i - a n d t r i p e p t i d e s is extensive ( 5 0 ) . A t y p i c a l s p e c t r u m is s h o w n i n F i g u r e 6 f o r the a n i o n r a d i c a l of β-alanylg l y c i n e at — 1 5 3 ° C . D e p e n d i n g o n t h e p e p t i d e a n d p H , d e a m i n a t i o n c a n o c c u r b y a process i n v o l v i n g either i n t e r - or i n t r a m o l e c u l a r e l e c t r o n transfer. D i s s o c i a t i o n at other C — Ν b o n d s is also p o s s i b l e , l e a d i n g to a n a m i d e a n d a " f a t t y a c i d " r a d i c a l (20,63); as " d e a m i d a t i o n " o r " s e c o n d a r y
t h i s process w i l l b e r e f e r r e d to
deamination.
,,
A s w i l l be
mentioned
b e l o w , this r e a c t i o n a n d t h e c h e m i s t r y t h a t f o l l o w s are i m p o r t a n t f o r peptides a n d proteins. ATTACHMENT
TO SULFUR
GROUPS.
O f a l l t i e amino acids, the t w o
m o s t r e a c t i v e i n s o l u t i o n t o w a r d t h e e l e c t r o n are c y s t i n e a n d cysteine. R e a c t i o n w i t h t h e f o r m e r leads to t h e d i s u l f i d e a n i o n r a d i c a l , +
N H C H (COO") C H [ S - ^ S ] " C H (COO") C H N H 3
2
2
3
+
,
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
TAUB
Irradiated
E TA L .
Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
6.
J
131
Proteins
I
I
I
MAGNETIC FIELD, GAUSS
L
•
Figure 6. ESR spectrum of the peptide anion radical derived from electron attachment to β-alanylglycine at —196°C in a LiCl glass. Sample contained 5 X I 0 " M of β-alanylglycine and the electrons were generated photolytwally (64). Spectrum was recorded at —153°C and is attributed to the radicat+ND CH CH CONDCH C0 : 2
s
2
2
2
2
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
132
PROTEINS
AT LOW
TEMPERATURES
a n d w i t h the l a t t e r , to N H C H ( C O O ) C H - a n d H S ' . R e a c t i o n w i t h t h e +
3
2
—CH2SCH3 g r o u p i n m e t h i o n i n e also o c c u r s a n d appears to p r o d u c e t w o t y p e s of r a d i c a l s : e - + aQ
~SCH
3
+
+
+
NH CH(COO-)CH CH SCH 3
2
NH CH(COO-)CH CH 3
2
2
3
-»
(17) and NH CH(COO-)CH CH S"+ -CH +
Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
2
3
2
2
3
E S R studies of the a m i n o acids i n glasses c o n f i r m t h e f o r m a t i o n of t h e d i s u l f i d e a n i o n ( 2 0 ) , w h i c h is e s p e c i a l l y stable, a n d t h e m e t h y l r a d i c a l (20).
S i m i l a r reactions m a y b e e x p e c t e d to o c c u r d i r e c t l y o r i n d i r e c t l y
o n peptides. COMPETITION
FOR
ELECTRONS
BY
REACTIVE
GROUPS
ON
PEPTIDES.
S i n c e there are m a n y sites for r e a c t i o n o n p e p t i d e s , t h e fate of t h e e l e c t r o n w i l l b e i n f l u e n c e d b y t h e specific moieties a n d t h e i r d i s p o s i t i o n . S e v e r a l illustrations c a n b e g i v e n . F o r p e p t i d e s w i t h a n a r o m a t i c g r o u p , d e a m i n a tion competes w i t h r i n g attachment, but peptide carbonyl p r e d o m i n a t e s as t h e n u m b e r of p e p t i d e groups increases. (a)
GlyPhe, (b)
for ( a ) ,
ring
PheGly, and (c)
attachment
I n t h e series
P h e G l y G l y : d e a m i n a t i o n is p r e f e r r e d
a t t a c h m e n t a n d d e a m i n a t i o n are e q u i v a l e n t f o r ( b ) ,
p e p t i d e a t t a c h m e n t begins to c o m p e t e w i t h these t w o processes i n F u r t h e r m o r e , r i n g a t t a c h m e n t is e x c l u s i v e i n H i s G l y , b u t a b o u t
and (c). 40%
of t h e electrons r e a c t w i t h G l y H i s t o d e a m i n a t e i t . I n a c e t y l p e p t i d e s , f o r w h i c h n o sites f o r d e a m i n a t i o n exist, e l e c t r o n a t t a c h m e n t to
the
peptide c a r b o n y l predominates, b u t competition b y methionine, cysteine, p h e n y l a l a n i n e , t y r o s i n e , t r y p t o p h a n , g l u t a m i c a c i d , a n d a s p a r t i c a c i d is extensive. elsewhere
D e t a i l e d comparisons
of
these processes w i l l b e
reported
(64).
Reaction of Peptide Radicals.
O n t h e basis of t h e k i n d of p h y s i c o -
c h e m i c a l e v i d e n c e p r e s e n t e d here a n d of the c h e m i c a l e v i d e n c e d e s c r i b e d elsewhere (46,47),
i t is a p p a r e n t t h a t the v a r i o u s r a d i c a l s f o r m e d i n i t i a l l y
i n the i r r a d i a t i o n of p e p t i d e s a n d p r o t e i n s c o n v e r t to other r a d i c a l s t h a t s u b s e q u e n t l y react to f o r m p r o d u c t s . already been mentioned.
C o n v e r s i o n of c a t i o n r a d i c a l s has
C o n v e r s i o n s of t h e p e p t i d e α-carbon r a d i c a l s
a r e e s p e c i a l l y i m p o r t a n t to u n d e r s t a n d i n g t h e r a d i o l y s i s of p r o t e i n s , so some i l l u s t r a t i v e examples w i l l b e g i v e n .
T h e e v e n t u a l r e a c t i o n of t h e
α-carbon r a d i c a l s is n o t w e l l u n d e r s t o o d , b u t c e r t a i n assumptions c a n b e m a d e r e l e v a n t t o t h e systems s t u d i e d . DECOMPOSITION O F T H E PEPTIDE C A R B O N Y L RADICALS.
Depending on
t h e n a t u r e of t h e c o n s t i t u e n t g r o u p s , these r a d i c a l s c a n d e c o m p o s e b y t r a n s f e r r i n g t h e e l e c t r o n t o the t e r m i n a l a m i n o g r o u p o r b y s p l i t t i n g off an amide.
B o t h processes, d e a m i n a t i o n a n d d e a m i d a t i o n , l e a d to
the
f o r m a t i o n of · C H R C O N H — r a d i c a l s , d e a m i n a t i o n c o r r e s p o n d i n g to c h a i n
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
6.
TAUB
Irradiated
ET AL.
Proteins
133
scission. A s a n i l l u s t r a t i o n , F i g u r e 7 s h o w s t h e s p e c t r a f o r D 0 ices of 2
N - a c e t y l a l a n i n e ( 1 9 0 m g J m l ) i r r a d i a t e d a t —196 ° C a n d t h e n a n n e a l e d (64).
T h e c a r b o n y l a n i o n p r e d o m i n a t e s i n t h e s p e c t r u m after a n n e a l i n g
a t — 1 5 3 ° C ( t o e l i m i n a t e O D - ) a n d a m o u n t s t o a b o u t 6 5 % of t h e r a d i cals; the next m o s t a b u n d a n t r a d i c a l is t h e d e c a r b o x y l a t e d species.
Upon
a n n e a l i n g to — 8 0 ° C , t h e a n i o n c o n v e r t s b y d e a m i d a t i o n to t h e a m i d e a n d
Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
fatty a c i d radical:
C H C (O") N D C H ( C H ) C < V -> 3
3
CH COND 3
+
2
-CH(CH )C0 3
(18)
2
T h e s p e c t r u m s h o w n c a n b e c o m p a r e d w i t h t h a t of the p r o p i o n i c a c i d r a d i c a l f o r m e d i n d e p e n d e n t l y o r b y t h e d e a m i n a t i o n of a l a n i n e .
This
s e q u e n c e is r e p r e s e n t a t i v e o f s e v e r a l a c e t y l a m i n o a c i d s s t u d i e d . ABSTRACTION
OF H
FROM
T H E PEPTIDE
BY
RADICALS.
CARBON
The
carbon radicals derived from deamination, deamidation, a n d decarboxyla tion react subsequently w i t h the peptides to abstract hydrogen, f o r m i n g t h e m o r e s t a b l e α-carbon p e p t i d e r a d i c a l s ( 6 3 ) .
This reaction can
be
d e m o n s t r a t e d i n i r r a d i a t e d ices c o n t a i n i n g a c e t y l a m i n o a c i d s . C o n t i n u i n g w i t h t h e N - a c e t y l a l a n i n e e x a m p l e , one c a n also see i n F i g u r e 7 t h a t u p o n f u r t h e r a n n e a l i n g t o — 50 ° C , a n o t h e r r a d i c a l a p p e a r s c o r r e s p o n d i n g
to
r e a c t i o n 19:
C H (CH ) C0 " + 3
2
C H C O N D C H ( C H ) C < V -> 3
CH (CH )CCV + 2
3
CH CONDCCH C0 -
3
3
3
(19)
2
T h e q u a r t e t s p e c t r u m s h o w n is a s s i g n e d t o t h e r a d i c a l f r o m a c e t y l a l a n i n e . T h e same t y p e of r e a c t i o n o c c u r s w i t h d i p e p t i d e s . C o n s e q u e n t l y , a series of a l i p h a t i c d i p e p t i d e s i n D 0 2
r a d i c a l s at a p p r o x i m a t e l y
ices w e r e i r r a d i a t e d a n d t h e r e s u l t a n t
— 50°C were
e x a m i n e d to
obtain
detailed
spectral data for comparison w i t h proteins. T a b l e I I shows the substituents o n t h e m o d e l p e p t i d e r a d i c a l , N D C H ( R 0 C O N D C R C O " , a n d t h e +
type of spectra observed.
3
Because peptides
2
with R
=
H
or
CH R"
p r e d o m i n a t e i n p r o t e i n s a n d b e c a u s e these w o u l d g i v e r i s e to
doublet
2
s p l i t t i n g s at l o w t e m p e r a t u r e s , i t is u n d e r s t a n d a b l e w h y the i r r a d i a t e d p r o t e i n s p e c t r a f o r a c t o m y o s i n , m y o s i n , a n d others a r e c h a r a c t e r i z e d b y a broad doublet
signal.
C o m p u t e r s i m u l a t i o n of t h e p r o t e i n s i g n a l b y
p r o p e r l y c o m b i n i n g t h e p e p t i d e s p e c t r a is u n d e r w a y . BIMOLECULAR
REACTION
OF T H E «-CARBON
RADICALS.
T h e eventual
f o r m a t i o n of stable c o v a l e n t b o n d s r e q u i r e s t h a t p r o t e i n α-carbon r a d i c a l s ( w h o s e d i s t r i b u t i o n is d e t e r m i n e d b y m o l e c u l a r c o n f o r m a t i o n a n d t h e conditions)
c o m b i n e or d i s p r o p o r t i o n a t e w i t h s i m i l a r o r o t h e r r a d i c a l s .
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
134
Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
PROTEINS A T L O W T E M P E R A T U R E S
M A G N E T I C F I E L D , GAUSS
— •
Figure 7. ESR spectra of radicals derived from N-acetyl^-alanine in an irradiated D 0 ice plug. Sample contained 190 mgJml of N-acetyhlanine and was irradiated to 5 kGy at —196°C. Spectrum a was recorded at —196°C; spectra b and c at —135°C. All spectra have markers from Fremy's salt superimposed, (a) Composite spectrum of radicals present after annealing at — 1 5 3 C (approximately 65% corresponds to the anion), (b) Composite spectrum of the radicals formed upon annealing the ice plug to —80°C, of which 55% corresponds to the fatty acid radical, -CH(CH )CO ~. (c) Spectrum of the peptide radical, CH CONDC(CH )C0 ~, formed upon further annealing the ice plug to - 5 0 ° C . 2
e
s
3
3
z
2
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
6.
TAUB
Irradiated
E T AL.
Table II.
135
Proteins
E S R Spectral Features for Different
*ND CH(R')CONDC(R)C0 3
Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
Parent
Radicals'
2
Dipeptide H CH H CH H
Glycylglycine Alanylglycine Glycylalanine Alanylalanine Glycylglutamic acid Glutlmylglutamic acid Glycylaspartic acid Glycylmethionine Glycylserine Lysyllysine
H H CH CH
3
3
CH2CH2CO2"
H H H (CH ) ND 2
Number of Lines"
R
R'
4
2 2 4 4 2 2 2 2 2 2
3 3
CH2CH2CO2" CH2CH2CO2" CH2CO2" (CH2) 2SCH CH 0H (CH )4ND
3
2
3
+
2
3
+
"Species stable after y -irradiating approximately 200 mgJml of the corresponding dipeptide in ice plugs at —196°C to a dose of about 5 k G y and annealing to -50°C. Hyperfme splittings are found to be 18-20 gauss for all the radicals observed. b
T h e i r l a r g e size a n d r e l a t i v e i m m o b i l i t y w o u l d r e n d e r s u c h
reactions
s l o w i n fluid m e d i a a n d i m p r o b a b l e i n viscous o r r i g i d m e d i a .
Reaction
i n d r y systems a n d i n f r o z e n systems w o u l d i n v o l v e either s m a l l m o b i l e r a d i c a l s d i f f u s i n g to t h e l a r g e r r a d i c a l s o r free r a d i c a l sites o n t h e l a r g e m o l e c u l e s b e i n g i n p r o x i m i t y to e a c h other. C H , C H R C 0 ~ , or S C H 3
2
globular polypeptides could combine
3
F r a g m e n t r a d i c a l s s u c h as
c o u l d a c c o u n t f o r s o m e of t h e d e c a y .
F o r large,
or proteins, the radicals o n folded-over
i f close e n o u g h .
F o r the long,
fibrous
chains
molecules, the
r a d i c a l s o n n e i g h b o r i n g chains m i g h t b e a b l e t o react i f sufficient b e n d i n g occurs to p l a c e these sites i n a n a p p r o p r i a t e d i s p o s i t i o n . S i n c e m y o s i n has t w o chains e n t w i n e d a b o u t e a c h other, some cross r e a c t i o n m i g h t b e expected.
I f t h e p r o t e i n s a r e d e s i c c a t e d t h e r e s h o u l d b e some u n r a v e l i n g
i n t h e s t r u c t u r e , m a k i n g r e a c t i o n e v e n less l i k e l y .
Significantly more
k i n e t i c i n f o r m a t i o n is n e e d e d b e f o r e these final steps i n t h e r a d i o l y t i c a l l y i n i t i a t e d s e q u e n c e o f reactions a r e u n d e r s t o o d . Summary M a n y of the reactions t h a t o c c u r i n t h e specific systems d e s c r i b e d a r e c o m m o n to most i r r a d i a t e d p r o t e i n s . T h e s e reactions a r e s u m m a r i z e d i n the g e n e r a l i z e d scheme g i v e n b e l o w .
N o a t t e m p t is m a d e t o s h o w a l l
p o s s i b l e p a t h w a y s f o r r e a c t i o n o r t o e x p l a i n a l l of t h e observations n o t e d f o r p r o t e i n s . F o r t h e sake of c l a r i t y , t h e p r o t e i n s t r u c t u r e is i d e a l i z e d a n d schematically represented b y J X J X J X J X J X J ,
w h i c h is e q u i v a -
l e n t t o ( 2 0 ) ( d e t a i l s i n t h e s t r u c t u r e a r e i n c l u d e d o n l y f o r specific cases) :
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
136
PROTEINS
H,.() - V W V
A T L O W TEMPERATURES
(21)
·• c ", O H ·, I T , H · s
ΛΛΛΪΛΛJ
(22a
>
ionization
JWVWvw-
excitation
(22b)
(ΛΛΛΛΛJ)*
+AJWW
attachment
abstraction
0H- +JVWW
AAJVVAJ cr J W v V V
+
(23)
H
(24a)
-'0
addition-elimination J V J V J V J V J V J -|- Η
0
124b)
~ 0 -Η-
JW\JW
charge transferdecarboxylation
- Λ Λ J W V
charge transferhydrolysis
θ;
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(25a)
6.
TAUB E T
AL.
Irradiated
137
Proteins
deexcitation neutralization-
Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
excitation
- Λ Λ Λ Λ Λ J . (26a)
-ΛΛΛΛν+Η·(26ΐ))
-(ΛΛΛΛΛJ)*
Η
Η deamination
Λ J W W ι 0"
ΝΗ
3
+
(27a)
V W W
deamidation (+Η*)
Η
JJJJ
(27b)
4
demethylation
ΛΛΛΛΛJ + C H CH,
(27c)
3
I
CH, I sW
+
Λ Λ Λ J W
a b s t r a c t i o n
* Λ Λ Λ J W
+
disproportionation
(28)
W
Q
^ΛΛΛ^ΛΛJ+ΛΛΛΛΑJ (29a)
ΛΛΛΛΛJ+ ΛΛΛΛΛJ Η
Ν
combination
V V W s A
(29b)
Λ Λ Λ Λ Λ J
A s is i m p l i e d i n this s c h e m e , there w i l l b e c e r t a i n m o d i f i c a t i o n s i n t h e p r o t e i n r e s u l t i n g f r o m i r r a d i a t i o n that d e p e n d o n specific c o n d i t i o n s . T h e i n d i r e c t effects of reactions of p r i m a r y w a t e r r a d i c a l , as w e l l as those r e s u l t i n g f r o m u n i m p e d e d d i f f u s i o n of s e c o n d a r y r a d i c a l s , w i l l b e m i n i m i z e d o r e l i m i n a t e d i n d r y systems o r f r o z e n a q u e o u s systems. F o r m a t i o n of t h e p e p t i d e r a d i c a l b y l o n g c h a i n , f a t t y a c i d - t y p e r a d i c a l s a b s t r a c t i n g hydrogen
could occur i n
fluid,
concentrated
solutions, b u t w o u l d
difficult i n rigid m e d i a , b e i n g l i m i t e d to either n e i g h b o r i n g m o l e c u l e s p r o x i m a l parts of t h e same m o l e c u l e .
Effects o n globular a n d
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
be or
fibrous
138
PROTEINS
p r o t e i n s w i l l differ f o r this reason.
AT LOW
TEMPERATURES
F i n a l reaction of the large peptide
r a d i c a l s , i n t u r n , w o u l d b e affected b y the constraints o f t h e m e d i u m o n t h e i r flexing a n d d i f f u s i o n a l m o t i o n s . fibrous
S u c h reactions i n f r o z e n , h y d r a t e d ,
p r o t e i n s m i g h t i n v o l v e o n l y n e i g h b o r i n g r a d i c a l s b r o u g h t close
e n o u g h together b y flexing a n d t o r s i o n a l m o d e s o f m o t i o n . I n d r y systems, t h e i n t e r a c t i o n of these w o u l d b e m o r e difficult b e c a u s e of a less f a v o r a b l e d i s p o s i t i o n o f the c h a i n s .
Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
S i n c e the proteins i n f o o d p r e s e r v e d b y i r r a d i a t i o n t o a p p r o x i m a t e l y 4 0 k G y at — 4 0 ° C are h y d r a t e d a n d fixed i n a r i g i d m e d i u m , t h e o b s e r v a t i o n (6) that these p r o t e i n s are m i n i m a l l y affected i s consistent w i t h t h e i m p l i c a t i o n s o f this scheme.
T h e m a j o r free r a d i c a l s d e r i v e d f r o m t h e
p r o t e i n are of t h e p e p t i d e b a c k b o n e t y p e , a n d t h e y d o not persist i n t h e t h a w e d product. These radicals apparently undergo reconstitutive recom b i n a t i o n reactions, so n o significant d e g r a d a t i o n o r c o v a l e n t of t h e l o n g m o l e c u l a r c h a i n is o b s e r v e d .
aggregation
O t h e r free r a d i c a l s f r o m s i d e
c h a i n groups represent a s m a l l c o n t r i b u t i o n t o t h e t o t a l , a n d c o n s e q u e n t l y , n o n e o f t h e a m i n o acids i s d i s c e r n i b l y affected.
T h e l i m i t e d extent t o
w h i c h changes o c c u r i n t h e p r o t e i n s , as w e l l as i n the e q u a l l y i m p o r t a n t l i p i d components
(65,66,67),
explains t h e h i g h q u a l i t y of t h e l o w -
t e m p e r a t u r e i r r a d i a t e d m e a t , fish, a n d p o u l t r y p r o d u c t s . Acknowledgment T h e authors are g r a t e f u l t o D r . M i c h a e l G . S i m i c , D r . J a m e s J . S h i e h , M r . J o h n E . W a l k e r , a n d M r . James B . D ' A r c y f o r h e l p f u l discussions o f this subject a n d f o r m a k i n g a v a i l a b l e d a t a i n a d v a n c e o f p u b l i c a t i o n . Literature Cited 1. Spinks, J. W. T.; Woods, R. J. "An Introduction to Radiation Chemistry"; 2nd ed.; John Wiley: New York, 1976. 2. Hart, E . J.; Anbar, M. "The Hydrated Electron"; Wiley-Interscience: New York, 1970. 3. Anbar, M.; Bambenek, M.; Ross, A. B. "Selected Specific Rates of Reac tions of Transients from Water in Aqueous Solution. Hydrated Elec tron," Natl. Bur. Stand. (U.S.) Rep. 1973, NSRD-NBS 43. 4. Taub, I. Α.; Kaprielian, R. A. Abstr. First Int. Cong. Eng. Food, Aug 9-13, 1976, Boston, ΜΑ; p 82. 5. Taub, I. Α.; Kaprielian, R. Α.; Halliday, J. W. IAEA Proc. Int. Symp. Food Preserv. Irradiation, Nov. 21-25, 1977 1978, 1, 371. 6. Taub, Ι. Α.; Robbins, F. M.; Simic, M. G.; Walker, J. E . ; Wierbicki, E . Food Tech. 1979, 33, 184. 7. Rustgi, S.; Joshi, A; Friedberg, F.; Riesz, P. Int. J. Radiat.Biol.and Relat. Stud. Phys. Chem. Med. 1977, 32, 533. 8. Matheson, M. S.; Dorfman, L . M. "Pulse Radiolysis"; MIT: Cambridge, 1969. 9. Taub, I. Α.; Hurwitz, P. Α.; Tocci, J. Abstr. Fifth Int. Cong. of Radiat. Res., 1974, Seattle, WA, p 196.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
6.
TAUB E T A L .
Irradiated Proteins
139
10. Trifunac, A. D., Johnson, K. W.; Clifft, Β. E.; Lowers, R. H . Chem. Phys. Lett. 1975, 35, 566. 11. Fessenden, R. W. J. Chem. Phys. 1973, 58, 2489. 12. Smaller, B.; Avery, E. C.; Remko, J. R. J. Chem. Phys. 1971, 55, 2414. 13. Asmus, K. D. In "Fast Processes in Radiation Chemistry," Adams, G. E., Fielden, Ε. M., Michael, B. D., Eds.; John Wiley: New York, 1975; p 40. 14. Verberne, J. B.; Warman, J. M.; deHaas, M. P.; Hammel, Α.; Prinsen, L . Nature 1978, 272, 343. 15. Eiben, K.; Fessenden, R. W. J. Phys. Chem. 1971, 75, 1186. 16. Sevilla, M. D. J. Phys. Chem. 1970, 74, 2096. 17. Ibid. 1976, 80, 1898. 18. Van Paemel, C.; Frumin, H.; Brooks, V. L.; Failor, R.; Sevilla, M. D. J. Phys. Chem. 1975, 79, 839. 19. Sevilla, M. D.; Brooks, V. L. J. Phys. Chem. 1973, 77, 2954. 20. Sevilla, M. D. J. Phys. Chem. 1970, 74, 3366. 21. Henriksen, T.; Nelo, T. B.; Sexebol, G. In "Free Radicals in Biology," Pryor, W. Α., Ed.; Academic: New York, 1976; Vol. II, p 213. 22. Satterlee, L. D.; Wilhelm, M. S.; Barnhart, Η. M. J. Food Sci. 1971, 36, 549. 23. Giddings, G. G.; Markakis, P. J. Food Sci. 1972, 37, 361. 24. Tappel, A. L. Food Res. 1956, 21, 650. 25. Simic, M. G.; Taub, I. Α.; Rosenkrans, R. L. J. Food Proc. Preserv., in press. 26. Simic, M. G.; Taub, I. A. Biophys. J. 1978, 24, 285. 27. Shieh, J. J.; Hoffman, M. Z.; Simic, M. G.; Taub, I. A. "Abstracts of Papers," 174th National Meeting, ACS, Aug. 28-Sept. 2, 1977, Chicago, IL; BIOL 86. 28. Shieh, J. J.; Sellers, R. M.; Hoffman, M. Z.; Taub, I. Α., Proc. Assoc. Radiat. Res. (Great Britain), June 3-5, 1979, Wrexham, Clwyd, Wales, in press. 29. Shieh, J. J., unpublished data. 30. Mee, L. K.; Adelstein, S. J.; Stein, G. Radiat. Res. 1972, 52, 588. 31. Adams, G. E.; Bisby, R. H.; Cundall, R. B.; Redpath, J. L.; Willson, R. L. Radiat. Res. 1972, 49, 290. 32. Delincée, H.; Radola, Β. J. Int. J. Radiat. Biol. and Relat. Stud. Phys. Chem. Med. 1975, 28, 565. 33. Friedberg, F. Radiat. Res. 1969, 38, 34. 34. Fluke, D. J. Radiat. Res. 1966, 28, 677. 35. Riesz, P.; White, F. H., Jr. Radiat. Res. 1970, 44, 24. 36. Coelho, R. Enzymol. Aspects Food Irradiat., Proc. Panel, 1968, 1969, 1. 37. Taub, I. Α.; Halliday, J. W.; Holmes, L. G.; Walker, J. E.; Robbins, F. M. Proc. Army Sci. Conf., June 6-9, 1976, West Point, NY; Vol. III. 38. Halliday, J. W.; Taub, I. A. J. Food Proc. Preserv., in press. 39. Henriksen, T.; Sanner, T.; Pihl, A. Radiat. Res. 1963, 18, 147. 40. Gordy, W.; Shields, H. Radiat. Res. 1958, 9, 611. 41. Halliday, J. W.; Taub, I. Α., unpublished data. 42. Taub, I. A.; Halliday, J. W.; Holmes, L . G.; Walker, J. E.; Robbins, F. M., unpublished data. 43. Stein, G.; Tomkiewicz, M. Radiat. Res. 1970, 43, 25. 44. Bachman, S.; Galant, S.; Gasyna, Ζ.; Witkowski, S. IAEA Proc., Panel Improvement Food Quality, 1973, 1974, 77. 45. Hayden, G. Α.; Rogers, S. C.; Friedberg, F. Arch. Biochem. Biophys. 1966, 113, 247. 46. Garrison, W. Radiat. Res. Rev. 1972, 3, 305. 47. Friedberg, F. Radiat. Res. Rev. 1969, 2, 131. 48. Meyers, L. S., Jr., In "Radiation Chemistry of Macromolecules," Dole, M., Ed.; Academic: New York, 1970; Vol. II, p. 323.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on January 18, 2018 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch006
140
PROTEINS AT LOW TEMPERATURES
49. Alexander, P.; Lett, J. T. In "Comprehensive Biochemistry," Florkin, M.; Stotz, Ε. H.; Eds.; Elsevier: New York, 1971; Vol. 27, p 267. 50. Sevilla, M. D.; D'Arcy, J. B. J. Phys. Chem. 1978, 82, 338. 51. Sevilla, M. D.; D'Arcy, J. B., unpublished data. 52. Dorfman, L. M.; Adam, G. E . "Reactivity of Hydroxyl Radical in Aqueous Solution," Nat. Bur. Stand. (U.S.), Rep. 1973, NSRD-NBS 46. 53. Simic, M. G. J. Agric. Food Chem. 1978, 26, 6. 54. Dorfman, L. M.; Taub, I. Α.; Buhler, R. E . J. Chem. Phys. 1962, 36, 3051. 55. Land, E . S.; Ebert, M. Trans. Faraday Soc. 1967, 63, 1181. 56. Neta, P. Chem. Rev. 1972, 72, 533. 57. Volker, W. Α.; Kuntz, R. R. J . Phys. Chem. 1968, 72, 3394. 58. Weeks, B. M.; Cole, S.; Garrison, W. M. J. Phys. Chem. 1965, 69, 4631. 59. Hayon, Ε.; Simic, M. Acc. Chem. Res. 1974, 7, 114. 60. Taub, I. Α.; Heinmets, F., unpublished data. 61. Simic, M.; Hayon, E. Radiat. Res. 1971, 48, 244. 62. Rao, P. S.; Hayon, Ε. J. Phys. Chem. 1974, 78, 1193. 63. Garrison, W. M.; Jayko, M. E.; Rodgers, M. A. J.; Sokol, Η. M.; Bennett -Corniea. Adv. Chem. Ser. 1968, 81, 384. 64. Sevilla, M. D.; D'Arcy, J. B., unpublished data. 65. Nawar, W. W. J. Agric. Food Chem. 1978, 26, 21. 66. Merritt, C. M.; Angelini, P.; Graham, R. A. J. Agric. Food Chem. 1978, 26, 29. 67. Simic, M. G.; Merritt, C. M.; Taub, I. A. In "Fatty Acids," AOCS Mono graph; Pryde, E. H., Ed.; in press. RECEIVED June 16,
1978.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.