10 Ring-Opening Copolymerization of Some Cyclic Compounds Containing Oxygen and Nitrogen Atoms H. L. HSIEH
Downloaded by UNIV OF ROCHESTER on November 4, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch010
Phillips Petroleum Co. Research and Development, Bartlesville, OK 74004
The copolymerization of cyclic polar monomers can be used for the preparation of various classes of linear, hetero-chain co polymers. Cyclic compounds of the same chemical type, differing from one another only in the number of units in the ring or the presence of various substituents, can be copolymerized to form products, some of which find a wide variety of application. The copolymerization of various oxides to form linear polyethers has been extensively studied.^ A number of investigations Jjjaye been made of the copolymerization of lactones- — and lactams™^ to form polyesters and polyamides respectively. Cyclic compounds of different chemical type can also be poly merized to produce copolymers with hetero-bonds in the macromolecular chain derived from both copolymerizing monomers. Lactones can polymerize with cyclic ethers such as epoxides, tetrahydrofuran, oxetans and trioxane as well as imines. The copolymerization of lactones with epoxides, for example, should lead to the formation of copolymers containing ether and ester links in the chain. 1
I t was a l s o reported t h a t l a c t o n e s undergo c o p o l y m e r i z a t i o n w i t h c y c l i c phosphites upon h e a t i n g o r i n the presence o f a b a s i c catalyst.
145
In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
146
RING-OPENING
POLYMERIZATION
The a l t e r n a t i n g c o p o l y m e r i z a t i o n o f epoxides and d i b a s i c a c i d anhydride r i d e r e s u l t e d i n formation o f p o l y e s t e r s i ^ » 8,9,10) R ι
-CHC.H,C00CHRCH 06 4 2
Downloaded by UNIV OF ROCHESTER on November 4, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch010
o
A l t e r n a t i n g terpolymers o f epoxides, d i b a s i c a c i d anhydrides and t e t r a h y d r o f u r a n o r oxetane were s u c c e s s f u l l y prepared by u s i n g t r i a l k y l a l u m i n u m as c a t a l y s t : " * This unique f a m i l y o f polymers has r e p e a t i n g e t h e r - e s t e r - e s t e r l i n k a g e s along the c h a i n . CH -CH 2
CH -CH + \ / CH CH \ / 0
2
-CH CH OCH CH CH CH OCOC H COOjx 2
0
2
2
0
2
-co'
0
2
2
2
2
2
2
6
4
Another i n t e r e s t i n g r e a c t i o n i s the c o p o l y m e r i z a t i o n o f a z i r i d i n e s w i t h c y c l i c imides, which leads t o the formation o f c r y s t a l l i n e polyamides5—' CH -CH 2
CH -C0 I 2 >NH-
2
0
\ v Ν Η Aziridine
v
COCH CH CONHCH CH NH 2
CH -C0
2
2
2
2
e
m.p. 300 C Succinimide
High molecular polyurethanes have been prepared by the ring-r opening c o p o l y m e r i z a t i o n o f a z i r i d i n e s w i t h c y c l i c carbonatesr *
CH
2
\
H
- CH / H
2
CH 0 >^ l / 2° 2
+
C
C H
no c a t . η y ^2 ^ > H+0Œ Œ 0C0NHŒ Œ 4-N Ι» ^0Η HO group a l k y l i m i n o group r
0
2
2
2
2
2
There are many other examples o f t h i s type o f copolymeri z a t i o n which i n v o l v e s the ring-opening o f two o r more h e t e r o c y c l i c monomers. For t h i s r e p o r t , I w i l l d i s c u s s the formation o f polyamidoesters by means o f t h i s k i n d o f r e a c t i o n . Experimental e p s i l o n - C a p r o l a c t o n e was d i s t i l l e d , and e p s i l o n - c a p r o l a c t a m was melted and purged w i t h n i t r o g e n , before use. P h t h a l i c
In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF ROCHESTER on November 4, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch010
10. HSiEH
Copolymerization
of Cyclic
Compounds
147
anhydride and N - p h e n y l a z i r i d i n e were used as r e c e i v e d . The i n i t i a t o r , R ^ A l L i , was obtained from Foote M i n e r a l and i t s chemical formula f o r the R group i s not known although the molecular weight i s 253. I t i s s o l u b l e i n hydrocarbon s o l v e n t t o give a v i s c o u s s o l u t i o n . Toluene was d r i e d by countercurrent scrubbing w i t h n i t r o g e n . A l l p o l y m e r i z a t i o n s were done i n beverage b o t t l e s . Solid monomers were weighed i n t o the b o t t l e f i r s t and then the b o t t l e was f l u s h e d w i t h n i t r o g e n . Toluene was added and t h e b o t t l e was f l u s h e d w i t h n i t r o g e n again before capping. Caprolactone was then added by hypodermic s y r i n g e . I n i t i a t o r was g e n e r a l l y added a t room temperature. Polymers, i n most o f the runs, were i n s o l u b l e i n toluene and came out o f s o l u t i o n . They were s t i r r e d i n a c i d i f i e d i s o p r o p y l a l c o h o l and d r i e d i n t h e vacuum oven. R e s u l t s and D i s c u s s i o n A. N-Substituted A z i r i d i n e and D i b a s i c A c i d Anhydride. J u s t as a l k y l e n e oxide under a p p r o p r i a t e c o n d i t i o n can a l t e r n a t i n g l y copolymerize w i t h a c i d anhydride t o y i e l d p o l y e s t e r , a z i r i d i n e compounds can a l s o copolymerize s i m i l a r l y w i t h a c i d anhydride t o form polyamidoester.
0
//
0
0
T r i i s o b u t y l a l u m i n u m , a very e f f e c t i v e i n i t i a t o r f o r a l k y l e n e o x i d e - d i b a s i c a c i d anhydride c o p o l y m e r i z a t i o n £L-? was used t o i n i t i a t e the c o p o l y m e r i z a t i o n o f N - p h e n y l a z i r i d i n e and p h t h a l i c anhydride (Table I ) . Both the conversion and the elementary a n a l y s i s i n d i c a t e d the two monomers a r e present i n equal mole r a t i o . Since p h t h a l i c anhydride cannot be h o m o p o l y m e r i z e d , — i t i s concluded t h a t t h e product i s an a l t e r n a t i n g copolymer. S u r p r i s i n g l y , when the same experiment was c a r r i e d out without i n i t i a t o r , the r e s u l t was the same. Obviously, these two monomers copolymerize r e a d i l y by simply h e a t i n g . The low s o f t i n g p o i n t o f t h i s polymer, however,
In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
148
RING-OPENING
POLYMERIZATION
TABLE I N-PHENYLAZIRIDINE AND PHTHALIC ANHYDRIDE COPOLYMERIZATION N-Phenylaziridine P h t h a l i c anhydride Toluene Triisobutylaluminum
0.06 mole (7.1 g) 0.06 mole (9.0 g) 100 ml 4 mmole
Downloaded by UNIV OF ROCHESTER on November 4, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch010
Temperature, ° C Time, hours
70 16
Experimental Data Total Monomers Charged, G
Polymer Recovered, G
16.1
Polymer Soft Point, °C
16.5
60
% 0
% Ν 4.6
a
(5.2)
b
18.6
a
(18.0)
1
a - Found b - C a l c u l a t e d based on 1 t o 1 mole r a t i o l i m i t s i t s u s e f u l n e s s . Endic anhydride, c h l o r o e n d i c anhydride and s u c c i n i c anhydride a l s o copolymerize w i t h N - p h e n y l a z i r i d i n e t o form low-melting s o l i d s , but i n much lower y i e l d s . B. e p s i l o n - C a p r o l a c t o n e and epsilon-Caprolactam. Another i n t e r e s t i n g method f o r p r e p a r i n g polyamidoester i s the copolymeri z a t i o n o f a l a c t o n e such as c a p r o l a c t o n e w i t h a l a c t a m such as caprolactam.
c
I r° η (CH )c + 2
_o
ι — r ° η (CEL). |
1
D
NH
r ι > 4-0(CH )cC0NH(CH«),-Co4 9
L
Z
D
Δ
D
J
n
I n the f i r s t experiments, f i v e o r g a n o m e t a l l i c compounds were screened as i n i t i a t o r s . I t i s known t h a t c a p r o l a c t o n e polymerizes r e a d i l y i n the presence o f t r i i s o b u t y l a l u m i n u m , b u t y l l i t h i u m , potassium t e r t - a m y l o x i d e , and l i t h i u m t e t r a a l k y l a l u m i n a t e . However, the mixture o f caprolactone and caprolactam i n toluene formed polymer o n l y i n the presence o f the l a s t compound (Table ID. The f a c t t h a t polymer i n over 50% c o n v e r s i o n was formed i n d i c a t e d both monomers p a r t i c i p a t e d i n t h e r e a c t i o n , and t h a t t h e product seemed homogeneous and i n s o l u b l e i n toluene ( c a p r o l a c t o n e homopolymer i s t o l u e n e - s o l u b l e ) prompted f u r t h e r experimentation w i t h R .4A l L i . The r e s u l t s a r e shown i n Table I I I .
In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
10. HsiEH
Copolymerization
of Cyclic
Compounds
149
TABLE I I CAPROLACTONE AND CAPROLACTAM
COPOLYMERIZATION
WITH ORGANOMETALLIC COMPOUNDS
Downloaded by UNIV OF ROCHESTER on November 4, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch010
Caprolactone Caprolactam Toluene Organometallic compound
10 g 10 g 200 ml 2 mmoles
Temperature, °C Time, hours
70 16
Experimental Data Organometallic Compound
% Conversion
(i-BuKAl Et AlCI n-BuLi tert-AmylOK R,AlLi
0 trace 0 0 60
2
a
a - Polymer p r e c i p i t a t e d
TABLE I I I LITHIUM TETRAALKYLALUMINATE AS CATALYST FOR CAPROLACTONE AND CAPROLACTAM COPOLYMERIZATION Capro lactone, Grams
Capro lactam, Grams
100 70 50 30 0
0 30 50 70 100
Polymer, Grams 100° 72 80 0
d
%
a
Solubility i n Toluene
% Ν
b Caprolactam
0 3.7 6.7 9.9
0 30 54 79
Yes Yes No No
—
—
a - I n 1 l i t e r t o l u e n e w i t h 5.1 grams (20 mmoles) R . A l L i i n i t i a t o r . P o l y m e r i z a t i o n was c a r r i e d out a t 70°C f o r 16 hours. b - Based on % Ν i n polymer. c - Waxy s o l i d ; m e l t i n g p o i n t 60°C. d - M e l t i n g p o i n t 180 C. Nylon 6 melts a t 220°-230°C. e
In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF ROCHESTER on November 4, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch010
150
RING-OPENING POLYMERIZATION
As was a n t i c i p a t e d , caprolactone was r e a d i l y polymerized by R ^ A l L i t o y i e l d homopolymer which i s low-melting and s o l u b l e i n t o l u e n e , t e t r a h y d r o f u r a n and chloroform. Caprolactam, on t h e o t h e r hand, d i d not homopolymerize. The composition o f t h e copolymers v a r i e d w i t h the charge r a t i o o f the monomers, i n d i c a t i n g i t i s not an e x c l u s i v e l y a l t e r n a t i n g process. Polymers c o n t a i n i n g h i g h lactam content a r e h i g h - m e l t i n g and completely i n s o l u b l e i n the common s o l v e n t s . This leads t o the c o n c l u s i o n t h a t the products a r e not a mixture o f homopolymer s. To f u r t h e r e l u c i d a t e the s t r u c t u r e o f these copolymers, phase t r a n s i t i o n behavior of three copolymers o f caprolactone and capro lactam (see Table IV) were determined. Three methods were used t o determine the phase t r a n s i t i o n behavior o f these polymers. a. C a p i l l a r y d i l a t o m e t r y , u s i n g mercury as the displacement f l u i d , from -38°C t o +65 C. b. Dynamic measurements ( V i b r o n ) , a t 110 Hz, from -80°C t o the upper m e l t i n g p o i n t (120°-240°C). c. D i f f e r e n t i a l scanning c a l o r i m e t r y from 40°C t o 250°C. A l s o i n c l u d e d are r e s u l t s from a p h y s i c a l blend o f p o l y caprolactone and polycaprolactam made i n a Brabender P l a s t o g r a p h at 255°C. From the data on the p h y s i c a l blend i t appears t h a t the two homopolymers a r e i n c o m p a t i b l e i n both the amorphous and c r y s t a l l i n e s t a t e s . Only the expected t r a n s i t i o n s of the two homopolymers were observed. Apparently the three experimental polymers are random copolymers w i t h some homopolymer b l o c k on o r admixed. The polymer near 50/50 i n composition showed a very broad t r a n s i t i o n around 0 C i n both the d i l a t o m e t r i c experiment and i n the V i b r o n . The o n l y other t r a n s i t i o n was a m e l t i n g p o i n t (170°C ( V ) , 192 C [DSC]). The other two experimental polymers had s i m i l a r broad t r a n s i t i o n s near 0 C. I n a d d i t i o n , these polymers d i s p l a y e d d i s p e r s i o n regions which appear t o be a s s o c i a t e d w i t h the t r a n s i t i o n s e
e
e
e
TABLE IV SUMMARY OF STUDIES OF PHASE TRANSITION BEHAVIOR OF COPOLYMERS Caprolactam, % 30 54 79
Copolymer 60 100 40-50
0
Composition, % Polycaprolactone
Polycaprolactam
40 0 0
0 0 50-60
a - Based on % Ν i n polymer. b - From the s o l u b i l i t y d a t a , i t seems most l i k e l y the homopolymers a r e present i n the form o f b l o c k , c - About 50-50 composition.
In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
10.
HSiEH
Copolymerization
of Cyclic
Compounds
151
Downloaded by UNIV OF ROCHESTER on November 4, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch010
o f the major components. The r e s u l t s would support t h e i d e n t i f i c a t i o n o f t h e experimental polymers as copolymers o f ca. 50-50 composition p l u s excess homopolymer ( p o s s i b l y block)· I n c o n c l u s i o n , N - s u b s t i t u t e d polyamidoesters can be r e a d i l y formed by h e a t i n g N - s u b s t i t u t e d a z i r i d i n e s w i t h d i b a s i c a c i d anhydrides. The low s o f t i n g p o i n t o f these polymers l i m i t s t h e i r u s e f u l n e s s . Copolymerization o f caprolactam and caprolactone leads to very i n t e r e s t i n g products. They a r e g e n e r a l l y h i g h m e l t i n g and by a d j u s t i n g monomer charge r a t i o e i t h e r p o l y e s t e r o r polyamide b l o c k copolymer can be produced. ABSTRACT N - P h e n y l a z i r i d i n e and p h t h a l i c anhydride copolymerize in a l t e r n a t i n g order t o g i v e polyamidoesters upon initiation with t r i i s o b u t y l a l u m i n u m o r by h e a t i n g . The low softing p o i n t o f this polymer limits its u s e f u l n e s s . e p s i l o n - C a p r o l a c t o n e and epsilon-Caprolactam copolymerize in the presence o f R A1Li. The composition o f the copolymers v a r i e d w i t h the feed ratios o f the monomers. Polymers c o n t a i n i n g over 50 p e r cent lactam are h i g h - m e l t i n g and completely i n s o l u b l e in common s o l v e n t s . From t h e results o f s t u d y i n g the phase transi tion behavior o f these polymers it was concluded t h a t they a r e about o f 50/50 composition p l u s excess homopolymer p o s s i b l y in b l o c k form. 4
LITERATURE CITED Furukawa, J. and Saegusa, T. " P o l y m e r i z a t i o n o f Aldehydes and O x i d e s " , John W i l e y & Sons, New Y o r k , 1963. 2. Tada, K., Numata, Y., Saegusa, T., and Furukawa, J . , Makromol. Chem. 77, 220 (1964). 3. Y a m a s h i t a , Y., Tsuda, T., I s h i k a w a , J ., and H i m i d y , T., J . Chem. Soc. Japan, I n d . Chem. S e c t . , 66, 1493 (1963). 4. G l i c k m a n , S.M. and Miller, E. S., U.S. P a t e n t 3,016,367 (1962). 5. H e d r i c k , R. Μ., M o t t e r s , Ε. Η., and B u t l e r , Τ. Μ., U.S. P a t e n t 3,120,503 (1964). 6. McConnel, R.L. and Coover, H. W., U.S. P a t e n t 3,062,788 (1962). 7. F i s h , W., Hoffman, W., and K o s k i k a l l i o , J ., Chem. and I n d . , 756 (1956). 8. F i s h e r y R. F., J. Polymer Sci., 44, 155 (1960). 9. T s u r u t a , T., Matsumura, Κ., and I n o u e , S., Makromol. Chem. 75, 211 (1964). 10. H s i e h , H. L., J. Macromol. Sci-Chem., A7 ( 7 ) , 1525 (1973). 11. K a g i u a , T., N a r i s a w a , S., Manobe, Κ., and K o b a t a , M., J . Polymer Sci., A1, 2081 (1966). 12. D r e c k s e l , Ε. Κ., U.S. P a t e n t 2,824,857 (1958). 1.
In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.