4 Relationship Between Coal Characteristics and Its Reactivity on Hydroliquefaction K. MORI, M. TANIUCHI, A. KAWASHIMA, O. OKUMA, and T. TAKAHASHI
Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004
Mechanical Engineering Laboratory, Kobe Steel, Ltd., Iwaya, Naka-ku, Kobe 657, Japan
It has recently been acknowledged that in future coal will play a more important role as an energy source for petroleum. Especially in Japan, whose energy sources depend largely on imported petroleum, the development of coal technology must be accelerated to prepare against a future energy crisis. Coal liquefaction, one of the processes that promises to solve this crisis, is now in the development stage. As with petroleum, Japan depends on imported foreign coal, because of its own peculiar coal mining conditions. But in Japan, a wide variety of coal species will be used for liquefaction. Therefore, the effect of characteristics of coal on reactivity during liquefaction is an important research subject for selecting the coal species. Location, Geology and General Characteristics of Japanese Coals The geographical distribution of Japan's main coal fields and coal mines is shown in Fig.1. Though Japan is composed of four main islands, i . e . , Hokkaido, Honshu, Shikoku and Kyushu, from the north to the south, the coal resources are mainly limited to Hokkaido and Kyushu as shown in Table 1. Although the
majority of the Japanese coals were formed during the Cenozoic era in the Tertiary period, their coalifications are extraordinarily advanced owing to the crustal movements and volcanic activities they have experienced; therefore Japan produces a wide range of coals varying from brown coal to anthracite.
The properties of Japanese coal and the fields can be characterized, in comparison with those of the continental type, as follows : (1)
Coal fields are small in scale and defective in continuity.
(2)
Geological structure is complicated due to numerous faults and foldings. 0-8412-0587-6/80/47-139-075$05.50/0 © 1980 American Chemical Society Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
76
FUNDAMENTALS
Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004
COAL LIQUEFACTION
Takashima coal field
Figure 1.
Main coalfields in Japan
Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
2,951
912
2,325
2 k06
5,502
Kyushu
Japan's
tons)
6,269
1,766
6,353
Total
6
lU,388
(ΙΟ
T h i s d a t a i s q u o t e d f r o m t h e s p e c i a l r e p o r t , 1973 Bureau, S i e n c e and Technology Agency.
o f Research Coordination
* C o a l r e s e r v e s up t o t h e p r e s e n t d e p t h l e v e l s o f m i n i n g t e c h n o l o g y .
Total
6,561
660
308
798
Honshu 9
2,950
1,105
2,298
Hokkaido
Inferred
Indicated
Coal Reserves*
Japanese c o a l r e s e r v e s
Proven
Region
1.
Theoretical Minable
Table
Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004
78
COAL
LIQUEFACTION
FUNDAMENTALS
(3)
Coal i s r i c h i n hydrogen or v o l a t i l e matter and higher i n h e a t i n g value.
{k)
Caking property i s not strong "but some are o f extremely h i g h f l u i d i t y .
Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004
L i q u e f a c t i o n Behaviour o f Coals I t i s w e l l known t h a t the c h a r a c t e r i s t i c s o f c o a l d i f f e r widely according t o the age o f the c o a l formation as w e l l as t o the l o c a t i o n o f c o a l , e t c . And the r e a c t i v i t y during hydrol i q u e f a c t i o n depends on the c h a r a c t e r i s t i c s o f c o a l s . T h i s r e l a t i o n s h i p w i l l be a guidance t o s e l e c t and develop c o a l mines. Many parameters t o i n d i c a t e the r e a c t i v i t y o f c o a l have been proposed ( l , 2, 2)· Among these parameters, carbon content, v o l a t i l e matter content, value o f H/C atomic r a t i o , r e a c t i v e macérais content, e t c . are r e p o r t e d t o be r e l a t i v e l y c l o s e l y r e l a t e d parameters t o c o a l r e a c t i v i t y . However, these r e l a t i o n s are u s u a l l y found o n l y i n l i m i t e d r e a c t i o n c o n d i t i o n s . Theref o r e , attempts t o f i n d b e t t e r parameters s t i l l continue. 1
In t h i s study, we have t r i e d t o f i n d a more comprehensive parameter r e l a t e d t o c o a l r e a c t i v i t y , as represented by conv e r s i o n , by l i q u e f y i n g s e v e r a l ranks o f c o a l s . These cover a wide range from l i g n i t e t o bituminous c o a l . A l s o we have s t u d i e d the d i f f e r e n c e of c o a l r e a c t i v i t y caused by the mining s i t e s i n A u s t r a l i a n brown c o a l mines. S e l e c t e d c o a l s from a wide range of rank are l o c a t e d i n the c o a l band shown i n F i g . 2 . The r e s u l t i n g parameters are compared with other parameters r e p o r t e d "by other researchers (2, ,2.). Experiments
and R e s u l t s
A n a l y t i c a l data on c o a l s used i n t h i s study are presented i n Tables 2 and 3. H y d r o l i q u e f a c t i o n data on c o a l s used i n t h i s study are summarized i n Tables k and 5· The l i q u e f a c t i o n o f c o a l s was s t u d i e d i n a 500 ml magneticall y - s t i r r e d s t a i n l e s s s t e e l antoclave. Two d i f f e r e n t r e a c t i o n c o n d i t i o n s were used i n t h i s study, but the experimental procedures were almost the same i n "both c o n d i t i o n s . Coal, solvent and c a t a l y s t were charged t o the autoclave. A f t e r the autoclave had been f l u s h e d and p r e s s u r i z e d with hydrogen t o the d e s i r e d i n i t i a l p r e s s u r e , the autoclave was heated with constant e l e c t r i c power and with constant s t i r r i n g up t o the r e a c t i o n temperatures. Then, the autoclave was h e l d at these temperatures f o r periods o f the d e s i r e d l e n g t h . At the c o n c l u s i o n o f the r e a c t i o n , the autoclave was quenched "by dropping the h e a t i n g j e c k e t and cooled by standing i n a i r u n t i l i t reached room temperatures. A f t e r c o o l i n g , the r e a c t i o n gases were vented,
Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
MORI E T A L .
Coal
Characteristics
Coal band of Japanese coals
/ 1
Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004
imit of lignites
\
\
1
ν
\ ^
II
/
1 //
Lithgow coal
^
Taiheiyo coal
1
V i c tori an brown coal (Ya lourn coal)
ike coal
\ι \ 1
„
Coal band of European and A merican coals
0
0.1
0.2
0.3 O/C
Figure 2.
0.4 atomic ratio
Relationship between coals used and coal bands
Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
0.6
Ν
8.3
11.0 1.3
1.6
1 9 . k 1.6
32.6
0
3.2
0.8
0.1+
0.2
S
0.101
1)
0.832 0.076
O.lkk
0.912 0.199
0.800 0.392
H/C
Ash,
3)
FC
4 )
1+6.1
53.6
s )
27.8
19.3
23.2
Ik.2
vc
V o l a t i l e Matter,
39.8
32.6
kO.2 39.9
1+5.5 U2.3
VM
3)
15.2 15.7 11+.5 21.2
69.36 k.12 25.1+5 0.82 0 . 2 6 Ο.713 0.275
69.82 1+.1+5 2k.k9 0.92 0 . 3 2 Ο.765 0.263
69.1+9 ^.72 2U.79 Ο.76 0.27 0.815 0.267
71.85
Β
C
D
Ε
* E q u i l i b r i u m moisture content
h.90 21.95 0.87 0.1+3 0.811 0.229
2.1+
23.3
2.7
2.9
2.7
2.3
A
FC
51.9
51.2 1+6.0
53.7 1+3.1+
1+7.3 50.0
1+5.8
k9.k 1+8.2
V M
V C
21+.52
21+.79
18.1+3
l6.2l+
17.66
Proximate a n a l y s i s (dry) M *
1
2)
0.7 13.U
1.7 1 2 . 1
^^Qoal _ ., Ultimate a n a l y s i s (d.a.f.) C o a l ^ ^ ^ C Η 0 Ν S H/C 0/C type A 67.05 3.70 28.36 0.58 0.31 0.656 0.317
3.
0.8
A
2 )
6 . 3 13.6
11.k
M
1}
Proximate a n a l y s i s *
3.7
36.2
8.9
Inerts
Light
Light
Dark Medium Dark Medium Light
Litho type
A n a l y t i c a l data on Morwell brown coals used i n the study o f the narrow range
E q u i l i b r i u m moisture content, Moisture, carbon, o o ^ A r , 5) V o l a t i l e carbon.
ixed ) F ττπνβΛ
Table
4
5.1
5.7
81.5
81.5
Miike c o a l
*
5.6
73.0
Lithgow c o a l
62.1+ k.2
Η
0/C
A n a l y t i c a l data on coals used i n the study o f the wide range
Ultimate a n a l y s i s (d.a.f.)
2.
Taiheiyo c o a l
type Yallourn brown c o a l
C
Table
Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004
w
>
H
2!
•η C
δ
Ο Η
>
M
c
ο
r
ο
ce Ο
Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
1+.
f c )
F
e
2
°3
1+1.8
58.9
( g )
2
1 65.2
91.1
1.0 59.0
1+30
80 1+30 1.0 75.8
0.22
80
0.51+
0.22
80 1+30 1.0 81.6
0.22
0.5I+
1.0 87.7
80
1+30
0.22
0.51+
1
1.0 80.8
80
1+30
0.22
0.5!+
37.5 112.5
37.5 112.5
37.5 112.5
37.5 112.5
37.5 112.5
0.51+
Ε D C
Β
A
** Conversion was c a l c u l a t e d by p y r i d i n e i n s o l u b l e r e s i d u e .
* Solvent means creosote o i l .
Catalyst
60.3
Reaction c o n d i t i o n s and r e s u l t s o f h y d r o l i q u e f a c t i o n on Morwell brown c o a l used i n the study o f the narrow range
(g. as d.a.f.)
5.
Fe2 O3 S (kg/cm ) Hydrogen i n i t i a l pressure Reaction Temperature (°C) Holding Time a t Reaction Temp. ( h r . ) Conversion**
Feed c o a l Solvent*
Feed c o a l sample
Table
** Conversion was c a l c u l a t e d by benzene i n s o l u b l e r e s i d u e .
* Solvent c o n s i s t s o f creosote o i l and recovered s o l v e n t .
2
1 55.0
97.U
1+3.0 150 0 0.75 0 0.15 60 1+50
1+0.1 150 0 0.75 0 0.15 6o 1+50
1+3.1 150 0 0.75 0 0.15 60 1+50
1+3.9 150 0 0.75 0 0.15 60 1+50
uauaiyso \ & / g — Hydrogen i n i t i a l pressure (kg/cm ) Reaction Temperature (°C) Holding Time at Reaction Temp. ( h r . ) Conversion** {%) 28.5
nntn.iv«t
Mi ike coal
Taiheiyo coal
Lithgow coal
Yallourn coal
Reaction c o n d i t i o n s and r e s u l t s o f h y d r o l i q u e f a c t i o n on c o a l s used i n the study o f the wide range
Feed Coal (g. as d.a.f.) Solvent*
Feed Coal
Table
Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004
82
COAL LIQUEFACTION
FUNDAMENTALS
and c o l l e c t e d i n a gas s a m p l i n g f l a s k . The f i n a l p r o d u c t s l e f t i n t h e a u t o c l a v e were f i l t e r e d b y s u c t i o n . The r e s i d u e l e f t o n t h e f i l t e r was t r a n s f e r r e d t o a S o x h l e t e x t r a c t o r a n d e x t r a c t e d w i t h "benzene o r p y r i d i n e u n t i l t h e w a s h i n g s o l v e n t was a l i g h t yellow c o l o r . A f t e r e x t r a c t i n g , the weight o f the i n s o l u b l e r e s i d u e was d e t e r m i n e d a f t e r b e i n g d r i e d a t 120°C, u n d e r 5 mmHg, and o v e r 2 h r s , u s i n g a v a c u u m - d r i e r . The f i l t r a t e f r o m t h e r e a c t i o n m i x t u r e and t h e c o n c e n t r a t e d s o l u t i o n f r o m t h e w a s h i n g s o l v e n t were c o m b i n e d and t h e n vacuum d i s t i l l e d up t o 310°C a t 90 mmHg. The f r a c t i o n s w i t h b o i l i n g p o i n t : 120 - 310°C a n d 310°C above ( t h e vacuum b o t t o m ) w e r e r e c o v e r e d a s s o l v e n t a n d SRC, respectively. C o n v e r s i o n was c a l c u l a t e d a s f o l l o w s :
Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004
Conversion % - Coal charged (d.a.f.) - Insoluble residue Coal charged (d.a.f.)
(d.a.f.)
The a n a l y t i c a l d a t a f o r c o a l s a m p l e s u s e d b y o t h e r r e s e a r c h e r s and t h e i r e x p e r i m e n t a l r e s u l t s a r e shown i n T a b l e s 6 a n d 7. A rough comparison o f the l i q u e f a c t i o n c o n d i t i o n s used i n t h i s study t o explore the parameter representing c o a l char a c t e r i s t i c s i s shown i n T a h l e 8. The r e l a t i o n s b e t w e e n c o a l r e a c t i v i t y a n d s e v e r a l p a r a m e t e r s a r e shown i n F i g s . 3 t o 8. I n t h e s e f i g u r e s t h e r e a c t i v i t y o f c o a l i s measured b y c o n v e r s i o n . I n the r e s u l t s , v o l a t i l e c a r b o n % i s s e l e c t e d a s a more c l o s e l y r e l a t e d p a r a m e t e r t h a n t h e common p a r a m e t e r s , s u c h a s C% E% 0%, H/C a t o m i c r a t i o , v o l a t i l e matter, etc. 9
Volatile Volatile
9
carbon % i s defined by the
equation as f o l l o w s .
carbon %
- Μ (ή » + \ - υ/* v a . a . i . ; -
V
o
l
a
t
i
l
e
m
F i x e d carbon % r % + Fixed
a
t
t
e
,
Q
0
carbon %
This parameter i s d e r i v e d from the f o l l o w i n g i d e a . I t i s generally considered that the f i r s t step o f coal hydro l i q u e f a c t i o n i s t h e t h e r m a l d e c o m p o s i t i o n o f C-C a n d C-0 b o n d s , etc. i n coal structure. Thus, i t i s presumed t h a t t h e v o l a t i l e matter i n c o a l i s c l o s e l y r e l a t e d , as a parameter t o c o a l r e a c t i v i t y (conversion). B u t , t h e amounts o f o x y g e n c o n t a i n i n g compounds, s u c h a s c a r b o n d i o x i d e , w a t e r , e t c . i n v o l a t i l e m a t t e r f o r m e d "by t h e t h e r m a l d e c o m p o s i t i o n o f o x y g e n c o n t a i n i n g f u n c t i o n a l g r o u p s i n c o a l , a r e l a r g e and v a r y g r e a t l y w i t h t h e r a n k o f c o a l . Moreover, the f u n c t i o n a l groups are m o s t l y a t t a c h e d t o the side chain o f the b a s i c aromatic u n i t s i n the c o a l s t r u c t u r e . Thus,the v o l a t i l e m a t t e r i n c o a l i s not g e n e r a l l y c o n s i d e r e d t o be a b e t t e r p a r a m e t e r r e p r e s e n t i n g c o a l r e a c t i v i t y .
Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
0-1
Smoky R i v e r South Yakutian
0-6
Illinois Kentucky NO.11 Griffin Taiheiyo Mi i k e Gross v a l l e y Newdell Hwaipei Wallondilly Yubari Wollondilly Weathered Balmer Balmer South Yakution
Original coals
Table
U.T
dry base
91.7
U.6 U.7
5-5
89.I
89.9 90.6
k.h
6.0 6.3 1+.8 5.8 5.0 5-3 6.2 5-2
88.U
87.Ο
5-8 5-9
73.8 75.5 75-8 77-0 82.2 83.2 83.5 85.2 85.9 86.3
U.O
H
C
1.1
2.2
2.9
0.9 1.3
1.1 3.7 0.2 0.3 2.5
1.8 1.2 1.6 1.3 1.3 1.7 1.9 1.3 1.8 1.9 1.8 1.2 1.1
0.H
0.3 0.5
0.5 0.3 0.5 0.3 0.U 0.3 0.U
O.k
S
Ν
U.3
7.7 9-9 8.3 8.3 6.5 5.3 5-7 5.7 3.9
15.U
18.5
13.7
17.5
0
8.9
τ.Τ
8.0
9-5 11.1 9.8
2.Τ
1U.3 8.9 20.0 6.2
lU.7
13.2
T.l 2.5
1.70 1.75 l.lh
72.8 18. k
1.11 1.52 1.U6
0.33 0.57 0.79 0.83 0.80 0.99
72.1 72.9
61.6 68.0 67.6
51.U
58.1 51.5 52.6
Ul.7
51.5 38.7 35.5
Ro
21.9
22.0 29.1
32.2
ία.7
UU.8
35.5
28.2 33.0 32.1
11.8
Ul.6
23.8
kk.6
80.6 38.5 6^.2 91.5 3U.8 57.3 U5.9 56.9 95.2
9h.l
Conv. (%)
11.5 11.6
33.6 19.0 11.8 1U.2
26.9
19Λ 2k.2
15.U
20.1 36.0 36.1 33. h
V c
39.0 6.6 9.0 60. k 20.5
Inerts
Characteristics
19.9 19 A
U6.0 29.0 20.9 22.7
27.U
kl.k 58.8 51.3 U3.7 27.6 39.5
Proximat e analysis F C A V M
A n a l y t i c a l data f o r c o a l s used and experimental r e s u l t s
Ultimate a n a l y s i s (d.a.f.)
6.
Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004
00
8
Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
1.1 0.1*
9.5
11.0
5-6
5-8
5-6
5-7
U.7
5.9
5.7
78.3
80.5
81.8
81.9
82.0
82. k
82.5
81*.1*
85.8
151
187
185
105
68
70
16OA
95
110
* Dry base
5Λ
0.7
1.0
0.5
0.1*
0.6
** d.a.f. base
1.3
1.1
7.6 6.6
1.8
0.8
1-5
1.1
1.7
0.93
0.81+
60.1 62.1+
0.75 58.9
0.77
59-6
90
9k
87
97
83
83
93
*** RM means r e a c t i v e maurals
37.6
39.9
23.8
T.U
1+1.1
U0.1+
0.61+
0.73
0.55
58.7
62.1+
37.6 1+1.3
57.6
90
0.61+
61.0
1
88.2 21+.2
23.6 11
23.!+
87.8
97.6
content i n c o a l .
9
21+.3
92.1*
22.8
2 3
90.7
23.3
16
86.1*
19.5
80.8
88.6
72.1
78.8 19.5
23.7
39-6
25.6 9 5 . 9 - 9 7 . 1
Conv.
15
7
9
9
81
9
18
90
72
0.1+0
0.31
0.30
Characteristics *** In ert s V C Ro RM
51+.6
32.9
1+6.1+
1*2.1+
39.0
1*5.1*
67.1
53.6
V M** F C**
analysis
6.2
29. h
6.0
13.1*
16.1
7.5
0.8
1.0
5-7
0.1+
1.2
27.3
10.6
A*
0.6
0.5
Sorg
0.8
9-8
10.7
10.3
12.2
20.9
5.2
72.5
99
5-8
21.7
Ν
0.6
87
0
H
5.2
C
Proximate
(P.H. Given et a l )
A n a l y t i c a l data f o r coals used and experimented r e s u l t s
Ultimate a n a l y s i s (d. a.f.)
Τ·
72.0
O r i g i n a l coals PSOC NO.
Table
Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004
Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980. 2
Reaction press,
2
(kg/cm )
Reaction time (hr.)
Reaction temp. (°C)
H2 i n i t i a l press (kg/cm )
2.0
60
catalyst
1U0 - 190
no
+ S
1.0
-
0.5
238
(atm.)
1.0
385
U20
(atm.)
used
h30
catalyst
lU
no
30
+ S
80
3
195 _ 2U8
2
Fe 0
3
Fe 0
Catalysts 2
anthracene o i l
creosote o i l
creosote o i l
creosote type
coals)
Solvents
lignite
(ll
from
(l6 c o a l s )
lignite
(5 samples)
from
f
Given s
(h c o a l s )
lignite
P.H.
to bituminous
lignite
1
Yamakawa s
to bituminous
from
Present study
Comparison of the experimental c o n d i t i o n s
to bituminous
Rank of coals
Table ο.
Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004
00
Η
w
ο
3
86
COAL LIQUEFACTION
Ο Ο Yubarî Mi ike (90) Newdell ( 20.5) Ο Ο
Yamakawa, et al
Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004
Ο Griffin (39.0)
P.Η.
0
Given, e t a l .
Present work
PSOC87
ο
Cross valley (60.4)
^4
°
— " *~ ο
Δ
J Lithgow
(8-9)
60
FUNDAMENTALS
70
90
80 C % in coal
Figure 3. Relationship between conversion and carbon percentage in coal. The asterisks indicate that the figures in parentheses show the inert content in the coal Symbols: (Φ), with catalyst; (Ο),ηο catalyst; (A), Morwell brown coal.
Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
4.
MORI E T A L .
Coal
Characteristics
87
Ο Yamakawa, et a l .
ο ο
Ο
ο
Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004
ο
~ ~™
"~™
^«^^ ζ
0
ο
Ρ . Η . G i v e n , et a l .
©
>"-β-ο
ο
ο
• Present work Δ'
•
"
8 >
Ο ()
0.6
0.7
0.8
0.9 H/C of coal
Figure 4.
Relationship between conversion and H/C of coal: (%), with catalyst; (Ο),ηο catalyst'; (A), Morwell brown coal.
Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
88
COAL LIQUEFACTION
100
FUNDAMENTALS
ο
Yamakawa, et a l .
So \
ο Ο
Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004
Ίθ°
0
h e —
P.Η .Given, e
1
ο
Ο
§> 50
• Ο
Present work
Δ Δ
Δ
Δ
•
V.
Ο
Ο
0
20
30
40
50
60
70
Volatile matter % in coal
Figure 5. Relationship between conversion and volatile matter percent in co (%), with catalyst; (Ο),ηο catalyst; (A), Morwell brown coal.
Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
4.
MORI E T A L .
Coal
89
Characteristics
M Present work
Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004
•
Yamakawa, et a l .
Δ
A — · "
1 Kentuc ky No 11