34 Radiation Chemical Studies on Oxygen-Carrying Proteins: Hemocyanin
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
JACK SCHUBERT, E. R. WHITE, and L. F. BECKER, JR. Radiation Health Division, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pa. 15213
The oxygen-carrying capacity of the nonheme copper pro tein, hemocyanin, is reduced by irradiation of the oxygenated protein with gamma and x-rays with G(-O ) = 0.9-1.2. Measurements are made on hemocyanin in its own serum at relatively low doses (0-80 krads). Oxygenated hemo cyanin is resistant to irradiation but loses its oxygen-carrying capacity only when deoxygenated following irradiation in the oxygenated state. Irradiation of the deoxygenated form is without effect on the oxygen-carrying capacity. The effect of irradiation on hemocyanin involves the oxidation of protein-bound copper atoms to the Cu(II) state by radiolytic hydrogen peroxide in the same manner as is produced by adding H O to unirradiated hemocyanins. The effects of organic peroxides, pH, urea, catalase, and other factors on the oxygenation of hemocyanin are described. 2
2
2
/~\ne of the most active areas of research i n b i o l o g i c a l systems is c o n c e r n e d w i t h t h e m e c h a n i s m of a c t i v a t i o n a n d u t i l i z a t i o n of o x y g e n (15).
O x y g e n p l a y s a n i m p o r t a n t a n d s p e c i a l role w i t h respect to r a d i a
t i o n d a m a g e a n d p r o t e c t i o n i n b o t h r a d i o b i o l o g y (2, 39) a n d r a d i a t i o n c h e m i s t r y (5, 43).
A s a m o d e l r a d i o b i o l o g i c a l system w e h a v e
chosen
to investigate t h e effects of i o n i z i n g r a d i a t i o n o n the o x y g e n a t i o n reac tions of o x y g e n - c a r r y i n g proteins u n d e r as n a t u r a l c o n d i t i o n s as possible. Since w e are s t u d y i n g t h e effects of r a d i a t i o n o n t h e f u n c t i o n a l b e h a v i o r of proteins, w e g e n e r a l l y use r e l a t i v e l y s m a l l total r a d i a t i o n doses ( 0 - 0 . 1 M r a d ) rather t h a n a c o m b i n a t i o n of h i g h r a d i a t i o n doses (^—0.5-5 M r a d s ) and unphysiological conditions w h i c h produce
gross
damage,
q u e s t i o n a b l e relevance to b i o l o g i c a l systems. 480 Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
having
34.
SCHUBERT E T A L .
481
Hemocyanin
I n this report w e present f u r t h e r results of o u r investigations (34, 37) on the action of gamma-irradiation o n the nonheme copper protein, hemocyanin.
oxygen-carrying
T h i s p r o t e i n serves as a n e s p e c i a l l y c o n
v e n i e n t r a d i o b i o l o g i c a l m o d e l because its o x y g e n a t i o n reactions c a n b e s t u d i e d o n t h e p r o t e i n as i t exists n a t u r a l l y i n its o w n s e r u m , w i t h o u t i s o l a t i o n or d i s r u p t i v e p u r i f i c a t i o n procedures.
T h e use of a
copper
p r o t e i n is of p a r t i c u l a r interest i n v i e w of suggestions that c o p p e r pos sesses some u n i q u e characteristics 36).
a n d roles i n r a d i o b i o l o g y ( J , 19, 35,
W e h a v e a l r e a d y s h o w n that t h e o x y g e n - c a r r y i n g c a p a c i t y of t w o
types of h e m o c y a n i n as m e a s u r e d b y o p t i c a l a b s o r p t i o n at 340 m/x d e
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
creases w i t h i n c r e a s i n g r a d i a t i o n dose G ( - 0 ) of about 1.0 (34, 2
giving
initial yield
values
of
37).
P r e v i o u s investigations
(4, 32, 41, 42)
o n t h e actions
r a d i a t i o n o n h e m o c y a n i n i n v o l v e d doses of 2 χ
of i o n i z i n g
1 0 to 6 Χ 1 0 rads a n d 5
5
h i g h e r . S v e d b e r g (41, 42) s h o w e d that i r r a d i a t i o n w i t h α-particles s p l i t h e m o c y a n i n f r o m t h e s n a i l Helix
i n t o halves a n d e v e n t u a l l y
pomatia
eighths. P r e s u m a b l y h y d r o g e n b o n d s w e r e b r o k e n b y d i r e c t a c t i o n of t h e h e a v y i o n i z i n g tracks.
C h e m i c a l changes m u s t h a v e o c c u r r e d because
the fragments c o u l d not b e reconstituted. w h e n h e m o c y a n i n f r o m Limulus (32).
B a r r o n (4)
A s i m i l a r s p l i t t i n g takes p l a c e
polyphemus
is i r r a d i a t e d w i t h
d e m o n s t r a t e d that large doses ( 4 - 6 X
x-rays
1 0 r a d s ) of 5
x - i r r a d i a t i o n of h e m o c y a n i n i n d i l u t e solutions c a u s e d t h e c o p p e r - p r o t e i n b o n d to r u p t u r e .
Properties of
Hemocyanins
T h e f o u r m a i n groups of o x y g e n - c a r r y i n g p r o t e i n s — t h e h e m o g l o b i n s , c h l o r o c r u o r i n s , h e m e r y t h r i n s , hemocyanins—possess
t h e v i t a l f u n c t i o n of
transport a n d storage of o x y g e n i n t h e a n i m a l k i n g d o m ( 1 5 , 23).
They
react r e v e r s i b l y w i t h m o l e c u l a r o x y g e n at r e l a t i v e l y h i g h p a r t i a l pressures a n d release i t t o tissues w h e r e t h e p a r t i a l pressure is l o w . H e m o g l o b i n s a n d c h l o r o c r u o r i n s possess a n i r o n - c o n t a i n i n g prosthetic
group a n d a
p r o t e i n . T h e o x y g e n b i n d i n g site resides w i t h t h e i r o n a t o m centered i n the p o r p h y r i n r i n g w h i l e t h e g l o b i n makes t h e prosthetic g r o u p soluble a n d its reactions w i t h o x y g e n reversible. I n b o t h h e m o g l o b i n a n d c h l o r o c r u o r i n t h e m o l e c u l a r o x y g e n c o m b i n e s i n a 1:1 ratio w i t h t h e F e a t o m . H e m e r y t h r i n , w h i c h contains i r o n , a n d h e m o c y a n i n , w h i c h contains c o p p e r , are n o n h e m e o x y g e n - c a r r y i n g proteins i n w h i c h t h e m e t a l appears to b e b o u n d d i r e c t l y to the p r o t e i n via t h e f u n c t i o n a l g r o u p i n g s of o n e or m o r e a m i n o a c i d residues.
T h e m e t a l to o x y g e n ratio appears to b e
2:1 i n b o t h h e m e r y t h r i n a n d h e m o c y a n i n i n contrast to the 1:1 ratio f o u n d i n t h e h e m e proteins (13, 23, 26).
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
482
RADIATION CHEMISTRY
1
T h e existence of other n a t u r a l o c c u r r i n g o x y g e n carriers has not b e e n p r o v e d . P r e s u m p t i v e e v i d e n c e for a n o x y g e n - c a r r y i n g f u n c t i o n has b e e n a s c r i b e d to a v a n a d i u m - c o n t a i n i n g p r o t e i n , h e m o v a n a d i u m (16)
found
i n the m a r i n e organisms of the t u n i c a t e f a m i l y . H e m o c y a n i n s f r o m v a r y i n g sources c o p p e r , 0.8 to 1 . 2 %
c o n t a i n f r o m 0.15
to
0.26%
s u l f u r , a n d m o l e c u l a r w e i g h t s w h i c h v a r y consider
a b l y because of the a g g r e g a t i o n of smaller units ( 13, 33 ). T h e a m i n o a c i d c o m p o s i t i o n of h e m o c y a n i n s f r o m t e n different species h a v e b e e n deter m i n e d (14).
R e m o v a l of c o p p e r or o x y g e n does not m o d i f y the p r o t e i n
c o m p o s i t i o n or p r o d u c e a n y m e a s u r a b l e change as m e a s u r e d b y o p t i c a l
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
r o t a t o r y d i s p e r s i o n o n the c o n f o r m a t i o n of the p r o t e i n structure
(7).
T h e state of a g g r e g a t i o n of the subunits determines, i n part, the o x y g e n a t i o n properties of the p r o t e i n (17,
18).
T h e proteins are colorless w h e n
d e o x y g e n a t e d a n d d e e p b l u e w h e n oxygenated.
T h e oxygenated protein
is r e a d i l y d e o x y g e n a t e d b y passage of a stream of oxygen-free h e l i u m t h r o u g h a s o l u t i o n of the p r o t e i n . T h e p r o t e i n - b o u n d c o p p e r c a n be r e m o v e d b y d i a l y s i s against c y a n i d e , sulfide, a n d other c o p p e r c o m p l e x i n g agents.
Subsequent reintro
d u c t i o n of the c o p p e r restores the o x y g e n a t i n g a b i l i t y of h e m o c y a n i n . H o w e v e r , the resynthesis of h e m o c y a n i n f r o m a p o h e m o c y a n i n c a n a c h i e v e d o n l y w i t h c u p r o u s , not c u p r i c salts (6, 13).
be
Practically quanti
tative r e c o n s t i t u t i o n is o b t a i n e d b y the use of the a c e t o n i t r i l e c o m p l e x of c o p p e r (21).
T h e a p o p r o t e i n appears specific f o r c o p p e r since
b i n d i n g of other m e t a l ions denatures the p r o t e i n M a n y investigations h a v e
been
made
the
(6).
to i d e n t i f y the
ligands i n
h e m o c y a n i n responsible for the b i n d i n g of c o p p e r a n d the o x i d a t i o n state of the c o p p e r itself (6, solved.
9, 13, 23).
T h e s e questions h a v e not b e e n re
M o r e recently, h o w e v e r , measurements
of the o p t i c a l rotatory
dispersion ( O D ) and circular dichroism ( C D ) on hemocyanin obtained f r o m Octopus
vulgaris
a n d Loligo
pealei h a v e p r o d u c e d c o n v i n c i n g e v i
dence, a l b e i t c i r c u m s t a n t i a l , o n the b i n d i n g of c o p p e r to h e m o c y a n i n ( 7, 45, 46).
V a n H o l d e (46)
c o m p a r e d the C D spectra o b t a i n e d for the
m o l l u s c a n h e m o c y a n i n w i t h those of p e p t i d e - C u ( I I ) complexes.
Only a
h i s t i d i n e - c o n t a i n i n g c o m p l e x s h o w e d C D spectra r e s e m b l i n g those f o u n d f o r the h e m o c y a n i n s . T h u s , as has b e e n i n f e r r e d f r o m other observations, the h i s t i d y l residues are at least p a r t i a l l y responsible for the b i n d i n g of copper i n hemocyanins. T h e investigations of F e l s e n f e l d (10)
o n the a c t i o n of h y d r o g e n
p e r o x i d e o n h e m o c y a n i n has p r o v i d e d interesting i n f o r m a t i o n w h i c h , i n fact, explains the r a d i a t i o n effects o b s e r v e d thus far. H e f o u n d that the d e o x y g e n a t e d h e m o c y a n i n w a s m u c h m o r e sensitive to attack t h a n the o x y g e n a t e d h e m o c y a n i n as m e a s u r e d b y the o x y g e n - c a r r y i n g c a p a c i t y . T h e p e r o x i d e appears to act b y o x i d i z i n g the C u ( I )
of
deoxygenated
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
34.
SCHUBERT E T A L .
h e m o c y a n i n to the C u ( I I ) Busycotypus
483
Hemocyanin
state.
T h e hemocyanin from the mollusk
c a n b e regenerated b y t h e use of r e d u c i n g
canalicuhtum
agents a n d b y t h e use of excess p e r o x i d e ( 1 0 ) . T h e p r o d u c t of t h e per oxide o x i d a t i o n was d e s i g n a t e d as m e t h e m o c y a n i n i n a n a l o g y to m e t h e m o g l o b i n since i n b o t h cases specific o x i d a t i o n of the m e t a l i o n o c c u r r e d w i t h a c o n c o m i t a n t loss of p h y s i o l o g i c a l a c t i v i t y . H e m o c y a n i n possesses a catalase-like a c t i o n (10, 12), albeit a w e a k one, i n that i t decomposes h y d r o g e n p e r o x i d e i n t o w a t e r a n d o x y g e n just as t h e h e m e p r o t e i n catalase.
T h e catalase-like a c t i o n of h e m o c y a n i n is
d u e to the p r o t e i n - b o u n d c o p p e r since neither copper-free h e m o c y a n i n Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
nor
free
copper
ions
exhibit
activity
under
equivalent
conditions.
C o p p e r - a m i n o a c i d complexes h a v e b e e n tested f o r catalase-like a c t i o n , a n d it w a s r e p o r t e d that o n l y t h e c o p p e r - a r g i n i n e c o m p l e x possesses catalase-like a c t i v i t y (13).
H o w e v e r , w e h a v e f o u n d (37)
as h a v e other
investigators (29, 40), that other a m i n o a c i d complexes of c o p p e r also decompose H 0 . 2
2
O x y g e n a t e d h e m o c y a n i n exhibits a b s o r p t i o n b a n d s i n t h e v i s i b l e a n d u l t r a v i o l e t regions at about 278, 345, a n d near 600 πΐμ. T h e b a n d at 278 m μ is c o m m o n to a l l proteins w h i l e t h e other t w o , c a l l e d c o p p e r b a n d s , d i s a p p e a r u p o n d e o x y g e n a t i o n or r e m o v a l of the c o p p e r (13).
Neither
o x y g e n a t e d or d e o x y g e n a t e d h e m o c y a n i n give a n E P R s i g n a l except w h e n the p r o t e i n is d e n a t u r e d at w h i c h p o i n t t h e c o p p e r becomes p a r a m a g netic (27).
H o w e v e r , w h e n d e n a t u r e d h e m o c y a n i n is regenerated
cysteine o r H 0 , t h e E P R s i g n a l disappears 2
2
with
(22).
T h e o x i d a t i o n state of t h e c o p p e r i n h e m o c y a n i n s has b e e n t h e sub ject of m u c h i n v e s t i g a t i o n a n d d i s c u s s i o n (11, 23, 24, 25, 27, 30). V a n H o l d e (46)
has r e v i e w e d t h e e v i d e n c e r e g a r d i n g t h e o x i d a t i o n state of
c o p p e r i n c o p p e r proteins. H e points o u t that t h e b o n d at a b o u t 340 m/x is v e r y strong i n t h e h e m o c y a n i n s a n d corresponds to t h e i r a b i l i t y to b i n d o x y g e n a n d to t h e presence of c u p r i c c o p p e r .
T h e c o n c l u s i o n is d r a w n
that i n o x y h e m o c y a n i n the c o p p e r is at least p a r t i a l l y i n the C u ( I I ) f o r m a n d that t h e absence of a n E P R s i g n a l indicates either
electron
p a i r i n g w i t h t h e o x y g e n or b e t w e e n t h e c u p r i c ions. A tentative m e c h a nism for 0
2
b i n d i n g i n h e m o c y a n i n s is presented
(46)
i n w h i c h it is
a s s u m e d that i n d e o x y h e m o c y a n i n o n e c o o r d i n a t i o n site o n each c u p r o u s i o n is o c c u p i e d b y a w a t e r m o l e c u l e . W h e n these are r e p l a c e d b y 0 , 2
d i s t o r t i o n of t h e c o o r d i n a t i o n is r e q u i r e d because of t h e smaller size of 0 . 2
E l e c t r o n transfer to 0
2
is f a c i l i t a t e d b y t h e longer b o n d l e n g t h i n
the 0 ~ i o n . 2
2
Experimental Limulus ( t h e horseshoe or k i n g c r a b ) a n d Busycotypus (Busycon, the c h a n n e l e d w h e l k ) h e m o c y a n i n h e m o l y m p h are o b t a i n e d f r o m t h e
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
484
RADIATION CHEMISTRY
1
M a r i n e B i o l o g i c a l L a b o r a t o r y , W o o d s H o l e , M a s s . T h e h e m o l y m p h is s h i p p e d c o l d i n i n s u l a t e d containers via air the same d a y the animals are b l e d . T h e h e m o c y a n i n is " c o n d i t i o n e d " u p o n a r r i v a l . T h i s consists of r e m o v a l of large c l u m p s of c l o t t e d m a t e r i a l w i t h a glass r o d . T h e s o l u t i o n is t h e n filtered ( R e e v e A n g e l flutted filter p a p e r # 8 0 2 ) . S u b s e q u e n t l y , the s a m p l e is o x y g e n a t e d b y b u b b l i n g o x y g e n t h r o u g h the s o l u t i o n for a b o u t t e n m i n u t e s at a rate of 20 m l . p e r m i n u t e . T h e o x y g e n a t e d h e m o l y m p h is p l a c e d i n a 350 m l . gas w a s h i n g bottle w i t h inlet a n d f r i t t e d d i s c at the b o t t o m . T h e bottle is s u r r o u n d e d b y ice, a n d a d e o x y g e n a t i o n c y c l e is c a r r i e d out b y b u b b l i n g especially p u r i f i e d h e l i u m gas ( 0 < 0.001% b y v o l u m e ) at a rate of 40 m l . per m i n u t e u n t i l the s o l u t i o n is colorless. T w o a d d i t i o n a l r e o x y g e n a t i o n a n d d e o x y g e n a t i o n cycles are c a r r i e d out. A f t e r the final o x y g e n a t i o n the s o l u t i o n is filtered, a f e w d r o p s of toluene a d d e d , a n d the s o l u t i o n is stored i n the refrigerator at about 5 ° C . W e d o not find e v i d e n c e for surface d e n a t u r a t i o n of the h e m o c y a n i n s u n d e r the c o n d i t i o n s d e s c r i b e d for the p a r t i c u l a r h e m o c y a n i n e m p l o y e d .
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
2
Since w e are w o r k i n g w i t h a b i o l o g i c a l fluid subject to d e t e r i o r a t i o n , i t is e s p e c i a l l y i m p o r t a n t that r e l i a b l e c r i t e r i a be e m p l o y e d to ensure that the o b s e r v e d responses of h e m o c y a n i n to c h e m i c a l a n d p h y s i c a l stress are r e a l a n d r e p r o d u c i b l e a n d not artefacts. T h e literature contains m a n y references to the storage life of h e m o c y a n i n . S o m e investigators h a v e c l a i m e d that the h e m o l y m p h c a n be stored for w e e k s or e v e n m o n t h s w i t h o u t d e t e r i o r a t i o n as l o n g as the m a t e r i a l is k e p t c o l d a n d c o v e r e d w i t h toluene. H o w e v e r , the q u e s t i o n arises as to the c r i t e r i a of d e t e r i o r a t i o n e m p l o y e d . I n terms of i m m u n o l o g i c a l reactions (20), catalase activ i t y , a n d t o t a l o x y g e n c a p a c i t y , h e m o c y a n i n appears r e m a r k a b l y stable. W e h a v e f o u n d , h o w e v e r , b y o u r c r i t e r i a , that the refrigerator l i f e of o u r h e m o c y a n i n is a p p r o x i m a t e l y t w e l v e days. T h e c r i t e r i a w e e m p l o y is a t i m e d e p e n d e n c y of t h e o x y g e n a t e d a n d d e o x y g e n a t e d o p t i c a l density at 340 m/x. S o m e of the observations w e h a v e m a d e r e g a r d i n g the usa b i l i t y of h e m o c y a n i n i n h e m o l y m p h are: ( 1 ) T h e o x y g e n a t e d o p t i c a l density, ( O D ) , f o r a g i v e n d i l u t i o n , m a y b e a t t a i n e d e a c h d a y , b u t i n a d e t e r i o r a t e d sample, there occurs a spontaneous loss of o x y g e n u p o n s t a n d i n g 3 0 - 6 0 m i n u t e s w i t h a c o n c o m i t a n t d r o p i n ( O D ) . U p o n r e o x y g e n a t i o n the ( O D ) m a y rise a g a i n but only temporarily. 0
0
0
( 2 ) T h e d e o x y g e n a t e d o p t i c a l density, ( O D ) , of a d e t e r i o r a t e d s a m p l e is h i g h e r t h a n that of a fresh p r e p a r a t i o n a n d m a y b e 2 5 - 5 0 % h i g h e r i n ( O D ) t h a n the f r e s h sample. d
d
( 3 ) T h e p H of f r e s h h e m o c y a n i n , Busycotypus h e m o c y a n i n i n its h e m o l y m p h or s e r u m is 8.1 ± 0.15 a n d that of Limulus is 7.6 ± 0.5. T h e p H undergoes s m a l l changes f r o m d a y to d a y , b u t the p H change i n a d e t e r i o r a t e d s a m p l e undergoes a l a r g e r t h a n n o r m a l d r o p . A n o r m a l decrease m a y b e f r o m 0.00 to 0.15 of a p H u n i t p e r d a y , b u t w h e n the samples deteriorate the p H d r o p s 0.3-0.5 of a u n i t . R e g u l a t i o n of h e l i u m gas f l o w t h r o u g h the v a r i o u s solutions are satisfactorily c o n t r o l l e d b y constant d i f f e r e n t i a l l o w flow controllers m a n u f a c t u r e d b y M o o r e P r o d u c t s C o . , P h i l a d e l p h i a , P a . B y this means w e are able to o b t a i n a constant flow of gas for d e o x y g e n a t i o n regardless of changes i n d o w n s t r e a m pressure. W e e m p l o y a u n i t c o n s i s t i n g of six
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
34.
SCHUBERT E T A L .
485
Hemocyanin
d i f f e r e n t i a l flow controllers c o n n e c t e d i n p a r a l l e l . E a c h u n i t c a n b e a d j u s t e d w i t h o u t a n y effect o n the others. W e find that 40 m l . of h e l i u m p e r m i n u t e p r o v i d e s a satisfactory flow f o r r a p i d d e o x y g e n a t i o n of d i l u t e solutions of o x y g e n a t e d h e m o c y a n i n . T h e flow rate is m e a s u r e d b y a s i m p l e soap b u b b l e meter. T h e r e o x y g e n a t i o n of d e o x y h e m o c y a n i n b y m o l e c u l a r o x y g e n is c o m p l e t e i n a m a t t e r of seconds. H o w e v e r , the d e o x y g e n a t i o n c y c l e i n o u r system r e q u i r e s m o r e t i m e . W i t h h e m o c y a n i n solutions d i l u t e d w i t h p h o s p h a t e buffer to a n o p t i c a l d e n s i t y of a b o u t 0.5, a n d a t o t a l v o l u m e of a b o u t 4 m l , d e o x y g e n a t i o n is c o m p l e t e i n a b o u t three m i n u t e s b u t m o r e c o n c e n t r a t e d solutions r e q u i r e m o r e t i m e . W e r o u t i n e l y d e o x y genate f o r six m i n u t e s w i t h h e m o c y a n i n s o l u t i o n of ( O D ) = 0.5 a n d ten m i n u t e s f o r solutions h a v i n g a n ( O D ) = 1. T h e rates of d e o x y g e n a t i o n are l i t t l e affected b y the age, p H 5 - 9 , or degree of d i l u t i o n . 0
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
c
D i l u t i o n s are m a d e w i t h 0 . 0 5 M s o d i u m d i h y d r o g e n p h o s p h a t e b u f f e r , p H 7.00. C o p p e r analyses are m a d e b y a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t r y ; the r a d i a t i o n source, cobalt-60 g a m m a rays, d e l i v e r s a b o u t 15,000 r a d / m i n . I n some cases 280 k v x-rays w e r e u s e d f o r i r r a d i a t i o n . R a d i a t i o n doses are m e a s u r e d w i t h a ferrous sulfate dosimeter b a s e d o n a v a l u e of G ( F e ) = 15.5 (28). F o r r a d i a t i o n doses a p p r o a c h i n g 40,000 rads w e use a n o x y g e n - s a t u r a t e d ferrous sulfate s o l u t i o n c o n t a i n i n g 4 m i l l i m o l e s of i r o n i n s t e a d of the u s u a l 1 m i l l i m o l e . I n this m a n n e r w e c a n e x t e n d t h e u s e f u l range to at least 10 rads. F o r r a d i a t i o n doses b e l o w 4,000 rads w e e m p l o y a n o p t i c a l c e l l w i t h a 10 c m . p a t h l e n g t h i n s t e a d of a 1 c m . p a t h l e n g t h . T h i s p e r m i t s us to o b t a i n r e l i a b l e measurements d o w n to 400 rads t o t a l a b s o r b e d dose. 3 +
5
O x y g e n - s a t u r a t e d solutions of h e m o c y a n i n are i r r a d i a t e d at 25 ° C . i n 4 m l . glass v i a l s sealed w i t h T e f l o n - l i n e d s c r e w caps. A f t e r i r r a d i a t i o n , o x y g e n a t e d solutions are t r a n s f e r r e d to s i l i c a c e l l cuvettes ( p a t h l e n g t h 1 c m . ) c a p p e d w i t h sleeve-type r u b b e r stoppers w i t h a n i n d e n t e d area i n the center so that s y r i n g e needles f o r passage of o x y g e n or oxygen-free h e l i u m c a n b e i n s e r t e d . H e m o c y a n i n is s u b s e q u e n t l y d e o x y g e n a t e d b y b u b b l i n g f r o m 350 to 600 m l . of h e l i u m , at a rate of 40 m l . p e r m i n u t e , t h r o u g h the s o l u t i o n u n t i l c o m p l e t e d e o x y g e n a t i o n occurs as m e a s u r e d b y the d e o x y g e n a t e d o p t i c a l d e n s i t y . T h e s o l u t i o n is k e p t i n the d e o x y g e n a t e d state f o r a g i v e n t i m e , t h e n r e o x y g e n a t e d , a n d the o x y g e n a t e d o p t i c a l d e n s i t y is m e a s u r e d . S u b s e q u e n t measurements are m a d e u n t i l the ( O D ) reaches a constant v a l u e . T h e ( O D ) of h e m o c y a n i n f r o m Limulus attains a constant v a l u e i m m e d i a t e l y after o x y g e n a t i o n . W i t h i r r a d i a t e d h e m o c y a n i n f r o m Busycotypus, the t i m e r e q u i r e d f o r the ( O D ) to r e a c h a stable m a x i m u m v a l u e increases w i t h i n c r e a s i n g r a d i a t i o n dose —e.g., a dose of less t h a n 8,000 rads r e q u i r e s less t h a n one m i n u t e ; a p p r o x i m a t e l y 13,000 to 20,000, one h o u r ; 20,000 to 27,000, one to t w o h o u r s ; a n d three to f o u r h o u r s f o r doses a b o v e 34,000 rads. 0
0
G
A f t e r i r r a d i a t i o n , or sometimes before, s m a l l amounts of aggregated p r o t e i n m a y a p p e a r i n suspension i n the h e m o c y a n i n solutions a n d are r e m o v e d b y l o w s p e e d c e n t r i f u g a t i o n . T h e a g g r e g a t e d p r o t e i n is colorless a n d p r o b a b l y not h e m o c y a n i n because its r e m o v a l does not c h a n g e the o r i g i n a l O D ' s . H o w e v e r , t h e i r presence does raise the O D s l i g h t l y (.—0.05 a n O D u n i t ) . If the s u s p e n d e d aggregates a p p e a r t h e i r effect c a n b e
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
486
RADIATION CHEMISTRY
1
c o m p e n s a t e d for i n Limulus h e m o c y a n i n as f o l l o w s : d u r i n g d e o x y g e n a t i o n the ( O D ) is r e c o r d e d . T h e s a m p l e is o x y g e n a t e d a n d the ( O D ) r e c o r d e d . T h e o x y g e n a t e d s a m p l e is e e n t r i f u g e d , a n d the ( O D ) a g a i n is r e a d . T h e difference i n ( O D ) b e t w e e n the e e n t r i f u g e d a n d n o n c e n t r i f u g e d sample is s u b t r a c t e d f r o m the d e o x y g e n a t e d sample O D to g i v e a c o r r e c t e d ( O D ) . T h e same p r o c e d u r e is u s e d w i t h Busycotypus h e m o c y a n i n for ( O D ) values, b u t because of r a p i d spontaneous reoxy g e n a t i o n f r o m r e s i d u a l H 0 , a c o r r e c t i o n to the ( O D ) is not feasible. d
0
0
G
d
0
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
2
2
d
A n i m p o r t a n t factor, not a l w a y s a p p r e c i a t e d i n investigations of the effects of i o n i z i n g r a d i a t i o n o n b i o l o g i c a l materials i n aqueous s o l u t i o n , is the d e p l e t i o n of o x y g e n i n the m e d i u m w h i c h occurs d u r i n g i r r a d i a t i o n . I n o u r systems, this factor becomes i m p o r t a n t e v e n i n o x y g e n saturated s o l u t i o n above doses of 60,000 rads a n d at l o w e r doses w i t h air saturated solutions. F r o m experience, w e f o u n d that it is necessary either to b u b b l e o x y g e n t h r o u g h the s o l u t i o n d u r i n g i r r a d i a t i o n or to m a i n t a i n the o x y g e n saturated s o l u t i o n i n a closed system d u r i n g i r r a d i a t i o n . I n order to check w h e t h e r o u r system has suffered o x y g e n d e p l e t i o n at h i g h r a d i a t i o n doses, w e measure the ( O D ) of a n i r r a d i a t e d o x y g e n a t e d h e m o c y a n i n s o l u t i o n i m m e d i a t e l y after i r r a d i a t i o n a n d b e f o r e f u r t h e r o x y g e n a t i o n . If i t de creases t h e n w e k n o w that d e p l e t i o n o c c u r r e d . I n a s m u c h as o n l y the f u l l y o x y g e n a t e d h e m o c y a n i n is resistant to the a c t i o n of the r a d i a t i o n p r o d u c e d p r o d u c t s , it is o b v i o u s l y necessary that no o x y g e n d e p l e t i o n o c c u r i n the system d u r i n g i r r a d i a t i o n . G
H y d r o g e n p e r o x i d e is f o r m e d i n the i r r a d i a t e d o x y g e n a t e d buffer solutions a n d the concentrations w e r e m e a s u r e d i o d o m e t r i c a l l y ( 8 ) i n p H 7 p h o s p h a t e buffer. A m o u n t s of H 0 f o r m e d w e r e , i n /xmole/liter: 18 at 10 k r a d , 26 at 15 k r a d , 58 at 40 k r a d s . I n d e o x y g e n a t e d buffer n o H 0 was detected ( < 1 /xmole/liter ). T h e results are i n g o o d agree m e n t w i t h other w o r k e r s ( 5 ). 2
2
2
2
T h e c o p p e r i n h e m o c y a n i n is d i r e c t l y a n d q u a n t i t a t i v e l y i n v o l v e d i n the o x y g e n a t i o n r e a c t i o n . A l l i n c o m i n g h e m o c y a n i n solutions are a n a l y z e d f o r c o p p e r w i t h a P e r k i n - E l m e r a t o m i c a b s o r p t i o n spectrophotometer. T h e analyses are c a r r i e d out b y d i l u t i n g the stock s o l u t i o n w i t h d i s t i l l e d w a t e r a n d f e e d i n g t h e s o l u t i o n to the b u r n e r . T h e catalase-like properties of h e m o c y a n i n a n d c o p p e r - a m i n o a c i d chelates h a v e b e e n m e a s u r e d m a n o m e t r i c a l l y u s i n g a c o n v e n t i o n a l W a r b u r g a p p a r a t u s . W e are n o w u s i n g a d i f f e r e n t i a l m a n o m e t e r t e c h n i q u e f o r m e a s u r i n g the rates of o x y g e n e v o l u t i o n (31 ) w h i c h , f o r o u r purposes, is m u c h s u p e r i o r to the c o n v e n t i o n a l v e r t i c a l c o l u m n d i f f e r e n t i a l m a n o m e ter, e s p e c i a l l y i n sensitivity. Results N o effect of i r r a d i a t i o n o n h e m o c y a n i n is d e t e c t e d as l o n g as the h e m o c y a n i n is m a i n t a i n e d i n the o x y g e n a t e d state. H o w e v e r , u p o n d e o x y g e n a t i o n of the i r r a d i a t e d h e m o c y a n i n , f o l l o w e d b y o x y g e n a t i o n , a decrease i n o x y g e n - c a r r y i n g c a p a c i t y is o b s e r v e d . T h e a m o u n t of r a d i a t i o n d a m a g e — m e a s u r e d i n terms of loss of o x y g e n c a p a c i t y — d e p e n d s o n the t i m e the i r r a d i a t e d h e m o c y a n i n r e m a i n s i n the o x y g e n a t e d state
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
34.
SCHUBERT E T A L .
487
Hemocyanin
( d e s i g n a t e d as o x y g e n r e a c t i o n t i m e , o.r.t.) b e f o r e a d e o x y g e n a t i o n a n d r e o x y g e n a t i o n c y c l e , a n d i n the d e o x y g e n a t e d state ( d e s i g n a t e d as deoxy genated r e a c t i o n t i m e , d.r.t. ) b e f o r e r e o x y g e n a t i o n .
H o w e v e r , u n d e r the
c o n d i t i o n s e m p l o y e d , the r a d i a t i o n effects are i n d e p e n d e n t of the o.r.t.'s f o r the t i m e intervals e m p l o y e d . a n d the d.r.t. w a s one h o u r . w i t h an ( O D )
0
G e n e r a l l y , the o.r.t. w a s t e n m i n u t e s
I n the case of Limulus
hemocyanin—e.g.,
of 0.5—the effect of i r r a d i a t i o n o n the ( O D )
0
was identi
c a l f o r o.r.t.'s u p to 60 m i n u t e s after the cessation of i r r a d i a t i o n . Samples of Limulus
a n d Busycotypus
were diluted w i t h
phosphate
buffer to y i e l d d e s i r e d values of o x y g e n a t e d o p t i c a l density. T h e h e m o Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
c y a n i n w a s i r r a d i a t e d i n the o x y g e n a t e d state, d e o x y g e n a t e d i m m e d i a t e l y after i r r a d i a t i o n , t h e n reoxygenated.
The ( O D )
G
decreased w i t h increas
i n g dose a n d the G ( - 0 ) values ( 0 . 9 - 1 . 2 ) , f o r b o t h h e m o c y a n i n s 2
were
about the same a n d i n d e p e n d e n t of c o n c e n t r a t i o n ( F i g u r e 1 ). I n F i g u r e 2 d a t a for a one h o u r d.r.t. ( a p e r i o d b e y o n d w h i c h n o f u r t h e r decreases i n o x y g e n c a p a c i t y o c c u r ) s h o w that the ( O D )
G
drops
r a p i d l y w i t h i n c r e a s i n g r a d i a t i o n a n d , i n fact, m o r e t h a n 9 0 % of the entire o x y g e n c a p a c i t y is lost above 35,000 rads. E x p e r i m e n t s w i t h Busycotypus to those o b t a i n e d w i t h Limulus
h e m o c y a n i n y i e l d e d results s i m i l a r
hemocyanin.
However, w i t h an
(OD)
0
of 0.5, r a d i a t i o n doses a b o v e 13,000 to 16,000 rads restored the o x y g e n capacity,
and above
70,000 rads the o x y g e n c a p a c i t y
e q u i v a l e n t to u n i r r a d i a t e d h e m o c y a n i n ( 3 7 ) . of h e m o c y a n i n w a s i n c r e a s e d to give a n ( O D )
0
23,000 rads, c a l c u l a t e d = M X 13,000 = 0.5
nearly
concentration
of 0.9, the r a d i a t i o n dose
r e q u i r e d to p r o d u c e the m i n i m u m i n c r e a s e d to that =
became
W h e n the
expected—observed
23,000 rads ( F i g u r e 3 ) .
Role of Radiolytic Hydrogen Peroxide. A series of experiments w e r e c a r r i e d out to d e t e r m i n e the extent to w h i c h r a d i o l y t i c H 0 2
2
contributed
to the decrease i n o x y g e n c a p a c i t y of i r r a d i a t e d h e m o c y a n i n . F r o m these experiments s u m m a r i z e d b e l o w , the c o n c l u s i o n is d r a w n that the effects of g a m m a i r r a d i a t i o n of h e m o c y a n i n i n solutions of h e m o l y m p h or buffer i n the dose range of 0 to 60 k r a d s are c a u s e d n e a r l y e n t i r e l y b y
H 0 . 2
2
T h e e x p e r i m e n t a l bases for this c o n c l u s i o n f o l l o w : ( 1 ) T h e p h o s p h a t e buffer was i r r a d i a t e d a n d a d d e d to u n i r r a d i a t e d h e m o c y a n i n . T h e subsequent changes i n o x y g e n - c a r r y i n g c a p a c i t y w e r e i d e n t i c a l w i t h that o b s e r v e d w h e n the h e m o c y a n i n w a s i r r a d i a t e d w h i l e i n the same buffer over the entire range of r a d i a t i o n doses. B o t h Limulus a n d Busycotypus h e m o c y a n i n w e r e tested. I n the case of the latter, e v e n the regeneration of o x y g e n - c a r r y i n g c a p a c i t y w a s r e p r o d u c e d ( F i g u r e 4 ) . ( 2 ) T h e presence of catalase d u r i n g i r r a d i a t i o n of h e m o c y a n i n o r the a d d i t i o n of catalase to h e m o c y a n i n after i r r a d i a t i o n , b u t b e f o r e d e o x y g e n a t i o n , eliminates the effects of i r r a d i a t i o n o n the o x y g e n - c a r r y i n g capacity (Figure 5).
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
488
RADIATION CHEMISTRY
4
6
1
8
RADIATION DOSE (KIL0RADS)
Figure 1. Effect of gamma irradiation on the oxygencarrying capacity of different concentrations of oxy genated hemocyanins in phosphate buffer at pH 7.0. The oxygenation reaction time was 10 minutes and the deoxygenation reaction time was 30 minutes Busycotypus 0 — [ C w ] = 7.1 X I 0 - M ; G ( - O * ) r = 1 . 2 5
• — [ C M ] = 5 . 3 5 Χ 10~ Μ; G ( - C \ ) = 5
1.0
O — [ C M ] = 3.55 X 10- M; G(-0 ) = 0.9 Limulus • — [ C M ] = 7.68 X 10- M; G(-0,) = 1.1 # — [ C M ] = 4.04 X 10~ M; G(-O ) = 0.9 5
2
5
5
t
( 3 ) T h e h e m o l y m p h was separated f r o m hemocyanin b y ultracent r i f u g a t i o n . W h e n t h e protein-free h e m o l y m p h w a s i r r a d i a t e d a n d a d d e d to u n i r r a d i a t e d b u f f e r e d ( p h o s p h a t e ) h e m o l y m p h , the effect w a s i d e n t i c a l w i t h t h a t o b s e r v e d f o r the same doses of i r r a d i a t i o n d e l i v e r e d t o h e m o c y a n i n i n h e m o l y m p h . T h e a m o u n t of H 0 p r o d u c e d i n h e m o l y m p h w a s f o u n d to b e t h e same as that p r o d u c e d i n p u r e buffer f o r t h e r a d i a t i o n dose range, 0 - 6 0 k r a d s . 2
2
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
34.
SCHUBERT E T A L .
489
Hemocyanin
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
0.5
20
30
40
ABSORBED
50
60
RADIATION
DOSE
70
80
90
100
(KILORADS) Science
Figure 2. Changes in optical densities of hemocyanin from L i m u l u s after irradiation at 25°C. with cobalt-60 gamma rays at a dose rate of 15 kilorads/ min. Solutions consisted of L i m u l u s hemolymph diluted with 0.05M potassium dihydrogen phosphate buffer (pH 7.00) and saturated with oxygen. Copper concentration was 3.92 X 10~ M. Hemocyanin was deoxygenated ten minutes after irradiation and was allowed to remain in the deoxygenated state for one hour before reoxygenation, at which time the optical densities were measured at 340 ra/x. Subsequent deoxygenation provided the final deoxygenated optical densities. 5
Ο—oxygenated φ—deoxygenated
( 4 ) T h e a d d i t i o n of H 0 to b u f f e r e d solutions of h e m o c y a n i n p r o d u c e d effects v e r y s i m i l a r to those o b s e r v e d u p o n i r r a d i a t i o n . T h e s e results a l o n g w i t h those of i r r a d i a t e d systems, also reflect s m a l l effects c a u s e d b y t h e c a t a l y t i c d e c o m p o s i t i o n of H 0 b y h e m o c y a n i n itself. 2
2
2
Effect of
O r g a n i c Peroxides.
properties of Limulus tested.
T h e effect o n t h e o x y g e n - c a r r y i n g
h e m o c y a n i n b y different o r g a n i c peroxides w a s
T h e peroxides tested i n c l u d e d : s u c c i n i c a c i d p e r o x i d e
C H — C H — C O ) 0 ; tert-butyl 2
2
2
2
2
hydroperoxide ( ( C H
3
(HOOC—
) « C — O O H ); and
Ο tert-butyl
peroxymaleie acid ( ( C H
A t t h e highest concentrations
H
) C — O O — C — C H = C H — C O O H ). 3
tested w h i c h i n c l u d e d levels h i g h e r t h a n
that e m p l o y e d w i t h H 0 , n o effects o n o x y g e n - c a r r y i n g w e r e o b s e r v e d . It 2
2
appears that the size a n d shape of the h y d r o c a r b o n side chains a r o u n d the p e r o x i d e o x y g e n are a c r i t i c a l factor since t h e y d e t e r m i n e t h e a b i l i t y
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
490
RADIATION CHEMISTRY
to contact p r o t e i n - b o u n d c o p p e r . b e i n g e x t e n d e d to Busycotypus Effect of
T h e s e studies are c o n t i n u i n g a n d are
hemocyanin. pH.
Urea, Calcium, and
c h e m i c a l or r a d i o l y t i c H 0 2
2
When
the
concentration
exceeds that of the c o p p e r i n
h e m o c y a n i n , the o x y g e n - c a r r y i n g c a p a c i t y is regenerated. true of Limulus
1
of
Busycotypus T h i s is not
h e m o c y a n i n , p r e s u m a b l y c a u s e d b y the relative inaccessi
b i l i t y of the p r o t e i n - b o u n d c o p p e r . u p " the structure of Limulus
A c c o r d i n g l y w e a t t e m p t e d to " o p e n
b y the use of h i g h ( 6-7 M ) solutions of u r e a
w h i c h c o u l d cause the p r o t e i n structure to u n f o l d . H o w e v e r , urea, u n d e r the c o n d i t i o n s tested, h a d l i t t l e or no effect o n either the o x y g e n - c a r r y i n g c a p a c i t y or H 0
2
regeneration of Limulus
hemocyanin.
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
2
10
20
30
40
50
RADIATION
60
70
80
90
DOSE (KILORADS)
Figure 3. Effect of gamma radiation on oxygenated Busycotypus hemo cyanin in phosphate buffer, pH 7 at 25°C. Copper concentration was 7.1 X 10~ M 5
Ο—(OD)o at • —(OD)o at •—(OD)d at #—(OD) at d
1 hr. deoxygenated reaction time (d.r.t.) 15 min. d.r.t. 15 min. d.r.t. 1 hr. d.r.t.
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
34.
SCHUBERT E T A L .
0
10
20
30
40
RADIATION
Figure 4.
491
Hemocyanin
50
DOSE
60
70
80
90
(KILORADS)
Medium effects on hemocyanin. Effect of oxygenated gamma irradi ated, 0.05M, buffer (pH 7) on unirradiated hemocyanin
0 , Ο Hemocyanin and buffer irradiated together Q , Δ Irradiated buffer added to unirradiated hemocyanin N e i t h e r the o x y g e n a t i o n reactions of Limulus d e s t r u c t i o n of o x y g e n - c a r r y i n g c a p a c i t y b y H 0 2
2
h e m o c y a n i n n o r the w e r e affected b y v a r y
i n g p H ( 5 . 5 - 8 ) a n d a d d e d c a l c i u m levels ( 0 . 0 0 5 6 - 0 . 0 3 2 M ).
Whether
these p a r t i c u l a r experiments a c t u a l l y p r o d u c e d changes i n the state of a g g r e g a t i o n of the h e m o c y a n i n w a s not tested. C a t a l y t i c D e c o m p o s i t i o n of H 0 . 2
decomposes H 0 2
2
2
Hemocyanin from
a n d releases o x y g e n (10).
Busycotypus
W e m e a s u r e d this c a t a l y t i c
a c t i o n o n samples of h e m o c y a n i n h e a t e d for 15 m i n u t e s at different t e m peratures a n d p H 7.
T h e g e n e r a l effectiveness
of the c a t a l y t i c a c t i o n
w a s r e l a t i v e l y u n c h a n g e d u p to temperatures as h i g h as 6 5 ° C . ( F i g u r e 6 ) . T h e c a t a l y t i c effectiveness of Limulus f r o m Busycotypus pH
(Figure 6).
h e m o c y a n i n is far l o w e r t h a n that
a n d was m a n i f e s t e d o n l y at h i g h e r concentrations a n d I r r a d i a t i o n of h e m o c y a n i n w i t h doses u p to 100 k r a d s
d i d not affect the c a t a l y t i c a c t i v i t y . T h e catalase-like a c t i o n of h e m o c y a n i n is p r o b a b l y because of c o p p e r b o u n d to one or m o r e a m i n o acids i n the p r o t e i n . C o n t r a r y to p r e v i o u s c l a i m s (12),
a r g i n i n e chelates w i t h c o p p e r are not the o n l y c a t a l y t i c a l l y
active species. F o r e x a m p l e , c o p p e r chelates w i t h h i s t i d i n e a n d h i s t a m i n e are also active. T h e rates a p p e a r to be a first p o w e r f u n c t i o n of c o p p e r and H 0 . 2
2
Studies n o w b e i n g c a r r i e d out w i t h V . S. S h a r m a i n o u r
laboratories i n d i c a t e that the a c t i v e species is the C u ( I I ) L f o r m w h e r e L represents the l i g a n d . T h e c o p p e r chelate f o r m s a t e r n a r y c o m p l e x w i t h
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
492
RADIATION CHEMISTRY
the H O O " a n i o n of H 0 2
w h i c h s u b s e q u e n t l y decomposes to 0
2
radical and molecular mechanisms.
2
1
b y free
T h e most c a t a l y t i c a l l y active l i g a n d s
i n v o l v e the c o o r d i n a t i o n o f t w o n i t r o g e n atoms to c o p p e r . I t is a n t i c i p a t e d that t h e studies w i t h m o d e l c o p p e r complexes m a y c l a r i f y t h e m o d e of attachment o f c o p p e r to different h e m o c y a n i n s .
ζ < ο ο Σ
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
Lu I
ο
0.5 I 0
I 10
I I I I 20 30 40 50 RADIATION DOSE (KILORADS)
I
I
60
70
Figure 5. Effect of catalase on response of Busycotypus hemocyanin to gamma irradiation. Catalase concentration was 20 μg/ml. •, Φ Catalase present during irradiation or added afterwards A No catalase added Discussion The
r e a c t i v a t i o n o f Busycotypus
n a t u r e of H 0 2
2
h e m o c y a n i n illustrates t h e d u a l
n a m e l y , that i t is also a r e d u c i n g agent (38, 44). T h e
r a d i a t i o n r e a c t i v a t i o n of Busycotypus
h e m o c y a n i n , at t h e concentrations
e m p l o y e d , is b r o u g h t a b o u t b y t h e r e d u c t i o n of C u ( I I ) to C u ( I ) b y H 0 2
2
as occurs w i t h H 0 2
2
a d d e d to u n i r r a d i a t e d h e m o c y a n i n
Some of t h e r e d o x reactions c o p p e r c a n b e d e d u c e d (3, 5,44)
(10).
that m a y i n v o l v e t h e p r o t e i n - b o u n d i f w e consider that w e are d e a l i n g w i t h
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
34.
SCHUBERT E T A L .
τ
493
Hemocyanin
1
1
1
1
1
Γ
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
ο
0
ΙΟ
20
30
40
TIME
50
60
70
80
(MINUTES)
Figure 6, Liberation of oxygen from hydrogen peroxide in the presence of Busycotypus hemocyanin at pH 7 but at different temperatures and of L i m u l u s hemocyanin at 25°C. and pH 9.5. The Busycotypus hemocyanin solutions were heated for 15 minutes at a given temperature prior to mixing with hydrogen peroxide Busycotypus hemocyanin Warburg flask contained 14.4 ^moles H O (0.2 ml. of 0.072M), 0.5 ml. of hemo cyanin serum (7.5 X I O M in copper) and 0.2 cc. of 0.05M pH 7 phosphate buffer. 1 mm. = 0.062 ^moles O : Solid line, 25°C; O , 35°C; C L 45°C.;, 65°C; 65°C. and deoxygenated while heated Limulus hemocyanin Conditions as for Busycotypus except that the copper concentration was 2.0 X 10~ M, pH 9.5, and temperature of 25°C. t
t
_i
t
3
a n e u t r a l , o x y g e n a t e d , aqueous m e d i u m c o n t a i n i n g o r g a n i c solutes a n d that r e d u c t i o n takes p l a c e m o r e r e a d i l y i n n e u t r a l t h a n i n a c i d m e d i a . F r o m R e f e r e n c e 37 t h e most l i k e l y reactions i n o x y g e n a t e d m e d i a i n c l u d e : (1) Oxidation ( inactivation) P-Cu(I) + H 0 2
2
= P-Cu(II) + O H + O H "
P-Cu(I) + O H = P-Cu(II) + O H "
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
494
RADIATION CHEMISTRY
1
(2) Reduction (reactivation) P-Cu(II) + H 0 = P-Cu(I) + H 0 + H 2
2
2
P-Cu(II) + H 0 = P-Cu(I) + 0 2
Whether
the radiation
2
doses employed modify the hemocyanin
molecule is a question which we are exploring. Limulus
+
hemocyanin in the deoxygenated
W e have
irradiated
state at fairly high doses
(^100,000 rads) and have found little change in the oxygenation-deoxygenation properties.
W e have also begun to use other techniques with
which to ascertain possible effects of ionizing radiation on the hemo Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
cyanin molecule including optical rotatory dispersion and circular d i chroism (46).
For the present, it appears that the principal effect of ioniz
ing radiation on hemocyanin is centered on the active copper sites through the promotion of the oxidation of the C u ( I ) to the C u ( I I ) state by radiolytic hydrogen peroxide. Acknowledgment This investigation was supported by U . S. Public Health Service Research Grant R H 00434, National Center for Radiological Health and by A E C contract A T ( 30-1)-3641.
Literature Cited (1) Anbar, M., Nature 200, 376 (1963). (2) Bacq, A. M., Alexander, P., "Fundamentals of Radiobiology," Pergamon Press, New York, 1961. (3) Barb, W. G., Baxendale, J. H., George, P., Hargrave, K. R., Trans. Fara day Soc. 47, 462, 591 (1951). (4) Barron, E. S. G., Ann. New York Acad. Sci. 59, 574 (1955). (5) Baxendale, J. H., Radiation Res. Suppl. 4, 114 (1964). (6) Bayer, E., Liebigs Ann. Chem. 653, 149 (1962). (7) Cohen, L. B., Van Holde, Κ. E., Biochemistry 3, 1809 (1964). (8) Egerton, A. C., Everett, A. J., Minkoff, G. J., Rudrakanchana, S., Salooja, K. C., Anal. Chim. Acta 10, 422 (1954). (9) Felsenfeld, G.,J.Cellular Comp. Physiol. 43, 23 (1954). (10) Felsenfeld, G. Printz, M. P.,J.Am. Chem. Soc. 81, 6259 (1959). (11) Frieden, E., Osaki, S., Kobayashi, H., J. Gen. Physiol. 49, 213 (1965). (12) Ghiretti, F., Arch. Biochem. Biophys. 63, 165 (1956). (13) Ghiretti, F.,"Oxygenases,"Chap. 10, O. Hayaishi, ed., Academic Press, New York, 1962. (14) Ghiretti-Magaldi, A. Nuzzolo, Ghiretti, F., Biochemistry 5, 1943 (1966). (15) Hayaishi, O. (ed.), "Oxygenases," Academic Press, New York, 1962. (16) Hudson, T. A. F., "Vanadium-Toxicology and Biological Significance," Elsevier Publishing Co., New York, 1964. (17) Larimer, J. L., Riggs, A. F., Comp. Biochem. Physiol. 13, 35 (1964). (18) Johnston, W., James, T. W., and Barber, Α. A., Comp. Biochem. Physiol. 22, 261 (1967). (19) Levitzki, Α., Anbar, M., J. Am. Chem. Soc. 89, 4185 (1967). (20) Litt, M., Boyd, W.C.,Nature 181,1075(1958).
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by TUFTS UNIV on June 4, 2018 | https://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch034
34.
SCHUBERT
E T A L .
Hemocyanin
495
(21) Lontie, R. Blaton, V., Albert, M., Peeters, B., Arch. Intern. Physiol. Biochim. 73, 150 (1965). (22) Lontie, R., Witters, R., "The Biochemistry of Copper," pp. 455-462, J. Peisach, P. Aisen, W. E. Blumberg, eds., Academic Press, New York, 1966. (23) Manwell,C.,Ann. Rev. Physiol. 22, 191 (1960). (24) Mason, H. S., Nature 177, 79 (1956). (25) Mason, H. S., Advan. Enzymol. 19, 79 (1957). (26) Nagy-Keresztes, S., Klotz, I. M., Biochemistry 4, 919 (1965). (27) Nakamura, T., Mason, H. S., Biochem. Biophys. Res, Comm. 3, 297 (1960). (28) Natl. Bur. Std. (U. S.) Handbook 85, 14 (1964). (29) Nikolaev, L. Α., "The Origin of Life on the Earth," pp. 263-274, F. Clark, R. L. M. Synge, eds., Pergamon Press, New York, 1959. (30) Orgel, L. E., In Metals and Enzyme Activity, Symposium No. 15, Cam bridge, 1958. (31) Peterson, R. N., Freund, M., Gilmont, R., Proc. Soc. Exp. Biol. Med. 125, 645 (1967). (32) Pickels, E. G., Anderson, R. S.,J.Gen. Physiol. 30, 83 (1946). (33) Redfield, A. C., "Copper Metabolism," W. D. McElroy, B. Glass, eds., The Johns Hopkins Press, Baltimore, 1950. (34) Schubert, J., Nature195,1096(1962). (35) Ibid.,200,375(1963). (36) Schubert, J., "Copper and Peroxides in Radiobiology and Medicine," C. C. Thomas, Springfield, Ill., 1964. (37) Schubert, J., White, E. R., Science 155, 1000 (1967). (38) Schumb, W. C., Satterfield, C. N., Wentworth, R. L., "Hydrogen Per oxide," p. 355, Reinhold, New York, 1955. (39) Shchepot'yeva, E. S., Ardashnikov, S. N., Lur'ye, G. E., Rakhamanova, T. B., "Effect of Oxygen in Ionizing Radiation," State Publishing House for Medical Literature, Moscow, 1959 (Translation, U. S. At. Energy Comm., Technical Information Service, AEC-tr-4265). (40) Sigel, H., Muller, V., Helv. Chim. Acta 49, 671 (1966). (41) Svedberg, T., Brohult, S., Nature 142, 830 (1938). (42) Ibid.,143,938(1939). (43) Swallow, A. J., "Radiation Chemistry of Organic Compounds," Pergamon Press, New York, 1960. (44) Uri, N., Chem. Rev. 50, 375 (1952). (45) Van Holde, Κ. E., Cohen, L. B., Biochemistry 3, 1803 (1964). (46) Van Holde, Κ. E., Biochemistry 6, 93 (1967). RECEIVED February 12,
1968.
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.