Chapter 22
Removal of 2,3,7,8-Tetrachlorodibenzo-p-dioxin from Waste Water and Well Water Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 28, 2018 | https://pubs.acs.org Publication Date: April 24, 1987 | doi: 10.1021/bk-1987-0338.ch022
Coagulation and Flocculation with Aluminum Salts Leland Marple, Dale Dei Rossi, and Lewis Throop Syntex Analytical and Environmental Research, Syntex (USA), Inc., 3401 Hillview Avenue, Palo Alto, CA 94303
At various times, water in a wastewater lagoon contained several parts per trillion 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin). A process was developed for the removal of trace amounts based on coagulation and flocculation with aluminum salts. On site treatment utilized a batch process in which suspended solids were coagulated with 1200 mg/1 aluminum sulfate. A polymer modified alum flocculation process was developed for the removal of dioxin from well water. The modification of the floc surface by the adsorption of an uncharged, high molecular weight polymer intensifies the adsorption of dioxin on the floc.
One o f t h e m a j o r p r o b l e m s i n v o l v e d i n t h e r e m e d i a t i o n o f t h e D i o x i n c o n t a m i n a t e d s u r f a c e impoundment ( l a g o o n ) d i s c u s s e d e a r l i e r ( 1 ) was the treatment o f the water t o i n s u r e complete removal o f any 2 , 3 , 7 , 8 - t e t r a c h l o r o d i b e n z o - p - d i o x i n ( D i o x i n ) t h a t may b e p r e s e n t . I n i t i a l l y , s u s p e n d e d m a t t e r was removed b y f i l t r a t i o n t h r o u g h g r o u n d c o r n c o b s , and r e s i d u a l o r g a n i c s were removed b y t r e a t m e n t w i t h a c t i v a t e d carbon. A l t h o u g h t h i s t r e a t m e n t was e f f e c t i v e , t h e p r o c e s s i n g time p e rb a t c h coupled w i t h groundwater seepage and p e r i o d s o f heavy r a i n f a l l prolonged t h e drainage o f t h e lagoon f o r over a year. The s e l e c t i v e r e m o v a l o f v e r y l o w l e v e l s o f d i o x i n f r o m l a r g e v o l u m e s o f p r o c e s s w a s t e w a t e r h a s become a c o n c e r n t o a number o f companies and m u n i c i p a l i t i e s . V e r y l i t t l e h a s b e e n r e p o r t e d o n how d i o x i n behaves i n c o n v e n t i o n a l w a t e r t r e a t m e n t p r o c e s s e s ( 2 - 3 ) . The work o f T h e b a u l t , Cases, and F i e s s i n g e r suggested t h a t alum f l o c c u l a t i o n would be m a r g i n a l l y e f f e c t i v e f o r t h e removal o f dioxin. Our n e e d t o remove up t o s e v e r a l p a r t s p e r t r i l l i o n d i o x i n from water i nt h elagoon prompted us t o e v a l u a t e f l o c c u l a t i o n as a f a s t e r a n d more c o s t e f f e c t i v e t r e a t m e n t f o r d i o x i n r e m o v a l .
0097-6156/87/0338-0286$06.00/0 © 1987 American Chemical Society
Exner; Solving Hazardous Waste Problems ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
22.
MARPLE ET AL.
Removal of TCDD from Waste Water and Well Water 287
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 28, 2018 | https://pubs.acs.org Publication Date: April 24, 1987 | doi: 10.1021/bk-1987-0338.ch022
A s i t t u r n e d o u t , d i o x i n was r e a d i l y r e m o v e d b y a l u m f l o c c u l a t i n g i n t h e presence o f suspended o r g a n i c m a t t e r . The s u c c e s s f u l t r e a t m e n t o f l a g o o n w a t e r p r o m p t e d w o r k o n two r e l a t e d problems. F i r s t l y , we n e e d e d t o f i n d a way t o d e w a t e r t h e a s p h a l t u m l i k e l a g o o n s l u d g e , a n d s e c o n d l y , we n e e d e d t o f i n d a way t o t r e a t w e l l w a t e r , h a v i n g l i t t l e suspended s o l i d s , t o remove d i o x i n t h a t might be p r e s e n t . T h i s paper d e s c r i b e s o u r e x p e r i m e n t a l work on these problems and a p p l i c a t i o n o f o u r f i n d i n g s t o treatment a t t h e plant site. EXPERIMENTAL The amount o f a l u m i n u m n e e d e d t o p r o d u c e r a p i d f l o c c u l a t i o n o f l a g o o n w a t e r w i t h a s u s p e n d e d s o l i d s c o n t e n t o f a b o u t 3 2 0 0 ppm was d e t e r m i n e d b y 100 m l j a r t e s t s . A O.002 u C i s p i k e o f 14-C d i o x i n ( K o r I n c . ) was a d d e d t o t h e w a t e r a n d e q u i l i b r a t e d f o r 2 h o u r s before flocculation. Ammonium s u l f a t e , 5 0 0 ppm, w a s a d d e d t o i n c r e a s e t h e i o n i c s t r e n g t h and promote c o a g u l a t i o n . The b u f f e r c a p a c i t y o f t h e w a t e r was s u f f i c i e n t t o p r e c i p i t a t e t h e a l u m i n u m a d d e d , a n d t h e f i n a l pH o f t h e w a t e r was a b o u t 8. T h e a m o u n t o f d i o x i n s p i k e r e m a i n i n g i n s o l u t i o n was d e t e r m i n e d b y c e n t r i f u g i n g t h e s a m p l e , w i t h d r a w i n g a 50 m l a l i q u o t o f t h e c l e a r s u p e r n a t a n t a n d e x t r a c t i n g t h e d i o x i n w i t h hexane. T h e h e x a n e e x t r a c t was r e d u c e d i n volume i n a r o t a r y e v a p o r a t o r , then t r a n s f e r r e d t o a g l a s s s c i n t i l l a t i o n v i a l along w i t h 5 u l of n-tetradecane. The e x t r a c t was r e d u c e d t o n e a r d r y n e s s w i t h a s t r e a m o f n i t r o g e n , d i l u t e d w i t h s c i n t i l l a t i o n f l u i d , then counted i n a Packard T r i C a r b s c i n t i l l a t i o n counter. T h e f l o c c u l a t i o n p r o c e s s was s c a l e d u p t o t r e a t 2 0 , 0 0 0 g a l l o n s per batch. The s u p e r n a t a n t f r o m e a c h b a t c h was a n a l y z e d f o r d i o x i n , then t r e a t e d w i t h a c t i v a t e d carbon f o r removal o f r e s i d u a l o r g a n i c s The s e t t l e d f l o e w a s r e t u r n e d t o t h e l a g o o n f o r d e w a t e r i n g . The c o a g u l a t i o n o f l a g o o n s l u d g e b y l i m e was f o l l o w e d b y a simple j a rtest. A 40 g s a m p l e o f s l u d g e was m i x e d w i t h w a t e r t o b r i n g t h e v o l u m e t o 2 0 0 m l . I n c r e m e n t s o f O.10 g c a l c i u m o x i d e w e r e added and mixed w e l l . The m i x t u r e was a l l o w e d t o s e t t l e f o r 5 minutes a f t e r each a d d i t i o n , and t h e e x t e n t o f c o a g u l a t i o n e s t i m a t e d from t h e c l a r i t y o f t h e supernatant. The d e w a t e r i n g o f c o a g u l a t e d s l u d g e was d e m o n s t r a t e d b y b u i l d i n g a 4 i n c h b y 6 f o o t c o l u m n i n 12-6 i n . i n c r e m e n t s o v e r a p e r i o d o f 9 d a y s . The l i m e was a d d e d d i r e c t l y t o t h e s l u d g e and m i x e d b y i n v e r s i o n o f t h e c o n t a i n e r . The c o a g u l a t e d s l u d g e was r e t a i n e d b y a 2 i n c h b e d o f a c t i v a t e d c a r b o n h e l d i n place by a p e r f o r a t e d s t a i n l e s s s t e e l screen. Water d r a i n i n g f r o m t h e c o l u m n was p o o l e d u n t i l t h e l a s t a d d i t i o n was made, t h e n i t w a s c o l l e c t e d o n a d a i l y b a s i s . The r e m o v a l o f d i o x i n f r o m w a t e r b y m o d i f i e d a l u m f l o c c u l a t i o n w a s m o n i t o r e d b y t h e d i s a p p e a r a n c e o f a O.08 u C i s p i k e o f 3-H l a b e l e d d i o x i n ( o b t a i n e d f r o m A. P o l a n d , r e p u r i f i e d b y s i l i c a c o l u m n chromatography) i n j a r type experiments. A c o n v e n t i o n a l uncharged G a r r a t t - C a l l a h a n p o l y m e r #7882 was u s e d f o r f l o e m o d i f i c a t i o n . The l a b e l e d d i o x i n s p i k e , d i s s o l v e d i n hexane-methylene c h l o r i d e , 80:20, was i n t r o d u c e d i n t o 2 0 0 m l o f w a t e r i n s e v e r a l w a y s . T h e s p i k e was a d d e d d i r e c t l y t o t h e w a t e r , i t was a d d e d t o w a t e r c o n t a i n i n g t h e
Exner; Solving Hazardous Waste Problems ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
SOLVING HAZARDOUS WASTE PROBLEMS
288
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 28, 2018 | https://pubs.acs.org Publication Date: April 24, 1987 | doi: 10.1021/bk-1987-0338.ch022
m o d i f y i n g p o l y m e r , a n d i t was e v a p o r a t e d a s a f i l m o n t h e i n s i d e o f the beaker used t o h o l d t h e water sample p r i o r t o f l o c c u l a t i o n . A f t e r t h e a l u m was a d d e d , t h e w a t e r was f l a s h m i x e d f o r two m i n u t e s , then s t i r r e d s l o w l y f o r 5 minutes w h i l e t h e f l o e formed. The f l o e was a l l o w e d t o s e t t l e f o r 15 m i n u t e s , t h e n t h e s u p e r n a t a n t w a s a n a l y z e d f o r d i o x i n b y w i t h d r a w i n g a 50 m l a l i q u o t , e x t r a c t i n g t h e d i o x i n w i t h hexane, a n dw o r k i n g up t h e e x t r a c t a s d e s c r i b e d above.
RESULTS/DISCUSSION The r e m o v a l o f 14-C d i o x i n f r o m l a g o o n w a t e r b y f l o c c u l a t i o n v a r y i n g amounts o f aluminum f o l l o w e d b y c e n t r i f u g a t i o n i s i l l u s t r a t e d i n Table I .
Table
I.
with
R e m o v a l o f 14-C D i o x i n s p i k e f r o m L a g o o n W a t e r b y F l o c c u l a t i o n w i t h Aluminum S a l t s
A1C1
3
Alum
4 4 ppm A l 87 87 100 130
99.8 99.7 99.7 99.6
89 ppm A l 89
98.5 99.5
(u) unmeasured a s c o a g u l a t i o n was i n c o m p l e t e
The r e m o v a l was c a l c u l a t e d f r o m t h e c o u n t s r e m a i n i n g i n s o l u t i o n compared t o t h e counts added t o t h e system. Although there i s very l i t t l e i n f o r m a t i o n i n the l i t e r a t u r e on removal o f c h l o r i n a t e d o r g a n i c s b y alum o r l i m e f l o c c u l a t i o n , o u rr e s u l t s a r e c o n s i s t e n t with available data. F o r example, S a l e h , L e e a n d W o l f ( 4 ) removed a b o u t 9 5 % o f c o m b i n e d DDT i s o m e r s f r o m a n a c t i v a t e d s l u d g e e f f l u e n t u p o n c o a g u l a t i o n / f l o c c u l a t i o n w i t h a 2 3 ppm/165ppm l i m e / a l u m mixture. One w o u l d e x p e c t a g r e a t e r a d s o r p t i o n o f d i o x i n c o m p a r e d t o DDT, o w i n g t o t h e l o w e r w a t e r s o l u b i l i t y o f d i o x i n . Scale-up o f the treatment process proceeded smoothly. Table I I summarizes the l e v e l s o f d i o x i n found i n the supernatant f o r batches processed a t the plant s i t e . While l o wl e v e l s o f other s o l u b l e o r g a n i c s , such as mixed x y l e n e s , ethylbenzene and toluene, are a l s o adsorbed by the f l o e , data are not a v a i l a b l e f o r t h e i r removal a t the s i t e . Since the major d i f f e r e n c e , i n p r i n c i p l e , between water i n t h e l a g o o n a n d t h e s l u d g e i n t h e b o t t o m was t h e p e p t i z e d s o l i d s c o n t e n t , c o a g u l a t i o n appeared t o be t h e l o g i c a l r o u t e f o r sludge dewatering. T h i s was d e m o n s t r a t e d b y s u s p e n d i n g a sample i n w a t e r , and t i t r a t i n g s u s p e n s i o n w i t h alum u n t i l t h e s o l i d s c o a g u l a t e d . S i n c e c o a g u l a t i o n w i t h l i m e i s g e n e r a l l y more c o s t e f f e c t i v e t h a n a l u m , we d e t e r m i n e d t h e a m o u n t n e e d e d b y a s i m p l e j a r t e s t . A l t h o u g h t h e c o a g u l a t i o n a p p e a r e d t o b e c o m p l e t e a t 1 % l i m e , we allowed f o r v a r i a t i o n i n sludge composition by u s i n g a 25% excess
Exner; Solving Hazardous Waste Problems ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
22.
MARPLE ET AL.
Removal of TCDD from Waste Water and Well Water
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 28, 2018 | https://pubs.acs.org Publication Date: April 24, 1987 | doi: 10.1021/bk-1987-0338.ch022
T a b l e I I . Removal o f D i o x i n Flocculation
from Lagoon Water a t P l a n t
Batch #
Influent
021-R-l 021-R-2 022 022 023 024 025 026 027 028-1
3.1
*undetermined, but
ppt
S i t e by
Alum
Effluent O.35
* *
ppt O.17 O.20 O.21 O.17 O.16 O.27 O.93 O.70 O.42
f r o m t h e same s o u r c e a s
021-R-l
f o r the p r e p a r a t i o n o f a d e w a t e r i n g t e s t column. The t o t a l w e i g h t o f t h e t r e a t e d s l u d g e p u t i n t h e c o l u m n was 2 2 . 8 9 K g . Water d r a i n e d f r o m t h e c o l u m n o v e r t h e c o u r s e o f s l u d g e a d d i t i o n a m o u n t e d t o 7.00 Kg, r e p r e s e n t i n g 98% o f the water u l t i m a t e l y d r a i n e d from the bed. D i o x i n c o u l d n o t be d e t e c t e d i n t h e p o o l e d w a t e r s a m p l e , n o r c o u l d i t b e d e t e c t e d (< O.6 p p t ) i n w a t e r s u b s e q u e n t l y d r a i n e d f r o m t h e sludge bunker at the p l a n t s i t e . We d i d n o t e x p e c t t h a t t h e r e m o v a l o f d i o x i n f r o m w e l l and r u n o f f w a t e r by alum c o a g u l a t i o n and f l o c c u l a t i o n w o u l d be e f f e c t i v e , a s t h e r e i s l i t t l e o r no s u s p e n d e d o r g a n i c p h a s e t o a c t as a c a r r i e r f o r d i o x i n . T h i s p r o b l e m was s o l v e d b y a d d i n g a h i g h m o l e c u l a r w e i g h t p o l y m e r t h a t w o u l d b e a d s o r b e d t o a n d c a r r i e d down w i t h the f l o e . P a r t i t i o n o f d i o x i n i n t o t h e p o l y m e r i s so f a v o r e d t h a t p a r t s p e r m i l l i o n l e v e l s o f p o l y m e r s h o u l d remove most o f t h e dioxin. The r e s u l t s o f j a r t e s t s t o f i n d t h e o p t i m u m l e v e l o f p o l y m e r , a t a f i x e d 100 ppm l e v e l o f a l u m i n u m a r e g i v e n i n T a b l e I I I .
Table I I I .
R e m o v a l o f 3-H D i o x i n S p i k e M o d i f i e d Alum F l o c c u l a t i o n
f r o m Tap
Water by
Polymer
C o n e . P o l y m e r , #7882
% D i o x i n Removed a t 100 ppm A l
12.3 18.5 18.5 24.6 24.6 30.8
86.1 92.8 89.0 68.0 73.8 84.6
Exner; Solving Hazardous Waste Problems ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
289
SOLVING HAZARDOUS WASTE PROBLEMS
290
I f one assumes t h a t t h ep a r t i t i o n o f d i o x i n between polymer a n d water i se q u i v a l e n t t o t h ep a r t i t i o n between o c t a n o l and water, t h e amount o f d i o x i n i n s o l u t i o n s h o u l d d r o p b y a t l e a s t 9 4 % . T h e p e n a l t y f o r t h i s process i s an a d d i t i o n a l s o l i d s waste l o a d i n g o f a b o u t 2.5 p o u n d p e r 1 0 0 0 g a l . t r e a t e d w a t e r . The e f f e c t o f i n t r o d u c i n g d i o x i n i n t o t h e s y s t e m b y d i f f e r e n t routes i s given i n TableIV.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 28, 2018 | https://pubs.acs.org Publication Date: April 24, 1987 | doi: 10.1021/bk-1987-0338.ch022
T a b l e I V . Summary o f D i o x i n R e m o v a l s b y M o d i f i e d A l u m Method
Solid Dioxin
% Initial Spike Dissolved
% Soluble S p i k e Removed
Flocculations Polymer/Al R a t i o ppm
65
85 25
18/100 0/100
D i o x i n t o Water w i t h Polymer
30
86 93
12/100 18/100
D i o x i n t o Water
60
89 90 75
18/100 18/80 18/80
Residue
The v a r i o u s r o u t e s w e r e u s e d t o a v o i d a r t i f a c t s a r i s i n g f r o m a d s o r p t i o n a t s u r f a c e s i nt h e e q u i l i b r a t i n g system. I ti s clear f r o m t h e s e d a t a t h a t t h e r e m o v a l o f d i o x i n b y a 1 2 - 1 8 ppm p o l y m e r m o d i f i e d alum f l o e was v e r y c l o s e t o 90%. V e r i f i c a t i o n o f t h e r e m o v a l o f d i o x i n b y t h e f l o e was o b t a i n e d b y r e c o v e r i n g t h e f l o e and m e a s u r i n g t h e t r i t i u m a c t i v i t y . T h i s was needed i n o r d e r t o r u l e o u t t h ep o s s i b i l i t y t h a t t h epolymer m e r e l y enhanced t h e l o s s to t h e system. A s i t t u r n e d o u t , t h e amount o f d i o x i n t h a t was t r a p p e d b y t h e f l o e was g r e a t e r t h a n t h a t c a l c u l a t e d from t h e d e c r e a s e i n s o l u b l e d i o x i n i n s o l u t i o n , s o some o f t h e d i o x i n o r i g i n a l l y l o s t t o t h e s y s t e m was r e c o v e r e d b y t h e f l o e . Consequently, s c a l e up o f t h i s p r o c e s s a t t h ep l a n t s i t e h a s t h e p o t e n t i a l o f b e i n g more e f f i c i e n t a t r e m o v i n g d i o x i n f r o m w a t e r t h a n we p r e d i c t f r o m l a b o r a t o r y e x p e r i m e n t s .
LITERATURE CITED
(1)
Forrester, R.F., Marple, L.W. Carson Jr., C.P., in "Solving Hazardous Waste Problems: Dioxins," Exner, J.H., Ed.; ACS Symposium Series No.______, American Chemical Society,
Washington,
D.C. 1987, P.______. (2) (3) (4)
Robeck, C.G., Dostal, K.A., Cohen, J.M., Dreissel, J.F., J. Am. Water Wks. Ass. 1965, 57, 181-199. Thebault, P., Cases, J.M., Fiessinger, F., Water Research 1982, 15, 183-189. Saleh, F.Y., Lee, G.F., Wolf, H.W., Water Research 1982, 16, 479-488.
RECEIVED November 25, 1986
Exner; Solving Hazardous Waste Problems ACS Symposium Series; American Chemical Society: Washington, DC, 1987.