PtBr2-Catalyzed Consecutive Enyne Metathesis−Aromatization of 1-(1

Gagik G. Melikyan , Ryan Davis , and Samantha Cappuccino. Organometallics ... and Naoto Chatani. Journal of the American Chemical Society 0 (proofing)...
3 downloads 0 Views 141KB Size
PtBr2-Catalyzed Consecutive Enyne Metathesis-Aromatization of 1-(1-Methoxy-but-3-enyl)-2-(1-alkynyl)benzenes: Dual Role of the Pt Catalyst Gan B. Bajracharya, Itaru Nakamura, and Yoshinori Yamamoto* Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan [email protected] Received September 30, 2004

1,7-Enynes 1, connected through an aromatic ring and bearing a leaving methoxy group at the 4-position, underwent the PtBr2-catalyzed enyne metathesis followed by aromatization in one pot to afford vinyl naphthalenes 3 in good to acceptable yields. The cyclobutene intermediate 11a and another intermediate 2a were isolated, indicating that PtBr2 acts as a dual role catalyst: (1) as a transition metal catalyst, it induces the enyne metathesis to produce 11a starting from 1a, and (2) as a Lewis acid catalyst, it facilitates elimination of MeOH from 2a to give the aromatized product 3a.

Introduction In the past decade, the metal-mediated cycloisomerization of 1,n-enynes has emerged as an extremely attractive and unique tool for the one-pot synthesis of various types of cyclic compounds (Scheme 1).1 A wide range of transition metal complexes have been used for this transformation.2-8 On the basis of the mechanisms involved in the enyne metathesis, the cycloisomerization can be classified into three categories. First is the metal carbene-mediated enyne metathesis and second is the cycloisomerization through metallacyclic intermediates (Scheme 2). The metal carbene reacts first with the yne unit and the resulting carbene complex further reacts with the ene (1) For reviews on enyne metathesis, see: (a) Trost, B. M. Acc. Chem. Res. 1990, 23, 34-42. (b) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259-281. (c) For textbook, see: Tsuji, J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis; John Wiley & Sons: Chichester, UK, 1995; pp 476-488. (d) Ojima, I.; Tzamarioudaki, M.; Li, Z. Y.; Donovan, R. J. Chem. Rev. 1996, 96, 635-662. (e) Trost, B. M.; Krische, M. J. Synlett 1998, 1-16. (f) Mori, M. Top. Organomet. Chem. 1998, 1, 133-154. (g) Trost, B. M. Chem. Eur. J. 1998, 4, 24052412. (h) Fletcher, A. J.; Christie, S. D. R. J. Chem. Soc., Perkin Trans. 1 2000, 1657-1668. (i) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067-2096. (j) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813-834. (k) Se´meril, D.; Bruneau, C.; Dixneuf, P. H. Adv. Synth. Catal. 2002, 344, 585-595. (l) Poulsen, C. S.; Madsen, R. Synthesis 2003, 1-18. (m) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215-236. (n) Schmidt, B. Angew. Chem., Int. Ed. 2003, 42, 4996-4999. (o) Fairlamb, I. J. S. Angew. Chem., Int. Ed. 2004, 43, 1048-1052. (p) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317-1382. (q) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127-2198.

SCHEME 1.

Cycloisomerization of 1,n-Enynes

SCHEME 2.

Mechanisms in Enyne Metathesis

unit to give the intermediate A, which subsequently produces the 1,3-dienes together with the metal carbene catalyst (pathway a). The oxidative metallacycloaddition to enynes forms the metallacycle B, which undergoes subsequent β-hydride elimination to give a mixture of the 1,3- and 1,4-dienes (pathway b). The third category involves the π-complexation of an electrophilic transition metal onto the alkyne moieties that leads to the forma10.1021/jo048273q CCC: $30.25 © 2005 American Chemical Society

892

J. Org. Chem. 2005, 70, 892-897

Published on Web 01/05/2005

PtBr2-Catalyzed Enyne Metathesis-Aromatization

tion of the polarized η1-alkyne complex C bearing a positive charge at the β-position (pathway c). Delocalization of a positive charge produces the isomers D, E, F, and G. Finally, the intermediate H is afforded through bond rearrangement processes, which produces the 1,3diene along with other products. Trost,2f,i Murai,3a,5a,b and Fu¨rstner3b,d-f proposed the formation of the cyclopropylmetal carbene intermediate (F in Scheme 2) in the Pd(II)-, Rh(II)-, Ru(II)-, and Pt(II)-catalyzed skeletal rearrangements of enynes that (2) For Pd-catalyzed cycloisomerization of enynes, see: (a) Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc. 1988, 110, 1636-1638. (b) Trost, B. M.; Lautens, M.; Chan, C.; Jebaratnam, D. J.; Mueller, T. J. Am. Chem. Soc. 1991, 113, 636-644. (c) Trost, B. M.; Trost, M. K. Tetrahedron Lett. 1991, 32, 3647-3650. (d) Trost, B. M.; Pfrengle, W.; Urabe, H.; Dumas, J. J. Am. Chem. Soc. 1992, 114, 1923-1924. (e) Trost, B. M.; Chang, V. K. Synthesis 1993, 824-832. (f) Trost, B. M.; Hashmi, A. S. K. Angew. Chem., Int. Ed. Engl. 1993, 32, 1085-1087. (g) Trost, B. M.; Gelling, O. J. Tetrahedron Lett. 1993, 34, 8233-8236. (h) Trost, B. M.; Shi, Y. J. Am. Chem. Soc. 1993, 115, 5, 9421-9438. (i) Trost, B. M.; Hashmi, A. S. K. J. Am. Chem. Soc. 1994, 116, 21832184. (j) Trost, B. M.; Tanoury, G. J.; Lautens, M.; Chan, C.; MacPherson, D. T. J. Am. Chem. Soc. 1994, 116, 4255-4267. (k) Trost, B. M.; Romero, D. L.; Rise, F. J. Am. Chem. Soc. 1994, 116, 42684278. (l) Goeke, A.; Sawamura, M.; Kuwano, R.; Ito, Y. Angew. Chem., Int. Ed. Engl. 1996, 35, 662-663. (m) Yamada, H.; Aoyagi, S.; Kibayashi, C. Tetrahedron Lett. 1996, 37, 8787-8790. (n) Trost, B. M.; Li, Y. J. Am. Chem. Soc. 1996, 118, 6625-6633. (o) Oh, C. H.; Rhim, C. Y.; Hwang, S. K. Chem. Lett. 1997, 777-778. (p) Yamada, H.; Aoyagi, S.; Kibayshi, C. Tetrahedron Lett. 1997, 38, 3027-3030. (q) Widenhoefer, R. A.; Stengone, C. N. J. Org. Chem. 1999, 64, 86818692. (r) Trost, B. M.; Krische, M. J. J. Am. Chem. Soc. 1999, 121, 6131-6141. (s) Trost, B. M.; Haffner, C. D.; Jebaratnam, D. J.; Krische, M. J.; Thomas, A. P. J. Am. Chem. Soc. 1999, 121, 6183-6192. (t) Harada, K.; Tonoi, Y.; Kato, H.; Fukuyama, Y. Tetrahedron Lett. 2002, 43, 3829-3832. (u) Fairlamb, I. J. S.; Pike, A. C.; Ribrioux, S. P. C. P. Tetrahedron Lett. 2002, 43, 5327-5331. (3) For Pt-mediated cyclization of enynes, see: (a) Chatani, N.; Furukawa, N.; Sakurai, H.; Murai, S. Organometallics 1996, 15, 901903. (b) Fu¨rstner, A.; Szillat, H.; Gabor, B.; Mynott, R. J. Am. Chem. Soc. 1998, 120, 8305-8314. (c) Trost, B. M.; Doherty, G. A. J. Am. Chem. Soc. 2000, 122, 3801-3810. (d) Fu¨rstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785-6786. (e) Fu¨rstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863-11869. (f) Mamane, V.; Gress, T.; Krause, H.; Fu¨rstner, A. J. Am. Chem. Soc. 2004, 126, 8654-8655. (g) Bernard, M.; Cariou, K.; Mainetti, E.; Mourie´s. V.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2004, 126, 8656-8657. (h) For GaCl3-mediated cyclization of enynes, see: Chatani, N.; Inoue, H.; Kotsuma, T.; Murai, S. J. Am. Chem. Soc. 2002, 124, 10294-10295. (4) For Rh-mediated cyclization of enynes, see: (a) Wender, P. A.; Sperandio, D. J. Org. Chem. 1998, 63, 4164-4165. (b) Gilbertson, S. R.; Hoge, G. S.; Genov, D. G. J. Org. Chem. 1998, 63, 10077-10080. (c) Cao, P.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2000, 122, 64906491. (d) Cao, P.; Zhang, X. Angew. Chem., Int. Ed. 2000, 39, 41044106. (e) Lei, A.; He, M.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 81988199. (f) Lei, A.; He, M.; Wu, S.; Zhang, X. Angew. Chem., Int. Ed. 2002, 41, 3457-3460. (g) Lei, A.; Waldkirch, J. P.; He, M.; Zhang, X. Angew. Chem., Int. Ed. 2002, 41, 4526-4529. (h) Tong, X.; Zhang, Z.; Zhang, X. J. Am. Chem. Soc. 2003, 125, 6370-6371. (i) Lei, A.; He, M.; Zhang, X. J. Am. Chem. Soc. 2003, 125, 11472-11473. (j) Tong, X.; Li, D.; Zhang, Z.; Zhang, X. J. Am. Chem. Soc. 2004, 126, 76017607. (k) Mikami, K.; Kataoka, S.; Yusa, Y.; Aikawa, K. Org. Lett. 2004, 6, 3699-3701. (5) For Ru-mediated cyclization of enynes, see: (a) Chatani, N.; Morimoto, T.; Muto, T.; Murai, S. J. Am. Chem. Soc. 1994, 116, 60496050. (b) Chatani, N.; Kataoka, K.; Murai, S.; Furukawa, N.; Seki, Y. J. Am. Chem. Soc. 1998, 120, 9104-9105. (c) Nishida, M.; Adachi, N.; Onozuka, K.; Matsumura, H.; Mori, M. J. Org. Chem. 1998, 63, 91589159. (d) Trosy, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 97289729. (e) Paih, J. L.; Rodrı´guez, D. C.; De´rien, S.; Dixneuf, P. H. Synlett 2000, 95-97. (f) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 714-715. (g) Se´meril, D.; Cle´ran, M.; Bruneau. C.; Dixneuf, P. H. Adv. Synth. Catal. 2001, 343, 184-187. (h) Ackermann, L.; Bruneau, C.; Dixneuf, P. H. Synlett 2001, 397-399. (i) Se´meril, D.; Cle´ran, M.; Perez, A. J.; Bruneau. C.; Dixneuf, P. H. J. Mol. Catal. A: Chem. 2002, 190, 9-25. (j) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 2002, 124, 5025-5036. (k) Mori, M.; Saito, N.; Tanaka, D.; Takimoto, M.; Sato, Y. J. Am. Chem. Soc. 2003, 125, 5606-5607. (l) For Ir-mediated cyclization of enynes, see: Chatani, N.; Inoue, H.; Morimoto, T.; Muto, T.; Murai, S. J. Org. Chem. 2001, 66, 4433-4436.

produces conjugated dienes.9 Murai et al. used a wisely designed starting material and succeeded in trapping the carbene intermediate in the Pt-catalyzed cyclization of enynes.5b Recently, Echavarren and co-workers reported that 1,6-enynes react with alcohols or water in the presence of PtCl2 to give new carbo- or heterocycles with alkoxy or hydroxy functional groups via formation of the cyclopropyl platinum-carbene intermediate.10 Generally, the cycloisomerization of 1,6-enynes affords the products with a newly generated five-membered ring. Obviously, one may expect the formation of a sixmembered ring by cyclization of 1,7-enynes. However, formation of a six-membered ring from 1,7-enynes in the metathesis reaction is not easy due to the poorer ability of 1,7-enynes to function as a bidentate ligand.1j Trost partially solved this problem by introducing a free carboxylic acid substituent at the alkene terminus that coordinated with the metal in the catalytic cycle.2g Murai et al. reported a few examples of cyclorearrangement of 1,7-enynes catalyzed by metal halides (e.g., PtCl2 and GaCl3 etc.) leading to the formation of six-membered rings.3a,h However, compare to the 1,6-enynes, 1,7-enynes are rarely used in the enyne cycloisomerization reaction. Furthermore, reports on formation of an aromatic ring in the enyne cyclization are very rare.11,12 Recently, Pe´rezCastells et al. apparently reported the formation of a naphthalene derivative as the side product by means of the intramolecular Pauson-Khand reaction of aromatic enynes promoted by molecular sieves in the presence of (6) For Ti-catalyzed cyclization of enynes, see: (a) Berk, S. C.; Grossman, R. B.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 49124913. (b) Urabe, H.; Hata, T.; Sato, F. Tetrahedron Lett. 1995, 36, 4261-4264. (c) Suzuki, K.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 1996, 118, 8729-8730. (d) Urabe, H.; Suzuki, K.; Sato, F. J. Am. Chem. Soc. 1997, 119, 10014-10027. (e) Sturla, S. J.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 1976-1977. (7) For Zr-mediated cyclization of enynes, see: (a) Davis, J. M.; Whitby, R. J.; Jaxa-Chamiec, A. Synlett 1994, 110-112. (b) Miura, K.; Funatsu, M.; Saito, H.; Ito, H.; Hosomi, A. Tetrahedron Lett. 1996, 37, 9059-9062. (c) Negishi, E.-i.; Ma, S.; Sugihara, T.; Noda, Y. J. Org. Chem. 1997, 62, 1922-1923. (8) For Ni/Cr-, Ni-, and Ni/Zn-mediated cyclization of enynes, see: (a) Ni/Cr: Trost, B. M.; Tour, J. M. J. Am. Chem. Soc. 1987, 109, 52685270. (b) Ni: Tamao, K.; Kobayashi, K.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 1286-1288. (c) Ni/Zn: Savchenko, A. V.; Montgomery, J. J. Org. Chem. 1996, 61, 1562-1563. (9) For recent formulations of the reaction mechanism, see: (a) Oi, S.; Tsukamoto, I.; Miyano, S.; Inoue, Y. Organometallics 2001, 20, 3704-3709. (b) Mainetti, E.; Mourie´s, V.; Fensterbank, L.; Malacria, M.; Marco-Contelles, J. Angew. Chem., Int. Ed. 2002, 41, 2132-2135. (10) (a) Me´ndez, M.; Mun˜oz, M. P.; Echavarren, A. M. J. Am. Chem. Soc. 2000, 122, 11549-11550 and references therein. (b) Me´ndez, M.; Mun˜oz, M. P.; Nevado, C.; Ca´rdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511-10520. (c) Nevado, C.; Ca´rdenas, D. J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627-2635. (d) Nevado, C.; Charruault, L.; Michelet, V.; Nieto-Oberhuber, C.; Mun˜oz, M. P.; Me´ndez, M.; Rager, M.-N.; Geneˆt, J.-P.; Echavarren, A. M. Eur. J. Org. Chem. 2003, 706-713. See also: (e) Ferna´ndez-Rivas, C.; Me´ndez, M.; Nieto-Oberhuber, C.; Echavarren, A. M. J. Org. Chem. 2002, 67, 51975201. (f) Echavarren, A. M.; Me´ndez, M.; Mun˜oz, M. P.; Nevado, C.; Martı´n-Matute, B.; Nieto-Oberhuber, C.; Ca´rdenas, D. J. Pure Appl. Chem. 2004, 76, 453-463. (11) For recent advances in the transition metal-catalyzed formation of aromatic rings, see: (a) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901-2915 and references therein. (b) W: Miura, T.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 518-519. (c) Shen, H.-C.; Pal, S.; Lian, J.-J.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 15762-15763. See also: (d) Imamura, K.-i.; Yoshikawa, E.; Gevorgyan, V.; Yamamoto, Y. Tetrahedron Lett. 1999, 40, 4081-4084. (12) For the transition metal-catalyzed cyclization of heterocycles through a Friedal-Crafts-type reaction and/or formation of cyclopropylmetal-carbenes, see: (a) Dankwardt, J. W. Tetrahedron Lett. 2001, 42, 5809-5812. (b) Fu¨rstner, A.; Mamane, V. J. Org. Chem. 2002, 67, 6264-6267. (c) Martı´n-Matute, B.; Nevado, C.; Ca´rdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2003, 125, 5757-5766.

J. Org. Chem, Vol. 70, No. 3, 2005 893

Bajracharya et al. SCHEME 3.

Preparation of Starting Materials

a stoichiometric amount of Co2(CO)8.13 The same group subsequently utilized the aromatic enynes in the Grubbs catalyst-mediated ring-closing metathesis producing 1,3dienes, which underwent a subsequent Diels-Alder process to construct natural product frameworks.14 To the best of our knowledge, a naphthalene core has not been prepared by the transition metal-mediated enyne metathesis-aromatization employing 1,7-enynes including an aromatic ring in the tether part. We report that a six-membered ring can readily be obtained in good to acceptable yields in the enyne metathesis of 1,7-enynes 1 by using PtBr2 catalyst (eq 1). Here, PtBr2 exhibits a dual role: (1) as a transition

metal, PtBr2 catalyzes the enyne metathesis to produce the six-membered 1,3-dienes 2, and (2) as a Lewis acidic catalyst, PtBr2 assists elimination of MeOH from 2 to afford the vinylnaphthalene derivatives 3. Results and Discussion The starting materials 1 were prepared by the allylation of o-alkynylbenzaldehydes 5 (Scheme 3). The precursors 5 were prepared from the corresponding 2-bromobenzaldehyde derivatives 4 with a Sonogashira crosscoupling.15 The direct allylation of the o-alkynylbenzaldehydes 5 was carried out by reaction with allyltrimethylsilane in the presence of scandium triflate at ambient temperature to produce the corresponding aromatic enynes 1.16 Alternatively, the acetalization17 of 5, followed by allylation also produced the desired 1,7enyne. First, we used 1a as a model substrate for optimization of the reaction conditions (eq 2). The results are summarized in Table 1. We found that in the presence of 10 mol % of PdBr2 in MeCN at 100 °C, the enyne 1a underwent cyclization-aromatization to afford 1-(1-methylenebutyl)naphthalene 3a in 38% isolated yield (entry (13) Blanco-Urgoiti, J.; Casarrubios, L.; Dominguez, G.; Pe´rezCastells, J. Tetrahedron Lett. 2001, 42, 3315-3317 and references therein. (14) . (a) Rosillo, M.; Casarrubios, L.; Domı´nguez, G.; Pe´rez-Castells, J. Tetrahedron Lett. 2001, 42, 7029-7031. (b) Rosillo, M.; Domı´nguez, G.; Casarrubios, L.; Amador, U.; Pe´rez-Castells, J. J. Org. Chem. 2004, 69, 2084-2093. (15) For a review, see: Brandsma, L.; Vasilevsky, S. F.; Verkruijsse, H. D. Application of Transition Metal Catalyst in Organic Synthesis; Springer-Verlag: Berlin, Germany, 1999; Chapter 10. (16) Yadav, J. S.; Subba Reddy, B. V.; Srihari, P. Synlett 2001, 673675. (17) Luche, J.-L.; Gemal, A. L. J. Chem. Soc., Chem. Commun. 1978, 976-977.

894 J. Org. Chem., Vol. 70, No. 3, 2005

TABLE 1. Optimization of the Reaction Conditionsa

entry

catalyst

solvent

1 2 3 4 5 6 7 8 9 10 11 12 13 14c 15d

PdBr2 PdCl2 PtCl2 PtCl2(PhCN)2 PtCl2(CH3CN)2 PtBr2 PtBr2 PtBr2 PtBr2 PtBr2 PtBr2 PtBr2 PtBr2 PtBr2 PtBr2

MeCN MeCN MeCN MeCN MeCN MeCN MeCN 1,4-dioxane hexane toluene

additive (40 mol %)

1,4-dioxane p-benzoquinone 1,4-dioxane β-pinene 1,4-dioxane 1,4-dioxane

temp, °C

yield, %b

100 100 100 100 100 100 120 120 120 120 120 120 120 120 120

42 (38) 34 44 41 47 49 53 56 46 43 7 51 49 79 81 (75)

a The reaction of 1a (0.3 mmol) was carried out in the presence of 10 mol % of catalyst under Ar for 15 h unless otherwise noted. b Yield calculated from 1H NMR integration with CH Br as an 2 2 internal standard; the isolated yield is in parentheses. c 2 mol % of catalyst was used. d 1 mol % of catalyst was used.

1). Similarly, PdCl2, PtCl2, PtCl2(PhCN)2, and PtCl2(CH3CN)2 afforded the product 3a in comparable yields (entries 2-5). The yield of the product was slightly improved by using PtBr2 as a catalyst (entry 6). The use of other catalysts such as Pd(PPh3)4, Pd2(dba)3‚CHCl3, Pt(PPh3)4, NiBr2(PPh3)2, RhCl(PPh3)3, etc. did not afford 3a at all. We also evaluated some Lewis acids, for example, Cu(OTf)2, AgOTf, AuBr3, GaCl3, etc., in 1,4-dioxane, but the reaction did not proceed. The yield of the product was improved by increasing the temperature up to 120 °C (entry 7). Among the solvents examined, 1,4-dioxane provided the best results (compare entry 8 with entries 9 and 10). Under neat conditions, the product yield was drastically reduced (entry 11). The use of additional additives that were thought to enhance the reaction rate by π-coordination, such as p-benzoquinone and β-pinene,18 did not improve the product yield (entries 12 and 13). When the loading of PtBr2 was reduced to 2 mol % in 1,4dioxane (0.15 M), a high yield of the product was obtained (entry 14). A better yield was obtained by further lowering the loading of catalyst to 1 mol % (entry 15). Next, we examined the scope of this reaction. The results are summarized in Table 2. It is noteworthy to mention that only 1 mol % of PtBr2 is sufficient to promote this reaction; however, longer reaction times (18) Recently, we found that the use of p-benzoquinone or β-pinene as an additional additive enhanced the reaction rate in the Pt-catalyzed intramolecular carboalkoxylation of alkynes, see: Nakamura, I.; Bajracharya, G. B.; Wu, H.; Oishi, K.; Mizushima, Y.; Gridnev, I. D.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 15423-15430.

PtBr2-Catalyzed Enyne Metathesis-Aromatization TABLE 2. Synthesis of Vinylnaphthalenesa

entry

1

R

time, h

yield of 3,b %

1 2d 3 4d 5 6 7 8 9 10e

1b 1b 1c 1c 1d 1e 1f 1g 1h 1i

n-Bu n-Bu n-Hex n-Hex cyclopropyl cyclohexyl Ph p-CF3-C6H4 p-Me-C6H4 p-MeO-C6H4

79 117 21 45 93 168 45 83 92 88

52c 35c 60 60 50c 52c 76 69 51c 43

a The reaction of 1 (0.5 mmol) was carried out in the presence of 2 mol % of PtBr2 in 1,4-dioxane at 120 °C under Ar unless otherwise noted. b Isolated yield. c Significant amounts of starting material were recovered. d 1 mol % of PtBr2 was used. e 5 mol % of PtBr2 was used.

were required when we employed substrates 1b and 1c (compare entries 1 and 2 and entries 3 and 4). Hence, use of 2 mol % of PtBr2 in 1,4-dioxane was chosen as the standard conditions for further studies. In the presence of 2 mol % of PtBr2 in 1,4-dioxane at 120 °C, the cyclization-aromatization of 1b and 1c afforded the corresponding vinylnaphthalenes 3b and 3c, respectively, in moderate yields (entries 1 and 3). Longer reaction times were observed with cyclopropyl and cyclohexyl substituents on the alkynyl terminus (entries 5 and 6). The reaction of 1f proceeded smoothly producing 3f in 76% yield (entry 7). Trifluoromethyl, methyl, and methoxy substituents at the para position of the aromatic ring, as in 1g, 1h, and 1i, were tolerated under the reaction conditions and produced the corresponding products in good to acceptable yields (entries 8-10). The reaction of 1j bearing an electron-withdrawing substituent on the para position of the aromatic ring proceeded in a similar manner to afford 3j in 45% yield (eq 4). The reaction of 1k bearing an electron-donating group on the aromatic ring produced only a trace amount of the product 3k (eq 5).19

π-bond of 1 coordinates to the electron-deficient PtBr2 as shown in 6, and subsequently the intermediate 7 is generated. Cyclization of 7 would occur in exo-fashion to produce 8. A subsequent rearrangement leads to formation of the platinum-carbene complex 9 as shown in route a. Alternatively, a rearrangement takes place to form the more stable tertiary carbocationic species 10 as depicted in route b. The skeletal rearrangement of both 9 and 10 leads to the formation of the cyclobutene intermediate 11. Formation of the cyclobutene intermediate 11 may be explained also via formation of the platinacyclopentene intermediate 12 by oxidative coupling followed by the reductive elimination of PtLn. Although this pathway is not completely ruled out, we prefer the mechanism proceeding via the zwitterionic vinylmetal complex 7 because Pt(0) [or Pd(0)] completely halted the enyne metathesis reaction. Under reflux reaction conditions, rearrangement of the cyclobutene intermediate 11 takes place to generate the 1,3-diene 2. At this stage, PtBr2 acts as a Lewis acid and induces the elimination of MeOH from 2, leading to the aromatized final product 3. The intermediates 11 and 2 were isolated successfully in support of the proposed mechanism. The substrate 1a, upon treatment with 4 mol % of PtBr2 with MeCN as a solvent at lower temperature (60 °C), afforded the cyclobutene derivative 11a in a moderate yield under nonoptimized reaction conditions (Scheme 5).20 The reaction of 11a in the presence of a catalytic amount of PtBr2 at elevated temperature (120 °C) in CH3CN afforded the final product 3a. In the absence of the catalyst, when 11a was heated at 120 °C in MeCN, the thermodynamically stable 1,3-diene 2a was produced. Treatment of 2a with PtBr2 (2 mol %) in CH3CN at 120 °C gave the final product 3a. Conclusion The 1,7-enynes, connected through an aromatic ring and bearing a methoxy group at the 4-position, underwent Pt-catalyzed enyne metathesis followed by aromatization to afford vinylnaphthalene derivatives in one pot. Although formation of a six-membered ring through enyne metathesis is not easy, this procedure allows a quick access to a new six-membered ring. The presence of a methoxy substituent in the tether further extends the scope of this reaction to generate an aromatic ring. The dual role of PtBr2 as a transition metal catalyst and a Lewis acid was exemplified in this reaction. The cyclobutene intermediate in the reaction was isolated and fully characterized, which supported that pathway c (Scheme 2) was involved in the metathesis. Further research and improvement of the reaction conditions are under investigation in our laboratory.

Experimental Section

A plausible reaction mechanism is outlined in Scheme 4. First, in a manner similar to that of the ordinary transition metal complexes, the electron-rich alkynyl

Materials. Starting materials 1 were prepared from the coupling of corresponding 2-bromobenzaldehyde derivatives with alkynes by using a Sonogashira reaction15 followed by scandium triflate-catalyzed allylation with allyltimethylsilane.16 2-Bromobenzaldehyde, alkynes, and allyltrimethylsi-

(19) The starting material 1k was decomposed under the reaction conditions.

(20) Structure of 11a was fully characterized by NMR experiments [see the Supporting Information].

J. Org. Chem, Vol. 70, No. 3, 2005 895

Bajracharya et al. SCHEME 4.

A Plausible Reaction Mechanism

SCHEME 5

lane were purchased and used as received. 2-Bromo-5(trifluoromethyl)benzaldehyde21 and 2-bromo-5-methoxybenzaldehyde22 were prepared according to the reported procedures. Cyclopropylacetylene was prepared according to the literature.23 All the catalysts used were commercially available. (21) (a) Sˇ indela´rˇ, K.; Dlabacˇ, A.; Metysˇova´, J.; Kaka´cˇ, B.; Holubek, J.; Sva´tek, E.; Sedivy´, Z.; Protiva, M. Collect. Czech. Chem. Commun. 1975, 40, 1940-1959. (b) Perchonock, C. D.; Uzinskas, I.; McCarthy, M. E.; Erhard, K. F.; Gleason, J. G.; Wasserman, M. A.; Muccitelli, R. M.; DeVan, J. F.; Tucker, S. S.; Vickery, L. M.; Kirchner. T.; Weichman, B. M.; Mong, S.; Scott, M. O.; Chi-Rosso, G.; Wu, H.-L.; Croole, S. T.; Newton, J. F. J. Med. Chem. 1986, 29, 1442-1452.

896 J. Org. Chem., Vol. 70, No. 3, 2005

Representative Procedure for the Preparation of 1-(1Methylenebutyl)naphthalene (3a). To a mixture of PtBr2 (1.1 mg, 0.003 mmol, 1 mol %) and 1-(1-methoxy-but-3-enyl)2-(pent-1-ynyl)benzene (1a) (68.5 mg, 0.3 mmol) was added 1,4-dioxane (2.0 mL, 0.15 M) under an argon atmosphere in a Wheaton microreactor. The mixture was stirred for 20 min at room temperature then heated at 120 °C for 15 h. The product was filtered through a short column of SiO2 with hexane/ethyl acetate (4/1) as an eluent, and the resulting filtrate was (22) Gies, A.-E.; Pfeffer, M. J. Org. Chem. 1999, 64, 3650-3654. (23) Corley, E. G.; Thompson, A. S.; Huntington, M. In Organic Synthesis; Hart, D. J., Ed.; 1999; Vol. 77, pp 131-235.

PtBr2-Catalyzed Enyne Metathesis-Aromatization concentrated. The residue was purified by column chromatography (silica gel, hexane/ethyl acetate; 100/1) to afford 1-(1methylenebutyl)naphthalene (3a) in 75% yield (44.0 mg). 1H NMR (400 MHz, CDCl3) δ 0.92 (t, J ) 7.4 Hz, 3H), 1.48-1.39 (m, 2H), 2.49 (t, J ) 7.4 Hz, 2H), 5.07 (d, J ) 2.0 Hz, 1H), 5.39-5.38 (m, 1H), 7.27 (dd, J ) 1.2, 6.8 Hz, 1H), 7.48-7.40 (m, 3H), 7.76-7.74 (m, 1H), 7.86-7.82 (m, 1H), 8.06-8.02 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 13.9, 21.3, 40.8, 115.1, 124.9, 125.1, 125.5, 125.6, 125.8, 127.0, 128.1, 131.2, 133.6, 141.4, 148.8. IR (neat) 3059-2870, 1636, 1590, 1506, 1463,

903, 801, 778 cm-1. Anal. Calcd for C15H16 (196.29): C, 91.78; H, 8.22. Found: C, 92.05; H, 8.13. HRMS (EI) calcd for C15H16 (M+) 196.1252, found 196.1248. Supporting Information Available: Characterization data and spectra of all products. This material is available free of charge via the Internet at http://pubs.acs.org. JO048273Q

J. Org. Chem, Vol. 70, No. 3, 2005 897