20 Ring-Opening Polymerization via C-C Bond Opening H. K. HALL, JR., H. TSUCHIYA, P. YKMAN, J. OTTON, S. C. SNIDER, and A. DEUTSCHMAN, JR. (1)
Downloaded by HARVARD UNIV on October 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch020
Department of Chemistry, University of Arizona, Tucson, AZ 85721
Ring-opening polymerization usually involves compounds con taining strained C-O, C-N, or C-S single bonds. Polymerizations involving strained C-C single bonds are less familiar. Cyclo propane and cyclobutane do not give clean results, because reagents sufficiently vigorous to open the ring also attack the resulting chain. Two types of strained bicyclic compound undergo ring-opening polymerization via C-C bond opening. The first group consists of compounds with a strained polycyclic structure. Ex amples include a variety of bicyclobutanes 1, (2) bicyclopentane[2.1,0]carbonitrile 2 (3), benzocyclopropenecarDonitrile 3 (4), benzocyclobutene 4 (5,6), two tetracyclooctanes 5 and 6, (7,8), and 1,3-dehydroadamantane 7 (9,10).
285
In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
SOO
RING-OPENING POLYMERIZATION
Two factors account for the ability of such polycyclic com pounds to polymerize. First, the strain energy is very high, and may be relieved on polymerization. Secondly, the compact cage molecule shows low steric hindrance to attack. Breaking a C-C single bond always encounters hindrance from substituents on the adjacent carbons, but this repulsion is minimized in compact ring structures. The second group o f monomers c o n t a i n s those i n which a double bond i s "conjugated" w i t h a s t r a i n e d s i n g l e bond. A number o f v i n y l c y c l o p r o p a n e s 8 (11,12) belong i n t h i s category, as do 1 - v i n y l b i c y c l o b u t a n e 9 (2) and [2,4]-spiroheptadiene 10 (13) . For these compounds, the double bond o f f e r s a p o i n t oi r e a c t i o n f o r the growing polymer c h a i n . Again, the p r o j e c t i n g 2 S P o f f e r s minimal s t e r i c hindrance. U n l i k e other ring-opening p o l y m e r i z a t i o n s , most C-C s i n g l e bond p o l y m e r i z a t i o n s have been c a r r i e d out by f r e e r a d i c a l i n i t i a t i o n , even though examples o f c a t i o n i c , a n i o n i c , and c o o r d i n a t i o n p o l y m e r i z a t i o n s have been presented. The b i c y c l o b u t a n e monomers, such as b i c y c l o b u t a n e - l - c a r b o n i t r i l e ( l a X = CN), are as r e a c t i v e i n f r e e r a d i c a l p o l y m e r i z a t i o n as v i n y l monomers ( 2 ) . A n i o n i c P o l y m e r i z a t i o n o f Bicyclobutane-1- a r b o n i t r i l e We i n q u i r e d whether a n i o n i c p o l y m e r i z a t i o n s o f ]La could a l s o be c a r r i e d out. The most s u c c e s s f u l a n i o n i c p o l y m e r i z a t i o n s o f m e t h a c r y l o n i t r i l e (the v i n y l analog o f l a ) , have been those o f Joh and h i s c o l l e a g u e s (14,15), who used dialkylmagnesium and magnes ium d i a l k y l a m i d e i n i t i a t o r s . Therefore we u t i l i z e d them w i t h bicyclobutane-l-carbonitrile. B i c y c l o b u t a n e - l - c a r b o n i t r i l e polymerized v e r y r e a d i l y w i t h these organomagnesium i n i t i a t o r s (Table I ) . The magnesium amides and " a t e " compounds gave h i g h e s t y i e l d s , w i t h the mercaptides c l o s e behind. Dialkylmagnesiums gave lower y i e l d s . Dioxane and toluene as s o l v e n t s gave the highest y i e l d s , and the polymer p r e c i p i t a t e d from these media. U n s t i r r e d , m a g n e t i c a l l y s t i r r e d , and m e c h a n i c a l l y s t i r r e d p o l y m e r i z a t i o n s gave comparable r e s u l t s . Homogeneous p o l y m e r i z a t i o n s were performed i n dimethylformamide, s u l f o l a n e and tetramethylene s u l f o x i d e s o l u t i o n . The y i e l d s under these c o n d i t i o n s were v e r y low or zero. P o l y b i c y c l o b u t a n e c a r b o n i t r i l e obtained i n t h i s way was a white powder, u n l i k e the f i b r o u s m a t e r i a l obtained by f r e e r a d i c a l i n i t i a t i o n . The inherent v i s c o s i t i e s i n dimethylforma mide were u s u a l l y about 0.1 d l . g . " and r a r e l y exceeded 0.5 d l . g." . The nmr s p e c t r a resembled those of the r a d i c a l - i n i t i a t e d polymer. When magnesium d i ( i s o p r o p y l m e r c a p t i d e ) was used as the i n i t i a t o r , isopropylmercapto end groups were v i s i b l e i n the nmr s p e c t r a . The i n f r a r e d s p e c t r a a l s o resembled those of the r a d i c a l - i n i t i a t e d polymer, and supported the 1-cyano-1,3-cyclob u t a n e d i y l s t r u c t u r e . One a b s o r p t i o n which d i d not conform t o t h i s s t r u c t u r e was v i s i b l e i n every i r spectrum. T h i s a b s o r p t i o n a t 1700 cm" i s a s c r i b e d to a ketone carbonyl group. T h i s a s s i g n ment was confirmed by s t i r r i n g the polymer w i t h sodium borohydride overnight i n s u l f o l a n e - w a t e r (4:1), whereupon t h i s band d i s a p -
Downloaded by HARVARD UNIV on October 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch020
C H
=
r o u
1
1
1
In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
20.
HALL ET AL.
Polymerization
via C-C
Bond
Opening
287
eared. The a b s o r p t i o n i n t e n s i t y o f t h i s carbonyl band c o r r e l a t e d i n v e r s e l y w i t h inherent v i s c o s i t y , i n d i c a t i n g t h a t i t was i n v o l v e d i n the termination reaction. We propose the f o l l o w i n g mechanism:
Downloaded by HARVARD UNIV on October 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch020
I n i t i a t i o n - A d d i t i o n o f o r g a n o m e t a l l i c RM t o the s t r a i n e d 1,3 bond i s known t o occur even f o r t h e more s t e r i c a l l y crowded
3 - m e t h y l - 1 - b i c y c l o b u t a n e c a r b o n i t r i l e ( 1 6 ) , and i s supported by de t e c t i o n o f the corresponding end groups i n the NMR s p e c t r a o f polymers i n i t i a t e d by magnesium d i ( i s o p r o p y l m e r c a p t i d e ) (and other i n i t i a t o r s ) . Propagation -
Termination -
We s t u d i e d a model system i n an e f f o r t t o determine whether or not a t t a c k o f a propagating a-cyanocylobutyl anion on n i t r i l e groups can take p l a c e q u i c k l y enough under our r e a c t i o n c o n d i t i o n s to represent a p l a u s i b l e t e r m i n a t i o n s t e p . Of a number o f strong bases s t u d i e d , o n l y triphenylmethylsodium c l e a n l y a b s t r a c t e d t h e a-H o f c y c l o b u t a n e c a r b o n i t r i l e t o g i v e the carbanion:
In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
13 13
13 13
1.1.1
HgCn-C H ) (NC H ). MgCC^g)
9
7
5
10
5
5
10
13
0.2
2
Kg(s-i^: H )
7
7
3
7
Mg(S-i-C H )
3
3
2
13
0.2S
2
Mg(S-i-C H )
7
65
-
26
1.0
2
2
?
52
26
1.0
Mg(S-i-C » )
3
26
26
2
-
-
-
26
26
1.0
2
7
Hg(S-i-C H )
3
13
s
?
13
9
3
1.1.1
4
2
n-C H Li, Hg{C^i ) . i-C H SH
5
13
2
13
9
1.1.1
4
n-C H U. Mg(C H ) , i-C H SH
5
n - C ^ l i , MgCC^)^ HNC H
4
3
2
10
-
26
26
1.0
Mg(S-i-C H )(NC H )
9
2
-
13
26
2.0
Mg(S-i-C3H )(NC H )
4
5
l0
10
13
13
1.0
Mg(N-C H )
l0
7
-
13
26
2.0
2
5
Mg(NC H )
s
«WJAI
-
13
13
1.0
10
9
l0
Mg(NC H ) , HNC H
4
2
26
26
1.0
Mg(n-C H ) (NC H )
5
26
26
5
10
1.0
4
9
Mg(n-C H )(NC H )
26
26
1.0
10
Mg(C2H )(NC H )
5
-
13
13
1.0
MgCC^HNCjH^) (d)
5
Lewis Acid (a)
M/1
M moles Monomer, M
M noies Initiator, I
Initiator
64
0.23 0.18
28 23
0.15 Dioxane
20 Dioxane-DMF (2:5)
Toluene
58 Toluene
0.074
0.11 0.20
69 Dioxane-DMF (2:5) Dioxane
0.074
0.20 89 84
0.22 100
0.076
0.096
0.036
0.086
0.23
0.28 (e)
0.105
Dioxane
Dioxane
THF
36
90
Dioxane Dioxane-DMF (1:1)
47
Dioxane
51
88
Dioxane
75
Dioxane
44
0.21
73
(c
inh >
0.41
n
95
% Yield
Dioxane
Toluene
Dioxane
Oioxane
Solvent (b)
Table I. Selected Polymerizations of 1-Bicyclobutanecarbonitrile
Downloaded by HARVARD UNIV on October 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch020
Polymerization
Downloaded by HARVARD UNIV on October 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch020
HALL ET AL.
c
©
>o
r»»
*4
~4
©
-4
©
ΙΛ
l»»
Ο
Ο
Ο
Ο
Ο
Ο
CM
via C-C
Bond
Opening
ΙΑ
289
Ο
^
·Η
§i
e ο
ο
•H
Ή
ο
ο
ο
io
\0 Ν
Ν
~
'"iX
u
u
•Η
·Η
«Λ
V) ^
I I
I I
ΙΟ Η
Μ Η
Jg
ΙΟ
Κ)
ο
ο
Ή
Ο
ο
Ν
Η
Ν
Ν
•no
T-i
ΙΟ
V
υ υ
I C/J
I Ή
Jft
W) ^
ν_/
ο
•Η
, io
^ «4
ΓΜ
·
β
ΙΛ !>.
ι
Ο (Μ
w
Γ Μ Μ
3» 2» > C?» 3> 3*
g * 2 g 2 g