3 Reduction of Sulfur Dioxide to Sulfur: The Elemental Sulfur Pilot Plant of A S A R C O
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 13, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch003
and Phelps Dodge Corp. JAMES M . H E N D E R S O N and J O H N B. P F E I F F E R Central Research Laboratories, American Smelting and Refining Co., South Plainfield, N . J. 07080
The thermodynamic
equilibria involved in reducing
dioxide with fossil fuels were used to specify the reactor operating conditions of 350°C
sulfur primary
and 1 atm with a ratio
of reformed gas to sulfur-bearing gas of 4.14:1. A pilot scale plant was built at ASARCO's initial phase of operation, covered: physical overheating
El Paso smelter. During
the
two process problems were dis-
degradation
of the catalyst pellets and
of the reactor, resulting in a major failure.
new primary reactor was designed and built using
A
boiling
media cooling with a new, stronger catalyst. After 90 days of operation with the new primary reactor on 12% dioxide
feed, neither
of
these operating
sulfur
problems
has
occurred.
' T h e elemental sulfur pilot plant financed by American Smelting and i
Refining Co.
(ASARCO)
and Phelps Dodge
Corp. is located at
A S A R C O ' s E l Paso, Tex., copper-lead smelter. Technology pioneered by both companies is used in this plant. The sulfur dioxide reduction process was developed by A S A R C O while a process for reforming natural gas developed by Phelps Dodge provides the reducing gases. A n y large scale process for reducing sulfur dioxide to elemental sulfur will likely depend on a fossil fuel.
Whether the fuel is used
to reduce sulfur to such compounds as hydrogen sulfide or carbonyl sulfide which are then used as the reductant for sulfur dioxide or whether the fuel itself is the sulfur dioxide reductant, the overall thermochemistry is similar. 35
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
36
S U L F U R
Thermochemistry
of Sulfur
Dioxide
R E M O V A L
A N D
R E C O V E R Y
Reduction
T h e H - C - O - S System. F o l l o w i n g the u s u a l c o n v e n t i o n , the h y d r o g e n c a r b o n - o x y g e n - s u l f u r system is r e p r e s e n t e d as a t e t r a h e d r o n w i t h
the
f o u r p u r e elements at the apexes as d e p i c t e d b y F i g u r e 1. I n t h e r e d u c t i o n of s u l f u r d i o x i d e b y fossil fuels, i f w e assume the f u e l to b e the sole
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 13, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch003
H
Hydrogen-carbon-oxygensulfur system source of c a r b o n a n d h y d r o g e n , selection of a p a r t i c u l a r fossil f u e l fixes t h e a t o m i c r a t i o of h y d r o g e n to c a r b o n , thus l i m i t i n g t h e r e g i o n of i n terest i n the H - C - O - S system to a p l a n e .
If m e t h a n e , w i t h a n a t o m i c
r a t i o of h y d r o g e n to c a r b o n of 4.0, is the fossil f u e l , t h e n p l a n e A S O defines
the r e g i o n of t h e H - C - O - S
system w i t h i n w h i c h a l l p o s s i b l e
c o m p o s i t i o n s m u s t l i e . W h e n a p p r o p r i a t e e q u i l i b r i a c o m b i n a t i o n s consistent w i t h significant constituents h a v e b e e n selected, e.g. S 0 , H S , C O S , 2
2
C S , S 0 , H , H 0 , C O , C 0 , S - S and, where applicable, C ( s ) and S ( l ) , 2
3
2
2
2
2
8
a n d t e m p e r a t u r e a n d pressure h a v e b e e n specified, t h e n c a r b o n a n d s u l f u r s a t u r a t i o n lines m a y b e l o c a t e d .
C a r b o n a n d s u l f u r s a t u r a t i o n lines are
s y m b o l i c a l l y i l l u s t r a t e d i n F i g u r e 1 o n p l a n e A S O as are t h e i r projections onto the carbon-oxygen-sulfur projection.
ternary.
T h i s is not a s i m p l e v e r t i c a l
R a t h e r , t h e p r o j e c t i o n of a n y p o i n t o n this p l a n e lies at the
i n t e r s e c t i o n w i t h the c a r b o n - o x y g e n - s u l f u r t e r n a r y of a straight l i n e c o n n e c t i n g the h y d r o g e n apex a n d the p o i n t b e i n g p r o j e c t e d , i.e., i n F i g u r e 1, p o i n t D ' lies o n the extension of a straight l i n e c o n n e c t i n g the h y d r o g e n apex a n d p o i n t D . U s i n g this t e c h n i q u e , a t o m i c s t o i c h i o m e t r i c r e l a t i o n ships i n v o l v i n g c a r b o n , o x y g e n , a n d s u l f u r a p p e a r i n g i n t h e p r o j e c t i o n are i d e n t i c a l to those i n the p l a n e p r o j e c t e d .
T o s i m p l i f y the g r a p h i c a l
i l l u s t r a t i o n s , the p l a n e of interest w i l l be p r o j e c t e d onto the C - O - S t e r n a r y t h r o u g h o u t this discussion. I n F i g u r e 2, regions of c a r b o n , l i q u i d s u l f u r , a n d h o m o g e n e o u s gas s t a b i l i t y are p l o t t e d f o r the specified a t o m i c r a t i o of h y d r o g e n to c a r b o n , 3 2 3 ° C ( 6 0 0 ° K ) , a n d 1 a t m absolute pressure. I n a n y p r a c t i c a l process
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
3.
H E N D E R S O N
A N D
j
Elemental
PFEiFFER
Sulfur Pilot
37
Plant
\
I C(solid)\Gas
β
I
0
\
\
1
Carbon Saturation
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 13, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch003
l^^^fSulfur
Maturation
'S(liquid)+ Gas)
Figure 2. Regions of carbon, liquid sulfur, and homogeneous gas stability. H/C = 4.0, S/O = 0.5, Τ = 323°C (600°Κ), Ρ = 1.0 atm.
HornbçeneousGas
A %*0.5
for r e d u c i n g s u l f u r d i o x i d e to e l e m e n t a l s u l f u r , t h e r e g i o n of s a t u r a t i o n is a v o i d e d .
carbon
I n this r e g i o n not o n l y w o u l d t h e y i e l d of s u l f u r
v a p o r be v i r t u a l l y zero, b u t c a r b o n p r e c i p i t a t i o n w o u l d f o u l the catalyst bed. T h e r e are s i m i l a r reasons for a v o i d i n g the s u l f u r - s a t u r a t e d r e g i o n of the system, a l t h o u g h there are e q u a l l y v a l i d reasons f o r i n t e n t i o n a l s u l f u r c o n d e n s a t i o n o n a catalyst, f o l l o w e d b y a catalyst r e g e n e r a t i o n step,
e.g.,
to a t t a i n i n a single c a t a l y t i c stage s u l f u r y i e l d s otherwise o n l y a t t a i n a b l e i n t w o or t h r e e stages. A S A R C O chose to a v o i d s u l f u r c o n d e n s a t i o n o n the catalyst. T h e r e is, h o w e v e r , a n a d d i t i o n a l constraint o n the r e g i o n of p r a c t i c a l interest. S i n c e w e are c o n c e r n e d w i t h s u l f u r d i o x i d e r e d u c t i o n , w e n e e d o n l y to e x a m i n e the system c h e m i s t r y o f the h o m o g e n e o u s gas r e g i o n l y i n g a l o n g or to the r i g h t of L i n e A C of F i g u r e 2, w h i c h denotes a n a t o m i c r a t i o of s u l f u r to o x y g e n of 0.5, i.e., at a n a t o m i c r a t i o of s u l f u r to o x y g e n e q u a l to or less t h a n that for s u l f u r d i o x i d e . Proportioning of Reformed Gas and Sulfur Dioxide.
W e w i s h to
d e t e r m i n e the p r o p e r p r o p o r t i o n of s u l f u r d i o x i d e to r e d u c e r .
L e t us
e x a m i n e the v a r i a t i o n i n e q u i l i b r i u m c o m p o s i t i o n a n d s u l f u r v a p o r y i e l d a l o n g L i n e A C of F i g u r e 2. T h e s e d a t a are g r a p h i c a l l y s h o w n i n F i g u r e 3,
I too ξ
sion
I
2°1
H
^^^^^ S0A V V Τ COS
1 1
i • 40 20
O.I
0.2
0.3 C/o
0.4
0.5
ο
I
a
Figure 3. Gas phase composition. H/C = 4.0, S/O = 0 . 5 , Τ = 323°C (600°Κ), Ρ = 1.0 atm.
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
38
S U L F U R
R E M O V A L
A N D
R E C O V E R Y
w h e r e gas phase c o m p o s i t i o n is expressed i n terms of l o g p a r t i a l pressures. W i t h fixed a t o m i c ratios of h y d r o g e n to c a r b o n a n d s u l f u r to
oxygen,
F i g u r e 3 illustrates the c h a n g e i n e q u i l i b r i u m gas phase c o m p o s i t i o n w i t h v a r y i n g c a r b o n - t o - o x y g e n r a t i o , e.g., as t h e p r o p o r t i o n i n g of m e t h a n e a n d p u r e s u l f u r d i o x i d e is v a r i e d f r o m f u e l - l e a n to f u e l - r i c h . T h e c u r v e of F i g u r e 3 r e p r e s e n t i n g e q u i l i b r i u m p e r c e n t a g e c o n v e r s i o n of s u l f u r d i o x i d e to s u l f u r v a p o r illustrates the i m p o r t a n c e of p r o p o r t i o n i n g s u l f u r d i o x i d e a n d r e d u c i n g gas.
W i t h m e t h a n e as the r e -
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 13, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch003
d u c t a n t , m a x i m u m s u l f u r v a p o r y i e l d occurs at a system a t o m i c r a t i o of c a r b o n to o x y g e n of 0.25, consistent w i t h the f o l l o w i n g s i m p l i f i e d o v e r a l l reaction: 2 S0
2
(g) +
CH
4
(g) -> S
2
(g) +
C0
2
(g) + 2 H 0 (g)
(1)
2
I n the A S A R C O s u l f u r d i o x i d e process, h o w e v e r , r e f o r m e d n a t u r a l gas is the r e d u c e r . If w e assume n a t u r a l gas to be c o m p r i s e d solely of m e t h a n e , reformed
n a t u r a l gas f o r m a t i o n i n the process d e v e l o p e d
by
Phelps
D o d g e C o r p . m a y be expressed i n terms of R e a c t i o n 2: CH
4
(g) + 0.5 0
2
(g) -> C O (g) + 2 H
2
(g)
(2)
S u l f u r d i o x i d e r e d u c t i o n to e l e m e n t a l s u l f u r v a p o r m a y be 1.5 S 0
2
(g) +
CO + 2 H
2
0.75 S
2
(g) + C 0
2
expressed:
(g) + 2 H 0 2
(3)
I n R e a c t i o n 3 as i n R e a c t i o n 1 the a t o m i c r a t i o of c a r b o n to o x y g e n is also 0.25. I n theory, the m a x i m u m y i e l d of s u l f u r v a p o r w o u l d d e p e n d o n a t e m p e r a t u r e - d e p e n d e n t a t o m i c r a t i o of c a r b o n to oxygen.
I n other
w o r d s , m a x i m u m y i e l d of s u l f u r v a p o r d e p e n d s o n a c a r b o n m o n o x i d e - t o c a r b o n d i o x i d e r a t i o ( o r a h y d r o g e n - t o - w a t e r r a t i o ) w h i c h is i n t u r n temperature dependent.
W h i l e the absolute v a l u e of the c a r b o n m o n -
o x i d e - t o - c a r b o n d i o x i d e r a t i o c o r r e s p o n d i n g to m a x i m u m c o n v e r s i o n of s u l f u r d i o x i d e to s u l f u r v a p o r changes w i t h t e m p e r a t u r e , e q u i l i b r i u m p a r t i a l pressures of c a r b o n m o n o x i d e or h y d r o g e n are essentially zero over a b r o a d t e m p e r a t u r e range. T h u s , i n a p r a c t i c a l sense, w h e n m e t h a n e or r e f o r m e d m e t h a n e is the r e d u c t a n t for s u l f u r d i o x i d e , m a x i m u m e q u i l i b r i u m c o n v e r s i o n of s u l f u r d i o x i d e to s u l f u r v a p o r w i l l o c c u r at a n a t o m i c r a t i o of c a r b o n to o x y g e n of 0.25 regardless of t e m p e r a t u r e i n a c c o r d a n c e w i t h the s i m p l e s t o i c h i o m e t r y of R e a c t i o n s 1 a n d 3. N a t u r a l gas of the s o u t h w e s t e r n U n i t e d States contains, i n a d d i t i o n to m e t h a n e , s e v e r a l p e r cent ethane a n d lesser percentages of h i g h e r m o l e c u l a r w e i g h t h y d r o c a r b o n s , u p to a n d i n c l u d i n g pentane. T h e a t o m i c r a t i o of h y d r o g e n to c a r b o n i n this f u e l is a b o u t 3.80.
R e f o r m i n g this
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
3.
H E N D E R S O N
Elemental
PFEiFFER
A N D
Sulfur Pilot
39
Plant
n a t u r a l gas b y t h e P h e l p s D o d g e process t y p i c a l l y p r o d u c e s a gas stream of the c o m p o s i t i o n g i v e n i n T a b l e I. T h e E l Paso e l e m e n t a l s u l f u r p i l o t p l a n t is d e s i g n e d to p e r m i t r e d u c t i o n of 1 2 - 1 0 0 % s u l f u r d i o x i d e i n gas streams. I n the r e d u c t i o n of p u r e s u l f u r d i o x i d e , s t o i c h i o m e t r i c p r o p o r t i o n i n g of r e f o r m e d gas to s u l f u r d i o x i d e m a y be defined b y : S0
2
+
χ (0.170 C O +
-> 0.5 S
2
where χ = Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 13, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch003
0.313 H
+ χ (0.187 C 0
2
+
2
+
0.017 C 0
0.355 H 0 + 2
2
+
0.042 H 0 + 2
0.458 N ) 2
0.458 N )
(4)
2
moles of r e f o r m e d g a s / m o l e of s u l f u r d i o x i d e . S o l v i n g for x,
the s t o i c h i o m e t r i c p r o p o r t i o n i n g of r e d u c t a n t to s u l f u r d i o x i d e r e q u i r e d Table I. Constituent CO H C0 H 0 N 2
2
2
2
T y p i c a l Reformed Gas Composition Volume
%
17.0 31.3 1.7 4.2 45.8
4.141 moles of r e f o r m e d g a s / m o l e of s u l f u r d i o x i d e . P i l o t p l a n t process d e s i g n for r e d u c i n g p u r e s u l f u r d i o x i d e therefore p r o v i d e s for b l e n d i n g of r e f o r m e d gas a n d s u l f u r d i o x i d e i n the s t o i c h i o m e t r i c v o l u m e r a t i o of 4.141 to 1 a n d i n t r o d u c t i o n of this m i x e d gas stream i n t o t h e p r i m a r y or first-stage c a t a l y t i c reactor. T h i s leads to a system c o m p o s i t i o n defined b y the f o l l o w i n g a t o m i c r a t i o s : H / C = 3.797, S / O — 0.331, C / O =
0.257.
Temperature and Pressure Specification. S i n c e e q u i l i b r i u m c o n v e r s i o n of s u l f u r d i o x i d e to s u l f u r v a p o r increases w i t h d e c r e a s i n g t e m p e r a ture, the r e d u c t i o n process was d e s i g n e d so t h a t the p r i m a r y r e d u c t i o n stage operates
at the m i n i m u m t e m p e r a t u r e consistent w i t h
reaction
kinetics w h i c h a v o i d s s u l f u r c o n d e n s a t i o n o n the catalyst. T a k i n g these factors i n t o account, the p r i m a r y c a t a l y t i c reactor is o p e r a t e d at 3 5 0 ° C (623°K). It was
e s t i m a t e d t h a t a c t u a l o p e r a t i n g pressure
at the p r i m a r y
reactor outlet w o u l d b e 2.7 l b / s q i n . gage, e q u i v a l e n t at the E l Paso e l e v a t i o n to 1.04 a t m absolute. S i n c e s u l f u r d i o x i d e r e d u c t i o n w i l l e n t a i l a v o l u m e s h r i n k a g e c a u s e d p r i m a r i l y b y f o r m a t i o n of p o l y a t o m i c s u l f u r v a p o r species, i t is e s t i m a t e d , w i t h the a i d of R e a c t i o n 4, t h a t t h e gas stream l e a v i n g the p r i m a r y reactor w i l l h a v e a n i t r o g e n content of 4 3 . 5 % , e q u i v a l e n t to a n i t r o g e n p a r t i a l pressure of 0.45 a t m . A t the temperatures a n d pressures of interest, n i t r o g e n m a y b e c o n s i d e r e d a n i n e r t gas.
In
terms of gaseous species i n v o l v e d i n e q u i l i b r i a w i t h i n the H - C - O - S sys t e m , the s u m of t h e i r p a r t i a l pressures m u s t b e e q u a l to t h e t o t a l pressure at the p o i n t i n the reactor w h e r e e q u i l i b r i u m is a p p r o a c h e d less the p a r -
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
40
S U L F U R
R E M O V A L
A N D
R E C O V E R Y
t i a l pressure of n i t r o g e n — a n e s t i m a t e d H - C - O - S system pressure i n this case of 1.04 m i n u s 0.45, or 0.59 a t m . Equilibrium Gas Phase Composition. H a v i n g d e f i n e d o p t i m u m p r o p o r t i o n i n g of
reformed
gas
and sulfur dioxide
and having
specified
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 13, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch003
c
t e m p e r a t u r e a n d pressure at 3 5 0 ° C ( 6 2 3 ° K ) a n d 0.59 a t m , r e s p e c t i v e l y , the e q u i l i b r i u m gas p h a s e c o m p o s i t i o n m a y b e c a l c u l a t e d . T h e system c o m p o s i t i o n , d e n o t e d as p o i n t A , together w i t h c a r b o n a n d s u l f u r s a t u r a t i o n lines is d e p i c t e d i n F i g u r e 4. A t the specified p r i m a r y reactor o p e r a t i n g c o n d i t i o n s the system c o m p o s i t i o n is w e l l i n s i d e the h o m o g e n e o u s gas r e g i o n .
E q u i l i b r i u m gas phase c o m p o s i t i o n at p o i n t A is g i v e n i n
Table II. F r o m the gas p h a s e c o m p o s i t i o n i n T a b l e I I , it m a y be c a l c u l a t e d that 7 9 . 4 %
s u l f u r d i o x i d e is c o n v e r t e d to s u l f u r v a p o r .
C o o l i n g this
gas i n the absence of a catalyst leads to no e q u i l i b r i u m shift other t h a n that associated w i t h s u l f u r v a p o r c o n d e n s a t i o n ; this has b e e n b o r n e out i n the C l a u s process. B y c o o l i n g a gas stream of the c o m p o s i t i o n c i t e d i n T a b l e I I to 1 4 0 ° C (413 K ) , e q u i l i b r i u m s u l f u r c o n d e n s a t i o n sponds to 7 8 . 4 %
first-stage
Table II. Constituent C0 H 0 H S S0 2
2
a
%
17.62 31.07 3.20 1.59 43.64
2
2
N
Equilibrium Composition of Gases Leaving First-Stage Reactor Vol.
a
2
Constituent
s
2
S
3
s s s
S S
4 s 6 7 8
Vol. 0.09 0.01 0.05 0.30 1.08 0.67 0.68
C O , H , COS, C S , and SO3 are present in negligibly small concentrations. 2
corre-
r e c o v e r y of l i q u i d sulfur.
2
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
%
3.
H E N D E R S O N
Elemental
PFEiFFER
A N D
Sulfur Pilot
41
Plant
A f t e r the c o n d e n s a t i o n of s u l f u r v a p o r , most of t h e s u l f u r r e m a i n i n g i n t h e gas phase is present as h y d r o g e n sulfide a n d s u l f u r d i o x i d e i n t h e v o l u m e r a t i o of 2 to 1. W i t h s u l f u r c o n d e n s a t i o n , the a t o m i c r a t i o of s u l f u r to o x y g e n i n the gas phase is r e d u c e d w h i l e the other a t o m i c ratios r e main unchanged.
G r a p h i c a l l y , this e q u i l i b r i u m c o n d e n s a t i o n of s u l f u r
v a p o r , d e c r e a s i n g the gas phase r a t i o of s u l f u r to o x y g e n to 0.071, is r e p r e s e n t e d i n F i g u r e 4 b y the shift f r o m p o i n t A to p o i n t Β a l o n g t h e l i n e h a v i n g a constant a t o m i c r a t i o of c a r b o n to o x y g e n of 0.257.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 13, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch003
W i t h the gaseous s u l f u r - b e a r i n g species b e i n g p r e d o m i n a n t l y h y d r o g e n sulfide a n d s u l f u r d i o x i d e , f u r t h e r r e c o v e r y of e l e m e n t a l s u l f u r d e pends o n the C l a u s r e a c t i o n : 2 H S (g) + S 0 2
2
(g) -
1.5 S
2
(g) +
2 H 0 (g)
(5)
2
T o a v o i d c o n d e n s i n g s u l f u r v a p o r o n the catalyst u s e d i n the secondary, or C l a u s - t y p e reactor, gases l e a v i n g the p r i m a r y s u l f u r condenser be reheated.
must
F o r the p l a n t o p e r a t i n g c o n d i t i o n s u n d e r d i s c u s s i o n , t h e
gas stream is r e h e a t e d to 2 0 5 ° C (478 K ) . A s the C l a u s r e a c t i o n is s l i g h t l y e x o t h e r m i c , i t is e s t i m a t e d that the t e m p e r a t u r e of the gas stream w i l l rise, a l l o w i n g for t h e r m a l losses, b y a b o u t 3 5 ° C to 2 4 0 ° C (513 K ) e q u i l i b r i u m is a p p r o a c h e d .
as
A l l o w i n g for the e x p e c t e d pressure d r o p as
the process gas s t r e a m passes t h r o u g h the process t r a i n a n d for the c h a n g e i n r e l a t i v e v o l u m e of inert n i t r o g e n as c o m p a r e d w i t h the t o t a l v o l u m e of " a c t i v e " gaseous species, w e c a n estimate that H - C - O - S system p r e s sure w i l l b e 0.50 a t m . S u l f u r a n d c a r b o n s a t u r a t i o n lines c o n f o r m i n g to this pressure a n d the expected t e m p e r a t u r e of 2 4 0 ° C (513 K ) are also s h o w n i n F i g u r e 4.
P o i n t B , c o r r e s p o n d i n g to system c o m p o s i t i o n , lies
to the r i g h t of the s u l f u r s a t u r a t i o n line. conditions, avoided.
sulfur condensation
on
the
Therefore, under e q u i l i b r i u m secondary
reactor
catalyst is
T h e t h e o r e t i c a l e q u i l i b r i u m gas phase c o m p o s i t i o n is l i s t e d i n
Table III.
Table III.
Equilibrium Composition of Gases Leaving Second-Stage Reactor
Constituent"
Vol.
C0 H 0 H S
18.53 34.41 0.75 0.37 45.39
2
2
2
so N a
%
2
2
Constituent
s s
6 7
Se
Vol.
%
0.01 0.18 0.11 0.25
C O , H2, COS, C S , S , S3, and S 4 are present in negligibly small concentrations. 2
2
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
42
S U L F U R
R E M O V A L
A N D
R E C O V E R Y
F r o m t h e d a t a of T a b l e s I I a n d I I I , i t m a y be c a l c u l a t e d that e q u i l i b r i u m c o n v e r s i o n of h y d r o g e n sulfide a n d s u l f u r d i o x i d e to s u l f u r v a p o r i n the s e c o n d a r y reactor is 7 8 . 0 % .
C o o l i n g this gas stream to
140°C
(413 K ) w i l l l e a d to a l i q u i d s u l f u r r e c o v e r y of 7 6 . 1 % of the s e c o n d a r y reactor o u t p u t .
O v e r a l l r e c o v e r y i n the t w o stages, t h e n , m a y b e c a l c u -
l a t e d to be 9 4 . 9 % . O v e r a l l recovery c o u l d be increased slightly b y a d d i n g a t h i r d catal y t i c stage.
H o w e v e r , it w a s not d e e m e d necessary to use a t h i r d stage
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 13, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch003
i n the A S A R C O - P h e l p s D o d g e p i l o t p l a n t because i t represents
tech-
n o l o g y w e l l e s t a b l i s h e d i n the C l a u s process. Laboratory
Development
Program
T h e i n i t i a l l a b o r a t o r y i n v e s t i g a t i o n of t h e process n o w b e i n g p i l o t e d at the A S A R C O E l Paso p l a n t i n v o l v e d b e n c h scale evaluations of different p r i m a r y s u l f u r d i o x i d e r e d u c t i o n catalysts. A l s o , fluid-bed
catalysis w e r e c o m p a r e d ,
19
fixed-bed
and
a n d various construction materials
w e r e e v a l u a t e d i n the corrosive h y d r o g e n sulfide a n d s u l f u r v a p o r atmosp h e r e g e n e r a t e d i n gas phase r e d u c t i o n of s u l f u r d i o x i d e . F o l l o w i n g c o m p l e t i o n of the b e n c h scale test p r o g r a m , a n e n g i n e e r i n g c o n t r a c t o r c o n d u c t e d a s t u d y a n d p r e p a r e d the p r e l i m i n a r y d e s i g n for a p i l o t p l a n t h a v i n g a n o m i n a l p r o d u c t i o n c a p a c i t y of 20 short tons s u l f u r / d a y w h e n treating pure sulfur dioxide. fixed-bed
catalysis w a s
more practical.
d e s i g n , therefore, p r o v i d e d for a
fixed-bed
The
This study found preliminary pilot
of
that plant
p r i m a r y reactor of t h e s h e l l -
a n d - t u b e t y p e i n w h i c h the catalyst w o u l d b e i n the tubes. B a s e d o n this e n g i n e e r i n g s t u d y w e c o n c l u d e d t h a t f u r t h e r l a b o r a t o r y studies s h o u l d b e m a d e m o r e f u l l y to define the p r i m a r y reactor catalyst l o a d i n g s r e q u i r e d to a p p r o a c h e q u i l i b r i u m c o n v e r s i o n of s u l f u r d i o x i d e to s u l f u r v a p o r o v e r t h e r a n g e of p i l o t p l a n t o p e r a t i n g c o n d i t i o n s . T h e reactor u s e d i n this a d d i t i o n a l s t u d y d u p l i c a t e d as n e a r l y as possible the g e o m e t r y of t h e p r o p o s e d p i l o t p l a n t reactor. T h e l a b o r a t o r y reactor w a s f a b r i c a t e d of t y p e 304 stainless steel p i p e .
A n electrically heated
m o l t e n l e a d b a t h m a i n t a i n e d the d e s i r e d o p e r a t i n g t e m p e r a t u r e . G a s streams f o r the e x p e r i m e n t a l r e a c t o r c o n t a i n e d n i t r o g e n , h y d r o gen, c a r b o n m o n o x i d e , s u l f u r d i o x i d e , a n d i n some cases o x y g e n ,
from
c y l i n d e r s , w h i c h w e r e b l e n d e d to synthesize a m i x t u r e of r e f o r m e d n a t u r a l gas a n d a s u l f u r d i o x i d e - b e a r i n g gas stream of the d e s i r e d position.
T h e composition
of this h e a d gas stream w a s
m o n i t o r e d b y a n o n - l i n e process c h r o m a t o g r a p h .
com-
continuously
T h e m i x e d gas stream
w a s s a t u r a t e d w i t h w a t e r v a p o r at a c o n t r o l l e d t e m p e r a t u r e a n d pressure to p r o v i d e a w a t e r v a p o r content consistent w i t h t h a t i n a c t u a l p l a n t operation.
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
3.
H E N D E R S O N
A N D
Elemental
PFEiFFER
Sulfur Pilot
43
Plant
G a s samples f r o m the reactor w e r e a n a l y z e d b y mass
spectroscopy
a n d gas c h r o m a t o g r a p h y a n d conversions of s u l f u r d i o x i d e to s u l f u r v a p o r w e r e c o m p u t e d f r o m the c o m b i n e d a n a l y t i c a l d a t a . I n this large-scale test p r o g r a m , effects o n catalyst l o a d i n g of a n u m b e r of v a r i a b l e s w e r e e x a m i n e d i n d e t a i l . W h i l e the l a b o r a t o r y e x p e r i m e n t a t i o n h a d b e e n q u i t e extensive, o p e r a t i o n of a p i l o t p l a n t was c o n s i d e r e d necessary to p e r m i t scale-up of the process to the 2 0 0 - 3 0 0 t o n / d a y plants c o n c e i v a b l y r e q u i r e d i n the f u t u r e .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 13, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch003
The Elemental
Sulfur
Pilot
Plant
Operating Conditions of the Pilot Plant.
B e c a u s e of f u e l costs a
sulfur d i o x i d e - b e a r i n g gas s t r e a m of r e l a t i v e l y l o w o x y g e n content is n e c essary to p e r m i t p r a c t i c a l a p p l i c a t i o n of the A S A R C O s u l f u r d i o x i d e r e d u c t i o n process.
A d d i t i o n a l l y , for a n y g i v e n s u l f u r p r o d u c t i o n rate, e q u i p
m e n t size increases as s u l f u r d i o x i d e c o n c e n t r a t i o n i n the gas stream decreases.
T h e r e is, therefore, some l o w e r s u l f u r d i o x i d e c o n c e n t r a t i o n
w h e r e i t becomes m o r e e c o n o m i c a l
to concentrate
the s u l f u r d i o x i d e
before r e d u c t i o n . P r e l i m i n a r y c a p i t a l a n d o p e r a t i n g cost estimates i n d i c a t e d that this b r e a k i n g p o i n t w a s i n the range of 1 2 - 1 5 % s u l f u r d i o x i d e . F o r these reasons, the p i l o t p l a n t w a s d e s i g n e d to treat gas streams c o n taining 12-100%
sulfur dioxide.
W e a n t i c i p a t e d that t h e major
oper
a t i o n a l effort w o u l d be d i r e c t e d first to t r e a t i n g a gas stream c o n t a i n i n g 1 2 % sulfur dioxide.
S u c h a gas stream is t y p i c a l of that generated i n
flash s m e l t i n g of c o p p e r concentrates or i n the n e w e r c o p p e r s m e l t i n g processes p r e s e n t l y u n d e r d e v e l o p m e n t .
T h e second p r i n c i p a l m o d e of
o p e r a t i o n w i l l r e d u c e p u r e s u l f u r d i o x i d e , i n response to the r e q u i r e m e n t for c o n c e n t r a t i n g the s u l f u r d i o x i d e i n m o r e d i l u t e gas streams b e f o r e r e d u c t i o n . S u l f u r p r o d u c t i o n c a p a b i l i t y i n the. latter case amounts to 20 short-tons/day.
H o w e v e r , since p l a n t d e s i g n p r o v i d e s for h a n d l i n g es
s e n t i a l l y the same t o t a l process gas v o l u m e regardless of s u l f u r d i o x i d e c o n c e n t r a t i o n i n the h e a d gas, s u l f u r p r o d u c t i o n decreases m a t e l y 8.5 s h o r t - t o n s / d a y w h e n t r e a t i n g a 1 2 %
to a p p r o x i
sulfur dioxide-bearing
gas stream. A s u s u a l i n the c o n v e n t i o n a l c o p p e r
or l e a d smelter, n o n e of
the
E l Paso smelter gas streams has a s u l f u r d i o x i d e c o n c e n t r a t i o n as h i g h as 1 2 % .
I n the p i l o t p l a n t , t h e n , the 1 2 % s u l f u r d i o x i d e gas stream is
generated b y b u r n i n g m o l t e n s u l f u r i n a s p r a y - t y p e s u l f u r b u r n e r to p r o d u c e a gas stream c o n t a i n i n g 1 8 % s u l f u r d i o x i d e . T h i s hot gas stream, at 1 3 5 0 ° C (1623 K ) , is c o o l e d to a b o u t 3 6 0 ° C (633 Κ ) i n a waste heat boiler.
W h e n t h e p i l o t p l a n t is o p e r a t i n g w i t h this 1 8 %
gas,
process
t a i l gases are r e c y c l e d to d i l u t e the 1 8 % h e a d gas s t r e a m to 1 2 % . I n a n alternate m o d e of o p e r a t i o n , l i q u i d s u l f u r d i o x i d e is v a p o r i z e d to generate t h e p u r e gas.
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
44
S U L F U R
R E M O V A L
A N D
R E C O V E R Y
T h e P h e l p s D o d g e r e f o r m i n g process ( 1 ) uses c a t a l y t i c p a r t i a l c o m b u s t i o n of n a t u r a l gas w i t h p r e h e a t e d a i r to p r o d u c e
a reformed
gas
s t r e a m h a v i n g a t o t a l h y d r o g e n p l u s c a r b o n m o n o x i d e content of 4 8 - 5 0 % by volume.
T h e r e f o r m e r is a r e f r a c t o r y l i n e d , v e r t i c a l , c y l i n d r i c a l steel
vessel p a c k e d w i t h n i c k e l i z e d a l u m i n a pellets.
A i r , p r e h e a t e d to
430-
4 8 0 ° C ( 7 0 3 - 7 5 3 K ) , together w i t h n a t u r a l gas at a v o l u m e r a t i o of 2.8-3.0 to 1, r e s p e c t i v e l y , is i n t r o d u c e d t h r o u g h a m i x e r i n t h e t o p of t h e r e f o r m e r . I n p a s s i n g t h r o u g h the catalyst b e d , the gas stream approaches the e q u i -
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 13, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch003
l i b r i u m c o m p o s i t i o n c o r r e s p o n d i n g to the outlet t e m p e r a t u r e a n d pressure of 1 0 0 0 ° C (1273 K ) a n d 1.15 a t m absolute. T h e r e f o r m e d gas w h i c h is g e n e r a t e d is free of c a r b o n p a r t i c l e s a n d contains o n l y traces of u n reacted hydrocarbons.
A c o n t r o l l e d p o r t i o n of the h o t r e f o r m e d gas is
d i v e r t e d t h r o u g h a w a t e r - c o o l e d s h e l l - a n d - t u b e heat exchanger to m a i n t a i n a r e f o r m e d gas t e m p e r a t u r e of 4 2 0 - 4 6 0 ° C ( 6 9 3 - 7 3 3 K ) . R e f o r m e d n a t u r a l gas a n d gases f r o m either the s u l f u r b u r n e r or the s u l f u r d i o x i d e v a p o r i z e r are c o m b i n e d s t o i c h i o m e t r i c a l l y a n d i n t r o d u c e d i n t o the p r i m a r y c a t a l y t i c reactor at 3 5 0 ° C
(623
K).
The
reformed
a n d s u l f u r b u r n e r gases are c o o l e d to m a i n t a i n the m i x e d stream at this temperature.
T h e p r i m a r y reactor is a v e r t i c a l s h e l l - a n d - t u b e heat ex-
c h a n g e r w i t h the t u b e filled w i t h catalyst. S i n c e s u l f u r d i o x i d e r e d u c t i o n is h i g h l y e x o t h e r m i c , a n o r g a n i c heat transfer fluid is c i r c u l a t e d t h r o u g h t h e s h e l l side to c o n t r o l reactor t e m p e r a t u r e . C o o l a n t l e a v i n g the p r i m a r y r e a c t o r is s p l i t i n t o t w o streams.
O n e stream is c i r c u l a t e d t h r o u g h a
k e t t l e - t y p e heat exchanger w h e r e steam at 35 l b / s q i n . gage is generated. T h e o t h e r stream passes t h r o u g h a s h e l l - a n d - t u b e heat exchanger w h i c h reheats the process gas s t r e a m before i t is i n t r o d u c e d into the
second
c a t a l y t i c reactor. T h e gas stream leaves the p r i m a r y reactor at a p p r o x i m a t e l y t h e i n l e t t e m p e r a t u r e a n d is essentially at e q u i l i b r i u m , w h i c h amounts to c o n v e r sions of s u l f u r d i o x i d e to s u l f u r v a p o r of a p p r o x i m a t e l y 6 9 % w h e n t r e a t i n g a 12%
s u l f u r d i o x i d e gas a n d a b o u t 8 0 %
w h e n reducing pure sulfur
dioxide. F o l l o w i n g the p r i m a r y reactor, the A S A R C O - P h e l p s D o d g e
pilot
p l a n t d u p l i c a t e s t y p i c a l C l a u s process p r a c t i c e . T a i l gases f r o m the p r i m a r y r e a c t o r are c o o l e d i n a h o r i z o n t a l s h e l l - a n d - t u b e condenser to c o n dense s u l f u r a n d are t h e n r e h e a t e d to a p p r o x i m a t e l y 205 ° C (478 K ) a n d p a s s e d t h r o u g h a second c a t a l y t i c stage. T h i s is a
fixed-bed
reactor w i t h
n o i n t e r n a l c o o l i n g . T h e o n l y r e a c t i o n i n v o l v e d i n t h e second stage is a shift i n the e q u i l i b r i u m b e t w e e n h y d r o g e n sulfide a n d s u l f u r d i o x i d e to y i e l d a d d i t i o n a l s u l f u r v a p o r . T h e process gas stream f r o m the s e c o n d a r y reactor passes t h r o u g h a s e c o n d a r y condenser to recover a d d i t i o n a l s u l f u r a n d , thence, to a n i n c i n e r a t o r w h e r e r e s i d u a l h y d r o g e n sulfide a n d traces of s u l f u r v a p o r are b u r n e d a n d exhausted to the atmosphere.
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
3.
H E N D E R S O N
A N D
PFEiFFER
Elemental
Sulfur Pilot
Phnt
45
Operational Problems of the Pilot Plant. P i l o t p l a n t o p e r a t i o n b e g a n i n late A u g u s t 1971 a n d i n i t i a l l y i n v e s t i g a t e d t r e a t m e n t of a 1 2 % s u l f u r d i o x i d e gas stream. A n u m b e r of m i n o r s t a r t - u p p r o b l e m s w e r e r e s o l v e d , and
a r e l a t i v e l y stable, a r o u n d - t h e - c l o c k
mid-September.
operation was
achieved
by
O p e r a t i o n i n this m o d e c o n t i n u e d , w i t h some i n t e r r u p -
tions, u n t i l late F e b r u a r y 1972. D u r i n g this p e r i o d 91 days of o p e r a t i o n w e r e logged.
T y p i c a l l y , s u l f u r recoveries a v e r a g e d 8 8 - 9 2 % as c o m p a r e d
w i t h a t h e o r e t i c a l r e c o v e r y of a p p r o x i m a t e l y 9 3 % . E l e v e n days of d o w n -
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 13, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch003
t i m e w e r e a t t r i b u t e d to c u r t a i l e d i n d u s t r i a l use of n a t u r a l gas.
Other
t h a n this, most of the d o w n t i m e w a s caused b y t w o p r o b l e m s . T h e first p r o b l e m i n v o l v e d g e n e r a t i o n of the 1 2 % b e a r i n g gas stream.
sulfur dioxide-
C o n d e n s a t i o n of trace amounts of s u l f u r t r i o x i d e ,
g e n e r a t e d i n b u r n i n g s u l f u r , caused severe c o r r o s i o n of tubes a n d t u b e sheets i n t h e w a s t e heat b o i l e r . W h i l e not t y p i c a l of p o t e n t i a l p r o b l e m s w h i c h m i g h t be encountered
i n c o m m e r c i a l a d a p t a t i o n of t h e s u l f u r
process, this c o r r o s i o n p r o b l e m d i d cause t h e p l a n t to be shut d o w n for almost a m o n t h w h i l e the b o i l e r w a s r e p a i r e d . O p e r a t i n g the b o i l e r at a h i g h e r pressure, l e a d i n g to a h i g h e r t u b e w a l l t e m p e r a t u r e , has l a r g e l y eliminated sulfur trioxide corrosion. T h e second major p r o b l e m i n v o l v e d the catalyst u s e d for the p r i m a r y reactor.
S p e c i f i c a l l y , d e c r e p i t a t i o n of catalyst pellets i n the
first
few
inches of the b e d i n c r e a s e d t h e pressure d r o p t h r o u g h the p r i m a r y reactor. N o loss of catalyst a c t i v i t y has b e e n detected.
A n extensive l a b o r a t o r y
i n v e s t i g a t i o n i s o l a t e d the cause of p h y s i c a l f a i l u r e a n d e v a l u a t e d possible a l t e r n a t i v e solutions. T h e p i l o t p l a n t b e g a n o p e r a t i n g w i t h a m i x t u r e of r e f o r m e d n a t u r a l gas a n d v a p o r i z e d s u l f u r d i o x i d e i n late M a r c h 1972. A f t e r o p e r a t i o n i n this m o d e for a p p r o x i m a t e l y 10 days, a second l i q u i d
flowing
out of the
p r i m a r y s u l f u r condenser was n o t e d , a n d the p l a n t was i m m e d i a t e l y shut d o w n . A t that t i m e the p l a n t w a s p r o d u c i n g s u l f u r at the m a x i m u m d e s i g n t h r o u g h p u t o f 20 t o n s / d a y w i t h 9 0 - 9 2 %
r e c o v e r y as c o m p a r e d w i t h a
t h e o r e t i c a l r e c o v e r y of s l i g h t l y over 9 4 % . T h e second l i q u i d p r o v e d to be the o r g a n i c heat transfer fluid. L e a k s w e r e f o u n d i n the p r i m a r y reactor a n d the s e c o n d a r y reactor preheater.
T h e leaks i n the preheater w e r e
r e l a t i v e l y m i n o r , b u t the p r o b l e m i n the p r i m a r y reactor i n v o l v e d a m a j o r failure. R e m o v a l o f the p r i m a r y reactor heads r e v e a l e d w a r p a g e over a p p r o x i m a t e l y o n e - h a l f of the u p p e r t u b e sheet a n d s h o w e d e v i d e n c e leakage at a n u m b e r of points o n the b o t t o m t u b e sheet.
of
M a n y tubes i n
the area of the u p p e r t u b e sheet w a r p a g e w e r e b u r n e d t h r o u g h w h i l e the space b e t w e e n these tubes w a s s o l i d l y b l o c k e d w i t h c a r b o n t h e r m a l d e c o m p o s i t i o n of t h e o r g a n i c coolant.
from
R e v i e w of t h e reactor
d e s i g n i n d i c a t e d that c o o l i n g of the reactor s h o u l d h a v e b e e n m o r e t h a n
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
46
S U L F U R
R E M O V A L
A N D
R E C O V E R Y
a d e q u a t e i f the coolant flowed u n i f o r m l y to a l l parts of the reactor.
The
f a i l u r e was a t t r i b u t e d to a c o m b i n a t i o n of the c o n d i t i o n s discussed b e l o w . B y p a s s i n g of t h e c o o l a n t t h r o u g h the a n n u l a r space b e t w e e n tubes a n d baffles w a s c a u s e d b y t i g h t t u b e p i t c h , close baffle s p a c i n g , a n d s m a l l w i n d o w area, a n d this r o b b e d the far side of the reactor of coolant.
By-
p a s s i n g i n this m a n n e r w a s the o n l y w a y i n w h i c h flow c o u l d h a v e b e e n m a i n t a i n e d f o l l o w i n g h e a v y c a r b o n d e p o s i t i o n . It is l i k e l y that b y p a s s i n g r e s u l t e d i n o v e r h e a t i n g m o r e t h a n h a l f of the reactor, c a u s i n g c a r b o n i z a -
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 13, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch003
t i o n of the coolant a n d subsequent t u b e f a i l u r e . A
v a p o r l o c k i n the reactor c o u l d h a v e p r e v e n t e d l i q u i d
phase
c o o l i n g near the t o p of the reactor. O r g a n i c heat transfer fluids u n d e r g o some d e g r a d a t i o n w i t h use, l e a d i n g to the f o r m a t i o n of m o r e v o l a t i l e compounds
or to p o l y m e r i z a t i o n , f o r m i n g h i g h e r b o i l i n g
compounds.
T h r o u g h o u t the p i l o t p l a n t o p e r a t i o n there was n o t i c e a b l e f o r m a t i o n of " l o w b o i l e r s / ' W h i l e these w e r e a u t o m a t i c a l l y v e n t e d f r o m t h e system, there is some e v i d e n c e that v e n t i n g w a s not adequate. A f t e r a t h o r o u g h r e v i e w of possible alternatives, w e d e c i d e d that b o i l i n g m e d i a heat r e m o v a l w a s c o n c e p t u a l l y a better c h o i c e for r e a c t i o n system.
T h e b o i l i n g heat transfer coefficient
our
is several times
greater t h a n the l i q u i d film coefficient, so i t is advantageous to use t h e b o i l i n g m e d i a over
as m u c h of
the reactor l e n g t h as possible.
An
extensive l a b o r a t o r y scale test p r o g r a m g e n e r a t e d heat transfer d a t a to c o n f i r m that e x p e c t e d heat fluxes are l o w e n o u g h t o p r e v e n t t r a n s i t i o n f r o m n u c l e a t e to film b o i l i n g . T h i s t r a n s i t i o n c o u l d cause v a p o r b l a n k e t i n g of the tubes a n d possible t u b e f a i l u r e . B a s e d o n the results of this p r o g r a m , a n e w p r i m a r y reactor has b e e n d e s i g n e d a n d i n s t a l l e d at E l Paso.
10 tons
of
s u l f u r / d a y w h e n u s i n g p u r e s u l f u r d i o x i d e feed a n d 7.8 t o n s / d a y
T h i s reactor p r o d u c e s
on
1 2 % s u l f u r d i o x i d e f e e d gas. O p e r a t i o n was r e s u m e d at E l Paso o n O c t o b e r 28, 1973, u s i n g a 1 2 % s u l f u r d i o x i d e f e e d gas.
O n l y m i n o r o p e r a t i o n a l difficulties h a v e
e n c o u n t e r e d to d a t e w i t h this feed.
been
H o w e v e r , c u r t a i l e d n a t u r a l gas use
f o r c e d s h u t d o w n of the p l a n t o n several occasions. T h e f u t u r e a v a i l a b i l i t y of n a t u r a l gas for i n d u s t r i a l use c o u l d l i m i t a p p l i c a t i o n of the A S A R C O s u l f u r d i o x i d e r e d u c t i o n process.
It is p r o b a b l e that a s u i t a b l e r e d u c i n g
gas c a n be generated u s i n g other fossil fuels, a l t h o u g h this a l t e r n a t i v e has yet to b e p r o v e d . B a s e d o n the l a b o r a t o r y w o r k discussed a b o v e , a s o m e w h a t different catalyst w a s specified for this p i l o t r u n . T h e r e is e v i d e n c e that the r a t e o f catalyst d e c r e p i t a t i o n has b e e n decreased.
T h e catalyst d e c r e p i t a t i o n
p r o b l e m w i l l b e c o n c l u s i v e l y r e s o l v e d t h r o u g h l o n g e r t e r m o p e r a t i o n of the plant.
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
3.
H E N D E R S O N
A N D
Costs of the Pilot
Elemental
PFEiFFER
Sulfur Pilot
47
Phnt
Plant
T h e c a p i t a l cost of t h e A S A R C O - P h e l p s D o d g e p i l o t p l a n t w a s $1,610,000.
A n o t h e r $1,300,000 has b e e n b u d g e t e d f o r o p e r a t i o n .
Many
questions w i l l b e a n s w e r e d b y t h e o p e r a t i o n o f this p l a n t , i n c l u d i n g s u c h cost-related questions as catalyst l i f e f o r t h e d i f f e r i n g m o d e s of o p e r a t i o n . I n terms of c a p i t a l cost, i t is e s t i m a t e d that a p l a n t c a p a b l e of r e d u c i n g p u r e s u l f u r d i o x i d e gas to p r o d u c e 200 tons of e l e m e n t a l s u l f u r / d a y c a n be c o n s t r u c t e d f o r a p p r o x i m a t e l y $10,000,000.
A l l o w i n g f o r t h e cost of
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 13, 2015 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch003
c o n n e c t i n g flues, t h e r e q u i r e d h i g h l y efficient gas c l e a n i n g
equipment,
a n d a p l a n t f o r a b s o r b i n g a n d c o n c e n t r a t i n g t h e s u l f u r d i o x i d e , s u c h as a p l a n t u s i n g t h e A S A R C O d i m e t h y l a n i l i n e process, i t also has b e e n estim a t e d that the o v e r a l l c a p i t a l r e q u i r e m e n t f o r facilities c a p a b l e of recoveri n g 2 0 0 s h o r t - t o n s / d a y of e l e m e n t a l s u l f u r f r o m c o p p e r converter gases w o u l d b e about $30,000,000.
D i r e c t o p e r a t i n g cost o f s u c h a p l a n t is
e s t i m a t e d at $ 3 0 - 3 5 / s h o r t - t o n o f sulfur, d e p e n d i n g o n f u e l costs.
These
estimates a r e b a s e d o n 1972 c o n s t r u c t i o n a n d o p e r a t i n g l a b o r costs a n d m u s t b e v i e w e d as b u d g e t a r y estimates o n l y , b a s e d o n i n c o m p l e t e p i l o t p l a n t e v a l u a t i o n of t h e process. Literature
Cited
1. Kuzell, C. R., Fowler, M . G . , Klein, L . , Davis, J. H . , Jr., U.S. Patent #3,071,454 (Jan. 1, 1963). R E C E I V E D A p r i l 4, 1974. Certain process details and specific laboratory and pilot data have been omitted from this discussion of the A S A R C O sulfur dioxide reduction process because of their proprietary nature.
American Chemical Society Library 1155 16th St. N. W. Washington, D. C. 20036 In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.