Letter to the Editor pubs.acs.org/journal/ascecg
Cite This: ACS Sustainable Chem. Eng. XXXX, XXX, XXX−XXX
Response to Comment on “Sustainable Cotton Dyeing in Nonaqueous Medium Applying Protic Ionic Liquids” Rebecca S. Andrade,*,†,‡ Dayse Torres,§ Fab́ ia R. Ribeiro,∥ Bruna G. Chiari-Andreó ,⊥,# João Augusto Oshiro Junior,# and Miguel Iglesias† †
Departamento de Engenharia Química, Universidade Federal da Bahia, 40210-630 Salvador, Brazil Centro de Ciência e Tecnologia em Energia e Sustentabilidade, Universidade Federal do Recôncavo da Bahia, 44042-280 Feira de Santana, Brazil § Departamento de Engenharia Têxtil, Universidade Estadual de Maringá, 87360-000 Goioere, Brazil ∥ Campus Apucarana, Universidade Tecnológica Federal do Paraná, 86812-460 Apucarana, Brazil ⊥ Universidade de Araraquara, UNIARA, 14801-340 Araraquara, Brazil # Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, 14800-903 Araraquara, Brazil
ACS Sustainable Chem. Eng. Downloaded from pubs.acs.org by 85.202.194.210 on 04/20/19. For personal use only.
‡
ACS Sustainable Chem. Eng. 2017, 5 (10), 8756−8765. DOI: 10.1021/acssuschemeng.7b01555 ACS Sustainable Chem. Eng. 2019, 7 (9). DOI: 10.1021/acssuschemeng.9b01112 ration,1,60−65 textile finishing,66−75 textile wastewater treatment,76−90 and removal of textile dyes).91−101 The dyeing stage is the most critical item because it involves the industrial textile process and a large amount of chemicals that at the end are partially released into the environment. This fact introduces into the process an unnecessary economic charge (chemical and biological treatment stages for water regeneration) and an environmental footprint that is not always considered in regulations and policies in emerging countries. Due to the fact that Brazil is the fifth worldwide major textile producer, as well as the commitment to environmental defense that has to be assumed, developing research on textile improvement is a key priority into our scientific horizon.102 Within the area of sustainable solvents, PILs have been highlighted in the last years mainly because they break the economic, availability, and environmental paradigm for researchers or industrial sectors as above commented (simple synthesis, negligible production cost, green and biodegradable profile).7,19,103−107 Our research group has developed scientific work in this area for many years, both in synthesis, thermodynamic characterization, and equilibrium studies, as well as potential applications of these substances. Chiari-Andreo’s collaborating group has developed research in toxicology, biological safety, and development of new materials for human cosmetic use for years. This collaboration has already produced recent contributions in the scientific literature.19,107 Andrade et al.1 presents 13 innovative protic ionic liquids in terms of thermodynamic properties (density, ultrasonic velocity, viscosity, and pH), spectrometric characterization (NMR and FTIR), and dye application with spectrophotometric (K/S and L*a*b* color coordinates), mechanical, and morphological analyses of the dyed cotton fabrics. As exhaustively described in the work, from the title to the conclusions, the protic ionic liquids are tested as textile dyeing
I
nnovation in the area of technological processes development needs research to overcome prejudices and barriers that impede progression in terms of environmental protection and safety protocols. Ionic liquids (ILs) are a reality already widely proven in several industrial sectors. Those organic salts, so-called as protic ionic liquid (PILs), present additional advantages in terms of simple chemical synthesis, low cost of production, wide accessibility, and low impact if they were dumped into the natural environment. The textile industry should not ignore this paradigm shift and must urgently meet international standards, especially in developing countries where policies to protect the environment may not be so restrictive. The work of Andrade et al.1 continues a broad trajectory of studies related to characterization and applications of proton ionic liquids (PILs) that the authors have been developing in the last 10 years.1−19 The results presented in this paper aim to support the importance of PILs as green solvents, specifically in alternative reactive dyeing processes as process media. As below commented upon, these results are mostly innovative, coincident with earlier published data from several authors, including the authors of the comments on Andrade et al. (Andrade et al., 20171). The number of bibliographic references in the literature related to research on ionic liquids (aprotic or protic) is impressive, and it is unnecessary to justify the overall interest of the studies involving these kinds of compounds.21−25 The authors agree and point out that in recent years there is great interest in the research and potential for the use of ionic liquids in several technological areas. The authors agree that it is not necessary to explain how in recent years there is an increasing interest in transforming into practical applications and technology all the knowledge developed around ionic liquids. In recent years, in view of the urgent need to modernize the textile industry, mainly due to the reduction of production costs and growing international trade concurrency, a large number of studies have been carried out aiming at the applications of ILs into different stages of textile processing (textile spinning,26−51 textile preparation,52−59 textile colo© XXXX American Chemical Society
Received: March 31, 2019
A
DOI: 10.1021/acssuschemeng.9b01809 ACS Sustainable Chem. Eng. XXXX, XXX, XXX−XXX
ACS Sustainable Chemistry & Engineering
Letter to the Editor
Any significant technological innovation results in huge challenges and overcoming obstacles, such as when we stop researching candles and design lamps.
medium in substitution to water, which traditionally used is known as having low efficiency since it does not allow the necessary chemical and physical interactions to the dye fixation process, thus requiring the use of numerous auxiliary chemicals with strong pollutant and mutagenic potential. After repeated readings of the suggested comments, the authors did not observe in the analyzed work anything significantly different from the results previously published by Andreaus,65 when protic ionic liquids kindly provided by the authors of this paper (Andrade et al.)1 were tested as dyeing medium of multifiber fabrics using acid dyes. Andreaus concludes in his work that it is possible to do textile dyeing using only acid dye and ionic liquid, without any auxiliary chemicals into the dyeing bath, allowing the TOTAL elimination of the used water during the dyeing process (original in Portuguese: “com os resultados demonstrados, ́ podemos concluir que é possivel fazer tingimento têxtil, ́ ́ utilizando apenas corante Acido e como solvente Liquido ́ Iô nico, sem utilização de demais produtos quimicos e reagentes, e como principal fator a eliminaçaõ total do uso da água durante o processo de tingimento do tecido, tornando este tipo de tingimento ambientalmente sustentável”65). The authors agree with Andreaus’s strategy and assume that the K/S and color coordinates values will be very low, similar to those observed by Andreaus for different tested fabrics (diacetate, cotton, polyester, polyamide, polyacrylic and wool) using the protic ionic liquids 2-HDEAA, 2-HDEAPr, 2HDEAB, and 2-HDEAPe as exclusive dyeing environments. However, unlike Ribeiro et al.,65 we believe that it is not possible to conclude that the tested protic ionic liquids completely eliminate the need of the use of auxiliaries or water to achieve satisfactory results in the textile industry. We are aware of the necessary optimization of the proposed process in order to guarantee high quality and minimum losses in the textile dyeing processes. Regarding the main questions in the comments, we point out that is completely incoherent to compare the obtained dyeing results using as standard a fabric dyed into water and alkali, for the reasons already mentioned (the proposed comparison is among nonadditive dyeing media). For the same reason, we consider it unfair to expect from our tests color yields (K/S and L*a*b* coordinates) similarly to those proposed in the cited scientific literature (Broadbent108) for dyebaths added with color-fixing auxiliaries. If, on the one hand, the low K/S values show that the proposed technology needs improvement, and deeper investigation, on the other hand, show that the comparisons between results allow us to conclude that the use of protic ionic liquids as an alternative textile dyeing medium does not eliminate, but rather diminishes, the need of auxiliary chemicals (mordents, dispersants, swelling, wetting agents, etc.) and reduces the concentration and amount of potential pollutants because the diffusion of the constituent ions into the fiber pores and the probable capability of the IL anion to interact with cellulose reduce the degree of crystallinity, producing a swelling effect and increasing the dye diffusion into the fiber. We consider that all questioning is possible about innovative research. The authors are available to Andreaus to clarify any question regarding protic ionic liquids and their textile application, as well as to provide again samples of the protic ionic liquids used in our work1 for results.
■
AUTHOR INFORMATION
Corresponding Author
*E-mail:
[email protected]. ORCID
Rebecca S. Andrade: 0000-0001-8915-7220
■
REFERENCES
(1) Andrade, R. S.; Torres, D.; Ribeiro, F. R.; Chiari-Andréo, B. G.; Oshiro Junior, J. A.; Iglesias, M. Sustainable Cotton Dyeing in Nonaqueous Medium Applying Protic Ionic Liquids. ACS Sustainable Chem. Eng. 2017, 5 (10), 8756−8765. (2) Á lvarez, V. H.; Mattedi, S.; Martin-Pastor, M.; Aznar, M.; Iglesias, M. Synthesis and Thermophysical Properties of Two New Protic Long-Chain Ionic Liquids with the Oleate Anion. Fluid Phase Equilib. 2010, 299 (1), 42−50. (3) Iglesias, M.; Gonzalez-Olmos, R.; Cota, I.; Medina, F. Brønsted Ionic Liquids: Study of Physico-Chemical Properties and Catalytic Activity in Aldol Condensations. Chem. Eng. J. 2010, 162 (2), 802− 808. (4) Alvarez, V. H.; Mattedi, S.; Martin-Pastor, M.; Aznar, M.; Iglesias, M. Thermophysical Properties of Binary Mixtures of {ionic Liquid 2-Hydroxy Ethylammonium Acetate+(Water, Methanol, or Ethanol)}. J. Chem. Thermodyn. 2011, 43 (7), 997−1010. (5) Mattedi, S.; Carvalho, P. J.; Coutinho, J. A. P.; Alvarez, V. H.; Iglesias, M. High Pressure CO2 Solubility in N-Methyl-2-Hydroxyethylammonium Protic Ionic Liquids. J. Supercrit. Fluids 2011, 56 (3), 224−230. (6) Oliveira, L.; Jose, N. M.; Boaventura, J.; Iglesias, M.; Mattedi, S.; Aslan, M. H.; Oral, A. Y.; Ö zer, M.; Ç Aglar, S. H. Proton Conducting Polymer Membrane Using The Ionic Liquid 2-Hydroxyethylammonium Lactate For Ethanol Fuel Cells. AIP Conf. Proc. 2011, 1400, 149−153. (7) Peric, B.; Martí, E.; Sierra, J.; Cruañas, R.; Iglesias, M.; Garau, M. A. Terrestrial Ecotoxicity of Short Aliphatic Protic Ionic Liquids. Environ. Toxicol. Chem. 2011, 30 (12), 2802−2809. (8) de Souza, R. L.; de Faria, E. L. P.; Figueiredo, R. T.; Freitas, L.; Iglesias, M.; Mattedi, S.; Zanin, G. M.; dos Santos, O. A. A.; Coutinho, J. A. P.; Lima, Á . S.; Soares, C. M. F. Protic Ionic Liquid as Additive on Lipase Immobilization Using Silica Sol−gel. Enzyme Microb. Technol. 2013, 52 (3), 141−150. (9) Barbosa, A.; dos, S.; Silva, M. A.; de, O.; Carvalho, N. B.; Mattedi, S.; Iglesias, M. A.; Fricks, A. T.; Lima, Á . S.; Franceschi, E.; Soares, C. M. F. Immobilization of Lipase by Encapsulation in Silica Aerogel. Quim. Nova 2014, 37 (6), na DOI: 10.5935/01004042.20140155. (10) Cota, I.; Medina, F.; Gonzalez-Olmos, R.; Iglesias, M. AlanineSupported Protic Ionic Liquids as Efficient Catalysts for Aldol Condensation Reactions. C. R. Chim. 2014, 17 (1), 18−22. (11) Espinosa, T.; Jiménez, M.; Sanes, J.; Jiménez, A.-E.; Iglesias, M.; Bermúdez, M.-D. Ultra-Low Friction with a Protic Ionic Liquid Boundary Film at the Water-Lubricated Sapphire−Stainless Steel Interface. Tribol. Lett. 2014, 53 (1), 1−9. (12) Barros, M. S.; Serra, J. S.; Alcoeres, A.; Ferreira, N.; Iglesias, M. Triacetin synthesis by protic ionic liquid catalysts. In21st International Congress of Chemical and Process Engineering, CHISA 2014 and 17th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction, 2014, Vol. 1, p 136. (13) M. Barros, S.; Kulhavy, J.; S. Serra, J.; Iglesias, M. Mixing properties of protic ionic liquids: 2-hydroxy diethylammonium lactate (2-HDEAL) + short hydroxilic solvents at different temperatures. In 21st International Congress of Chemical and Process Engineering, CHISA 2014 and 17th Conference on Process Integration, Modelling and B
DOI: 10.1021/acssuschemeng.9b01809 ACS Sustainable Chem. Eng. XXXX, XXX, XXX−XXX
ACS Sustainable Chemistry & Engineering
Letter to the Editor
Optimisation for Energy Saving and Pollution Reduction, 2014, Vol. 3, p 1581. (14) Camargo, D.; Andrade, R. S.; Ferreira, G. A.; Mazzer, H.; Cardozo-Filho, L.; Iglesias, M. Investigation of the Rheological Properties of Protic Ionic Liquids. J. Phys. Org. Chem. 2016, 29 (11), 604−612. (15) Kulhavy, J.; Andrade, R.; Barros, S.; Serra, J.; Iglesias, M. Influence of Temperature on Thermodynamics of Protic Ionic Liquid 2-Hydroxy Diethylammonium Lactate (2-HDEAL)+short Hydroxylic Solvents. J. Mol. Liq. 2016, 213, 92−106. (16) Ravazzano, C.; Lima, K.; Andrade, R. S.; Iglesias, M. Volumetric and Acoustic Study of a Short Protic Ionic Liquids Binary Mixture: 2-Hydroxy Ethyl Ammonium Formate (2-HEAF) + 2-Hydroxy Diethyl Ammonium Acetate (2-HDEAA). Int. J. Thermodyn. 2016, 19 (4), 244−250. (17) Andrade, R.; Carreras, A.; Iglesias, M. Influence of Temperature on Thermodynamics for Binary Mixtures of Short Aliphatic Protic Ionic Liquids. J. Serb. Chem. Soc. 2017, 82 (10), 1155−1174. (18) Barros, S.; Andrade, R. S.; Iglesias, M. Effect of Temperature on Thermodynamic Properties of Protic Ionic Liquids: 2-Hydroxy Ethylammonium Lactate (2-HEAL) + Short Hydroxylic Solvent. Int. J. Thermodyn. 2018, 21 (2), 70−80. (19) Zanoni, B. V.; Brasil Romão, G.; Andrade, R. S.; Barretto Cicarelli, R. M.; Trovatti, E.; Chiari-Andrèo, B. G.; Iglesias, M. Cytotoxic Effect of Protic Ionic Liquids in HepG2 and HaCat Human Cells: In Vitro and in Silico Studies. Toxicol. Res. (Cambridge, U. K.) 2019, DOI: 10.1039/C8TX00338F. (20) Andreaus, J.; Sidou, L. F. Comment on “Sustainable Cotton Dyeing in Nonaqueous Medium Applying Protic Ionic Liquids” ACS Sustainable Chem. Eng. 2019, . (21) Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114 (21), 11060− 11082. (22) Welton, T. Solvents and Sustainable Chemistry. Proc. R. Soc. London, Ser. A 2015, 471 (2183), na. (23) Xu, P.; Zheng, G.-W.; Zong, M.-H.; Li, N.; Lou, W.-Y. Recent Progress on Deep Eutectic Solvents in Biocatalysis. Bioresour. Bioprocess. 2017, 4 (1), 34. (24) Zhang, W.; Gao, Z.-Y.; Chen, Y.; Jin, F.; Zhang, J.-L; Li, C.-L. Progress of application of ionic liquids as extractive distillation solvents. Xiandai Huagong/Modern Chemical Industry 2017, 36 (12), 42−46. (25) Yavir, K.; Marcinkowski, Ł.; Marcinkowska, R.; Namieśnik, J.; Kloskowski, A. Analytical Applications and Physicochemical Properties of Ionic Liquid-Based Hybrid Materials: A Review. Anal. Chim. Acta 2019, 1054, 1−16. (26) Phillips, D. M.; Drummy, L. F.; Naik, R. R.; De Long, H. C.; Fox, D. M.; Trulove, P. C.; Mantz, R. A. Regenerated silk fiber wet spinning from an ionic liquid solution. J. Mater. Chem. 2005, 15, 4206−4208. (27) Laus, G.; Bentivoglio, G.; Schottenberger, H.; Kahlenberg, V.; Kopacka, H.; Roder, T.; Sixta, H. Ionic liquids: current developments, potential and drawbacks for industrial applications. Lenzing. Berichte 2005, 84, 71−85. (28) Institute of Process Engineering. Method for Preparing Regenerated Protein Fiber Using Ion Liquid Dissolving Animal Hair. CN Patent 1884641A, 2006. (29) Viswanathan, G.; Murugesan, S.; Pushparaj, V.; Nalamasu, O.; Ajayan, P.; Linhardt, R. Preparation of Biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 2006, 7, 415−418. (30) Bentivoglio, G.; Roder, T.; Fasching, M.; Buchberger, M.; Schottenberger, H.; Sixta, H. Cellulose processing with chloride-based ionic liquids. Lenzing. Berichte 2006, 86, 154−161. (31) Lee, J.; Broughton, R. M.; Worley, S. D.; Huang, T. S. Antimicrobial polymeric materials; Cellulose and m-aramid composite fibers. J. Eng. Fibers Fabr. 2007, 2, 25−32.
(32) Hermanutz, F., Gaehr, F. Method for Producing Porous Structures from Synthetic Polymers. U.S. Patent 20100310853A1, 2010. (33) Luo, M., West, H., Neogi, N. N. Method for Processing Cellulose in Ionic Liquids and Fibers Therefrom. U.S. Patent 20080241536A1, 2008. (34) Sun, N.; Swatloski, R. P.; Maxim, M. L.; Rahman, M.; Harland, A. G.; Haque, A.; Spear, S. K.; Daly, D. T.; Rogers, R. D. Magnetiteembedded cellulose fibers prepared from ionic liquid. J. Mater. Chem. 2008, 18, 283−290. (35) Xu, S.; Zhang, J.; He, A.; Li, J.; Zhang, H.; Han, C. C. Electrospinning of native cellulose from nonvolatile solvent system. Polymer 2008, 49, 2911−2917. (36) Wan, S. X.; Zhang, Y. M.; Wang, H. P. Acrylic fibers processing with ionic liquid as solvent. Polym. Adv. Technol. 2009, 20, 857−862. (37) Seo, J. M.; Arumugam, G. K.; Khan, S.; Heiden, P. A. Comparison of the effects of an ionic liquid and triethylbenzylammonium chloride on the properties of electrospun fibers, 1 e poly(lactic acid). Macromol. Mater. Eng. 2009, 294, 35−44. (38) Wendler, F.; Kosan, B.; Krieg, M.; Meister, F. Possibilities for the physical modification of cellulose shapes using ionic liquids. Macromol. Symp. 2009, 280, 112−122. (39) Kuzmina, O. G.; Sashina, E. S.; Novoselov, N. P.; Zaborski, M. Blends of cellulose and silk fibroin in 1-buthyl-3-methylimidazo-lium chloride-based solutions. Fibres Text. East. Eur. 2009, 17, 36−39. (40) Rahatekar, S.; Rasheed, A.; Jain, R.; Zammaranoa, M.; Koziol, K. K.; Windle, A. H.; Kumar, S.; Gilman, J. Processing of natural fibers nanocomposites using ionic liquids. ECS Trans. 2008, 16, 119−127. (41) Miyauchi, M.; Miao, J.; Simmons, T. J.; Dordick, J. S.; Linhardt, R. J. Flexible electrospun cellulose fibers as an affinity packing material for the separation of bovine serum albumin. J. Chromatogr. Sep. Tech. 2011, 2, 110. (42) Freire, M. G.; Teles, A. R. R.; Ferreira, R. A. S.; Carlos, L. D.; Lopes-da-Silva, J. A.; Coutinho, J. A. P. Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem. 2011, 13, 3173−3180. (43) Ahn, Y.; Hu, D.-H.; Hong, J. H.; Lee, S. H.; Kim, H. J.; Kim, H. Effect of co-solvent on the spinnability and properties of electrospun cellulose nanofiber. Carbohydr. Polym. 2012, 89, 340−345. (44) Hardelin, L.; Thunberg, J.; Perzon, E.; Westman, G.; Walkenstrom, P.; Gatenholm, P. Electrospinning of cellulose nanofibers from ionic liquids: the effect of different cosolvents. J. Appl. Polym. Sci. 2012, 125, 1901−1909. (45) Henan Ding Biotechnology Co., Ltd. Method for Preparation and Wet Spinning of Regenerative Keratin Solution. CN Patent 103102695A, 2013. (46) Cheng, H. M.; Zhang, E. J.; Yin, X. M.; Zhang, Y. M.; Wang, H. P. Structure and property development of polyacrylonitrile fiber with ionic liquid as solvent during spinning process. Adv. Mater. Res. 2014, 936, 997−1001. (47) Zhu, C.; Chen, J.; Koziol, K. K.; Gilman, J. W.; Trulove, P. C.; Rahatekar, S. S. Effect of fibre spinning conditions on the electrical properties of cellulose and carbon nanotube composite fibres spun using ionic liquid as a benign solvent. eXPRESS Polym. Lett. 2014, 8, 154−163. (48) Vinogradova, Y. S.; Chen, J. Y. Micron- and nano-cellulose fiber regenerated from ionic liquids. J. Text. Inst. 2016, 107, 472−476. (49) Hummel, M., Michud, A., Tanttu, M., Asaadi, S., Ma, Y., Hauru, L. K. J., Parviainen, A., King, A. W. T., Kilpelainen, I., Sixta, H., 2015. Ionic liquids for the production of man-made cellulosic fibres: opportunities and challenges. In Cellulose Chemistry and Properties: Fibres, Nanocelluloses and Advanced Materials; Volume 271; Advances in Polymer Science Series; Springer, 2016; pp 133−168. (50) De Silva, R.; Vongsanga, K.; Wang, X.; Byrne, N. Understanding key wet spinning parameters in an ionic liquid spun regenerated cellulosic fibre. Cellulose 2016, 23, 2741−2751. (51) Jing, L.; Shim, K.; Toe, C. Y.; Fang, T.; Zhao, C.; Amal, R.; Sun, K.-N.; Kim, J. H.; Ng, Y. H. Electrospun polyacrylonitrileeionic liquid C
DOI: 10.1021/acssuschemeng.9b01809 ACS Sustainable Chem. Eng. XXXX, XXX, XXX−XXX
ACS Sustainable Chemistry & Engineering
Letter to the Editor
nanofibers for superior PM2.5 capture capacity. ACS Appl. Mater. Interfaces 2016, 8, 7030−7036. (52) Knittel, D.; Schollmeyer, E. Ionic liquids for textile finishing, Part 1: dyeing of textiles using ionic liquids as dyeing bath. Melliand Textilber 2007, 88, 54−56. (53) Deutsches Textilforschungszentrum Nord-West E.V. Farbeverfahren für synthese- und naturfasermaterial mit hilfe ionischer flüssigkeiten. DE Patent 102006040075A1, 2008. (54) Earle, M. J., Seddon, K. R. Dyeing Process in Ionic Liquid Solvents. WO Patent 2009024766A2, 2009. (55) Kantouch, A.; Khalil, E. M.; El-Sayed, H.; Mowafi, S. A novel application of ionic liquid in improvement of the felting resistance of wool. Egypt. J. Chem. 2011, 54, 481−493. (56) Yuan, J.; Wang, Q.; Wang, P.; Cui, L.; Fan, X. Promotional effect of 1-butyl-3- methylimidazolium chloride ionic liquid on the enzymatic finishing of wool. Eng. Life Sci. 2012, 12, 209−215. (57) Bianchini, R.; Cevasco, G.; Chiappe, C.; Pomelli, C. S.; Douton, M. J. R. Ionic liquids can significantly improve textile dyeing: an innovative application assuring economic and environmental benefits. ACS Sustain. ACS Sustainable Chem. Eng. 2015, 3, 2303−2308. (58) Vyas, S. K.; Shukla, S. R. Degumming of eri silk using ionic liquids and optimization through response surface methodology. J. Text. Inst. 2016, 107, 1096−1111. (59) Musale, R. M.; Shukla, S. R. Weight reduction of polyester fabric using sodium hydroxide solutions with additives cetyltrimethylammonium bromide and [BMIM]Cl. J. Text. Inst. 2017, 108, 467− 471. (60) Yuan, J.; Wang, Q.; Fan, X.; Wang, P. Enhancing dye adsorption of wool fibers with 1-butyl-3-methylimidazolium chloride ionic liquid processing. Text. Res. J. 2010, 80, 1898−1904. (61) Yuan, J.; Wang, Q.; Fan, X. Dyeing behaviors of ionic liquid treated wool. J. Appl. Polym. Sci. 2010, 117, 2278−2283. (62) Kantouch, A.; Khalil, E. M.; Mowafi, S.; Allam, O. G.; El-Sayed, H. Utilization of ionic liquids in improving dyeability of proteinic fabrics with acid and reactive dyes. Egypt. J. Chem. 2011, 54, 189−203. (63) Cheng, D. H. Application of ionic liquid in silk dyeing. Adv. Mater. Res. 2011, 331, 253−256. (64) Qingdao University. Dyeing Method of Reactive Dye Containing Ionic Liquid. CN Patent 102493222A, 2012. (65) Ribeiro, F. R. G., Cabral, V. F., Silva, C., Andreaus, J., CardozoFilho, L., Croscato, G. S., Silva, A. B., Moraes, M. R., 2013. Alternative sustainable dyeing of textiles with ionic liquid. Integrating Cleaner Production Into Sustainability Strategies. In 4th International Workshop Advances in Cleaner Production. Sao Paulo, Brazil, 2013. (66) El-Sayed, A. A.; Kantouch, A.; El-Sayed, H. An approach to impart bactericidal effect on viscose fabrics using ionic liquids. Egypt. J. Chem. 2011, 54, 495−507. (67) Xu, Y. Ionic Liquid Flame Retardants. U.S. Patent 20110073331A1, 2011. (68) Kantouch, A.; Khalil, E. M.; Mowafi, S.; El-Sayed, H. Antimicrobial finishing of wool fabric using ionic liquids. J. Text. Inst. 2013, 104, 363−369. (69) Foksowicz-Flaczyk, J.; Walentowska, J. Antifungal activity. of ionic liquid applied to linen fabric. Int. Biodeterior. Biodegrad. 2013, 84, 412−415. (70) Opwis, K., Textor, T., Gutmann, J. S. Use of ionic liquids in textile finishing. In Conference in MRS Spring Meeting and Exhibition, San Francisco, CA, USA, 2013. (71) Xu, Y. Phosphinate Ionic Liquid Compositions and Methods of Use. WO Patent 2014120488A1, 2014. (72) Hariprakasha, H. K., Rangan, K. K., Sudarshan, T. S. Functionalized Ionic Liquids and Their Applications. U.S. Patent 20140287640A1, 2014. (73) Boukhriss, A.; Gmouh, S.; Hannach, H.; Roblin, J. P.; Cherkaoui, O.; Boyer, D. Treatment of cotton fabrics by ionic liquid with PF6- anion for enhancing their flame retardancy and water repellency. Cellulose 2016, 23, 3355−3364. (74) Arputharaj, A.; Prasad, V.; Saxena, S.; Nadanathangam, V.; Shukla, S. R. Ionic liquid mediated application of nano zinc oxide on
cotton fabric for multifunctional properties. J. Text. Inst. 2016, 107, 1189−1197. (75) Cheng, D.; Yu, Z.-C.; Lu, S.; Gong, S.; Li, J.; Wang, B.; Lu, Y. Ultraviolet protection performance of cotton fabric modified by ionic liquid iron coordination complex. Text. Res. J. 2017, 87, 945−952. (76) Vijayaraghavan, R.; Vedaraman, N.; Surianarayanan, M.; MacFarlane, D. R. Extraction and recovery of azo dyes into an ionic liquid. Talanta 2006, 69, 1059−1062. (77) Ali, M.; Sarkar, A.; Pandey, M. D.; Pandey, S. Efficient precipitation of dyes from dilute aqueous solutions of ionic liquids. Anal. Sci. 2006, 22, 1051−1053. (78) Li, C.; Xin, B.; Xu, W.; Zhang, Q. J. Study on the extraction of dyes into a roomtemperature ionic liquid and their mechanisms. J. Chem. Technol. Biotechnol. 2007, 82, 196−204. (79) Li, C., Xin, B. Extraction and mechanisms of acid dyes into a room temperature ionic liquid. In 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008; pp 3519−3522. (80) Ali, M.; Baker, G. A.; Pandey, S. Dye redissolution after precipitation with a water-miscible ionic liquid. Chem. Lett. 2008, 37, 260−261. (81) Fan, J.; Fan, Y.; Zhang, S.; Wang, J. Extraction of azo dyes from aqueous solutions with room temperature ionic liquids. Sep. Sci. Technol. 2011, 46, 1172−1177. (82) Gharehbaghi, M.; Shemirani, F. A novel method for dye removal: ionic liquidbased dispersive liquideliquid extraction (ILDLLE). Clean: Soil, Air, Water 2012, 40, 290−297. (83) Chen, X.; Li, F.; Asumana, C.; Yu, G. Extraction of soluble dyes from aqueous solutions with quaternary ammonium-based ionic liquids. Sep. Purif. Technol. 2013, 106, 105−109. (84) Lin, J.; Teng, Y.; Lu, Y.; Lu, S.; Hao, X.; Cheng, D. Usage of hydrophobic ionic liquid [BMIM][PF6] for recovery of acid dye from wastewater and sequential application in Tussah silk dyeing. Clean: Soil, Air, Water 2014, 42, 799−803. (85) Ferreira, A. M.; Coutinho, J. A. P.; Fernandes, A. M.; Freire, M. G. Complete removal of textile dyes from aqueous media using ionicliquid-based aqueous two-phase systems. Sep. Purif. Technol. 2014, 128, 58−66. (86) Talbi, Z.; Haddou, B.; Ghouas, H.; Kameche, M.; Derriche, Z.; Gourdon, C. Cationic dye removal from aqueous solutions using ionic liquid and nonionic surfactant-ionic liquid systems: A comparative study based upon experimental design. Chem. Eng. Commun. 2014, 201, 41−52. (87) Bouchal, R.; Prelot, B.; Hesemann, P. Alkylguanidinium based ionic liquids in a screening study for the removal of anionic pollutants from aqueous solution. RSC Adv. 2016, 6, 39125−39130. (88) Fan, Y.; Dong, X.; Li, Y.; Zhong, Y.; Miao, J.; Hua, S. Removal of rhodamine B from water by benzyl-functionalized ionic liquids. Clean: Soil, Air, Water 2016, 44, 1106−1112. (89) Kermanioryani, M.; Abdul Mutalib, M. I.; Gonfa, G.; ElHarbawi, M.; Mazlan, F. A.; Lethesh, K. C.; Leveque, J. M. Using tunability of ionic liquids to remove methylene blue from aqueous solution. J. Environ. J. Environ. Chem. Eng. 2016, 4, 2327−2332. (90) Ullah, Z.; Bustam, M. A.; Man, Z.; Khan, A. S. Phosphoniumbased ionic liquids and their application in separation of dye from aqueous solution. Int. J. Environ. Sci. Technol. 2016, 11, 1653−1659. (91) Absalan, G.; Asadi, M.; Kamran, S.; Sheikhian, L.; Goltz, D. M. Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier. J. Hazard. Mater. 2011, 192, 476−484. (92) Fat’hi, M. R.; Parham, H.; Pourreza, N.; Golmohammadi, H. Removal of indigo carmine from water samples using ionic liquid immobilised on alumina as a new adsorbent. Fresen. Environ. Bull. 2012, 21, 1873−1878. (93) Sekar, S.; Surianarayanan, M.; Ranganathan, V.; MacFarlane, D. R.; Mandal, A. B. Choline-based ionic liquids-enhanced biodegradation of azo dyes. Environ. Sci. Technol. 2012, 46, 4902−4908. (94) Poursaberi, T.; Hassanisadi, M. Magnetic removal of Reactive Black 5 from wastewater using ionic liquid grafted-magnetic nanoparticles. Clean: Soil, Air, Water 2013, 41, 1208−1215. D
DOI: 10.1021/acssuschemeng.9b01809 ACS Sustainable Chem. Eng. XXXX, XXX, XXX−XXX
ACS Sustainable Chemistry & Engineering
Letter to the Editor
(95) Zarezadeh-Mehrizi, M.; Badiei, A.; Mehrabadi, A. R. Ionic liquid functionalized nanoporous silica for removal of anionic dye. J. Mol. Liq. 2013, 180, 95−100. (96) Tkachenko, O.; Panteleimonov, A.; Padalko, I.; Korobov, A.; Gushikem, Y.; Kholin, Y. Silica functionalized with 1-propyl-3methylimidazolium chloride as an efficient adsorbent for the removal of Eosin Yellow and Reactive Blue 4. Chem. Eng. J. 2014, 254, 324− 332. (97) Kamran, S.; Tavallali, H.; Azad, A. Fast removal of Reactive Red 141 and Reactive Yellow 81 from aqueous solution by Fe3O4 magnetic nanoparticles modified with ionic liquid 1-octyl-3methylimidazolium bromide. Iran. J. Anal. Chem. 2014, 1, 78−86. (98) Lawal, I. A.; Moodley, B. Synthesis, characterisation and application of imidazolium based ionic liquid modified montmorillonite sorbents for the removal of amaranth dye. RSC Adv. 2015, 5, 61913−61924. (99) Lawal, I. A.; Moodley, B. Column, kinetic and isotherm studies of PAH (phenanthrene) and dye (acid red) on kaolin modified with 1-hexyl, 3- decahexyl imidazolium ionic liquid. J. Environ. Chem. Eng. 2016, 4, 2774−2784. (100) Ahmadi, S. H.; Davar, P.; Manbohi, A. Adsorptive removal of reactive orange 122 from aqueous solutions by ionic liquid coated Fe3O4 magnetic nanoparticles as an efficient adsorbent. Iran. J. Chem. Chem. Eng. 2016, 35, 63−73. (101) Zhou, Q.; Chen, F.; Wu, W.; Bu, R.; Li, W.; Yang, F. Reactive orange 5 removal from aqueous solution using hydroxyl ammonium ionic liquids/layered double hydroxides intercalation composites. Chem. Eng. J. 2016, 285, 198−206. (102) Código de Conduta e É tica, ABIT − Associaçaõ Brasileira da Indústria Têxtil e de Confecçaõ , 2016. http://www.abit.org.br/ uploads/arquivos/codigo_conduta-abit_web.pdf (accessed April 2019). (103) Chen, R., Wu, Y., Chen, Q., Zhang, X., Yu, Z., A Mini-Review on Greenness of Ionic Liquids, Chemical & Biochemical Engineering Quarterly, 23 (2), 2009. (104) Peric, B.; Sierra, J.; Martí, E.; Cruañas, R.; Garau, M. A.; Arning, J.; Bottin-Weber, U.; Stolte, S. Eco)Toxicity and Biodegradability of Selected Protic and Aprotic Ionic Liquids. J. Hazard. Mater. 2013, 261, 99−105. (105) Peric, B.; Sierra, J.; Martí, E.; Cruañas, R.; Garau, M. A. A Comparative Study of the Terrestrial Ecotoxicity of Selected Protic and Aprotic Ionic Liquids. Chemosphere 2014, 108, 418−425. (106) Peric, B.; Sierra, J.; Martí, E.; Cruañas, R.; Garau, M. A. Quantitative Structure−activity Relationship (QSAR) Prediction of (Eco)Toxicity of Short Aliphatic Protic Ionic Liquids. Ecotoxicol. Environ. Saf. 2015, 115, 257−262. (107) Romão, G. B.; Andrade, R. S.; Cicarelli, R. M. B.; Chiarí Andréo, B. G.; Iglesias, M. Citotoxicidade de liquidos iônicos próticos em queratinócitos humanos (HaCat). Rev. ciênc. farm. básica apl. 2017, 38, na. (108) Broadbent, A. D. Basic Principles of Textile Coloration; Society of Dyers and Colourists: Bradford, West Yorkshire, England, 2001.
E
DOI: 10.1021/acssuschemeng.9b01809 ACS Sustainable Chem. Eng. XXXX, XXX, XXX−XXX