19 Recent Investigations of Spin Crossover P. G Ü T L I C H
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
Institut für Anorganische und Analytische Chemie, Johannes GutenbergUniversität, D-6500 Mainz, West Germany A brief introduction of the phenomenon of spin crossover in transition metal complexes is followed by a discussion of the results from Mössbauer effect measurements on the metal dilution effect in the solid solutions Cl • EtOH (M — Zn, Co) and 2
[Fe M (2-pic) ] x
1-x
3
[Fe M (phen) (NCS) ] x
1-x
2
2
(M
— Mn, Co, Ni). It is shown that the spin transition behavior changes markedly with the iron concentration. It is also demonstrated that the nature of the crystal solvent molecules as well as the method of sample preparation influence the spin crossover behavior. A presentation of some examples for structural changes accompanying spin crossover concludes this review.
r
T * h e p h e n o m e n o n o f s p i n crossover, o t h e r w i s e c a l l e d m a g n e t i c crossover v
J
- o r h i g h - s p i n ( H S ) ^± l o w - s p i n ( L S ) t r a n s i t i o n , o b s e r v e d i n c e r t a i n
first-row
t r a n s i t i o n m e t a l complexes has b e e n d e s c r i b e d extensively a n d
r e v i e w e d i n a n u m b e r of articles
(1-6).
I n terms of l i g a n d field theory, s p i n crossover occurs i n t r a n s i t i o n metal complexes
with
d -d 4
8
electron c o n f i g u r a t i o n , i f t h e difference
b e t w e e n t h e n e t l i g a n d field s t r e n g t h a n d t h e m e a n s p i n p a i r i n g energy, after t a k i n g i n t o a c c o u n t a l l k i n d s of r e l e v a n t p e r t u r b a t i o n s s u c h as l o w - s y m m e t r y field components, s p i n - o r b i t i n t e r a c t i o n , c o n f i g u r a t i o n i n t e r action, a n d covalency k T. B
effects, becomes c o m p a r a b l e to t h e r m a l e n e r g y
O n t h e r m o d y n a m i c g r o u n d s , s p i n crossover is a n t i c i p a t e d i f t h e
difference i n t h e G i b b s free energy ( G ) of t h e t w o s p i n states i n v o l v e d is o n t h e o r d e r of k T:AG B
=
G(HS) -
G(LS) =
AH-
TAS ~
k T. B
T h e e n t h a l p y c h a n g e A H — H ( H S ) — H ( L S ) is p o s i t i v e g o i n g f r o m t h e l o w - s p i n to t h e h i g h - s p i n state, a n d reflects essentially t h e difference i n the e l e c t r o n i c energies of t h e t w o s p i n states. T h e e n t r o p y c h a n g e A S = S(HS)
— S ( L S ) is also p o s i t i v e f o r t h e c o n v e r s i o n f r o m l o w - s p i n to
high-spin.
I t has b e e n f o u n d i n v a r i o u s instances (7,8)
©
0065-2393/81 /0194-0405$ 12.00/0 1981 American Chemical Society
that o n l y a
406
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
s m a l l e r f r a c t i o n of t h e t o t a l e n t r o p y c h a n g e arises f r o m t h e s p i n m u l t i plicity
change, namely, A S i e
=
R[ln(2S+l) s H
ln(2S+l)
L S
].
The
m a j o r p a r t of A S is d u e t o c o n t r i b u t i o n s f r o m t h e changes i n b o t h i n t r a m o l e c u l a r a n d i n t e r m o l e c u l a r v i b r a t i o n s . T h e r e is a c r i t i c a l t e m p e r a t u r e , called transition temperature T ,
where A H =
c
T A S a n d A G — 0, a n d
the t w o s p i n states coexist i n e q u a l a m o u n t s (see F i g u r e 1 ) . S p i n crossover has b e e n o b s e r v e d m o s t l y i n t h e s o l i d state, b u t also has
been found i n liquids.
I n p a r t i c u l a r , n u m e r o u s e x a m p l e s of
crossover h a v e b e c o m e k n o w n f o r
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
donor ligands (5).
iron (II)
spin
complexes w i t h nitrogen
M a n y s p i n crossover systems also h a v e b e e n f o u n d
i n t h e c o m p l e x c h e m i s t r y o f i r o n ( I I I ) , s u c h as t h e d i t h i o c a r b a m a t e s ( 9 ) , monothio-/?-diketonates w i t h [ F e S 0 ] c h r o m o p h o r e (10-13),
and mono-
t h i o c a r b a m a t o c o m p l e x e s w i t h [ F e S 0 ] c h r o m o p h o r e (14),
to n a m e a
3
3
3
few.
3
T h e p h e n o m e n o n also has b e e n e s t a b l i s h e d f o r a g o o d n u m b e r of
c o b a l t ( I I ) c o m p l e x e s (3,15), (3,15),
to a lesser extent f o r n i c k e l ( I I ) c o m p l e x e s
a n d i n a f e w cases f o r m a n g a n e s e ( I I ) c o m p o u n d s (16).
r e c e n t l y , the first r e p o r t o n s p i n crossover i n a c o b a l t ( I I I ) (3d ) 6
Quite complex,
i n t h e s o l i d state as w e l l as i n s o l u t i o n , has a p p e a r e d i n t h e l i t e r a t u r e (17,18).
(a)
0
T
(b) Figure 1. Schematic of various types of spin crossover behavior. The XHB(T) term is the fraction of highspin molecules as a function of temperature, (a) Gradual and abrupt spin transition, respectively; (b) incomplete spin transition (RP is the residual fraction of high-spin molecules); (c) spin transition with hysteresis (T < and T > are the transition temperatures in the cooling and heating modes, respectively). e
XHS 1.0-
0.5
0 -
c
T
19.
GUTLiCH
Spin
407
Crossover
T h e m e t h o d most c o m m o n l y u s e d to d e t e c t s p i n crossover
is t h e
m e a s u r e m e n t of the m a g n e t i c s u s c e p t i b i l i t y , w h i c h reflects the a n o m a l o u s m a g n e t i c b e h a v i o r as a f u n c t i o n of t e m p e r a t u r e . F o r crossover of i r o n ,
5 7
systems
F e M o s s b a u e r spectroscopy has p r o v e n to b e a p o w e r f u l t e c h
n i q u e ; i t enables one to f o l l o w d i r e c t l y t h e changes of the concentrations of t h e c o e x i s t i n g s p i n states w i t h t e m p e r a t u r e ( 1 9 ) .
O t h e r techniques
h a v e b e e n e m p l o y e d successfully; for e x a m p l e , v i b r a t i o n a l spectroscopy to f o l l o w the changes i n the r e l a t i v e intensities of c h a r a c t e r i s t i c v i b r a t i o n a l m o d e s ( s u c h as the m e t a l - l i g a n d s t r e t c h i n g , f o r w h i c h v ( H S ) Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
v(LS)
u p o n spin conversion
(7,8,20,21,22,50);
uv/vis
(see F i g u r e l c ) , examples of w h i c h are r e p o r t e d i n R e f s . (39 a n d
c
40).
T h e s p i n crossover b e h a v i o r m a y b e h i g h l y s u s c e p t i b l e to v a r i o u s influences, s u c h as i n t r a l i g a n d s u b s t i t u t i o n , l i g a n d r e p l a c e m e n t , n a t u r e of the u n c o o r d i n a t e d a n i o n a n d the c r y s t a l solvent m o l e c u l e , d e u t e r a t i o n , m e t a l d i l u t i o n , a n d m e t h o d of s a m p l e p r e p a r a t i o n . T o l e a r n m o r e a b o u t the d r i v i n g force a n d the m e c h a n i s m of the s p i n t r a n s i t i o n i n solids, p a r t i c u l a r l y to test the i d e a of S o r a i a n d S e k i of t h e s p i n t r a n s i t i o n t a k i n g place i n a cooperative
manner through a coupling between
state a n d the l a t t i c e v i b r a t i o n a l m o d e s
(7,8),
a t t e n t i o n o n t h e effect of m e t a l d i l u t i o n (41-47), t h e c r y s t a l solvent m o l e c u l e (40), a n d c r y s t a l i m p e r f e c t i o n s (36)
w e have
the spin
focused
our
t h e effect of c h a n g i n g
a n d the influence of d e u t e r a t i o n
(48)
i n i r o n ( I I ) s p i n crossover systems.
The
essential results w i l l b e r e v i e w e d here.
408
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
Effect of Metal Dilution Solid
Solutions
MEASUREMENTS.
of
2-pic) ] C l
[Fe^Zni
3
•C H O H .
2
2
MOSSBAUER
5
S y s t e m a t i c i n v e s t i g a t i o n s of the effect of m e t a l d i l u t i o n
o n t h e s p i n t r a n s i t i o n b e h a v i o r b y means of M o s s b a u e r s p e c t r o s c o p y w e r e i n i t i a t e d i n o u r l a b o r a t o r y some years ago, h o p i n g to find e x p e r i m e n t a l s u p p o r t for t h e c o o p e r a t i v e d o m a i n m o d e l of S o r a i a n d S e k i ( 7 , 8 ) . started w i t h the s p i n crossover system [ F e ( 2 - p i c ) ] C l 3
=
2-picolylamine),
A (O )
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
1
1
h
•C H O H
2
2
for w h i c h the t e m p e r a t u r e - d e p e n d e n t
We
(2-pic
5
T (O )
^±
t r a n s i t i o n has b e e n e s t a b l i s h e d b y R e n o v i t c h a n d B a k e r
(49).
5
2
h
T h i s system a p p e a r e d to be p a r t i c u l a r l y s u i t e d f o r t h e m e t a l d i l u t i o n w o r k for t w o
reasons:
(1)
The
M o s s b a u e r s p e c t r a as a f u n c t i o n
of
t e m p e r a t u r e e x h i b i t t w o w e l l - r e s o l v e d q u a d r u p o l e d o u b l e t s for the h i g h a n d l o w - s p i n states of i r o n ( I I ) , r e s p e c t i v e l y
(see
Figure 2),
demon
s t r a t i n g t h a t the t w o s p i n states coexist i n c h e m i c a l e q u i l i b r i u m a n d h a v e l i f e t i m e s of ^ 1 0 " s, the q u a d r u p o l e precession t i m e of the e x c i t e d n u c l e a r 8
state.
(2)
The compound
forms s o l i d solutions w i t h z i n c a n d
r e s p e c t i v e l y , o v e r the entire c o n c e n t r a t i o n range.
result of the measurements o n the series [ F e Z n . . ( 2 - p i c ) ] C 1 ar
(1.0 ^
x ^
0.0009) (41,42)
1
cobalt,
T h e most important
a
3
2
-CyrlsOH
b e c o m e s a p p a r e n t f r o m the f o u r r e p r e s e n t a
t i v e M o s s b a u e r spectra s h o w n i n F i g u r e 3: A t a g i v e n t e m p e r a t u r e
(101
K i n the present case of F i g u r e 3 ) , the r e l a t i v e i n t e n s i t y of the q u a d r u p o l e d o u b l e t of the i r o n ( I I ) h i g h - s p i n state, T ( O ) , increases w i t h decreas 5
i n g iron concentration.
2
h
F i g u r e 4 shows t h e t e m p e r a t u r e d e p e n d e n c e of
the area f r a c t i o n of the h i g h - s p i n q u a d r u p o l e d o u b l e t x , e v a l u a t e d f r o m H
the spectra of [ F e ^ Z n i . * ( 2 - p i c ) ] C 1 3
2
• C H O H w i t h different i r o n c o n 2
5
centrations x. F i g u r e 4 also i n d i c a t e s that the slope of t h e s p i n c o n v e r s i o n c u r v e at the s p i n t r a n s i t i o n t e m p e r a t u r e T
c
diminishes w i t h dilution, a n d
t h a t the s p i n t r a n s i t i o n is c o m p l e t e at the l o w - a n d h i g h - t e m p e r a t u r e ends f o r a l l concentrations. of
the
F i g u r e 6 demonstrates the n e a r l y l i n e a r decrease
spin transition temperature
T (x) c
with
decreasing
iron
con
centration. N o s u b s t a n t i a l differences
h a v e b e e n o b s e r v e d i n the i s o m e r shift,
apart f r o m t h e shift d u e to t h e second-order
D o p p l e r effect, or i n the
q u a d r u p o l e s p l i t t i n g of the h i g h - s p i n state i n the s o l i d solutions v a r i a b l e * at a g i v e n t e m p e r a t u r e .
with
T h u s the e l e c t r o n i c structure of the
i r o n ( I I ) i o n is not a l t e r e d s i g n i f i c a n t l y b y p a r t i a l s u b s t i t u t i o n of i r o n ( I I ) by zinc (II). DRIVING F O R C E A N D POSSIBLE M E C H A N I S M O F T H E SPIN TRANSITION.
A s has b e e n p o i n t e d out e a r l i e r (7,8,41),
a d i s c u s s i o n of the r e l a t i v e
s t a b i l i t y of the s p i n states i n v o l v e d i n s p i n crossover s h o u l d b e b a s e d o n the free energy G =
H — TS a n d its c h a n g e A G =
A H — T A S accom
p a n y i n g the c h a n g e i n s p i n state. T h e A H a n d A S terms i n c l u d e c o n t r i b u -
GUTLiCH
Spin
409
Crossover
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
19.
4 . 0
Velocity (mms
)
Figure 2. The Fe Mossbauer spectra of [Fe(2-pic) ]Cl • C H OH (2-pic = 2-picolylamine) at various temperatures (41). The inner two lines refer to the quadrupole doublet of the low-spin state A (O ), the outer two lines to that of the high-spin state T (Oh) of iron(II). 57
3
2
2
1
5
2
1
h
5
410
SPECTROSCOPY A N D ITS C H E M I C A L
APPLICATIONS
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
MOSSBAUER
Velocity ( m m s " ) 1
Figure
3.
Concentration dependence of Fe [FeJfai.JZpicMCk • C H OHat 57
s
5
Mossbauer spectra 101 K(41)
of
19.
Spin
GUTLICH
411
Crossover
1JOO
x
.80
1
.6 0
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
.40
.20
0
300
200
100
0
T
I K
Figure 4. Temperature dependence of the area fraction x spin quadrupole doublet in Fe Mossbauer spectra of [Fe Zn Cl ' C H OH with variable iron concentration x (41, 42): (&) ( Q ; x = 0.029; C) x = 0.2; ((3) x = 0.6; (€) x = 0.8; (O) H
57
2
2
x
x
5
of the high_ (2-pic) ]x = 0.0009; x = 1.0. x
s
tions f r o m a l l degrees of f r e e d o m ; the m o s t i m p o r t a n t ones to a c c o u n t f o r the t e m p e r a t u r e d e p e n d e n c e
of
A G stem f r o m
changes
i n electronic
structure a n d v i b r a t i o n a l modes. F o r a A (O ) 1
lg
s p i n crossover s y s t e m at a b s o l u t e z e r o
^± T (O ) 5
h
2g
h
t e m p e r a t u r e , t h e e l e c t r o n i c g r o u n d state of i r o n ( I I ) is s e p a r a t e d b y c E( T ) 5
2g
-
f r o m t h e h i g h - s p i n state (cf. F i g u r e 8 ) ; c «
E( A ) l
lg
p • A V is sufficiently s m a l l .
F r o m infrared (7,8)
t r o s c o p y ( 4 0 ) , t h e e n e r g y difference c ^
=
A H , if
and Mossbauer
spec
A H of the i r o n a t o m has b e e n
c o n f i r m e d to b e n e a r l y c o n s t a n t o v e r a w i d e t e m p e r a t u r e r a n g e . A t finite temperatures,
the
entropy
term
T A S plays
a n important role.
The
p r e d o m i n a n t c o n t r i b u t i o n s to t h e t o t a l e n t r o p y c h a n g e arise f r o m changes i n electronic structure, A S i — e
vibrational frequencies, A S contributions AS i and A S e
v i b
v i b
R[ln(2S+l)ns — ln(2S+l)
L S
],
, m a i n l y of i n t r a m o l e c u l a r m o d e s .
and in As both
a r e p o s i t i v e g o i n g f r o m t h e l o w - s p i n to t h e
h i g h - s p i n state, i t is c o n c e i v a b l e t h a t t h e s p i n t r a n s i t i o n o c c u r s e v e n i f t h e e n t h a l p y c h a n g e is essentially constant. m u s t be
considered
the m a i n
driving
T h u s , the gain i n entropy
force responsible for
the
spin
t r a n s i t i o n f r o m t h e l o w - s p i n state to t h e h i g h - s p i n state. T h e m e c h a n i s m of the s p i n t r a n s i t i o n i n t h e c r y s t a l l i n e state is s t i l l m u c h i n t h e d a r k , a n d t h e f o l l o w i n g q u a l i t a t i v e d e s c r i p t i o n is n o t m o r e t h a n a h y p o t h e t i c a l p i c t u r e , s u p p o r t e d , h o w e v e r , b y t h e results of
our
412
MOSSBAUER
S P E C T R O S C O P Y A N D ITS C H E M I C A L A P P L I C A T I O N S
m e t a l d i l u t i o n w o r k as w e l l as b y i n f r a r e d (7, 8) a n d x - r a y c r y s t a l s t r u c t u r e investigations.
S o r a i a n d S e k i (7,8)
o r i g i n a l l y suggested t h a t the s p i n
t r a n s i t i o n i n a c r y s t a l l i n e s p i n crossover system takes p l a c e i n a c o o p e r a t i v e m a n n e r i n v o l v i n g a significant c o u p l i n g b e t w e e n t h e e l e c t r o n i c t h a t changes s p i n , a n d t h e p h o n o n system e n c o m p a s s i n g ular and intermolecular region.
state
the intramolec
T h e g r o u p of m o l e c u l e s that changes
s p i n i n d u c e d b y a " p r i m a r y " s p i n c h a n g e is c a l l e d a c o o p e r a t i v e d o m a i n . A t sufficiently l o w t e m p e r a t u r e s , a l l the m o l e c u l e s r e s i d e i n t h e l o w - s p i n state w i t h c h a r a c t e r i s t i c n o r m a l m o d e s of v i b r a t i o n s .
I f the
temperature
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
rises, a c e r t a i n n u m b e r of m o l e c u l e s c h a n g e f r o m l o w - s p i n to h i g h - s p i n d u e to t h e r m a l e x c i t a t i o n .
A s a c o n s e q u e n c e , some n o r m a l m o d e s
v i b r a t i o n s w i l l b e m o d u l a t e d to some extent.
I t is k n o w n f r o m
t u r e - d e p e n d e n t i n f r a r e d s p e c t r o s c o p y (7,8,21,22,23)
t h a t the f r e q u e n c i e s
of the m e t a l - l i g a n d s t r e t c h i n g v i b r a t i o n s are m a r k e d l y r e d u c e d high-spin
state
as c o m p a r e d
to
the
low-spin
of
tempera
state;
the
i n the
reason
is
a
significant r e d u c t i o n i n t h e extent of 7 r - b a c k b o n d i n g w h i c h decreases t h e m e t a l - l i g a n d b o n d strength.
T h i s decrease is p a r a l l e l e d b y a n
increase
i n the b o n d l e n g t h b y some 0.2 A , as has b e e n o b s e r v e d r e c e n t l y i n a v a r i a b l e - t e m p e r a t u r e x - r a y c r y s t a l s t r u c t u r e analysis of t h e [ F e ( 2 - p i c ) ] 3
Cl
2
• C H O H (30). 2
T h r o u g h the m o d u l a t e d n o r m a l m o d e s the i n f o r m a
5
t i o n of a " p r i m a r y " s p i n c h a n g e is c o m m u n i c a t e d to n e i g h b o r i n g c o m p l e x modules.
T h e i r vibrational modes w i l l be
changed by
the
incoming
p e r t u r b a t i o n w a v e ; at a c e r t a i n t h r e s h o l d t h e y m a y c h a n g e o v e r to high-spin modulates
state.
This "secondary" spin change i n turn
the
subsequently
t h e v i b r a t i o n a l m o d e s f u r t h e r a n d carries t h e s p i n
change
i n f o r m a t i o n f u r t h e r i n t o the l a t t i c e of a c o o p e r a t i v e d o m a i n . O n the basis of this p i c t u r e , the effect of s u b s t i t u t i n g i r o n ( I I ) z i n c ( I I ) i n the [Fe Zni. (2-pic)3]Cl a ;
i P
2
2
5
t o r y : T h e z i n c ( I I ) ions, h a v i n g a c l o s e d d
configuration, cannot change
10
spin and have
different
for
• C H O H system is s e l f - e x p l a n a
b o n d properties
than i r o n complex molecules
( t h i s s h o u l d influence t h e s p i n t r a n s i t i o n b e h a v i o r ) . A r e m a r k a b l e step f o r w a r d i n t h e efforts to g a i n a d e e p e r i n s i g h t into
the
achieved
mechanism by
of
the
Mikami, Konno,
c r y s t a l s t r u c t u r e of
spin phase transition recently and
[Fe(2-pic) ]Cl 3
Saito 2
(30).
They
•C H O H
at 298,
2
5
t h a t is, a b o v e a n d b e l o w t h e t r a n s i t i o n t e m p e r a t u r e . f o u n d to b e m o n o c l i n i c , P 2 i / c w i t h Z =
has
been
determined 150,
a n d 90
the K,
T h e crystals w e r e
4 i n the t w o s p i n states. T h e y also
f o u n d e m i n e n t changes i n i r o n - n i t r o g e n b o n d lengths, n a m e l y , 2.195
A
f o r t h e h i g h - s p i n state a n d 2.013 A f o r the l o w - s p i n state o n t h e average. M o s t i m p o r t a n t i n t h e context of the c o o p e r a t i v e d o m a i n m o d e l is t h e i r o b s e r v a t i o n t h a t a l l the a m i n o n i t r o g e n atoms of the c a t i o n i c c o m p l e x e s o n t h e one side, a n d the e t h a n o l m o l e c u l e o n the other, are b o n d e d to C I " ions, f o r m i n g a t w o - d i m e n s i o n a l h y d r o g e n b o n d
hydrogen network
19.
Spin
GUTLICH
413
Crossover
a l o n g w h i c h t h e s p i n c h a n g e i n f o r m a t i o n is l i k e l y to t r a v e l .
The
t y p e of t w o - d i m e n s i o n a l h y d r o g e n - b o n d i n g n e t w o r k has b e e n f o r the m e t h a n o l a t e [ F e ( 2 - p i c ) ] C 1 3
s p i n crossover
•CH OH
2
3
same
observed
( 3 2 ) , w h i c h also e x h i b i t s
(40).
M o s t i n t e r e s t i n g is t h e o b s e r v a t i o n of M i k a m i et a l . ( 3 0 ) e t h a n o l m o l e c u l e s i n [ F e ( 2-pic ) ] C 1 3
2
•C H O H 2
t h a t the
are d i s o r d e r e d i n t h e
5
high-temperature h i g h - s p i n phase o c c u p y i n g three orientational positions. T h e p o p u l a t i o n i n t h e three sites changes w i t h t e m p e r a t u r e , w h e r e b y a g r a d u a l o r d e r i n g o c c u r s o n l o w e r i n g t h e t e m p e r a t u r e . O n e of the t h r e e
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
sites is f a v o r e d o v e r t h e o t h e r t w o a n d has 1 0 0 %
occupancy
at 90 K ,
t h a t i s , i n the s t r u c t u r e of the l o w - s p i n state. T h e a u t h o r s c o n c l u d e t h a t t h e c o o p e r a t i v e n a t u r e of the s p i n t r a n s i t i o n m a y b e a c c o u n t e d f o r i n terms of a n i n t e r a c t i o n of t h e s p i n p h a s e t r a n s i t i o n a n d t h e o r d e r - d i s o r d e r t r a n s i t i o n of t h e e t h a n o l m o l e c u l e t h r o u g h h y d r o g e n b o n d i n g .
Further
s u p p o r t f o r this c o n c l u s i o n has b e e n o b t a i n e d i n studies of t h e d e u t e r i u m i s o t o p e effect i n t h e d e u t e r a t e d solvates
[Fe(2-pic) ]C1 3
2
• Sol (Sol
—
C H O D , C H O D ) , w h i c h w i l l be discussed i n a later section. 2
5
3
INTERPRETATION
MODEL.
USING
A
PHENOMENOLOGICAL
THERMODYNAMIC
F o l l o w i n g t h e s u g g e s t i o n of S o r a i a n d S e k i ( 7 , 8 )
t h a t the s p i n
t r a n s i t i o n is c o o p e r a t i v e i n n a t u r e , w e h a v e a t t e m p t e d to i n t e r p r e t t h e results of the m e t a l d i l u t i o n studies o n [Fe .Zni. .(2-pic ) ] C 1 a
3
a
• C H OH
2
2
o n t h e basis of a p h e n o m e n o l o g i c a l t h e r m o d y n a m i c m o d e l assume
that a " p r i m a r y " spin
change
is f o l l o w e d
5
(43).
We
spontaneously
by
" s e c o n d a r y " s p i n changes i n n-1 s u r r o u n d i n g m o l e c u l e s . T h e n m o l e c u l e s of l i k e s p i n are c o n s i d e r e d to f o r m a " c o o p e r a t i v e " d o m a i n . T h e d o m a i n size n m a y b e t a k e n as a m e a s u r e of t h e c o o p e r a t i v e i n t e r a c t i o n s t r e n g t h . For
s i m p l i c i t y , w e assume t h e n u m b e r n to b e the same f o r h i g h - a n d
l o w - s p i n d o m a i n s i n a g i v e n s y s t e m , b u t to v a r y w i t h t h e i r o n c o n c e n t r a t i o n , n(x).
I n t e r a c t i o n s b e t w e e n t h e d o m a i n s , i r r e s p e c t i v e of t h e s p i n
state, are c o n s i d e r e d to b e n e g l i g i b l e . T h e systems Cl
[Fe Zni. .(2-pic) ]a
a?
3
• C H O H are t r e a t e d as t e m p e r a t u r e - d e p e n d e n t c h e m i c a l e q u i l i b r i a
2
2
5
b e t w e e n h i g h - a n d l o w - s p i n d o m a i n s , f o r w h i c h t h e effective
enthalpy
and
—
e n t r o p y changes, A r 7
AS°(x)
(AH°(X)
e f f
(x)
=
n(x)AH°(x)
and. A S « ( x ) e
a n d A S ° ( x ) are t h e r e s p e c t i v e changes f o r one m o l e of
the complex molecules), m a y be evaluated f r o m straightforward A r r h e n i u s p l o t s , In K — In x
H
/(l-x
H
)
— f( ) T
(43);
cf. F i g u r e 5. T h e v a l u e s for
AHeff a n d A S f f thus o b t a i n e d v a r y b e t w e e n a b o u t 13 k j m o l " a n d 110 J 1
e
mol"
1
K " , respectively, for the p u r e i r o n c o m p o u n d , a n d between 1
about
2.5 k j m o l " a n d 30 J m o l " K ' , r e s p e c t i v e l y , f o r t h e h i g h l y d i l u t e d (x 1
1
=
1
0.0009) s y s t e m . T h e t r a n s i t i o n t e m p e r a t u r e as a f u n c t i o n of x, T (x) c
=
AH (x)/ ett
ASeff(x), takes o n v a l u e s b e t w e e n 120 K f o r t h e p u r e i r o n c o m p o u n d a n d 7 7 K f o r t h e system w i t h x =
0.0009; t h e a g r e e m e n t w i t h e x p e r i m e n t a l
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
414
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
1
2
r /io K
1
Figure 5. Plot of In K = In x /(l — x ) vs. 1 / T for various iron concentrations x in the solid solutions [FeJLn (2-pic) ]Cl ' C H OH (43): (%) = 0.0009; (D)x = 0.029; (A) x = 0.2; (X)x = 0.6; (O) x = 1.0. H
H
t
x
s
2
2
5
x
d a t a is v e r y g o o d . T h e d e p e n d e n c e of T
T
c
c
on the iron concentration
x m a y be d e s c r i b e d b y t h e expression _ i
c
A f f ° (x) AS°(x)
W
The Aff°
F e
and AS°
Aff ° AS°
_
F e
F e
+
Aff °
+ AS°
c o o p
c o o p
(x)
0r)
Aff ° AS°
_
F e
F e
+ Ax« + £*
( 3
t i o n s , a n d are c o n s i d e r e d COO
o
a >
to b e i n d e p e n d e n t
p terms r e f e r to changes
molecular electron-phonon AH
C 0 0
p and A S
o and p
w
e
obtain from
E q u a t i o n 5 for a h y d r o g e n a t e d ( H ) solvate
A E ( H ) - Ac + -| h VT/^L {Vk7s - V ^ W
(6)
w h e r e Ac stands for t h e differences i n t h e e l e c t r o n i c energies. A s s u m i n g n o c h a n g e i n t h e s y m m e t r y a n d t h a t Ac r e m a i n s constant o n d e u t e r a t i o n , w e find a n analogous expression f o r t h e d e u t e r a t e d solvate.
T h e differ
ence i n A E b e t w e e n the d e u t e r a t e d ( D ) a n d the h y d r o g e n a t e d
solvate
is t h e n 8(AE) =
AE(D) -
AE(H)
= \h(VV^-
VTT^H")
(V~fcn7-
V~fcL7)
(7)
440
MOSSBAUER
As 1 / / A
d
H
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
445
Crossover
185K
176K
,
'c L.
o -Q
o
/
174K
J
165 K
in -»-» c D
O u
155K
JL
20
22
24
26
28
Bragg angle 2 0 Figure 3 1 . Peak profiles of x-ray powder diffraction of [Fe(phen) (NCS) ] Sample B (extracted), as a function of temperature in the transition region (36) 2
2
446
MOSSBAUER
v e r y intense 2 4 ° p e a k .
S P E C T R O S C O P Y A N D ITS C H E M I C A L A P P L I C A T I O N S
S i m u l t a n e o u s l y , one p e a k of t h e g r o u p of t h r e e
peaks a r o u n d 2 2 ° - 2 4 ° d i s a p p e a r s b e l o w T . T h e p e a k profiles i n t h e case c
of S a m p l e A are b r o a d e r t h a n i n t h e case of S a m p l e B , w h i c h is m o s t p r o b a b l y d u e t o t h e f a c t t h a t S a m p l e A is m o r e
finely
dispersed a n d
of l o w e r c r y s t a l q u a l i t y t h a n S a m p l e B . T h e o v e r a l l features of t h e x - r a y diffractometry
s p e c t r a of t h e h i g h - t e m p e r a t u r e
(high-spin)
and low-
t e m p e r a t u r e ( l o w - s p i n ) phases are n o t too different, w h i c h i m p l i e s t h a t t h e s t r u c t u r a l c h a r a c t e r i s t i c s of t h e t w o phases a r e q u i t e s i m i l a r .
Never
theless, i n v i e w of t h e m a r k e d changes i n t h e M o s s b a u e r l i n e w i d t h a n d the q u a d r u p o l e s p l i t t i n g of t h e h i g h - s p i n p h a s e n e a r T , together Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
c
with
t h e differences i n t h e x - r a y d i f f r a c t o m e t r y p a t t e r n b e t w e e n t h e h i g h - a n d l o w - t e m p e r a t u r e phases, some k i n d o f s t r u c t u r a l r e o r g a n i z a t i o n , b e y o n d the c h a n g e i n i r o n - l i g a n d b o n d l e n g t h i n d u c e d b y t h e s p i n t r a n s i t i o n , can no longer be excluded.
W e believe that a n orientational d i s o r d e r -
order transition, possibly w i t h the N C S groups preferring certain rota tional
sites, m a y b e a n effective
trigger for the spin transition i n
124.0 K 3
CO
c
CD
122.8 K
f
>
o
0>
or 5 121.9 K
f
3
5.0 5.5 6.0 6.5 Bragg angle 9 ^ (T
C
= 122.9 K) (66)
Chemical Physics Letters
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
19.
Spin
GUTLICH
L90
447
Crossover
5.15
5.40
Bragg angle 6
—
Figure 33. Peak profiles of x-ray powder diffraction on [Fe(bt) (NCS) ] in the temperature region of the spin transition (39) 2
2
Inorganica Chimica Acta
[Fe(phen) (NCS) ],
s i m i l a r to t h e suggestion of M i k a m i et a l . (30)
[Fe(2-pic) ]Cl
5
2
2
3
2
•C H O H . 2
for
A s i n g l e - c r y s t a l x - r a y s t u d y is b a d l y n e e d e d
to c l a r i f y this. V e r y fine v a r i a b l e - t e m p e r a t u r e x - r a y d i f f r a c t i o n w o r k i n c o n n e c t i o n w i t h M o s s b a u e r spectroscopy o n the p o l y c r y s t a l l i n e s p i n crossover systems [Fe(4,7-(CH ) -phen) (NCS) ] 3
2
2
2
and [ F e ( b t ) ( N C S ) ] 2
2
( b t — 2,2'-bi-2-
t h i a z o l i n e ) has b e e n p u b l i s h e d r e c e n t l y b y K o n i g et a l . (39,66).
Distinct
a n d different x - r a y p e a k profiles w e r e f o u n d f o r the h i g h - a n d l o w - s p i n phases i n b o t h systems o n p a s s i n g t h r o u g h T , i n d i c a t i n g t h a t a c r y s t a l l o c
g r a p h y phase c h a n g e is associated w i t h the s p i n t r a n s f o r m a t i o n F i g u r e s 32 a n d 3 3 ) . T h e intensities of t h e x - r a y peaks of phen) (NCS) ] 2
2
(see
[Fe(4,7-(CH ) 3
s h o w the same t e m p e r a t u r e d e p e n d e n c e a n d the
2
same
hysteresis b e h a v i o r as t h e fractions o f the h i g h - a n d l o w - s p i n
species
d e t e r m i n e d f r o m the M o s s b a u e r s p e c t r a (see F i g u r e s 34 a n d 3 5 ) .
Similar
observations w e r e m a d e o n t h e [ F e ( b t ) ( N C S ) ]
T h i s is
2
2
system (39).
c l e a r e v i d e n c e f o r a s i m u l t a n e o u s c h a n g e of the e l e c t r o n i c s p i n state a n d the crystallographic properties.
448
MOSSBAUER
S P E C T R O S C O P Y A N D ITS C H E M I C A L
APPLICATIONS
1.00
0.75
-
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
0.50
0.2 5
125
130 T IK)
Chemical Physics Letters
Figure 34. Temperature dependence of the relative intensity of the x-ray diffraction lines for the high-spin state in [Fe(4,7-(CH ) (phen) (NCS) ] near T (66; s 2
2
2
c
1.00
n 0.75 -
0.50
0.25 -
110
115
120
125
130
T [KJ Chemical Physics Letters
Figure 35. Temperature dependence of the high-spin t fraction in (4,7-(CH ) (NCS) ] evaluated from the spectra near _T . . . .Mossbauer . . . 3 2
2
s
d
c
[Fe(66) ....
19.
Spin
GUTLICH
449
Crossover
Acknowledgments
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
I w i s h to express m y sincere t h a n k s to m y students a n d r e s e a r c h associates K . B o d e , J . E n s l i n g , J . F l e i s c h , P . G a n g u l i , K . M . H a s s e l b a c h , H . K o p p e n , R . L i n k , E . W . M u l l e r , I. Sanner, M . S o r a i , H . S p i e r i n g , a n d H . G . Steinhauser, w h o h a v e c o l l a b o r a t e d w i t h m e o n s p i n crossover p r o b l e m s w i t h great e n t h u s i a s m . F i n a n c i a l s u p p o r t b y t h e D e u t s c h e Forschungsgemeinschaft, the F o n d s der C h e m i s c h e n Industrie, a n d the A l e x a n d e r v o n H u m b o l d t S t i f t u n g is g r a t e f u l l y a c k n o w l e d g e d .
Glossary of Symbols HS
H i g h - s p i n g r o u n d state of the c e n t r a l m e t a l i o n , T ( O ) i n 5
2
h
case of a n i r o n ( I I ) c o m p l e x m o l e c u l e i n t h e a p p r o x i m a t i o n of O LS
h
symmetry
L o w - s p i n g r o u n d state of the c e n t r a l m e t a l i o n , A ( O ) 1
i
h
in
case of a n i r o n ( I I ) c o m p l e x m o l e c u l e i n the a p p r o x i m a t i o n of O G
h
symmetry
G i b b s free e n e r g y
fc
B o l t z m a n n factor
H
Enthalpy
B
S
Entropy
R
G a s constant
T
c
T r a n s i t i o n t e m p e r a t u r e , f o r m a l l y d e f i n e d as t h e t e m p e r a t u r e of 5 0 % s p i n c o n v e r s i o n
* H ( * H S )
F r a c t i o n of c o m p l e x m o l e c u l e s i n the h i g h - s p i n g r o u n d state, t a k e n here as a p p r o x i m a t e l y e q u a l to the area f r a c t i o n of t h e h i g h - s p i n q u a d r u p o l e d o u b l e t of the M o s s b a u e r spectra
RP
R e s i d u a l p a r a m a g n e t i s m ( r e s i d u a l f r a c t i o n of h i g h - s p i n m o l e
RD
R e s i d u a l d i a m a g n e t i s m ( r e s i d u a l f r a c t i o n of l o w - s p i n m o l e
cules at l o w t e m p e r a t u r e s ) cules at h i g h t e m p e r a t u r e s ) I r o n c o n c e n t r a t i o n of m i x e d crystals
x n
N u m b e r of c o m p l e x molecules of l i k e s p i n state i n a d o m a i n
K
E q u i l i b r i u m constant
h
P l a n c k ' s constant
c
V e l o c i t y of l i g h t
c
E n e r g y difference b e t w e e n T ( O ) a n d A i ( O ) states 5
8 et Ao t
h
Tetragonal distortion parameter F r e e i o n s p i n o r b i t c o u p l i n g constant
R
S t e r n h e i m e r s h i e l d i n g factor
rj
Asymmetry parameter
V F k fi
C r y s t a l field p o t e n t i a l V i b r a t i o n a l force constant R e d u c e d mass
C
2
1
h
450
MOSSBAUER
S P E C T R O S C O P Y A N D ITS C H E M I C A L A P P L I C A T I O N S
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
Literature Cited 1. Barefield, E . K.; Busch, D. H.; Nelson, S. M. Quart. Rev. 1968, 22, 457. 2. Martin, R. L.; White, A. H. "Transition Metal Chemistry"; Carlin, R. L., Ed.; Dekker: New York, 1968; Vol. 4, p. 113. 3. Sacconi, L. "Proceedings of XIIIth I.C.C.C., Cracow/Zakopane (Poland) 1970"; Butterworths: London, 1971. 4. König, E . Ber. Bunsenges. Phys. Chem. 1972, 76, 975. 5. Goodwin, H. A. Coord. Chem. Rev. 1976, 18, 293. 6. Gütlich, P. J. Phys. (Paris) 1979, 40(3), Colloque C2, C2-378. 7. Sorai, M.; Seki, S. J. Phys. Chem. Solids 1974, 35, 555. 8. Sorai, M.; Seki, S. J. Phys. Soc. Jpn. 1972, 33, 575. 9. Ewald, A. H.; Martin, R. L.; Ross, I. G.; White, A. H. Proc. R.Soc.,London, Ser. A 1964, 280, 235. 10. Ho, R. K. Y.; Livingstone, S. E . Chem. Commun. 1968, 217. 11. Cox, M.; Darken, J.; Fitzsimmons, B. W.; Smith, A. W.; Larkworthy, L. F.; Rogers, K. A. Chem. Commun. 1970, 105. 12. Cox, M.; Darken, J.; Fitzsimmons, B. W.; Smith, A. W.; Larkworthy, L. F.; Rogers, K. A. J. Chem.Soc.,Dalton Trans. 1973, 1192. 13. Dose, E . V.; Murphy, K. M. M.; Wilson, L. J. Inorg. Chem. 1976, 15, 2622. 14. Kunze, K.R.;Perry, D. L.; Wilson, L. J. Inorg. Chem. 1977, 16, 594. 15. Morassi, R.; Bertini, I.; Sacconi, L. Coord. Chem. Rev. 1973, 11, 343. 16. Ammeter, J. J. Am. Chem. Soc. 1974, 96, 7833. 17. El Murr, N.; Chaloyard, A.; Kläui, W. Inorg. Chem. 1979, 18, 1010. 18. Gütlich, P.; Kläui, W.; McGarvey, B. R. Inorg. Chem. 1980, 19, 3704. 19. König, E . ; Ritter, G. "Mössbauer Effect Methodology"; Gruverman, I. J.; Seidel, C. W.; Dieterly, D. K., Eds.; Plenum: New York, 1974; Vol. 9, p. 3. 20. Baker, W. A., Jr.; Long, G. J. Chem. Commun. 1965, 368. 21. Takemoto, J. H.; Hutchinson, B. Inorg. Nucl. Chem. Lett. 1972, 8, 769. 22. Takemoto, J. H.; Hutchinson, B. Inorg. Chem. 1973, 12, 705. 23. Hall, G. R. Hendrickson, D. N. Inorg. Chem. 1976, 15, 607. 24. Ewald, A. H.; Martin, R. L.; Sinn, E.; White, A. H. Inorg. Chem. 1969, 8, 1837. 25. Tweedle, M. F.; Wilson, L. J. J. Am. Chem. Soc. 1976, 98, 4824. 26. Tsipis, C. A.; Hadjikostas, C. C.; Manoussakis, G. E . Inorg. Chim. Acta 1977, 23, 163. 27. Leipoldt, J. G.; Coppens, P. Inorg. Chem. 1973, 12, 2269. 28. Cukauskas, E . J.; Deaver, B. S., Jr.; Sinn, E . Inorg. Nucl. Chem. Lett. 1977, 13, 283. 29. Albertsson, J.; Oskarsson, A. Acta Crystallogr., Sect. B 1977, 33, 1871. 30. Mikami, M.; Konno, M.; Saito, Y. Chem. Phys. Lett. 1979, 63, 566. 31. Greenaway, A. M.; Sinn, E. J. Am. Chem. Soc. 1978, 100, 8080. 32. Katz, B. A.; Strouse, C. E. J. Am. Chem. Soc. 1979, 101, 6214. 33. Dose, E . V.; Hoselton, M. A.; Sutin, N.; Tweedle, M. F.; Wilson, L. J. J. Am. Chem. Soc. 1978, 100, 1141. 34. Binstead, R. A.; Beattie, J. K.; Dose, E . V.; Tweedle, M. F.; Wilson, L. J. J. Am. Chem. Soc. 1978, 100, 5609. 35. Baker, W. A., Jr.; Bobonich, H. M. Inorg. Chem. 1964, 3, 1184. 36. Ganguli, P.; Gütlich, P.; Irler, W.; Müller, E . W. J. Chem.Soc.,Dalton, Trans. 1981, 441. 37. Goodwin, H. A.; Sylva, R. N. Aust. J. Chem. 1968, 21, 83. 38. Fleisch, J.; Gütlich, P.; Hasselbach, K. M.; Müller, E . W. Inorg. Chem. 1976, 15, 958. 39. König, E . ; Ritter, G.; Irler, W.; Nelson, S. M. Inorg. Chim. Acta 1979, 37, 169. ;
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
19.
GUTLICH
Spin
Crossover
451
40. Sorai, M.; Ensling, J.; Hasselbach, K. M.; Gütlich, P. Chem. Phys. 1977, 20, 197. 41. Sorai, M.; Ensling, J.; Gütlich, P. Chem. Phys. 1976, 18, 199. 42. Gütlich, P.; Link, R.; Steinhäuser, H. G. Inorg. Chem. 1978, 17, 2509. 43. Gütlich, P.; Köppen, H . ; Link, R.; Steinhauser, H. G. J. Chem. Phys. 1979, 70, 3977. 44. Gütlich, P.; Köppen, H.; Link, R.; Steinhäuser, H.G.,unpublished data. 45. Gütlich, P.; Köppen, H.; Sanner, I.; Spiering, H., unpublished data. 46. Bode, K.; Gütlich, P.; Köppen, H. Inorg. Chim. Acta 1980, 42, 281. 47. Ganguli, P.; Gütlich, P., unpublished data. 48. Gütlich, P.; Köppen, H.; Steinhäuser, H . G. Chem. Phys. Lett. 1980, 74, 475. 49. Renovitch, G. A.; Baker, W. A., Jr. J. Am. Chem. Soc. 1967, 89, 6377. 50. Fleisch, J.; Gutlich, P.; Hasselbach, K. M. Inorg. Chem. 1977, 16, 1979. 51. Ingalls, R. Phys. Rev. 1964, 133, A 787. 52. Sanner, I. Diplomarbeit (Thesis), Fachbereich Chemie, Johannes Gutenberg-Universität, D-6500 Mainz, 1979. 53. König, E . ; Madeja, K. Inorg. Chem. 1967, 6, 48. 54. Dézsi, I.; Molnar, B.; Tarnoczi, T.; Tompa, K. J. Inorg. Nucl. Chem. 1967, 29, 2486. 55. Casey, A. T.; Isaac, F. Aust. J. Chem. 1967, 20, 2765. 56. König, E . ; Madeja, K. Spectrochim. Acta 1967, 23 A, 45. 57. Ferraro, J. R.; Takemoto, J. Appl. Spec. 1974, 28, 66. 58. Maddock, A. G.; Schleiffer, J. J. J. Chem.Soc.,Dalton Trans. 1977, 617. 59. Ganguli, P.; Gütlich, P. J. Phys. (Paris), Colloq. 1980, 41, C1-313. 60. Bargeron, C. B.; Avinor, M.; Drickamer, H. G. Inorg. Chem. 1971, 10, 1338. 61. Cukauskas, E . J.; Deaver, B. S., Jr.; Sinn, E . J. Chem. Phys. 1977, 67, 1257. 62. Orgel, L. E . "Report of the 10th Solvay Conf. in Chemistry," Brussels, 1956, p. 289. 63. Martin, R. L . ; White, A. H.; "Transition Metal Chemistry"; Carlin, R. L., Ed.; Dekker: New York, 1968; Vol. 4, p. 127. 64. Shannon, R. D.; Prewitt, C. T. Acta Crystallogr. 1969, B 25, 925. 65. König, E . ; Ritter, G. Solid State Commun. 1976, 18, 279. 66. König, E.; Ritter, G.; Irler, W. Chem. Phys. Lett. 1979, 66, 336. 67. Bradley, G.; McKee, V.; Nelson, S. M.; Nelson, J. J. Chem. Soc. (Dalton) 1978, 522. 68. Ritter, G.; König, E.; Irler, W.; Goodwin, H . A. Inorg. Chem. 1978, 17, 224. 69. Irler, W.; Ritter, G.; König, E . ; Goodwin, H. A.; Nelson, S. M. Solid State Commun. 1979, 29, 39. 70. Greenaway, A. M.; O'Connor, C. J.; Schrock, A.; Sinn, E . Inorg. Chem. 1979, 18, 2692 71. Sylva, R. N.; Goodwin, H. A. Aust. J. Chem. 1967, 20, 479. 72. Ibid., 1968, 21, 1081. 73. Dosser, R. J.; Eilbeck, W. J.; Underhill, A. E . ; Edwards, P. R.; Johnson, C. E. J. Chem. Soc. (A) 1969, 810. 74. Cunningham, A. J.; Fergusson, J. E.; Powell, H. K. J.; Sinn, E . ; Wong, H . J. Chem.Soc.,Dalton Trans. 1972, 2155. 75. König, E . ; Ritter, G.; Goodwin, H. A. Chem. Phys. 1974, 5, 211. 76. Sams, J. R.; Tsin, T. B. Inorg. Chem. 1976, 15, 1544. 77. Sams, J. R.; Tsin, T. B. J. Chem.Soc.,Dalton Trans. 1976, 488. 78. König, E . ; Ritter, G.; Goodwin, H. A. Chem. Phys. Lett. 1976, 44, 100. 79. Baker, A. T.; Goodwin, H. A. Aust. J. Chem. 1977, 30, 771. 80. Reeder, K. A.; Dose, E . V.; Wilson, L. J. Inorg. Chem. 1978, 17, 1071. 81. Sinn, E . Inorg. Chem. 1976, 15, 369.
452
MOSSBAUER
SPECTROSCOPY
A N D ITS
CHEMICAL
APPLICATIONS
82. Butcher, R. J.; Sinn, E. J. Am. Chem. Soc. 1976, 98, 2440. 83. Ibid., 5159. 84. Butcher, R. J.; Ferraro, J. R.; Sinn, E. J. Chem.Soc.,Dalton Trans. 1976, 910. 85. Cukauskas, E . J.; Deaver, B. S., Jr.; Sinn, E . Inorg. Nucl. Chem. Lett. 1977, 13, 283 86. Ganguli, P.; Marathe, V. R. Inorg. Chem. 1978, 17, 543. 87. König, E.; Madeja, K.; Watson, K. J. J. Am. Chem. Soc. 1968, 90, 1146. 88. Goodgame, D. M. L.; Machado, A.A.S.C. Chem. Commun. 1969, 1420. 89. König, E.; Watson, K. J. Chem. Phys. Lett. 1970, 6, 457.
Mössbauer Spectroscopy and Its Chemical Applications Downloaded from pubs.acs.org by EMORY UNIV on 03/02/16. For personal use only.
RECEIVED June 27, 1980.