Subscriber access provided by EKU Libraries
Review
Upscalable Fabrication of Metal Halide Perovskite Solar Cells and Modules Longbin Qiu, Sisi He, Luis K Ono, Shengzhong (Frank) Liu, and Yabing Qi ACS Energy Lett., Just Accepted Manuscript • DOI: 10.1021/acsenergylett.9b01396 • Publication Date (Web): 02 Aug 2019 Downloaded from pubs.acs.org on August 3, 2019
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
1
Upscalable Fabrication of Metal Halide Perovskite
2
Solar Cells and Modules
3
Longbin Qiu 1,†, Sisi He 1,†, Luis K. Ono 1,†, Shengzhong Liu 2,3,*, Yabing Qi 1,*
4
1
5
Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa
6
904-0495, Japan.
7
2
8
Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China.
9
3
Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and
Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics,
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key
10
Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy
11
Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an
12
710119, China.
13 14
AUTHOR INFORMATION
15
Corresponding Author
16
* E-mail:
[email protected] (Y.B.Q.);
[email protected] (S. L.).
17
†These authors contributed equally to this work.
1 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
18
Page 2 of 68
ABSTRACT
19
Perovskite photovoltaic (PV) technology towards commercialization relies on high power
20
conversion efficiency (PCE), long lifetime, and low-toxicity in addition to development of
21
upscalable fabrication protocols, optimization of large area solar module structures, and a positive
22
cost-benefit assessment. Although small area metal halide perovskite solar cells (PSCs) show PCE
23
up to 24.2%, the efficiency gap between small and large area PSC devices is still large. Worldwide
24
research efforts have been directed towards developing upscalable fabrication strategies for
25
perovskite solar modules. In this perspective, we share our view regarding the current-stage
26
challenges for the fabrication of perovskite solar modules with areas above 200 cm2 and
27
summarize recent progress in minimizing efficiency gap, and highlight what strategies warrant
28
further investigation for moving perovskite PV technology towards industrial scale. These
29
strategies include learning from other commercialized thin film PV technologies, analyzing the
30
current status on perovskite solar modules employing solution- and vapor-based upscalable
31
fabrication techniques and optimizing large area module designs. Considering cost analysis and
32
operational stability profiles, carbon electrode-based devices are particularly promising.
33
TOC GRAPHICS
34
2 ACS Paragon Plus Environment
Page 3 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
35
Solar energy is recognized as one of the most promising renewable energy sources because of
36
its cleanness, abundance, easiness to operate, quietness in the sense that moving mechanical parts
37
are not a requisite, and being safe.1 In addition, it has the advantage of capability to cover a wide
38
range of power generation capacity ranging from milliwatt (mW) to multi-gigawatt (GW). For
39
example, large scale PV power stations (or solar farms) can be designed to power cities and
40
industries,2 while at the same time stand-alone systems can be employed in terrestrial isolated rural
41
zones and space programs to power satellites. PVs with compact and light-weight characteristics
42
can also be designed for operating small electronics that require low-power (e.g., portable
43
electronics, smart-phone battery charging, internet of things, and so on). Therefore, the size and
44
configuration of a PV system can be designed to satisfy the energy demand for a specific
45
application.3 In March of 2019, the National Renewable Energy Laboratory (NREL) released the
46
“Champion Photovoltaic Module Efficiency Chart”.4 This new chart is devoted specifically to the
47
development of solar modules, which differs from the champion laboratory-scale (small sizes)
48
research-cell efficiency chart.5 The chart of power conversion efficiencies (PCEs) of solar modules
49
allows researchers and industry to gain insight into the progress and trends of different PV
50
technologies in the context of upscalable fabrication. The modules are categorized into four
51
clusters delineated by the total module area size, which includes both the active area and the dead
52
areas needed for module interconnections.6-7 For a solar module to be included in either of NREL
53
solar module efficiency chart4 or (solar cell efficiency tables provided by Prof. Martin Green and
54
coworkers),8 (i) the active area efficiency is not a consideration and (ii) the relevant designated or
55
aperture area for submodule need be in the smallest range of 200-800 cm2. As listed below, in the
56
NREL chart, the sizes are divided into 4 categories, while only 2 categories exist in the solar cell
57
efficiency table provided by Prof. Martin Green et. al.
3 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 68
58 59
Solar module efficiency chart classification (NREL):4,9
60
•
Large module: >14,000 cm2
61
•
Standard module: 6,500–14,000 cm2
62
•
Small module: 800–6,500 cm2
63
•
Mini or sub-module: 200–800 cm2
64 65
Solar cell efficiency tables (Prof. Martin Green and coworkers)8
66
•
module: over 800 cm2
67
•
sub-module: 200–800 cm2
68 69
This chart summarizes a variety of state-of-the-art PV materials and technologies, which were
70
developed in the last few decades with the aim to achieve the highest performance for harvesting
71
solar energy at the lowest production cost.4, 8 Among these various types of PV technologies (e.g.,
72
Si, CIGS, CdTe, etc.),10-11 metal halide perovskites (denoted as “perovskites” throughout the article)
73
have recently gained considerable attention, and are considered as a strong candidate for the next
74
generation of solar cells and modules because of their excellent photovoltaic properties, raw
75
material abundance, low-cost and low-temperature fabrication, compatibility with flexible
76
substrates, etc. On the basis of our analysis represented in Figure 1 and Table 1, there are only a
77
few works that reported perovskite solar modules with areas larger than 200 cm2. Although
78
feasibility for the realization of perovskite solar modules with areas larger than 10 cm2 and PCE
79
above 10% has been demonstrated, these solar module area sizes are still far from the expected
80
200 cm2. Therefore, several issues need be overcome and we share a few strategies based on our
81
own experience as well as some knowledge learned from other research groups in the field. For
4 ACS Paragon Plus Environment
Page 5 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
82
example, these strategies include (i) borrowing the processes from other commercialized thin film
83
PV technologies, (ii) analyzing the key issues in the fabrication process of solution- and vapor-
84
based upscalable techniques with emphasis on the chemical vapor deposition technology, and (iii)
85
the past experience on optimizing the module patterning design.
86 87
Currently, Toshiba Corporation holds the world record for the largest CH3NH3PbI3 (MAPbI3)
88
perovskite film-based PV sub-module with 24.15 cm ´ 29.10 cm (703 cm2 designated illumination
89
area; definitions of the measurement areas can be found from references7-8) with a certified PCE
90
of 11.7%, open circuit voltage (Voc) of 1.073 V, short circuit current density (Jsc) of 14.36
91
mA/cm2, and fill factor (FF) of 75.8% (here all the Voc and Jsc are given or calculated according
92
to the value of per cell in the module. The aim is to make it more convenient to compare with other
93
works about module as different modules have different number of cells in series connection).12
94
To further enlarge the area from 703 cm2 to 802 cm2, a perovskite solar module with certified PCE
95
of 11.6% has been achieved (Figure 1).8 This large-area sub-module and module were fabricated
96
by a 2-step process employing the meniscus printing technology with the PbI2 and CH3NH3I
97
precursor solutions applied sequentially. It has been mentioned that the goal of the company is to
98
fabricate PV modules with sizes of 900 cm2 that would be possible to achieve a levelized cost of
99
electricity of ~0.06 USD (7 JPY) per kWh by 2030.12 In this perspective, we analyze the current
100
progress of solution- and vapor-based upscalable techniques that allowed fabrication of solar
101
modules with a total area larger than 10 cm2. On the basis of our analysis (Table 1 and Figure 1),
102
we provide our views on the major challenges needed to be overcome to successfully minimize
103
the efficiency gap (i.e., the difference in the performance between small cells and larger module
104
scales).13-14 The first challenge is related to preparation of high quality (i.e., uniform coverage and
5 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 68
105
chemical composition, high-crystallinity, and low surface roughness over the large area) and
106
reproducible films of perovskites as well as compatibility with adjacent functional layers forming
107
the whole perovskite solar module. The second challenge is related to the needs to optimize solar
108
module design for attaining high performance. It is important to minimize the effects of the sheet
109
resistance to facilitate charge collection by the electrodes. The third challenge concerns the
110
fabrication-cost issues during development of upscaling. Carbon electrode-based devices have the
111
potential to lower the fabrication cost and enhance the solar module operational stability. In the
112
outlook, we propose further research directions that have been developed in small lab-scale solar
113
cells and discuss the potential and how these strategies could be transferred in the development of
114
solar modules.
115
6 ACS Paragon Plus Environment
Page 7 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
116
Figure 1. Summary plots of the solar module parameters (a) PCE, (b) Jsc, (c) Voc, and (d) FF that
117
show current progress employing different upscalable techniques of solution-based (spin-coating,
118
doctor-blading, slot-die, meniscus, screen printing) and vapor-based methods (HCVD, CVD, and
119
CH3NH2-gas treatment). In these plots, we included published works reporting perovskite solar
120
modules that employ series-interconnections and with a total area larger than 10 cm2 (see Table
121
1). PCE, Voc, and Jsc values are normalized according to the active area and the number of
122
interconnected cells. Jsc in (b) is calculated to be the current density passing of each cell multiplied
123
by the number of interconnected cells. Voc in (c) is calculated to be the total open circuit voltage
124
of the solar module divided by the number of interconnected cells. The horizontal dashed-line
125
corresponds to the highest certified small cell efficiency that have been published.15 The
126
highlighted zone above 200 cm2 corresponds to the minimum size that is needed to be considered
127
as mini- or sub-module in the NREL “Champion Module Efficiencies” chart.4
128
The progress of solution-based upscalable techniques. The first perovskite solar module
129
employed the spin-coating technique leading to a PCE of 5.1% with an active area of 16.8 cm2
130
(the total substrate size = 25 cm2).16-18 During the past few years, remarkable progress towards
131
upscaling of perovskite solar modules can be clearly seen based on a survey of selected papers
132
employing solution techniques to fabricate solar modules with a total area larger than 10 cm2
133
(Table 1). To evaluate the progress and whether perovskite solar modules show promises for
134
attaining higher efficiencies when made larger, we have generated summary graphs that show not
135
only the PCE, but also all the solar cell parameters (Jsc, Voc, FF) plotted as a function of solar
136
module active area (Figure 1). From these graphs, it can be inferred that great efforts for upscaling
137
of perovskite solar modules have been done employing spin-coating (17 out of 40 studies surveyed
138
in this review) as it is most common and readily available in the laboratories working with lab-
7 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 68
139
scale small area perovskite solar cell (PSC) devices.16, 19-26 As a reference to illustrate the efficiency
140
gap,13-14 we also plot the published values of the certified small area PSC performance (PCE =
141
23.32%, Jsc = 25.2 mA/cm2, Voc = 1.18 V, FF = 78.4%, active area = 0.0739 cm2) reported by
142
You and coworkers.15 and indicated these values as horizontal dashed-lines in Figure 1a-d. Spin-
143
coating has been demonstrated to generate PCEs as high as ~13% with a reported active area size
144
of 50.6 cm2 (on a total substrate area of 100 cm2).19 Spin-coating is a low-cost and easy-to-operate
145
technique, but it is challenging to use this technique to deposit uniform films of perovskites in a
146
reproducible manner when the sizes are larger than 100 cm2. Hence, several solution-based
147
methods (Figure 2) that are more compatible with upscalable fabrication have been developed,
148
such as blade-coating,27-31 slot-die coating,32-36 meniscus assisted solution printing,37 screen-
149
printing,38-39 spray-coating,34, 40-41 soft-cover deposition,41-42 pressure processing method,43 and
150
inkjet printing.44-46 Although the number of publications is still small, it is possible to observe
151
some trends from these reports. Among all these upscalable solution-based methods listed above,
152
and screen printing (4 out of 40 studies)38-39, 47-48, blade-coating (3 out of 40 studies surveyed in
153
this work),27-28, 31 and slot-die coating (3 out of 40 studies)33, 36, 49 have attracted more attention.
154
On the other hand, meniscus printing (2 out of 40 studies)12, 50 and spray-coating (1 out of 40
155
studies)41 are also promising. On the basis of Figure 1, the feasibility has been demonstrated for
156
the realization of perovskite solar modules with areas larger than 10 cm2 and PCE above 10%.7, 48,
157
51-52
158
pin-hole free perovskite films with large grains, high-crystallinity, and uniform stoichiometry
159
across large areas. The understanding and control of the physico-chemical dynamics during film
160
growth, which are strongly dependent on the different coating processes and solution precursor,
161
are requisites for attaining high quality perovskite films.
Currently one of the most challenging issues is the need to reproducibly deposit smooth and
8 ACS Paragon Plus Environment
Page 9 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
162 163
The coating processes employing spin-coating has been well-characterized. For a solution
164
coating process that employs upscalable technique (for instance blade coating), one may consider
165
that similar nucleation and crystal growth dynamical processes take place in the blade coating
166
compared to that of spin-coating. However, a key aspect in the perovskite one-step coating process
167
is the need to rapidly remove the solvent during drying of the film. The anti-solvent
168
dripping/washing process,27-28 which promotes the rapid removal of solvent during film drying, is
169
feasible for spin-coating but challenging for other solution-based upscalable methods. The solution
170
chemistry need be modified and optimized according to the specific upscalable coating process.27-
171
28
172
instruments. In spin-coating, the substrate is rotated at a high speed in order to efficiently spread
173
the extra solution out from the film by the aid of centrifugal force. In contrast, all other upscalable
174
techniques are based on non-rotating coating techniques.27-28 Therefore, development of precursor
175
solutions is a key factor when employing non-rotating coating techniques because the physical
176
properties of the solvent-drying processes influence significantly the final film quality.28, 53 Several
177
strategies of precursor ink formulation modification have been proposed in one-step method such
178
as (i) surfactant-controlled (for example, L-α-phosphatidylcholine) ink drying process with doctor
179
blading;27 (ii) blade coating with MACl additive to optimize crystal growth;28 (iii) air blow or
180
vacuum flash-assisted solution process.33,
181
processes such as inter-diffusion process and sequential coating of two precursor inks with
182
upscalable techniques were reported.54-55 Currently, the largest certified solar module held by
183
Toshiba Corporation employed a two-step coating process.12 Another promising direction is the
184
development of new chemical processes. For instance, Han and coworkers43 developed the amine
Another aspect relates to the differences in the technical aspects of spin-coating and upscaling
49
Alternatively, two-step perovskite film formation
9 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 10 of 68
185
complex precursors of CH3NH3I ⋅ mCH3NH2 and PbI2 ⋅ nCH3NH2 for fabrication of MAPbI3
186
perovskite films. The ink formulation was optimized to be used in their pressure processing method.
187
In this technique, the uniform spreading of the liquid precursor on the substrate is performed by
188
applying a pneumatically driven pressure with a polyimide coated flat squeezing board. CH3NH2
189
gas evaporates leading to a dense and full coverage MAPbI3 perovskite film. Furthermore, a
190
certified PCE of 12.1% has been reported based on a MAPbI3 perovskite solar module with an
191
aperture area of 36.1 cm2. At the current stage the aforementioned processes employed mainly
192
MAPbI3 perovskite, and further efforts are needed to develop suitable precursor solutions and
193
chemistry processes for upscalable fabrication of PSCs based on mixed-cation and halide
194
perovskites with better stability and / or photoelectronic properties. More detailed descriptions
195
about these upscalable methods can be found from several review articles.6-7, 51-52, 56-69 In the next
196
section, we discuss vapor-based methods that have shown some initial success as an attracting
197
alternative to fabricate perovskite solar modules.
10 ACS Paragon Plus Environment
Page 11 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
198 199
Figure 2. Schematic drawing showing the important route from developing protocols employing
200
upscalable (a) solution and (b) vacuum based coating techniques to perovskite solar module design
201
and commercialization. State-of-the-art perovskite solar modules can be fabricated by solution
202
coating processes or vapor deposition processes. There are two common solar module architectures,
203
i.e., (c) series connection and (d) parallel connection. (e) For commercialization, the cost and
11 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 12 of 68
204
installation need be taken into consideration. This pie chart summarizes the cost distribution for a
205
typical perovskite solar module. (f) The perovskite solar farm image reprinted with permission
206
from ref. 13. Copyright 2018 American Association for the Advancement of Science (AAAS).
207
The progress of vapor-based upscalable techniques. Vapor-based methods have also been
208
demonstrated as a promising route for the fabrication of perovskite PV modules. In the field of
209
thin-film PV technology, the highest efficiencies in Cu(In,Ga)Se2 (CIGS) PV devices are
210
fabricated by physical vapor deposition (PVD) (vacuum co-evaporation or sequential inline
211
deposition), and the constituent-component vapors are condensed onto the substrates with Mo as
212
back contact.70-71 Similarly, highly efficient CdTe-based PV devices are fabricated by the so-called
213
vapor transportation deposition (VTD) and close-spaced sublimation (CSS) techniques, both of
214
which can be regarded as PVD.72-77 The design prerequisite for PVD-based equipment is to
215
minimize the influence of extrinsic impurities that may be incorporated from uncontrolled ambient
216
during film deposition. Chemical vapor deposition (CVD) is another mature vapor-based method
217
that has been playing a pivotal role in Si-based PV industry.78 In fact, former United Solar Ovonic
218
LLC used to fabricate triple-junction thin film silicon cells using roll-to-roll PECVD technology,
219
with each run producing 15 kilometer-long solar cells.79-80
220 221
In a broad context, a CVD process refers to the formation of a thin solid film on a substrate via
222
a chemical reaction of vapor-phase precursors and therefore it differs from PVD. CVD has been
223
widely employed in PV sector and industrial settings, e.g., Mitsubishi Heavy Industries, Ltd
224
demonstrated operating megawatt capacity solar farm based on single junction hydrogenated
225
amorphous Si (a-Si:H) solar modules grown by plasma enhanced CVD installed in Germany.81-82
226
Another area where PECVD has been extensively employed is the deposition of an a-Si:H
12 ACS Paragon Plus Environment
Page 13 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
227
passivation layer in c-Si solar cells. The a-Si:H layer is a key to passivating Si dangling bonds. In
228
2017, the Kaneka R&D group applied (i) the passivating-contact solar cell technology and (ii)
229
interdigitated back contact technology, which helped set the world’s Si single junction solar cell
230
efficiency record of 26.6% with a designated area of 180.4 cm2.83-84 CVD has also be used in
231
depositing transparent conductive oxide (TCO) such as SnO2, F-doped SnO2 (FTO), and ZnO85-86
232
as well as antireflection (AR) coatings87-88 such as SiN, SiO2, and TiO2. Vapor-based methods
233
have the advantage of low-cost and high-throughput, which have been already widely adopted in
234
the coating and semiconductor industry.89 Hence fabrication of solar modules based on all vapor
235
methods (i.e., solvent-free processes) could be also envisaged for the perovskite PV technology.57,
236
90-93
237 238
There have been some demonstrations to employ vapor-based methods in PSCs. In addition to
239
uniform film formation across large areas, there are also other unique advantages for vapor-based
240
processes compared with solution coating processes such as easy formation of perovskite
241
heterojunction structures94 and conformal coating in textured-structured surfaces.95 These vapor-
242
based processes for perovskite can be summarized as co-evaporation of organic and inorganic
243
precursors (PVD),96-97 alternating precursor deposition,98 direct contact deposition,99 hybrid CVD
244
(HCVD),100-101 reactive polyiodide melts process,102 vapor assisted solution process (VASP),103
245
CSS104 and recently reported sputtering deposition105. Since Qi and coworkers101 developed the
246
HCVD technique and demonstrated efficient PSCs, a variety of CVD techniques were
247
consecutively invented showing outstanding achievements in perovskite PV technology.91
248
Although there are more and more research works on vapor-based processes for PSCs, the number
249
of works focusing on vapor-based methods is still small compared to that of the works focusing
13 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 14 of 68
250
on solution-based methods. Furthermore, only a very few works have been published in applying
251
vapor-based methods in perovskite solar modules with larger areas. Among various vapor-based
252
methods (Table 1), HCVD is particularly promising in upscaling perovskite solar modules. HCVD
253
is a thin-film deposition method that combines PVD and CVD. A multi-zone furnace with flexible
254
control of growth parameters (carrier gas, pressure, and temperature) is used in the HCVD process.
255
Typically, perovskite film growth by HCVD process is a two-step process (Figure 2). This has the
256
advantage that the individual steps can be optimized individually. In the first step, optimization
257
and coating of inorganic precursors (e.g., PbI2, PbCl2, CsI, etc.) are coated by vacuum evaporation
258
or upscalable solution techniques. Subsequently, the inorganic precursor coated films are
259
transferred into a tube furnace equipped with temperature controller and pressure gauge used to
260
optimize the organic halide vapor (e.g., MAI, FAI, MABr, FABr, etc.). The organic halide vapor
261
deposits on the PbI2/PbCl2 films followed by the inter-diffusion into the films leading to the
262
conversion of uniform perovskite layers. Perovskite growth by HCVD was first demonstrated in
263
2014.101, 106-107, and the first perovskite solar module by HCVD was demonstrated in 2016.100 At
264
present most of the vapor-based perovskite solar modules are fabricated by HCVD. In the context
265
of PSC research, CVD has the particular advantages such as (i): CVD is a mature and well-
266
established technology in the semiconductor and coating industries. CVD is not only compatible
267
with industrial application for large scale commercial processes, but also has the ability of batch
268
process and high throughput continuous processes as proven by manufacturers in their kilometer-
269
long roll-to-roll deposition.79-80 In addition, the vacuum processes are easy for patterning,
270
compatibility with a wide range of materials, reasonable capital investment, and cost-effectiveness
271
of processing; (ii) vapor deposition eliminates the usage of harmful organic solvents55, 108-112 and
272
reduces the wastes of perovskite precursor solutions. Hence, CVD represents a low environmental
14 ACS Paragon Plus Environment
Page 15 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
273
impact processing method. In addition, it avoids the complications of solvent related dynamics
274
such as solubility of the bottom layer when covered by the precursor solution of the top film,
275
intercalation of solvent molecules into the solid material, wettability issues leading to non-uniform
276
coating; (iii) weak dependence on substrate size meaning that the perovskite films can be coated
277
uniformly on substrates with almost arbitrary large sizes and with varying aspect ratios, limited
278
only by the CVD apparatus size; (iv) such a coating process can be directly applied in two-terminal
279
tandem solar cells with a perovskite layer as a top cell and silicon, CIGS or CdTe as the bottom
280
cell. In addition, the vapor nature of CVD allows the deposition of a type of perovskite on top of
281
another perovskite (for example, forming a p-n homojunction structure). Perovskite solar modules
282
with active areas over 10 cm2 fabricated by vapor-based methods have also been included in Table
283
1. As we can see, all the works used HCVD except one study by Qi and coworkers.113 Recently, a
284
remarkable large area solar modules with mixed Cs/FA cation deposited by HCVD have been
285
demonstrated with efficiencies approaching 10% with a designated area of 91.8 cm2, which were
286
fabricated on 10 cm ´ 10 cm substrates.114 Most importantly, the performance decay with upscaling
287
of active area is similar to other commercialized thin film solar modules (1.3%/decade compared
288
with 0.8%/decade; Figure 1).114
289 290
Although HCVD is the dominant method for fabricating most of the reported perovskite solar
291
modules using vapor-based methods, there are other new trends we can learn from the recent
292
progress in the field. The strategies of mixing two or more cations and / or mixing halides have
293
been demonstrated to be beneficial in tuning optoelectronic properties of perovskite materials as
294
well as enhancing their stability.115 Similar to solution coating processes, the perovskite
295
composition can be tuned by changing the precursor sources. For example, Bolink and coworkers
15 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 16 of 68
296
reported fabrication of triple-cation mixed-halide small-area PSCs (active area = 0.09 cm2) by
297
vacuum deposition116 and co-evaporation to incorporate Cs in the first step were previously
298
reported.95, 114, 117 Another strategy is to combine solution and vapor processes and it shows unique
299
advantages over solution-only processes.118-119 Recently many high performance PSCs have been
300
reported by the two-step inter-diffusion method of solution-processed precursor stacking layers.15,
301
54
302
mixed organic halide salt solution requires uniform coating of the solution and removal of solvent
303
in the whole area in a short time.119 This is easy to control for lab-scale small device fabrication
304
processes but difficult for industrial large scale fabrication. Furthermore, in vapor-based processes,
305
the slower reaction and uniform coating of the halide salts are beneficial for the growth of uniform
306
perovskite films. By optimizing the first step of metal halide solution composition, not only the
307
composition of the as-formed perovskite film, but also the structural properties could be readily
308
modified. Another example to combine solution and vapor methods is the study by Qi and
309
coworkers, in which a solid-gas reaction between the MACl modified HPbI3 (pre-deposited by
310
spin-coating) and CH3NH2 gas leads to formation of high-quality over 1.1 µm thick MAPbI3 films
311
resulting in perovskite solar modules with a PCE of 15.3% on an active area size of 12 cm2.113
312
Similar to CVD process, CH3NH2 gas treatment is also a two-step process with the first step aiming
313
the optimized coating of HPbI3. Subsequent exposure of the HPbI3 coated substrates to CH3NH2
314
gas environment leads to the immediate formation of perovskite-melt. After the removal of
315
CH3NH2 gas, high quality perovskite films are obtained. CH3NH2 gas treatment is suitable for the
316
fabrication of high-quality thick perovskite films up to 1 µm.113 The encouraging device
317
performance and long-term operational stability profile represent to a promising direction of
However, for mixed cation/halide perovskite, the fast reaction in the second step after dropping
16 ACS Paragon Plus Environment
Page 17 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
318
employing thick absorber films to realize solar modules with high efficiencies, reproducibility,
319
and stability.
320 321
Table 1. Selected works reporting on perovskite solar modules that employs series-
322
interconnections and with total areas larger than 10 cm2. The PCE and Jsc values are provided
323
normalized by the active area unless otherwise stated: apaperture area, dadesignated area (active
324
area + dead area for interconnections).
325
b
CE
Certified efficiency. aNormalized by active area.
Stabilized PCE.
Solar module architecture ITO/PEDOT:PSS/MAPbI3/PCBM/LiF/Al FTO/c-TiO2/mp-TiO2/MAPbI3-xClx/spiroMeOTAD/Au FTO/c-TiO2/mp-TiO2/MAPbI3-xClx/P3HT/Au ITO/PEDOT:PSS/MAPbI3/PCBM/Au FTO/c-TiO2/nano rod-TiO2/CH3NH3PbI3xClx/spiro-MeOTAD/Au ITO/c-TiO2/mp-TiO2/CH3NH3PbI3-xClx/spiroMeOTAD/Au FTO/c-TiO2/mp-TiO2/MAPbI3/spiroMeOTAD/Au ITO/c-TiO2/MAPbI3-xClx/spiro-MeOTAD/Au ITO/PEDOT:PSS/CH3NH3PbI3-xyBrxCly/PCBM/Ca/Al
Perovskite fabrication method
Active area (cm2)
Spin-coating
60
Spin-coating
16.8
Total area Number of Individual (cm2) (lateral cells cell width PCEa dimensions interconne ´ length (%) cted (cm´cm)) (mm) 10 8.7 100 (10´10) 6´10 25 (5´5)
5
7´48
Jsca (mA/c m2)
Voc (V)
FF (%)
Ref.
1.9
8.1
57
16
5.1
2.0
4.3
60.3
2.2 2
4.5 10.1
52.6 63.7
26
18
Spin-coating
40
100 (10´10)
10
---
5.1 12.9
Spin-coating
10.8
32.5 (5.7´5.7)
4
---
10.5
5.3
3.37
56
120
Spin-coating
7.9
31.4 (5.6´5.6)
4
---
3.1
5.2
3.4
71
121
Spin-coating
10.1
32.5 (5.7´5.7)
4
7´36
13
4.7
4.2
66.5
17
Spin-coating
3.64
9 (3´3)
4
4.57´20
13.6
19.1
0.9/cell
75
122
Spin-coating
25.2
100 (10´10)
9
4´70
14.3
2.1
9.1
74.4
22
25 (5´5)
8
---
12
2.6
8
58.2
20
25 (5´5)
5
5´45
15.4
4.3
4.7
77
123
FTO/NiOx/MAPbI3-xClx/PCBM:PEI/Ag
Spin-coating
ITO/PEDOT:PSS/MAPbI3/PC71BM/Ca/Al FTO/c-TiO2/mpTiO2/Graphene/MAPbI3/Spiro-MeOTAD/Au ITO/PEDOT:PSS/MAPbI3xClx/PC61BM/TIPD/Al FTO/SnO2/KxCs0.05(FA0.85MA0.15)0.92Pb(I0.85B r0.15)3/spiro-MeOTAD/Au PET/ITO/SnO2/K0.03Cs0.05(FA0.85MA0.15)0.92Pb (I0.85Br0.15)3/spiro-MeOTAD/Au FTO/SnO2/MAPbI3/spiro-MeOTAD/Au FTO/SnO2/ [CsPbI3]0.05[(FAPbI3)0.85(MAPbBr3)0.15]0.95/ spiro-MeTOAD/Au FTO/c-TiO2/mp-TiO2 /(FAPbI3)0.95(MAPbBr3)0.05/WBH/P3HT/Au
Spin-coating
15 (GFF ~ 0.6) 11.25
Spin-coating
50.6
100 (10´10)
8
8´79
12.6
2.3
8.6
64.6
19
Spin-coating
12
25 (5´5)
3
30´40
11.2
6.5
2.7
63.8
124
Spin-coating
20
36 (6´6)
6
6´55
15.6
3.5
6.8
65
125
25 (5´5)
6
---
12.4
3.07
6.5
62
126
25 (5´5)
6
7.1´48
12.03
3.38
5.8
61.3
127
6.5´6.5
11
---
15.3
1.98
11.2
0.69
100da Spin-coating 24.94da
--49 (7´7)
20 8
-----
14.03 17.1da
1.02 2.72da
20.2 8.78
0.68 71.7
24.94da
49 (7´7)
8
---
17.1da
2.72da
8.66
72.6
16.1ap
30 (5´6)
6
---
15.2
3.28
6.7
69
130
100
176 (16´11)
9
---
4.3
7.5
9.6
53.8
31
PET/ITO/SnO2/Cs0.05(FA0.85MA0.15)0.95Pb(I0.85 Br0.15)3/spiro-MeOTAD/Au FTO/c-TiO2/mp-TiO2/MAPbI3/P3HT/Au
Spin-coating Spin-coating Spin-coating
Bar-coating Spin-coating / Slot-die coating (SnO2) Doctor blading
10
ap
22.4
da
25da
128 129
17 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
FTO/c-TiO2/MAPbI3/spiro-MeOTAD/Ag
Doctor blading
ITO/PTAA/MAPbI3/C60/BCP/Cu
Doctor blading
PET/ITO/ZnO/MAPbI3/P3HT/Ag FTO/ZnO/MAPbI3/Carbon ITO/c-TiO2/MAPbI3-xClx/SpiroMeOTAD/Au
MAPbI3 (Toshiba Corporate R&D Center)
Slot-die coating Slot-die coating Slot-die coating
Meniscus printing
11.1
24.2 (6.35´3.81)
33ap 57.2ap
Meniscus coating
FTO/c-TiO2/mp-ZrO2/MA(5AVA)PbI3/Carbon FTO/c-TiO2/(mp-TiO2/mpZrO2/mp-C)/(5AVA)x(MA)1-xPbI3 FTO/c-TiO2/(mp-TiO2/mpZrO2/mp-C)/(5AVA)x(MA)1-xPbI3
Screen printing Screen printing Screen printing
FTO/c-TiO2/(mp-TiO2/mpZrO2/mp-C)/(5AVA)x(MA)1-xPbI3
Screen printing
Spray coating Pressure FTO/c-TiO2/mp-TiO2/MAPbI3/spiroprocessing MeOTAD/Au method FTO/SnO2/(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3/sp Solvent-bath iro-MeOTAD/Au process FTO/c-TiO2/MAPbI3-xClx/PTAA/Au
Microquanta Semiconductor Co., Ltd.
---
Solaronix SA FTO/SnO2/C60/Cs0.1FA0.9PbI3/spiroMeOTAD/Au FTO/SnO2/CsxFA1-xPbI3-yBry/spiroMeOTAD/Au FTO/TiO2/Cs0.07FA0.93PbI3/spiroMeOTAD/Au FTO/TiO2/FAPb(I0.85Br0.15)3/spiroMeOTAD/Au FTO/TiO2/FAPbI3/spiro-MeOTAD/Au
Printing
FTO/c-TiO2/mp-TiO2/MAPbI3−xClx/spiroMeOTAD/Au
CH3NH2-gas treatment
HCVD
4
6´46.2
17
6.5´30
16
6.5´55
90 (6´15)
14.1 (13.3b) 15 (15.3b) 15 (14.6b)
~20.8
4.4
~61.5
19.5
~18.2
72.1
20.3
~17.1
68.9
28
27
40
100 (10´10)
5
---
0.93
1.35
2.75
25
36
17.6
25 (5´5)
8
---
10.6
3.25
6.14
53
49
25
---
11.1
17.3
21.2
67.9
23
4.75´130
11.8
19
20.8
70.6
44
---
11.7CE
14.36
1.073/ cellCE
75.8 68.0
151.9 142
168.8 (12.5´13.5) 149.5 (11.5´13)
703da (24.15 ´29.1)
---
802da ITO/Cu-oxide/MAPbI2.7Br0.3/PCBM/BCP/Ag
Page 18 of 68
33
---
22
---
11.6CE
15.83
1.081/ cellCE
4, 8, 12
25 (26.7ap ) 31 70
---
4
---
15
~4.4
~4.5
75
50
50 (5´10) 100 (10´10)
4 10
7.8´99.4 7´100
10.5 10.7
19.6 17.7
3.72 9.6
57.5 62.9
39
49
100 (10´10)
10
5.3´93
10.4
2
9.3
56
48
46.7
100 (10´10)
8
7´85
11.2
2.2
7.1
70.4
47
198 (435.6ap)
623.7 (21´29.7) A4-size
22
5´180
3.2
0.5
18.2
38.9
38
40
100 (10´10)
10
~4´100
15.5
2.1
10.5
70.2
41
36.1ap
64 (8´8)
10
---
15.7 (12.1CE)
2 (2CE)
53.6ap
100 (10´10)
12
---
13.9
1.7
17.277
---
7
---
500
24
---
100 (10´10)
14
da
--82.6 (91.8da)
17.25
CE
20.66
10.5 75.7 (8.36CE) (71.5CE) 13.4
CE
12 --10.37 1.42 6.7´98 (9.34 da) (1.28da)
1.07
CE
62 78.1
43 131
CE
8
---
---
132
13.55
59.6
114
CVD
41.25
64 (8´8)
---
---
12.24
2.25
9.18
52.8
117
HCVD
12
25 (5´5)
6
4.1´49
14.6
3.67
5.84
0.681
119
HCVD
12
25 (5´5)
6
4.1´49
14.7
3.55
6.29
0.66
118
HCVD
12 15.4
25 (5´5) 25 (5´5)
6 6
4.1´49 5.2´49
9.0 5.8
2.97 2.53
5.64 4.62
0.54 0.49
100
12
25 (5´5)
6
4.1´49
15.3
3.66
6.65
63
113
326
Abbreviations: ITO = indium tin oxide; FTO = fluorine doped tin oxide; c-TiO2 = compact TiO2;
327
mp = mesoporous TiO2; spiro-MeOTAD = 2,2’,7,7’-tetrakis-(N,N-di-4-methoxyphenylamino)-
328
9,9’-spirobifluorene; PCBM = [6,6]-phenyl-C60,61 butyric acid methyl ester; PTAA = Poly[bis(4-
329
phenyl)(2,4,6-trimethylphenyl)amine];
330
ethylenedioxythiophene):poly(styrenesulfonate);
PEDOT:PSS P3HT
=
=
poly(3,4-
Poly(3-hexylthiophene-2,5-diyl)
18 ACS Paragon Plus Environment
Page 19 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
331
regioregular; PC71BM = [6,6]-Phenyl C71 butyric acid methyl ester; BCP = bathocuproine; 5-
332
AVA = 5-aminovaleric acid.
333
In order to obtain larger area and high quality perovskite films, Liu, Li and coworkers developed
334
a technology of alternating vacuum deposition (AVP) in 2015,98 as shown in Figure 3a. The
335
perovskite film was deposited using a layer-by-layer method. The PbCl2 was first evaporated onto
336
the substrate in a vacuum system, and then the CH3NH3I was thermally sublimed onto the PbCl2
337
film. They then repeated the process until sufficient coating thickness is generated. Finally, the
338
perovskite film was obtained after the sample was annealed at 120 ℃ for 2 hours. The merit of the
339
AVP technology is that the more volatile organic component does not interfere with the high
340
temperature evaporation of the inorganic moiety and therefore both of them can be well-controlled
341
separately. The PCE of large area (1 cm2) perovskite solar cells reached 13.84%, one of the highest
342
values at that time for the large area perovskite devices.98 Another process is to fabricate the
343
perovskite solar cells using direct contact deposition,99, 133 as shown in Figure 3b. This approach
344
combines the advantages of the short reaction time, facile fabrication, exceptional uniformity, good
345
reproducibility, high device performance and up-scalability, leading to uniform deposition over
346
large area.
19 ACS Paragon Plus Environment
ACS Energy Letters
Current Density (mA/cm2)
a Alternated deposition
b FTO/c-TiO2 FTO/c-TiO2 PbI2
15 min
CH3NH3PbI3
CH3NH3I powder
CH3NH3I powder
Heating (150 oC)
Heating (150 oC)
Current Density (mA/cm2)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 20 of 68
20 16
1 cm2
12
PCE: 13.84%
8 4 0
0.0
0.2
0.4 0.6 Voltage (V)
0.8
1.0
20 15 10 5
! = 12.6% Area: 1 cm2
0 0.0
347
0.2
0.4 0.6 Voltage (V)
0.8
1.0
348
Figure 3. Illustrate the fabrication of perovskite films and the performance for large area
349
perovskite devices by (a) Alternating vacuum deposition (Reproduced by permission of The Royal
350
Society of Chemistry)98 and (b) Direct contact deposition (reprinted with permission from ref. 133.
351
Copyright 2015 Elsevier).
352
Solar module architecture considerations. Another issue that need to be considered during the
353
fabrication of perovskite solar modules is the relatively inherent high resistance of transparent
354
conducting electrode, e.g., fluorine-doped tin oxide (FTO) and indium-doped tin oxide (ITO).134
355
To solve this issue, the solar cell/module architecture design is of vital importance. There are
356
basically two architectures for thin film solar module fabrication, i.e., series connection and
357
parallel connection (Figure 2), both of which are designed to lower the impact of TCO resistance
358
and to meet the voltage and current requirements for desired applications.67, 135 A single-junction
359
solar cell is often inadequate on the basis of reported maximum power point (MPP) voltage and
360
current (VMPP, IMPP), which scales with the band gap and crystal quality of PV material;136 for
20 ACS Paragon Plus Environment
Page 21 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
361
example, VMPP of a typical single-crystalline silicon solar cell is 0.66 V, while GaAs is around
362
1.02 V, and GaInP has the highest VMPP of 1.36 V; polycrystalline films such as CIGS and MAPbI3
363
perovskite generate VMPP of 0.63 V and 0.9 V, respectively, corresponding to the champion
364
laboratory cells and submodules.8
365 366
When the individual cells are connected to form series or parallel architecture as shown in Figure
367
2, the inter-connection area usually does not generate photocurrent and hence it is called dead area.
368
The ratio of the active area to the total substrate area is defined as the geometric fill factor (GFF)
369
of the solar module. To make better use of the light, the dead area should be kept as small as
370
possible. However, there are other requirements when designing the inter-connection structures in
371
both series and parallel architectures. It is not possible to simply increase the size of the electrode
372
area because it leads to the increased series resistance when collecting photo-generated charge
373
carriers. As a consequence, this higher series resistance leads to energy losses in solar cells
374
visualized by a lower FF in the photocurrent density-voltage (J-V) curves.134 The shape of the
375
electrodes also affects the energy output even keeping the electrode area the same.137-138 Often
376
each individual solar cell is in the shape of square, rectangular and strip. As the aspect ratio
377
decreases (i.e., reducing electrode width), the average series resistance is lower and solar cells
378
show higher FF and PCE.138 On the basis of above considerations, a strip shaped electrode for each
379
individual cell can output higher energy with less energy loss for both series and parallel
380
architectures.
381 382
For series connection, the consideration is that the following inter-connection of each individual
383
cell can multiply the energy output (from voltage output) with little increase of resistance in the
21 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 22 of 68
384
inter-connection area (Figure 2). The inter-connection area is formed by three patterning lines
385
often designated as P1, P2 and P3.127 P1 and P3 are used to separate the bottom and top electrodes
386
of each individual cell, respectively. P2 is to form the inter-connection between the top electrode
387
of one cell and the bottom electrode of the next adjacent cell in the series connection architecture.
388
Note that the inter-connection area is a dead area that will also be included in the calculations of
389
total-area performance. GFF can be defined based on the cross-sectional view as the ratio between
390
the active area and the total area that includes the dead area used for interconnection.134 A balance
391
is needed between the maximal usage of the module area to absorb light and minimization of the
392
effect of series resistance.
393 394
For the series connection architecture, normally the dead area is limited by the patterning
395
technique, which is mainly based on laser or mechanical scribing processes. Without taking into
396
account the contact resistance of a fixed dead area width of 280 µm, Galagan and coworkers
397
calculated the relation between the module efficiency and the width of active area for each
398
individual cell on TCO substrates with different sheet resistance.134 It was shown that by
399
employing TCOs with lower sheet resistance, one could enlarge the width of each individual cell
400
active area and thereby enable a higher GFF to reach a higher efficiency. A stripe width in the
401
range of 3-7 mm is beneficial for attaining high PCEs on TCO substrates with 10 Ohm/square
402
sheet resistance. Realistically, to make sure that the inter-connection area does not lead to
403
additional increase in series resistance, the inter-connection area (P2) should be wide enough and
404
it depends on the contact resistance between the top electrode of one cell and the bottom electrode
405
of the next cell. For example, the compact (c)-TiO2 layer (one of the most used electron transport
406
layer (ETL)) deposited by spray pyrolysis deposition adheres tightly to the underlying FTO, which
22 ACS Paragon Plus Environment
Page 23 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
407
makes it difficult to remove.139 In comparison with FTO/c-TiO2/Au, FTO/Au has a lower contact
408
resistance. The contact resistance can be characterized by the transfer length measurement
409
technique.139 One way to reduce the contact resistance caused by c-TiO2 is to decrease the
410
thickness of c-TiO2. The decrease of c-TiO2 thickness in the inter-connection area will also
411
decrease the c-TiO2 thickness in the active area due to the uniform coating. In this case, the optimal
412
thickness of c-TiO2 for a small area cell and large area module can be substantially different as
413
reported by Li, Zhu and coworkers.140 To overcome this issue, Qi and coworkers used a high
414
mobility SnO2 thin film as electron transport layer to help lower the contact resistance in the
415
perovskite solar module fabrication.127
416 417
The parallel architecture forms low sheet resistance TCO by metal finger structure on TCO.141
418
This is an important way to make a large area single cell with large photocurrent output that can
419
match a silicon solar cell to form a two-terminal tandem structure.142 However, the area coated
420
with the metal finger electrode is also a dead area that light cannot pass through (Figure 2). A
421
larger dead area leads to a lower sheet resistance and thus a higher fill factor. However, the current
422
density is lower. In addition, the design and shape of the finger electrode affect the sheet resistance.
423
Ho-Baillie and coworkers. studied systematically the influences of different structures and designs
424
of the finger electrodes on the solar cell performance.135 A certified efficiency of 12.1% on a
425
designated area of 16 cm2 has been reported by incorporating a metal finger design.143
426 427
Upscalable HTLs and ETLs. The majority of large area device architectures that lead to high
428
performance
429
methoxyphenylamine)-9,9ʹ-spirobifluorene (spiro-MeOTAD) as HTL (Table 1). Only a few works
430
showed that solution-processed spiro-MeOTAD is also compatible with large area coating
solar
modules
employ
spin-coated
2,2ʹ,7,7ʹ-tetrakis(N,N-di-p-
23 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 24 of 68
431
techniques such as slot-die coating.33, 144 However, in addition to solvent toxicity,145 long-term
432
stability issues were previously reported57, 146-149 when employing spiro-MeOTAD as HTLs due to
433
for example film crystallization,150 the strong influence of air exposure on conductivity and
434
interfacial energy level variations,151-153 photo-oxidation of spiro-MeOTAD,154 morphological
435
deformation at high temperature (80 ˚C and above) leading to formation of large voids in the spiro-
436
MeOTAD film,155-156 diffusion of Au or other metal electrode materials into spiro-MeOTAD
437
layer,157-158 and iodization of top electrode due to high temperature.158 Alternatively, ~25 cm2 and
438
49 cm2 poly(3-hexyl-thiophene (P3HT) film by bar coating,129 100 cm2 P3HT film by doctor
439
blading,31 and 90 cm2 poly(bis(4-phenyl) (2,4,6-trimethylphenyl) amine) (PTAA) by doctor
440
balding27 are a few examples demonstrating other promising HTLs in solar module applications.
441
Furthermore, employment of vapor-based techniques in large area HTL coating is a suitable way
442
for the fabrication of perovskite solar modules avoiding the complication of toxic solvents and
443
enabling uniform, smooth, and pinhole free HTL layers, which have been demonstrated only in
444
small area perovskite solar cells.57, 93, 116, 159-161
445 446
Large area ETL coatings are mainly based on metal oxides and fullerene and its derivates (Table
447
1), which are compatible with upscaling techniques of spraying coating,129 slot-die coating,130
448
thermal evaporation27 and sputtering.127, 162 Although spray coating of compact TiO2 ETL is widely
449
used, it requires high temperature pyrolysis and has a high resistance retarding charge transfer in
450
a solar module structure.17 Considering the fabrication costs and interconnection quality of solar
451
modules, some other low temperature processes have been developed, such as room temperature
452
sputtered TiO2162 which are also compatible for flexible perovskite solar modules.121 Among these
453
alternatives, SnO2 attracts particular attention for solar cell and module fabrication. For example,
24 ACS Paragon Plus Environment
Page 25 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
454
the commercially available SnO2 solution can be uniformly coated by slot-die coating and the
455
resulted flexible solar module exhibits promising efficiency.130 Furthermore, SnO2 can be sputter
456
deposited at room temperature without any thermal annealing.127 Due to high conductivity and low
457
film thickness, the coated SnO2 layer does not decrease the interconnection quality in a solar
458
module. A large solar module with 22.8 cm2 designated area and sputtered SnO2 shows an
459
efficiency over 12%.127 Recently a spin coated self-assembled SnO2 layer has been applied for
460
modules with an area of 100 cm2, which exhibits an efficiency up to 14%.128 Thermal evaporation
461
of C60 and BCP has been applied in inverted structured solar modules, which exhibit an efficiency
462
of 14.6% with an area of 57 cm2.27 The metal oxide ETL is also cheap. Considering the cost aspects
463
and stability, the commonly employed organic HTLs such as spiro-MeOTAD and PTAA are
464
expected to be replaced with some other low-cost inorganic materials (Table 2).
465 466
Carbon electrodes. Although it is only about one decade since PSC research was introduced,
467
there have been tremendous amount of efforts worldwide contributed to the rapid rise in PCEs.
468
Keeping at the current research pace, there may be a brighter future for the PSC technology to
469
compete for a portion in the annual market share of hundreds of billion-dollar worth of PV
470
technology. To make this goal achievable, low-cost, long term stability, simpler fabrication
471
protocols, and field testing profiles of perovskite solar modules will play a vital role. In PSCs,
472
organic materials such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS),
473
2,2’,7,7’-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9’-spirobifluorene
474
spiro-OMeTAD), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), and poly(3-hexyl-
475
thiophene (P3HT) are usually applied as hole transport layers (HTLs); gold and silver are used as
476
electrode materials in order to achieve high performances.43, 55, 96, 129, 163 However, organic HTLs
(spiro-MeOTAD
or
25 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 26 of 68
477
and Au metal as electrode constitute a major portion of the fabrication cost of perovskite solar
478
modules, i.e., about 64% of the total raw material cost as summarized in Table 2 and Figure 2. The
479
cost of HTLs corresponds to 49% of the total module cost, and Au metal as electrode represents
480
15% of the total module cost. Besides high cost, perovskite solar modules that employ organic
481
HTL/Au (or Ag) exhibited unstable performance because organic HTLs are susceptible to
482
migration of metal ions from metal electrode and halide ions from perovskite.152, 164-165 Therefore,
483
after the reports showing that perovskites could serve as not only light harvester materials but also
484
as effective hole conductor,166-167 the development of organic HTL-free PSCs became an active
485
research topic in facilitating upscaling as well as addressing stability issues.168-171 In particular,
486
carbon is the most suitable electrode material among the few explored hole selective electrodes in
487
organic HTL-free PSCs (such as gold and nickel).166, 172 Carbon electrode has the advantages of
488
being earth abundant, cheap, chemically inert, instinct hydrophobic, highly conductive and flexible,
489
and also exhibiting a high device stability when employed in PSCs. At present the most stable
490
PSCs are fabricated using carbon as electrode without HTL, demonstrating almost zero loss in
491
performance when operated for more than 10,000 hours at 55 oC.47
492 493
In the context of lab-scale small area devices, the performance of carbon-based PSCs (C-PSCs)
494
is still significantly lower than the conventional PSCs based on metal electrode and organic HTL.
495
Interestingly, when upscaling is considered, there is a smaller efficiency gap between carbon based
496
solar modules and metal electrode/HTL based modules as summarized in Table 1 and Figure 1.
497
To date, the PCE of small area HTL-free C-PSCs has increased from 6.64% to 16.37% in seven
498
years.167, 170 One reason that relates to the lower performance of HTL-free C-PSCs is the limited
499
hole selectivity of carbon materials. The certified highest PCE of carbon-based PSCs is 17.8%.173
26 ACS Paragon Plus Environment
Page 27 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
500
However, this C-PSC employed P3HT/graphene composite as HTL to enhanced the performance.
501
Researchers have conducted studies to replace expensive spiro-MeOTAD HTL with low-cost
502
inorganic p-type semiconductors, such as copper(I) thiocyanate (CuSCN)174-176, CuI177, NiO178, or
503
low-cost small molecule p-type semiconductors copper phthalocyanine (CuPc)179. The resultant
504
devices showed higher stability compared with the devices using organic HTL.180 Replaced with
505
CuPc HTL, the C-PSCs achieved 17.78% PCE.181 Another factor causing the lower performance
506
of C-PSCs is the poor interface morphology between carbon electrode and perovskite. As carbon
507
electrodes are generally constituted by graphite182-184, carbon black169, 185, carbon nanotubes,170, 186-
508
188
509
interface. Based on the interface structure, there are two main structures for C-PSCs, including a
510
bi-interface
511
TiO2/perovskite/carbon) and a triple interface structure (such as FTO/c-TiO2/(mp-TiO2/mp-
512
ZrO2/mp-carbon)/perovskite). Interface engineering plays a crucial role in the improvement of the
513
C-PSCs performance.189 For bi-interfacial structure PSCs, a dense perovskite film is needed, and
514
it is necessary to enhance the interfacial contact between carbon and perovskite. For triple
515
interfacial structure PSCs, it is necessary to optimize perovskite precursors and mesoporous-
516
structure for easy infiltration of perovskite solution.
their morphologies are usually rough, which affects the contact at the perovskite/carbon
structure
(such
as
FTO/c-TiO2/with
or
without
mesoporous
(mp)-
517 518
The large gap between C-PSCs and conventional PSCs may not be limited only by the inherent
519
property of C-PSCs but also as a consequence of lack of optimization. For example, for
520
conventional PSCs, gold or silver are widely employed as electrode and their properties such as
521
Femi level, conductivity, and reflection have been systematically studied. It is important to
522
gradually accumulate knowledge based on device working principles and device optimization.
27 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 28 of 68
523
However, most of the reports employed commercial carbon paste purchased directly from
524
commercial market. As a consequence, it is difficult to know a priori the specific chemical
525
composition because such information is often non-disclosable. The companies supplying high-
526
quality carbon pastes include Guangzhou Seaside Technology Co., Ltd,190-191 Shanghai MaterWin
527
New Materials Co., Ltd,192-194 Shenzhen DongDaLai Co., Ltd, China40, 181, 195-196. These carbon
528
pastes are often mixed with various components and in different ratios, which very likely are the
529
key reasons responsible for their vastly different physico-chemical properties. For example,
530
different carbon paste products likely show work function variations, which can lead to energy
531
level alignment difference with the perovskite layer and therefore resulting in different overall
532
device performance. Secondly, the commonly used carbon paste is constituted of carbon black,
533
graphite, and still lacks effective hole selectivity especially for HTL-free C-PSCs. To solve this
534
problem effectively, it is vital to have in-house development of new carbon electrodes with
535
superior stability and electrical properties as well as with proper energy level alignments according
536
to the perovskite of choice.
537 538
Although C-PSCs is promising to achieve large-scale production for commercialization, few
539
reported works successfully fabricated the large-scale and efficient C-PSCs modules.38-39, 47-48
540
Among the carbon electrode deposition methods, including doctor-blade,191,
541
printing,169 drop-casting187 and screen printing method,199 the screen printing shows the best
542
possibility in making large modules. In the past three years, by using screen printing, large C-PSCs
543
modules are successfully fabricated with the upscalable size from the beginning 10´10 cm2 with
544
the active area of 47.6 cm2,47 to the A4 size substrate with the active area of 198 cm2.38 All these
196-198
inkjet
28 ACS Paragon Plus Environment
Page 29 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
545
C-PSCs are based on the architecture of a triple interface structure with the PCE ranging from 3%
546
to 11%.
547 548
Table 2. Cost of raw materials in fabricating a perovskite solar panel with a total area of 1 m2 and
549
a GFF of 90%. Usage200
Price (USD)
Sub-total Cost (USD)
Total cost per designated item (USD)
FTO glass
1.00 m2
228.20
228.20
229.06
Deionized water
33.00 ml
0.012/L201
< 0.01
Isopropanol1
33.00 ml
0.013/ml
0.43
33.00 ml
0.013/ml
0.43
TAA
19.20 ml
0.18/ml
3.46
Ethanol
33.00 ml
0.056/ml
1.85
Deionized water
33.00 ml
0.012/L
0.001
TiO2 ink
4.94 g
2.90/g
14.33
14.33
PbI2
1.38 g
0.20/g
0.28
1.34
CH3NH3I
0.14 g
2.70/g
0.38
Isopropanol2
14.30 ml
0.043/ml
0.62
DMF
3.00 ml
0.019/ml
0.06
Spiro-MeOTAD
0.85 g
478.10/g
406.38
Chlorobenzene
10.70 ml
0.027/ml
0.29
1.65 g
76.93/g
126.93
Raw material
Substrate patterning
1
Acetone
Blocking layer 5.31
Perovskite layer
HTL 406.67
Cathode Au
126.93
Encapsulation
29 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
UV Resin XNR5516Z
3.20 g
Three bond 3035B
3.20 g 200
Page 30 of 68
10.00/g
32.00
6.13/g
19.62
550
Usage data are collected from ref.
551
information with the exchange rate 1 JPY=0.0091 USD, besides the price of deionized water from
552
ref.
553
Chlorobenzene (99.0 %, 500 ml), Acetone (Guaranteed Reagent, 3 L), Isopropanol2 (super
554
dehydrated, 3 L), DMF (super dehydrated, 3 L) and ethanol (super dehydrated, 3L) from Wako
555
(https://labchem-wako.fujifilm.com); TAA (75 wt. % in isopropanol, 500 ml) from Sigma Aldrich
556
(http://sigmaaldrich.com); MAI (100 g) and TiO2 ink (1 kg) from Greatcell Solar Ltd
557
(http://www.greatcellsolar.com); Spiro-MeOTAD (1 g) from Merck.
201
. The price information is collected according to our lab
. Specifically, FTO from PV-tech Co., Ltd.; Isopropanol1 (Guaranteed Reagent, 3 L),
558
Summary and Outlook. This year marks one decade of PSC research. We have witnessed
559
outstanding achievements including fundamental science and technologically-related strategies
560
(Figure 4).52 A key question remains, i.e., what does perovskite PV technology need the most for
561
developing efficient and stable perovskite-based solar modules?202 In this perspective, we discuss
562
the progress of solution- and vapor-based methods that have been demonstrated with some initial
563
success in upscalable fabrication of perovskite solar modules with total areas larger than 10 cm2
564
(Figures 1 and 4).203 From Figure 1 we can obtain some insights, e.g., which solar parameter is the
565
major bottleneck for the overall solar module performance when compared with small PSCs. First,
566
there is a large gap in PCE when comparing the PCE values of small area cells and large area
567
modules. While the Voc and FF plots show the small gaps between small area cells and large area
568
modules, a major gap occurs in the Jsc plot. To quantify the Jsc gap between small area perovskite
569
solar cells and perovskite solar modules, we calculate the difference value in percentage between
570
the averaged Jsc value based on all the reported modules (𝐽#$
&'()*+
= 18.14 mA/cm2) and the
30 ACS Paragon Plus Environment
Page 31 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
,-.,+/0
= 25.2 mA/cm2) in Figure 1 (dashed line). The calculated JSC gap corresponds
571
highest Jsc (𝐽#$
572
to 1 − 𝐽#$
573
are substantially smaller compared to the Jsc gap (28%).
&'()*+
,-.,+/0
/ 𝐽#$
= 0.28 (or 28%). As a comparison, the Voc gap (19%) and FF gap (21%)
574 575
In a series interconnected module, Isc of the module is determined by the smallest Isc among
576
the cells; the overall Isc of the module will be dominated by the lowest Isc among the cells (Isc =
577
Jsc ´ area). Ideally, variations in Jsc are not expected to be observed if the coated layers within the
578
solar modules are uniform and the scribing patterns are well-delineated. Defective scribes (P1, P3)
579
may produce cells with undefined active areas due to slight shift or tilting of the patterning lines,
580
which compromises Jsc. In addition to P1, P2, and P3 patterning as discussed, electrical isolation
581
and encapsulation of a module requires the removal of the full structure of the front contact,
582
absorber layer, and back contact at the edges of a solar module (boarder isolation or edge isolation,
583
P4).204 If P4 is defective in some regions, it also affects the effective cell area.
584 585
The FF reduction is mostly caused by the increased Rs, which is mainly dominated by high sheet
586
resistance of TCO and the quality of interconnects. The strategies to reduce the TCO resistance
587
are summarized as follows: (i) by increasing the thickness of the TCO to reduce sheet resistance.
588
However, in this way the transmittance will be also be reduced and a balance should be
589
considered.138 (ii) The development of better TCO with nanomaterials that shows both low sheet
590
resistance and high transmittance.205 In parallel, improvements in the quality of interconnects by
591
engineering measures need be considered for enhancing FF, such as134 (iii) widening P2 to cover
592
the entire area between P1 and P3, but still maintaining the shorter width between the individual
593
cells, and (iv) optimizing interconnecting methods such as laser or mechanical scribing.
31 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 32 of 68
594 595
In a series connection, the total Voc is the sum of each individual cell. In Figure 1c, we can see
596
the evaluation of the average Voc for each individual cell as a function of module area. The reduced
597
Voc for each individual cell cause the gap between small area cell and large area module.
598
Considering each individual cell, a large area cell can be considered as many smaller area sub-
599
cells connected in parallel, Voc of the large area cell essentially takes the smallest value. Thus, the
600
reduction of Voc may be induced by reduced shunt resistance caused by several factors such as (i)
601
pinholes, (ii) particulates, (iii) interconnects (P1 and P3 are not clean/resistive enough; the P3
602
process damages the surrounding perovskite causing leakage), (iv) non-uniformity (if a particular
603
area in a particular layer is too thin); (v) lack of proper edge isolation patterning (P4).
604 605
Because PCE is proportional to the products of Jsc, Voc, and FF, all of these gap losses
606
contribute with an equal weight to the large gap in the solar module PCE (53%). The main losses
607
in the solar module efficiencies are related to the challenges in fabricating high quality perovskite
608
films and optimization of module design, which includes the balance between each of individual
609
active cells width and dead area width. Fortunately, the scribing related problems are mostly
610
engineering issues. Once it gets into large area production, these problems can be solved by
611
engineering measures.
32 ACS Paragon Plus Environment
Page 33 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
612 613
Figure 4. (a) Selected lab-scale perovskite-based solar cell efficiencies and (b) comparison with
614
large area perovskite solar modules grouped according to the coating methods.146, 148, 206 The
615
related reported data are 3.8%,207 6.5%,111 9.7%,208 14.14%,55 16.15%,109 17.91%,163 20.11%,209
616
21.1%,110 22.13%,210 22.67%,129 23.32%,15 23.7%5 and 24.2%.5 Developments of lab scale PSCs
617
can be roughly divided into three stages distinguished by the different zone colors: liquid
618
electrolyte (blue; stage 1), composition optimization (orange; stage 2), and interface engineering
619
(green; stage 3). Feasibility in applying the composition optimization strategies (Stage 2) for the
620
fabrication of large area perovskite solar modules employing upscalable methods is demonstrated
621
in Table 1. Currently the perovskite solar module research is at Stage 2. Selected best efficiencies
622
for perovskite solar modules employing different upscalable coating methods have been marked
623
with arrows. Toshiba Corporation holds the certified efficiency with the largest perovskite solar
624
module.12
625
A large number of strategies have been developed for enhancing the performance and long-term
626
operational stability in lab-scale small area PSCs. Considering the device architectures for each of
627
the corresponding PCEs displayed in Figure 4a, three stages of developments for lab-scale PSCs
33 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 34 of 68
628
can be inferred. Stage 1 corresponds to the initial device architecture of liquid electrolyte
629
employing MAPbI3 and MAPbBr3 as sensitizers leading to PCEs of 3.8%,207 6.5%,111 (blue zone).
630
Stage 2 is characterized by the replacement of liquid electrolyte to all solid state spiro-MeOTAD
631
HTL in conjunction with perovskite composition optimization/engineering (orange zone) leading
632
to PCEs of 9.7%,208 14.1%,55 16.15%,109 17.91%,163 20.11%,209 21.02%,211 21.1%,110 22.13%210.
633
The strategies developed in Stage 2 helped several labs worldwide to achieve PCEs more than
634
15%. Interface engineering characterizes Stage 3 (green zone) showing the efficacy to boost up
635
further the efficiencies of PSCs leading to certified PCE values of 22.67%,129 23.32%15. The details
636
of the device architectures for the last two points of 23.7% and 24.2% in Figure 3 are still not
637
available.
638 639
The analyses of strategies that led to the best lab-scale research-cell efficiencies provide
640
important insights and promising trend that enhanced performance and stability can be achieved
641
in large area perovskite solar modules. Next, we discuss selected strategies developed in the lab-
642
scale small-area PSC research that warrant further investigation and transferring to large-area
643
perovskite solar module research. The first strategy is the perovskite composition/engineering that
644
leads to enhanced chemical stability and light absorbance.206, 212-214 12 out 40 studies surveyed in
645
this work (Table 1) employed MAPbI3 as the absorber layer. Although a consensus has not been
646
reached for this topic, and there are different opinions, a number of works have reported that it is
647
unlikely for MAPbI3-based solar cells to reach sufficient long-term stability.148, 206, 215-233 Except
648
for the first certified efficiency record (PCE=14.1% in 2012) that used pure phase MAPbI3, the
649
works to achieve the subsequent efficiency records employed perovskite materials with mixed-
650
cations (CH3NH3+, NH2CH = NH2+, Cs+) and mixed-halides (I–, Br–, Cl–).206 In the work by Saliba,
34 ACS Paragon Plus Environment
Page 35 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
651
Gratzel and coworkers,115 perovskite devices with mixed-cations and anions (e.g., FTO/c-TiO2/Li-
652
doped
653
stability and maintained ~95% of their initial performance when tested at elevated temperature of
654
85 oC in N2 environment for 500 h and under full AM 1.5 Sun-equivalent white LED lamp
655
illumination and maximum power point tracking. Similarly, Holman, McGehee and coworkers234
656
reported that FA0.83Cs0.17Pb(I0.83Br0.17)3 based PSCs packed with top glass sheet employing
657
ethylene-vinyl acetate (EVA, an elastomeric polymer binder) and butyl rubber as edge sealant can
658
withstand a 1,000 h damp heat test at 85 oC and 85% relative humidity. These and other several
659
works demonstrate that the strategy of mixed-cations and anions is effective to improve long-term
660
thermal stability.114, 119, 163, 191, 206, 235-236 On the basis of Table 1, the feasibility of preparing mixed
661
cations and anions perovskites employing upscalable techniques was demonstrated.114 The
662
stability of perovskite solar modules is another important aspect when considering upscaling.
663
Storage and operational stability data for small-area perovskite solar cells have been summarized
664
in a recent review article.57 Although stability measurements should be a standard test for
665
perovskite solar modules, currently there are only a few published results reporting perovskite
666
solar modules with both high efficiency and high stability. Upon upscaling, the stability of
667
perovskite solar modules might decrease compared with small-area perovskite solar cells. The
668
lower stability for perovskite solar modules might be caused by the high output current and voltage,
669
or the interconnection quality, which need further investigation.237 Similar to small-area perovskite
670
solar cells, there is burn-in loss at the initial stage under operation, for both solution-based and
671
HCVD-based perovskite solar modules.114, 127 Perovskite solar modules based on carbon electrode
672
show promising stability under continuous light illumination, due to the hydrophobic properties of
673
the carbon electrode.47 Encapsulation has a vital impact on the device stability, e.g., it can help
mp-TiO2/Rb0.05((Cs0.05(MA0.17FA0.83)0.95)0.95Pb(I0.83Br0.17)3/PTAA/Au)
showed
high-
35 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 36 of 68
674
prevent the contact with moisture and oxygen and better withstand thermal stress.114, 238 More
675
information about encapsulation of solar modules can be found from the related review articles on
676
the encapsulation of small-area cells.239 Besides stability improvement, encapsulation can enhance
677
the mechanical strength of module and prevent the leakage of lead, which has been reported in a
678
recent study.240 Overall, encapsulation is expected to play an important role in the development of
679
large scale perovskite solar modules with high stability.241
680 681
The second strategy regards large-area deposition of ETL and HTL as well as their interfaces
682
with the perovskite layer. Large area uniform coating of these functional layers is important for
683
attaining high efficiencies. TiO2 in the form of compact and mesoporous layers has been the most
684
commonly employed low-cost metal oxide material as ETL, which has led to the majority of the
685
best certified efficiencies in solar cells and modules (Table 1).148-149 However, TiO2 is a well-
686
known photocatalytic material for H2O-splitting as well as for decomposing organic materials
687
under UV light.152, 242-243 It is desirable to minimize the negative impacts of TiO2, but still taking
688
advantage of its excellent ETL functionality. These strategies include TiO2 surface passivation for
689
reducing Ti3+ electronic trap states at the TiO2/perovskite interface,21, 243-246 use of thin insulating
690
polymer film between TiO2 and perovskite,162, 247 surface modification,248 UV filters or down-
691
conversion strategies,242, 249-251 and employing inverted device architecture.16, 20, 22, 26-27, 41, 123-124,
692
252
693
Nb2O5,260 graphene,19 PCBM,234,
694
alternatives for the TiO2 ETL and compatible with upscaling techniques. Outstanding solar cell
695
efficiencies are often achieved employing organic molecules of spiro-MeOTAD as HTL.146 As an
696
alternative, polymeric PTAA was also reported to yield high certified efficiencies.109, 146, 148, 163, 209
In addition, a number of materials such as SnO2,125-126, 131, 234, 253-258 solid-state ionic-liquid,259 244
and ZnO based ETL,36,
49, 261
have been proposed as
36 ACS Paragon Plus Environment
Page 37 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
697
These materials have also been commonly employed in fabricating perovskite solar modules
698
(Table 1).17-19, 28, 33, 41, 43, 121, 125-126, 131, 253 However, the prices of PTAA, spiro-MeOTAD, and Au
699
are ~2000 USD, ~500 USD, and ~80 USD per gram, respectively, which can pose cost issues when
700
upscaling.262 When one considers perovskite solar modules toward commercialization, levelized
701
cost of electricity (LCOE) and life-cycle assessment (LCA) are important parameters for
702
comparing different photovoltaic technologies.57, 200-201, 263 The raw material costs and whether
703
energy intensive operations are employed will play a major role in the evaluation of these
704
parameters (Table 2).
705 706
The third strategy is associated with defect healing in perovskites by interface engineering.
707
Defects in perovskites were previously shown to induce electronic traps within the perovskite band
708
gap, which limits efficiency, reproducibility, and lifetime. Analyzing the device structures
709
corresponding to the two points of 22.67%129, 264 and 23.32%15 in the NREL certified efficiencies
710
chart, the interface engineering and defect passivation strategies have allowed PSC to overcome
711
the barrier of 22% in efficiency (i.e., Stage 3 in Figure 4).4 In a recent work by Noh, Seo and
712
coworkers,129, 264 a material called n-hexyl trimethyl ammonium bromide (HTAB) was inserted
713
between P3HT and the perovskite layer. The interdigitation between P3HT and HTAB leads to
714
high hole-transport properties, which has the advantage over the commonly employed PTAA or
715
spiro-MeOTAD HTLs because hygroscopic dopants are not required for enhancing hole mobility
716
in this new HTL. In addition, P3HT is compatible with industrial-scale manufacturing processes.129,
717
264
718
iodide (PEAI) as a passivation material. PEAI was applied to the FA1-xMAxPbI3 (x ~ 0.08)
719
perovskite films by spin-coating. This strategy leads to the certified PCE of 23.3% in the NREL
In another work, You and coworkers15 employed organic halide salt of phenyl ethyl-ammonium
37 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 38 of 68
720
chart.4 PEAI coating on the perovskite layer was proposed to heal the defects by filling the iodine
721
vacancies on the surface and at the grain boundaries.15
722 723
As the fourth strategy, the HCVD method has shown the potential in the development of
724
perovskite solar modules (Table 1, Figures 1 and 4). To further improve the long-term stability of
725
HCVD grown perovskite solar modules, it is necessary to implement corresponding methods that
726
can be readily integrated with HCVD. For instance, formation of 2D/3D hybrid perovskites is a
727
promising method in enhancing long-term operational stability.47 One of the ways to form 2D/3D
728
perovskites is via a low-pressure vapor-assisted solution process to employ PEAI doped PbI2 as
729
the precursor in the first step.253 After conversion in MAI vapor environment, the 2D/3D hybrid
730
perovskite film was formed resulting in perovskite solar cell device performance up to 19% in
731
small area devices (active area = 0.2 cm2). Other than performance and stability, fabrication cost
732
is another key metric to be analyzed in vapor-based processes. Although a slow reaction is
733
beneficial for better film control, the long reaction time in HCVD process reduces throughput, and
734
increases the energy payback time. Normally it takes 2 to 3 hours for the vapor deposition process
735
to fully convert the PbI2/PbCl2 into perovskite in a HCVD process.114, 117 Better understanding of
736
the film formation mechanism will be helpful to pin-point the necessary modifications in vapor
737
deposition processes, and more research efforts are needed in this direction. Other state-of-the-art
738
vacuum deposition processes also show respectful performance in small area devices and have
739
been summarized in a recent review article.90
740 741
Besides the four aforementioned strategies, it is equally important for us to keep in mind that we
742
also need to develop characterization techniques that are compatible with large area perovskite
38 ACS Paragon Plus Environment
Page 39 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
743
solar modules, which may provide useful feedback to these recent advances. These
744
characterization techniques need allow us to evaluate film uniformity, chemical composition
745
distribution, and identify spatially present structural defects and dust/particulates that lead to
746
shunting pathways. For example, it has been reported that false-color monochrome
747
electroluminescence mapping images and light beam induced current (LBIC) can be used to
748
characterize perovskite film quality across large areas.22,
749
characterization of the entire modules and are also compatible with in-line characterization in a
750
production factory.
118
Both techniques allow rapid
751 752
AUTHOR INFORMATION
753
* E-mail:
[email protected] (Y.B.Q.)
754
*E-mail:
[email protected] (S.L.)
755 756
ORCID
757
Yabing Qi: 0000-0002-4876-8049
758 759
Notes
760
The authors declare no competing financial interest.
761 762
Dr. Longbin Qiu is a postdoctoral scholar in Prof. Yabing Qi’s research unit (Energy Materials
763
and Surface Sciences Unit) at Okinawa Institute of Science and Technology Graduate University
764
in Japan. His current research focuses on the interface engineering and chemical vapor deposition
765
for scalable perovskite solar modules.
766
39 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 40 of 68
767
Dr. Sisi He is a postdoctoral scholar in Prof. Yabing Qi’s research unit (Energy Materials and
768
Surface Sciences Unit) at Okinawa Institute of Science and Technology Graduate University in
769
Japan. Her research focuses on the use of carbon nanomaterials in energy and responsive devices
770
including perovskite solar cells.
771 772
Dr. Luis K. Ono is a staff scientist in Prof. Yabing Qi’s research unit (Energy Materials and Surface
773
Sciences Unit) at Okinawa Institute of Science and Technology Graduate University in Japan. His
774
current research focuses on the fundamental understanding and surface science aspects of
775
perovskite solar cells (https://groups.oist.jp/emssu).
776 777
Shengzhong Liu received his Ph.D. from Northwestern University (USA) in 1992. Following his
778
postdoctoral research at Argonne National Laboratory (Argonne, Illinois, USA), he worked for
779
various companies researching nanoscale materials, thin film solar cells, laser processing, and
780
diamond thin films. His invention of the semi-transparent photovoltaic module at BP Solar won
781
an R&D 100 award in 2002. He is now a professor at Shaanxi Normal University and Dalian
782
Institute of Chemical Physics, Chinese Academy of Sciences.
783 784
Yabing Qi is Professor and Unit Director of Energy Materials and Surface Sciences Unit at
785
Okinawa Institute of Science and Technology Graduate University in Japan. He received his B.S.,
786
M.Phil., and Ph.D. from Nanjing Univ., Hong Kong Univ. of Sci. and Tech., and UC Berkeley,
787
respectively. His research interests include perovskite solar cells, surface/interface sciences,
788
lithium
789
(https://groups.oist.jp/emssu).
ion
batteries,
organic
electronics,
energy
materials
and
devices
40 ACS Paragon Plus Environment
Page 41 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
790 791
ACKNOWLEDGMENT
792
This work was supported by funding from the Energy Materials and Surface Sciences Unit of the
793
Okinawa Institute of Science and Technology Graduate University, the OIST R&D Cluster
794
Research Program, the OIST Proof of Concept (POC) Program, and JSPS KAKENHI Grant
795
Number JP18K05266. S.L. acknowledges the funding support from the 111 Project (B14041).
796 797
REFERENCES
798
(1)
799 800
1977, 197, 445-447. (2)
801 802
(3) (4)
National Renewable Energy Laboratory (NREL). Champion Module Efficiency Chart. https://www.nrel.gov/pv/module-efficiency.html. (Accessed date: May 7th, 2019).
(5)
807 808
Singh, G. K., Solar Power Generation by PV (Photovoltaic) Technology: A Review. Energy 2013, 53, 1-13.
805 806
Kurtz, S.; Haegel, N.; Sinton, R.; Margolis, R., A New Era for Solar. Nat. Photonics 2017, 11, 3.
803 804
Hammond, A. L., Photovoltaics: The Semiconductor Revolution Comes to Solar. Science
National Renewable Energy Laboratory (NREL). Research Cell Efficiency Records. https://www.nrel.gov/pv/cell-efficiency.html. (Accessed date: May 7th, 2019).
(6)
Howard, I. A.; Abzieher, T.; Hossain, I. M.; Eggers, H.; Schackmar, F.; Ternes, S.;
809
Richards, B. S.; Lemmer, U.; Paetzold, U. W., Coated and Printed Perovskites for
810
Photovoltaic Applications. Adv. Mater. 2019, 31, 1806702.
811
(7)
Rong, Y.; Ming, Y.; Ji, W.; Li, D.; Mei, A.; Hu, Y.; Han, H., Toward Industrial-Scale
812
Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging
813
Techniques. J. Phys. Chem. Lett. 2018, 9, 2707-2713.
814
(8)
Green, M. A.; Hishikawa, Y.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Yoshita, M.;
815
Ho-Baillie, A. W. Y., Solar Cell Efficiency Tables (Version 53). Prog. Photovolt. Res.
816
Appl. 2019, 27, 3-12.
41 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
817
(9)
Page 42 of 68
Kurtz, S.; Repins, I.; Metzger, W. K.; Verlinden, P. J.; Huang, S.; Bowden, S.; Tappan,
818
I.; Emery, K.; Kazmerski, L. L.; Levi, D., Historical Analysis of Champion Photovoltaic
819
Module Efficiencies. IEEE J. Photovolta. 2018, 8, 363-372.
820
(10)
821 822
1, 15015. (11)
823 824
Green, M. A., Commercial Progress and Challenges for Photovoltaics. Nat. Energy 2016, Photovoltaics Report (March 14, 2019). Fraunhofer Institute for Solar Energy Systems ISE, https://www.ise.fraunhofer.de/en.html, (Accessed date: May 14th, 2019).
(12)
NEDO and Toshiba Develops World's Largest Film-based Perovskite Photovoltaic
825
Module: 703 cm2 module achieves 11.7% power conversion efficiency. Toshiba
826
Corporate Research & Development Center,
827
https://www.toshiba.co.jp/rdc/rd/detail_e/e1806_03.html, (Accessed date: May 14th,
828
2019).
829
(13)
Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.;
830
Sargent, E. H.; Han, H., Challenges for Commercializing Perovskite Solar Cells. Science
831
2018, 361, eaat8235.
832
(14)
833 834
Bermudez, V.; Perez-Rodriguez, A., Understanding the Cell-to-Module Efficiency Gap in Cu(In,Ga)(S,Se)2 Photovoltaics Scale-Up. Nat. Energy 2018, 3, 466-475.
(15)
Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You,
835
J., Surface Passivation of Perovskite Film for Efficient Solar Cells. Nat. Photon. 2019,
836
DOI: 10.1038/s41566-019-0398-2.
837
(16)
Seo, J.; Park, S.; Chan Kim, Y.; Jeon, N. J.; Noh, J. H.; Yoon, S. C.; Seok, S. I., Benefits
838
of Very Thin PCBM and LiF Layers for Solution-Processed p-i-n Perovskite Solar Cells.
839
Energy Environ. Sci. 2014, 7, 2642-2646.
840
(17)
Matteocci, F.; Cinà, L.; Di Giacomo, F.; Razza, S.; Palma, A. L.; Guidobaldi, A.;
841
D'Epifanio, A.; Licoccia, S.; Brown, T. M.; Reale, A., et al., High Efficiency
842
Photovoltaic Module Based on Mesoscopic Organometal Halide Perovskite. Prog.
843
Photovolt. Res. Appl. 2016, 24, 436-445.
844
(18)
Matteocci, F.; Razza, S.; Di Giacomo, F.; Casaluci, S.; Mincuzzi, G.; Brown, T. M.;
845
D'Epifanio, A.; Licoccia, S.; Di Carlo, A., Solid-State Solar Modules Based on
846
Mesoscopic Organometal Halide Perovskite: a Route Towards the up-Scaling Process.
847
Phys. Chem. Chem. Phys. 2014, 16, 3918-3923.
42 ACS Paragon Plus Environment
Page 43 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
848
ACS Energy Letters
(19)
Agresti, A.; Pescetelli, S.; Palma, A. L.; Del Rio Castillo, A. E.; Konios, D.; Kakavelakis,
849
G.; Razza, S.; Cinà, L.; Kymakis, E.; Bonaccorso, F., et al., Graphene Interface
850
Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50
851
cm2 Active Area. ACS Energy Letters 2017, 2, 279-287.
852
(20)
Liao, H.-C.; Guo, P.; Hsu, C.-P.; Lin, M.; Wang, B.; Zeng, L.; Huang, W.; Soe, C. M.
853
M.; Su, W.-F.; Bedzyk, M. J., et al., Enhanced Efficiency of Hot-Cast Large-Area Planar
854
Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation. Adv. Energy
855
Mater. 2017, 7, 1601660.
856
(21)
Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; García de Arquer, F. P.; Fan, J. Z.; Quintero-
857
Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y., et al., Efficient and Stable Solution-
858
Processed Planar Perovskite Solar Cells via Contact Passivation. Science 2017, 355, 722-
859
726.
860
(22)
Chiang, C.-H.; Lin, J.-W.; Wu, C.-G., One-Step Fabrication of a Mixed-Halide
861
Perovskite Film for a High-Efficiency Inverted Solar Cell and Module. J. Mater. Chem. A
862
2016, 4, 13525-13533.
863
(23)
Wu, Y.; Yang, X.; Chen, W.; Yue, Y.; Cai, M.; Xie, F.; Bi, E.; Islam, A.; Han, L.,
864
Perovskite Solar Cells with 18.21% Efficiency and Area Over 1 cm2 Fabricated by
865
Heterojunction Engineering. Nat. Energy 2016, 1, 16148.
866
(24)
Li, X.; Bi, D.; Yi, C.; Décoppet, J.-D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel,
867
M., A Vacuum Flash–Assisted Solution Process for High-Efficiency Large-Area
868
Perovskite Solar Cells. Science 2016, 353, 58-62.
869
(25)
Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.;
870
Grätzel, M., et al., Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic
871
Charge Extraction Layers. Science 2015, 350, 944-948.
872
(26)
Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., Hysteresis-Less Inverted
873
CH3NH3PbI3 Planar Perovskite Hybrid Solar Cells with 18.1% Power Conversion
874
Efficiency. Energ Environ Sci 2015, 8, 1602-1608.
875
(27)
Deng, Y. H.; Zheng, X. P.; Bai, Y.; Wang, Q.; Zhao, J. J.; Huang, J. S., Surfactant-
876
Controlled Ink Drying Enables High-Speed Deposition of Perovskite Films for Efficient
877
Photovoltaic Modules. Nat. Energy 2018, 3, 560-566.
43 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
878
(28)
Page 44 of 68
Yang, M.; Li, Z.; Reese, M. O.; Reid, O. G.; Kim, D. H.; Siol, S.; Klein, T. R.; Yan, Y.;
879
Berry, J. J.; van Hest, M. F. A. M., et al., Perovskite Ink with Wide Processing Window
880
for Scalable High-Efficiency Solar Cells. Nat. Energy 2017, 2, 17038.
881
(29)
Deng, Y.; Peng, E.; Shao, Y.; Xiao, Z.; Dong, Q.; Huang, J., Scalable Fabrication of
882
Efficient Organolead Trihalide Perovskite Solar Cells with Doctor-Bladed Active Layers.
883
Energy Environ. Sci. 2015, 8, 1544-1550.
884
(30)
Yang, Z.; Chueh, C.-C.; Zuo, F.; Kim, J. H.; Liang, P.-W.; Jen, A. K. Y., High-
885
Performance Fully Printable Perovskite Solar Cells via Blade-Coating Technique under
886
the Ambient Condition. Adv. Energy Mater. 2015, 5, 1500328.
887
(31)
Razza, S.; Di Giacomo, F.; Matteocci, F.; Cinà, L.; Palma, A. L.; Casaluci, S.; Cameron,
888
P.; D'Epifanio, A.; Licoccia, S.; Reale, A., et al., Perovskite Solar Cells and Large Area
889
Modules (100 cm2) Based on an Air Flow-Assisted PbI2 Blade Coating Deposition
890
Process. J. Power Sources 2015, 277, 286-291.
891
(32)
Galagan, Y.; Di Giacomo, F.; Gorter, H.; Kirchner, G.; de Vries, I.; Andriessen, R.;
892
Groen, P., Roll-to-Roll Slot Die Coated Perovskite for Efficient Flexible Solar Cells. Adv.
893
Energy Mater. 2018, 8, 1801935.
894
(33)
Di Giacomo, F.; Shanmugam, S.; Fledderus, H.; Bruijnaers, B. J.; Verhees, W. J. H.;
895
Dorenkamper, M. S.; Veenstra, S. C.; Qiu, W.; Gehlhaar, R.; Merckx, T., et al., Up-
896
Scalable Sheet-to-Sheet Production of High Efficiency Perovskite Module and Solar
897
Cells on 6-in. Substrate Using Slot Die Coating. Sol. Energy Mater. Sol. Cells 2018, 181,
898
53-59.
899
(34)
Remeika, M.; Ono, L. K.; Maeda, M.; Hu, Z.; Qi, Y. B., High-Throughput Surface
900
Preparation for Flexible Slot Die Coated Perovskite Solar Cells. Org. Electron. 2017, 54,
901
72-79.
902
(35)
Vak, D.; Hwang, K.; Faulks, A.; Jung, Y.-S.; Clark, N.; Kim, D.-Y.; Wilson, G. J.;
903
Watkins, S. E., 3D Printer Based Slot-Die Coater as a Lab-to-Fab Translation Tool for
904
Solution-Processed Solar Cells. Adv. Energy Mater. 2015, 5, 1401539.
905
(36)
Hwang, K.; Jung, Y.-S.; Heo, Y.-J.; Scholes, F. H.; Watkins, S. E.; Subbiah, J.; Jones, D.
906
J.; Kim, D.-Y.; Vak, D., Toward Large Scale Roll-to-Roll Production of Fully Printed
907
Perovskite Solar Cells. Adv. Mater. 2015, 27, 1241-1247.
44 ACS Paragon Plus Environment
Page 45 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
908
ACS Energy Letters
(37)
He, M.; Li, B.; Cui, X.; Jiang, B.; He, Y.; Chen, Y.; O’Neil, D.; Szymanski, P.; Ei-Sayed,
909
M. A.; Huang, J., et al., Meniscus-Assisted Solution Printing of Large-Grained Perovskite
910
Films for High-Efficiency Solar Cells. Nat. Commun. 2017, 8, 16045.
911
(38)
De Rossi, F.; Baker, J. A.; Beynon, D.; Hooper, K. E. A.; Meroni, S. M. P.; Williams, D.;
912
Wei, Z.; Yasin, A.; Charbonneau, C.; Jewell, E. H., et al., All Printable Perovskite Solar
913
Modules with 198 cm2 Active Area and Over 6% Efficiency. Advanced Materials
914
Technologies 2018, 3, 1800156.
915
(39)
Priyadarshi, A.; Haur, L. J.; Murray, P.; Fu, D.; Kulkarni, S.; Xing, G.; Sum, T. C.;
916
Mathews, N.; Mhaisalkar, S. G., A Large Area (70 cm2) Monolithic Perovskite Solar
917
Module with a High Efficiency and Stability. Energy Environ. Sci. 2016, 9, 3687-3692.
918
(40)
Chou, L.-H.; Wang, X.-F.; Osaka, I.; Wu, C.-G.; Liu, C.-L., Scalable Ultrasonic Spray-
919
Processing Technique for Manufacturing Large-Area CH3NH3PbI3 Perovskite Solar
920
Cells. ACS Appl. Mater. Interfaces 2018, 10, 38042-38050.
921
(41)
Heo, J. H.; Lee, M. H.; Jang, M. H.; Im, S. H., Highly Efficient CH3NH3PbI3-xClx Mixed
922
Halide Perovskite Solar Cells Prepared by Re-Dissolution and Crystal Grain Growth via
923
Spray Coating. J. Mater. Chem. A 2016, 4, 17636-17642.
924
(42)
Ye, F.; Tang, W.; Xie, F.; Yin, M.; He, J.; Wang, Y.; Chen, H.; Qiang, Y.; Yang, X.;
925
Han, L., Low‐Temperature Soft‐Cover Deposition of Uniform Large‐Scale
926
Perovskite Films for High‐Performance Solar Cells. Adv. Mater. 2017, 29, 1701440.
927
(43)
Chen, H.; Ye, F.; Tang, W.; He, J.; Yin, M.; Wang, Y.; Xie, F.; Bi, E.; Yang, X.; Gratzel,
928
M., et al., A Solvent- and Vacuum-Free Route to Large-Area Perovskite Films for
929
Efficient Solar Modules. Nature 2017, 550, 92-95.
930
(44)
Huckaba, A. J.; Lee, Y.; Xia, R.; Paek, S.; Bassetto, V. C.; Oveisi, E.; Lesch, A.; Kinge,
931
S.; Dyson, P. J.; Girault, H., et al., Inkjet-Printed Mesoporous TiO2 and Perovskite Layers
932
for High Efficiency Perovskite Solar Cells. Energy Technol. 2019, 7, 317-324.
933
(45)
Liang, C.; Li, P.; Gu, H.; Zhang, Y.; Li, F.; Song, Y.; Shao, G.; Mathews, N.; Xing, G.,
934
One-Step Inkjet Printed Perovskite in Air for Efficient Light Harvesting. Solar RRL 2018,
935
2, 1700217.
936
(46)
Mathies, F.; Eggers, H.; Richards, B. S.; Hernandez-Sosa, G.; Lemmer, U.; Paetzold, U.
937
W., Inkjet-Printed Triple Cation Perovskite Solar Cells. ACS Appl. Energy Mater. 2018,
938
1, 1834-1839.
45 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
939
(47)
Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau,
940
D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M., et al., One-Year Stable
941
Perovskite Solar Cells by 2D/3D Interface Engineering. Nat. Commun. 2017, 8, 15684.
942
(48)
Page 46 of 68
Hu, Y.; Si, S.; Mei, A.; Rong, Y.; Liu, H.; Li, X.; Han, H., Stable Large-Area
943
(10 × 10 cm2) Printable Mesoscopic Perovskite Module Exceeding 10% Efficiency. Solar
944
RRL 2017, 1, 1600019.
945
(49)
946 947
Cai, L.; Liang, L.; Wu, J.; Ding, B.; Gao, L.; Fan, B., Large Area Perovskite Solar Cell Module. J. Semicond. 2017, 38, 014006.
(50)
Gotanda, T.; Oooka, H.; Mori, S.; Nakao, H.; Amano, A.; Todori, K.; Nakai, Y.;
948
Mizuguchi, K., Facile and Scalable Fabrication of Low-Hysteresis Perovskite Solar Cells
949
and Modules using a Three-Step Process for the Perovskite Layer. J. Power Sources
950
2019, 430, 145-149.
951
(51)
Huang, F.; Li, M.; Siffalovic, P.; Cao, G.; Tian, J., From Scalable Solution Fabrication of
952
Perovskite Films Towards Commercialization of Solar Cells. Energy Environ. Sci. 2019,
953
12, 518-549.
954
(52)
955 956
Jena, A. K.; Kulkarni, A.; Miyasaka, T., Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019, 119, 3036-3103.
(53)
Jeong, D.-N.; Lee, D.-K.; Seo, S.; Lim, S. Y.; Zhang, Y.; Shin, H.; Cheong, H.; Park, N.-
957
G., Perovskite Cluster-Containing Solution for Scalable D-Bar Coating toward High-
958
Throughput Perovskite Solar Cells. ACS Energy Lett. 2019, 4, 1189-1195.
959
(54)
Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J.,
960
Efficient, High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of
961
Solution-Processed Precursor Stacking Layers. Energy Environ. Sci. 2014, 7, 2619-2623.
962
(55)
Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.;
963
Grätzel, M., Sequential Deposition as a Route to High-Performance Perovskite-Sensitized
964
Solar Cells. Nature 2013, 499, 316-319.
965
(56)
966 967
Abate, A.; Correa-Baena, J.-P.; Saliba, M.; Su'ait, M. S.; Bella, F., Perovskite Solar Cells: From the Laboratory to the Assembly Line. Chem. Eur. J. 2018, 24, 3083-3100.
(57)
Qiu, L.; Ono, L. K.; Qi, Y. B., Advances and Challenges to the Commercialization of
968
Organic–Inorganic Halide Perovskite Solar Cell Technology. Mater. Today Energy 2018,
969
7, 169-189.
46 ACS Paragon Plus Environment
Page 47 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
970
ACS Energy Letters
(58)
Wang, P.; Wu, Y.; Cai, B.; Ma, Q.; Zheng, X.; Zhang, W.-H., Solution-Processable
971
Perovskite Solar Cells toward Commercialization: Progress and Challenges. Adv. Funct.
972
Mater. 2019, 29, 1807661.
973
(59)
Wang, F.; Cao, Y.; Chen, C.; Chen, Q.; Wu, X.; Li, X.; Qin, T.; Huang, W., Materials
974
toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies.
975
Adv. Funct. Mater. 2018, 28, 1803753.
976
(60)
977 978
Li, Z.; Klein, T. R.; Kim, D. H.; Yang, M.; Berry, J. J.; van Hest, M. F. A. M.; Zhu, K., Scalable Fabrication of Perovskite Solar Cells. Nat. Rev. Mater. 2018, 3, 18017.
(61)
Razza, S.; Castro-Hermosa, S.; Carlo, A. D.; Brown, T. M., Research Update: Large-
979
Area Deposition, Coating, Printing, and Processing Techniques for the Upscaling of
980
Perovskite Solar Cell Technology. APL Mater. 2016, 4, 091508.
981
(62)
982 983
Films and Solar Modules. J. Materiomics 2017, 3, 231-244. (63)
984 985
(64) (65) (66)
Swartwout, R.; Hoerantner, M. T.; Bulović, V., Scalable Deposition Methods for LargeArea Production of Perovskite Thin Films. Energy Eviron. Mater 2019, 2, 119-143.
(67)
992 993
Remeika, M.; Qi, Y. B., Scalable Solution Coating of the Absorber for Perovskite Solar Cells. J. Energy Chem. 2018, 27, 1101-1110.
990 991
Meredith, P.; Armin, A., Scaling of Next Generation Solution Processed Organic and Perovskite Solar Cells. Nat. Commun. 2018, 9, 5261.
988 989
Xu, Q.; Yang, D.; Lv, J.; Sun, Y. Y.; Zhang, L., Perovskite Solar Absorbers: Materials by Design. Small Methods 2018, 2, 1700316.
986 987
Yang, Z.; Zhang, S.; Li, L.; Chen, W., Research Progress on Large-Area Perovskite Thin
Gao, L.; Chen, L.; Huang, S.; Li, X.; Yang, G., Series and Parallel Module Design for Large-Area Perovskite Solar Cells. ACS Appl. Energy Mater. 2019, 2, 3851-3859.
(68)
Jung, Y.-S.; Hwang, K.; Heo, Y.-J.; Kim, J.-E.; Vak, D.; Kim, D.-Y., Progress in
994
Scalable Coating and Roll-to-Roll Compatible Printing Processes of Perovskite Solar
995
Cells toward Realization of Commercialization. Adv. Opt. Mater. 2018, 6, 1701182.
996
(69)
997 998 999
Chen, Y.; Zhang, L.; Zhang, Y.; Gao, H.; Yan, H., Large-area perovskite solar cells – a review of recent progress and issues. RSC Advances 2018, 8, 10489-10508.
(70)
Ramanujam, J.; Singh, U. P., Copper Indium Gallium Selenide Based Solar Cells – a Review. Energy Environ. Sci. 2017, 10, 1306-1319.
47 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1000
(71)
Powalla, M.; Paetel, S.; Hariskos, D.; Wuerz, R.; Kessler, F.; Lechner, P.; Wischmann,
1001
W.; Friedlmeier, T. M., Advances in Cost-Efficient Thin-Film Photovoltaics Based on
1002
Cu(In,Ga)Se2. Engineering 2017, 3, 445-451.
1003
(72)
Page 48 of 68
Burst, J. M.; Duenow, J. N.; Albin, D. S.; Colegrove, E.; Reese, M. O.; Aguiar, J. A.;
1004
Jiang, C. S.; Patel, M. K.; Al-Jassim, M. M.; Kuciauskas, D., et al., CdTe Solar Cells with
1005
Open-Circuit Voltage Breaking the 1 V Barrier. Nat. Energy 2016, 1, 16015.
1006
(73)
Fiducia, T. A. M.; Mendis, B. G.; Li, K.; Grovenor, C. R. M.; Munshi, A. H.; Barth, K.;
1007
Sampath, W. S.; Wright, L. D.; Abbas, A.; Bowers, J. W., et al., Understanding the Role
1008
of Selenium in Defect Passivation for Highly Efficient Selenium-Alloyed Cadmium
1009
Telluride Solar Cells. Nat. Energy 2019, 4, 504-511.
1010
(74)
Krasikov, D., Selenium Lowers Bulk Recombination. Nat. Energy 2019, 4, 442-443.
1011
(75)
Amin, N.; Rahman, K. S., Chapter 18: Close-Spaced Sublimation (CSS): A Low-Cost,
1012
High-Yield Deposition System for Cadmium Telluride (CdTe) Thin Film Solar Cells. In
1013
Modern Technologies for Creating the Thin-film Systems and Coatings, Nikitenkov, N.,
1014
Ed. IntechOpen: London, UK, 2017.
1015
(76)
1016 1017
Meyers, P. V.; Albright, S. P., Technical and Economic Opportunities for CdTe PV at the Turn of the Millennium. Prog. Photovolt. Res. Appl. 2000, 8, 161-169.
(77)
Hamedani, Y.; Macha, P.; Bunning, T. J.; Naik, R. R.; Vasudev, M. C., Chapter 10:
1018
Plasma-Enhanced Chemical Vapor Deposition: Where we are and the Outlook for the
1019
Future. In Chemical Vapor Deposition - Recent Advances and Applications in Optical,
1020
Solar Cells and Solid State Devices, Neralla, S., Ed. IntechOpen: London, UK, 2016.
1021
(78)
Jones, A. C.; Hitchman, M. L., Chapter 1 Overview of Chemical Vapour Deposition. In
1022
Chemical Vapour Deposition: Precursors, Processes and Applications, Jones, A. C.;
1023
Hitchman, M. L., Eds. The Royal Society of Chemistry: 2009; pp 1-36.
1024
(79)
Banerjee, A.; Su, T.; Beglau, D.; Pietka, G.; Liu, F. S.; Almutawalli, S.; Yang, J.; Guha,
1025
S., High-Efficiency, Multijunction nc-Si:H-Based Solar Cells at High Deposition Rate.
1026
IEEE J. Photovolta. 2012, 2, 99-103.
1027
(80)
Banerjee, A.; Liu, F.; Beglau, D.; Su, T.; Pietka, G.; Yan, B.; Yue, G.; Yang, J.; Guha, S.
1028
In 12.0% Efficiency on large area, encapsulated, multijunction nc-Si:H based solar cells,
1029
2011 37th IEEE Photovoltaic Specialists Conference, 19-24 June 2011; 2011; pp 003589-
1030
003589.
48 ACS Paragon Plus Environment
Page 49 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1031
ACS Energy Letters
(81)
1032 1033
Ramanujam, J.; Verma, A., Photovoltaic Properties of a-Si:H Films Grown by Plasma Enhanced Chemical Vapor Deposition: A Review. Mater. Express 2012, 2, 177-196.
(82)
Meillaud, F.; Boccard, M.; Bugnon, G.; Despeisse, M.; Hänni, S.; Haug, F. J.; Persoz, J.;
1034
Schüttauf, J. W.; Stuckelberger, M.; Ballif, C., Recent Advances and Remaining
1035
Challenges in Thin-Film Silicon Photovoltaic Technology. Mater. Today 2015, 18, 378-
1036
384.
1037
(83)
Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.;
1038
Adachi, D.; Kanematsu, M.; Uzu, H., et al., Silicon Heterojunction Solar Cell with
1039
Interdigitated Back Contacts for a Photoconversion Efficiency over 26%. Nat. Energy
1040
2017, 2, 17032.
1041
(84)
1042 1043
Ribeyron, P. J., Crystalline Silicon Solar Cells - Better Than Ever. Nat. Energy 2017, 2, 17067.
(85)
Illiberi, A.; Poodt, P.; Bolt, P.-J.; Roozeboom, F., Recent Advances in Atmospheric
1044
Vapor-Phase Deposition of Transparent and Conductive Zinc Oxide. Chem. Vap. Depos.
1045
2014, 20, 234-242.
1046
(86)
Mahabaduge, H. P.; Rance, W. L.; Burst, J. M.; Reese, M. O.; Meysing, D. M.; Wolden,
1047
C. A.; Li, J.; Beach, J. D.; Gessert, T. A.; Metzger, W. K., et al., High-Efficiency,
1048
Flexible CdTe Solar Cells on Ultra-Thin Glass Substrates. Appl. Phys. Lett. 2015, 106,
1049
133501.
1050
(87)
Zhang, H.; Toudert, J., Optical Management for Efficiency Enhancement in Hybrid
1051
Organic-Inorganic Lead Halide Perovskite Solar Cells. Sci. Technol. Adv. Mater. 2018,
1052
19, 411-424.
1053
(88)
1054 1055
critical, In-Depth Review. Energy Environ. Sci. 2011, 4, 3779-3804. (89)
1056 1057
Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S., Anti-Reflective Coatings: A Konagai, M., Present Status and Future Prospects of Silicon Thin-Film Solar Cells. Jpn. J. Appl. Phys. 2011, 50, 030001.
(90)
Ávila, J.; Momblona, C.; Boix, P. P.; Sessolo, M.; Bolink, H. J., Vapor-Deposited
1058
Perovskites: The Route to High-Performance Solar Cell Production? Joule 2017, 1, 431-
1059
442.
1060 1061
(91)
Luo, P.; Zhou, S.; Xia, W.; Cheng, J.; Xu, C.; Lu, Y., Chemical Vapor Deposition of Perovskites for Photovoltaic Application. Adv. Mater. Interfaces 2017, 4, 1600970.
49 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1062
(92)
Page 50 of 68
Wang, S.; Li, X.; Wu, J.; Wen, W.; Qi, Y. B., Fabrication of Efficient Metal Halide
1063
Perovskite Solar Cells by Vacuum Thermal Evaporation: A Progress Review. Curr. Opin.
1064
Electrochem. 2018, 11, 130-140.
1065
(93)
1066 1067
Ono, L. K.; Leyden, M. R.; Wang, S.; Qi, Y. B., Organometal Halide Perovskite Thin Films and Solar Cells by Vapor Deposition. J. Mater. Chem. A 2016, 4, 6693-6713.
(94)
Cui, P.; Wei, D.; Ji, J.; Huang, H.; Jia, E.; Dou, S.; Wang, T.; Wang, W.; Li, M., Planar
1068
p–n Homojunction Perovskite Solar Cells with Efficiency Exceeding 21.3%. Nat. Energy
1069
2019, 4, 150-159.
1070
(95)
Sahli, F.; Werner, J.; Kamino, B. A.; Bräuninger, M.; Monnard, R.; Paviet-Salomon, B.;
1071
Barraud, L.; Ding, L.; Diaz Leon, J. J.; Sacchetto, D., et al., Fully textured monolithic
1072
perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature
1073
Materials 2018, 17, 820-826.
1074
(96)
1075 1076
Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature 2013, 501, 395.
(97)
Ono, L. K.; Wang, S.; Kato, Y.; Raga, S. R.; Qi, Y. B., Fabrication of Semi-Transparent
1077
Perovskite Films with Centimeter-Scale Superior Uniformity by the Hybrid Deposition
1078
Method. Energy Environ. Sci. 2014, 7, 3989-3993.
1079
(98)
Yang, D.; Yang, Z.; Qin, W.; Zhang, Y.; Liu, S.; Li, C., Alternating precursor layer
1080
deposition for highly stable perovskite films towards efficient solar cells using vacuum
1081
deposition. J. Mater. Chem. A 2015, 3, 9401-9405.
1082
(99)
Zhu, X.; Yang, D.; Yang, R.; Yang, B.; Yang, Z.; Ren, X.; Zhang, J.; Niu, J.; Feng, J.;
1083
Liu, S., Superior stability for perovskite solar cells with 20% efficiency using vacuum co-
1084
evaporation. Nanoscale 2017, 9, 12316-12323.
1085
(100) Leyden, M. R.; Jiang, Y.; Qi, Y. B., Chemical Vapor Deposition Grown Formamidinium
1086
Perovskite Solar Modules with High Steady State Power and Thermal Stability. J. Mater.
1087
Chem. A 2016, 4, 13125-13132.
1088
(101) Leyden, M. R.; Ono, L. K.; Raga, S. R.; Kato, Y.; Wang, S. H.; Qi, Y. B., High
1089
Performance Perovskite Solar Cells by Hybrid Chemical Vapor Deposition. J. Mater.
1090
Chem. A 2014, 2, 18742-18745.
50 ACS Paragon Plus Environment
Page 51 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
1091
(102) Turkevych, I.; Kazaoui, S.; Belich, N. A.; Grishko, A. Y.; Fateev, S. A.; Petrov, A. A.;
1092
Urano, T.; Aramaki, S.; Kosar, S.; Kondo, M., et al., Strategic Advantages of Reactive
1093
Polyiodide Melts for Scalable Perovskite Photovoltaics. Nat. Nanotech. 2019, 14, 57-63.
1094
(103) Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang,
1095
Y., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. J.
1096
Am. Chem. Soc. 2014, 136, 622-625.
1097
(104) Guo, Q.; Li, C.; Qiao, W.; Ma, S.; Wang, F.; Zhang, B.; Hu, L.; Dai, S.; Tan, Z. a., The
1098
Growth of a CH3NH3PbI3 Thin Film Using Simplified Close Space Sublimation for
1099
Efficient and Large Dimensional Perovskite Solar Cells. Energy Environ. Sci. 2016, 9,
1100
1486-1494.
1101
(105) Bonomi, S.; Marongiu, D.; Sestu, N.; Saba, M.; Patrini, M.; Bongiovanni, G.; Malavasi,
1102
L., Novel Physical Vapor Deposition Approach to Hybrid Perovskites: Growth of
1103
MAPbI3 Thin Films by RF-Magnetron Sputtering. Sci. Rep. 2018, 8, 15388.
1104
(106) Ha, S. T.; Liu, X.; Zhang, Q.; Giovanni, D.; Sum, T. C.; Xiong, Q., Synthesis of
1105
Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance
1106
Perovskite Solar Cells and Optoelectronic Devices. Adv. Opt. Mater. 2014, 2, 838–844.
1107
(107) Lewis, D. J.; O'Brien, P., Ambient Pressure Aerosol-Assisted Chemical Vapour
1108
Deposition of (CH3NH3)PbBr3, an Inorganic-Organic Perovskite Important in
1109
Photovoltaics. Chem. Commun. 2014, 50, 6319-6321.
1110
(108) Öz, S.; Burschka, J.; Jung, E.; Bhattacharjee, R.; Fischer, T.; Mettenbörger, A.; Wang,
1111
H.; Mathur, S., Protic ionic liquid assisted solution processing of lead halide perovskites
1112
with water, alcohols and acetonitrile. Nano Energy 2018, 51, 632-638.
1113
(109) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent
1114
Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells.
1115
Nat. Mater. 2014, 13, 897-903.
1116
(110) Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M.
1117
K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A., et al., Cesium-Containing
1118
Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High
1119
Efficiency. Energy Environ. Sci. 2016, 9, 1989-1997.
1120 1121
(111) Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale 2011, 3, 4088-4093.
51 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1122
Page 52 of 68
(112) Noel, N. K.; Habisreutinger, S. N.; Wenger, B.; Klug, M. T.; Hörantner, M. T.; Johnston,
1123
M. B.; Nicholas, R. J.; Moore, D. T.; Snaith, H. J., A low viscosity, low boiling point,
1124
clean solvent system for the rapid crystallisation of highly specular perovskite films.
1125
Energy Environ. Sci. 2017, 10, 145-152.
1126
(113) Liu, Z.; Qiu, L.; Juarez-Perez, E. J.; Hawash, Z.; Kim, T.; Jiang, Y.; Wu, Z.; Raga, S. R.;
1127
Ono, L. K.; Liu, S., et al., Gas-Solid Reaction Based over One-Micrometer Thick Stable
1128
Perovskite Films for Efficient Solar Cells and Modules. Nat. Commun. 2018, 9, 3880.
1129
(114) Qiu, L.; He, S.; Jiang, Y.; Son, D.-Y.; Ono, L. K.; Liu, Z.; Kim, T.; Bouloumis, T.;
1130
Kazaoui, S.; Qi, Y. B., Hybrid Chemical Vapor Deposition Enables Scalable and Stable
1131
Cs-FA Mixed Cation Perovskite Solar Modules With a Designated Area of 91.8 cm2
1132
Approaching 10% Efficiency. J. Mater. Chem. A 2019, 7, 6920-6929.
1133
(115) Saliba, M.; Matsui, T.; Domanski, K.; Seo, J. Y.; Ummadisingu, A.; Zakeeruddin, S. M.;
1134
Correa-Baena, J. P.; Tress, W. R.; Abate, A.; Hagfeldt, A., et al., Incorporation of
1135
Rubidium Cations Into Perovskite Solar Cells Improves Photovoltaic Performance.
1136
Science 2016, 354, 206-209.
1137
(116) Gil-Escrig, L.; Momblona, C.; La-Placa, M.-G.; Boix, P. P.; Sessolo, M.; Bolink, H. J.,
1138
Vacuum Deposited Triple-Cation Mixed-Halide Perovskite Solar Cells. Adv. Energy
1139
Mater. 2018, 8, 1703506.
1140
(117) Luo, L.; Zhang, Y.; Chai, N.; Deng, X.; Zhong, J.; Huang, F.; Peng, Y.; Ku, Z.; Cheng,
1141
Y.-B., Large-Area Perovskite Solar Cells with CsxFA1−xPbI3−yBry Thin Films Deposited
1142
by a Vapor–Solid Reaction Method. J. Mater. Chem. A 2018, 6, 21143-21148.
1143
(118) Jiang, Y.; Remeika, M.; Hu, Z.; Juarez-Perez, E. J.; Qiu, L.; Liu, Z.; Kim, T.; Ono, L. K.;
1144
Son, D.-Y.; Hawash, Z., et al., Negligible-Pb-Waste and Upscalable Perovskite
1145
Deposition Technology for High-Operational-Stability Perovskite Solar Modules. Adv.
1146
Energy Mater. 2019, 9, 1803047.
1147
(119) Jiang, Y.; Leyden, M. R.; Qiu, L.; Wang, S.; Ono, L. K.; Wu, Z.; Juarez-Perez, E. J.; Qi,
1148
Y. B., Combination of Hybrid CVD and Cation Exchange for Upscaling Cs-Substituted
1149
Mixed Cation Perovskite Solar Cells with High Efficiency and Stability. Adv. Funct.
1150
Mater. 2018, 28, 1703835.
1151 1152
(120) Fakharuddin, A.; Di Giacomo, F.; Palma, A. L.; Matteocci, F.; Ahmed, I.; Razza, S.; D’Epifanio, A.; Licoccia, S.; Ismail, J.; Di Carlo, A., et al., Vertical TiO2 Nanorods as a
52 ACS Paragon Plus Environment
Page 53 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
1153
Medium for Stable and High-Efficiency Perovskite Solar Modules. ACS Nano 2015, 9,
1154
8420-8429.
1155
(121) Di Giacomo, F.; Zardetto, V.; D'Epifanio, A.; Pescetelli, S.; Matteocci, F.; Razza, S.; Di
1156
Carlo, A.; Licoccia, S.; Kessels, W. M. M.; Creatore, M., et al., Flexible Perovskite
1157
Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact
1158
Layers and UV-Irradiated TiO2 Scaffolds on Plastic Substrates. Adv. Energy Mater. 2015,
1159
5, 1401808.
1160
(122) Qiu, W.; Merckx, T.; Jaysankar, M.; Masse de la Huerta, C.; Rakocevic, L.; Zhang, W.;
1161
Paetzold, U. W.; Gehlhaar, R.; Froyen, L.; Poortmans, J., et al., Pinhole-Free Perovskite
1162
Films for Efficient Solar Modules. Energy Environ. Sci. 2016, 9, 484-489.
1163
(123) Chiang, C.-H.; Nazeeruddin, M. K.; Gratzel, M.; Wu, C.-G., The Synergistic Effect Of
1164
H2O and DMF towards Stable and 20% Efficiency Inverted Perovskite Solar Cells.
1165
Energy Environ. Sci. 2017, 10, 808-817.
1166
(124) Fu, G.; Hou, L.; Wang, Y.; Liu, X.; Wang, J.; Li, H.; Cui, Y.; Liu, D.; Li, X.; Yang, S.,
1167
Efficiency Enhancement in Planar CH3NH3PbI3−xClx Perovskite Solar Cells by
1168
Processing with Bidentate Halogenated Additives. Sol. Energy Mater. Sol. Cells 2017,
1169
165, 36-44.
1170
(125) Bu, T.; Liu, X.; Zhou, Y.; Yi, J.; Huang, X.; Luo, L.; Xiao, J.; Ku, Z.; Peng, Y.; Huang,
1171
F., et al., Novel Quadruple-Cation Absorber for Universal Hysteresis Elimination for
1172
High Efficiency and Stable Perovskite Solar Cells. Energy Environ. Sci. 2017, 10, 2509-
1173
2515.
1174
(126) Bu, T.; Shi, S.; Li, J.; Liu, Y.; Shi, J.; Chen, L.; Liu, X.; Qiu, J.; Ku, Z.; Peng, Y., et al.,
1175
Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite
1176
Solar Cells and Modules. ACS Appl. Mater. Interfaces 2018, 10, 14922-14929.
1177
(127) Qiu, L.; Liu, Z.; Ono, L. K.; Jiang, Y.; Son, D.-Y.; Hawash, Z.; He, S.; Qi, Y. B.,
1178
Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules
1179
Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer. Adv. Funct.
1180
Mater. 2019, 29, 1806779.
1181
(128) Han, G. S.; Kim, J.; Bae, S.; Han, S.; Kim, Y. J.; Gong, O. Y.; Lee, P.; Ko, M. J.; Jung,
1182
H. S., Spin-Coating Process for 10 cm × 10 cm Perovskite Solar Modules Enabled by
1183
Self-Assembly of SnO2 Nanocolloids. ACS Energy Lett. 2019, 1845-1851.
53 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1184
(129) Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T.-Y.; Noh, J. H.;
1185
Seo, J., Efficient, Stable and Scalable Perovskite Solar Cells using Poly(3-
1186
HexylThiophene). Nature 2019, 567, 511-515.
1187
(130) Bu, T.; Li, J.; Zheng, F.; Chen, W.; Wen, X.; Ku, Z.; Peng, Y.; Zhong, J.; Cheng, Y.-B.;
1188
Huang, F., Universal Passivation Strategy to Slot-Die Printed SnO2 for Hysteresis-Free
1189
Efficient Flexible Perovskite Solar Module. Nat. Commun. 2018, 9, 4609.
1190
Page 54 of 68
(131) Tian, S.; Li, J.; Li, S.; Bu, T.; Mo, Y.; Wang, S.; Li, W.; Huang, F., A Facile Green
1191
Solvent Engineering for Up-Scaling Perovskite Solar Cell Modules. Solar Energy 2019,
1192
183, 386-391.
1193 1194 1195
(132) Solaronix, Solaronix achieves major breakthrough toward perovskite solar cell industrialization. PV Magazine International 2016, 7, 13. (133) Yang, Z.; Cai, B.; Zhou, B.; Yao, T.; Yu, W.; Liu, S.; Zhang, W.-H.; Li, C., An up-
1196
scalable approach to CH3NH3PbI3 compact films for high-performance perovskite solar
1197
cells. Nano Energy 2015, 15, 670-678.
1198
(134) Galagan, Y.; Coenen, E. W. C.; Verhees, W. J. H.; Andriessen, R., Towards the Scaling
1199
up of Perovskite Solar Cells and Modules. J. Mater. Chem. A 2016, 4, 5700-5705.
1200
(135) Wilkinson, B.; Chang, N. L.; Green, M. A.; Ho-Baillie, A. W. Y., Scaling Limits to Large
1201 1202 1203 1204
Area Perovskite Solar Cell Efficiency. Prog. Photovolt. Res. Appl. 2018, 26, 659-674. (136) Nayak, P. K.; Mahesh, S.; Snaith, H. J.; Cahen, D., Photovoltaic Solar Cell Technologies: Analysing the State of the Art. Nat. Rev. Mater. 2019, 4, 269-285. (137) Zhang, M.; Wilkinson, B.; Liao, Y.; Zheng, J.; Lau, C. F. J.; Kim, J.; Bing, J.; Green, M.
1205
A.; Huang, S.; Ho-Baillie, A. W.-Y., Electrode Design to Overcome Substrate
1206
Transparency Limitations for Highly Efficient 1 cm2 Mesoscopic Perovskite Solar Cells.
1207
Joule 2018, 2, 2694-2705.
1208
(138) Stolterfoht, M.; Wolff, C. M.; Márquez, J. A.; Zhang, S.; Hages, C. J.; Rothhardt, D.;
1209
Albrecht, S.; Burn, P. L.; Meredith, P.; Unold, T., et al., Visualization and Suppression of
1210
Interfacial Recombination for High-Efficiency Large-Area PIN Perovskite Solar Cells.
1211
Nat. Energy 2018, 3, 847-854.
1212
(139) Palma, A. L.; Matteocci, F.; Agresti, A.; Pescetelli, S.; Calabrò, E.; Vesce, L.;
1213
Christiansen, S.; Schmidt, M.; Carlo, A. D., Laser-Patterning Engineering for Perovskite
1214
Solar Modules With 95% Aperture Ratio. IEEE J. Photovolta. 2017, 7, 1674-1680.
54 ACS Paragon Plus Environment
Page 55 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1215
ACS Energy Letters
(140) Yang, M.; Kim, D. H.; Klein, T. R.; Li, Z.; Reese, M. O.; Tremolet de Villers, B. J.;
1216
Berry, J. J.; van Hest, M. F. A. M.; Zhu, K., Highly Efficient Perovskite Solar Modules
1217
by Scalable Fabrication and Interconnection Optimization. ACS Energy Lett. 2018, 3,
1218
322-328.
1219 1220
(141) Hambsch, M.; Lin, Q.; Armin, A.; Burn, P. L.; Meredith, P., Efficient, Monolithic Large Area Organohalide Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 13830-13836.
1221
(142) Zheng, J.; Mehrvarz, H.; Ma, F.-J.; Lau, C. F. J.; Green, M. A.; Huang, S.; Ho-Baillie, A.
1222
W. Y., 21.8% Efficient Monolithic Perovskite/Homo-Junction-Silicon Tandem Solar Cell
1223
on 16 cm2. ACS Energy Lett. 2018, 3, 2299-2300.
1224
(143) Kim, J.; Yun, J. S.; Cho, Y.; Lee, D. S.; Wilkinson, B.; Soufiani, A. M.; Deng, X.; Zheng,
1225
J.; Shi, A.; Lim, S., et al., Overcoming the Challenges of Large-Area High-Efficiency
1226
Perovskite Solar Cells. ACS Energy Lett. 2017, 2, 1978-1984.
1227
(144) Qin, T.; Huang, W.; Kim, J.-E.; Vak, D.; Forsyth, C.; McNeill, C. R.; Cheng, Y.-B.,
1228
Amorphous Hole-Transporting Layer in Slot-Die Coated Perovskite Solar Cells. Nano
1229
Energy 2017, 31, 210-217.
1230
(145) Isabelli, F.; Di Giacomo, F.; Gorter, H.; Brunetti, F.; Groen, P.; Andriessen, R.; Galagan,
1231
Y., Solvent Systems for Industrial-Scale Processing of Spiro-OMeTAD Hole Transport
1232
Layer in Perovskite Solar Sells. ACS Appl. Energy Mater. 2018, 1, 6056-6063.
1233
(146) Hawash, Z.; Ono, L. K.; Qi, Y. B., Recent Advances in Spiro-MeOTAD Hole Transport
1234
Material and Its Applications in Organic-inorganic Halide Perovskite Solar Cells. Adv.
1235
Mater. Interfaces 2018, 5, 1700623.
1236
(147) Ono, L. K.; Hawash, Z.; Juarez-Perez, E. J.; Qiu, L.; Jiang, Y.; Qi, Y. B., The Influence
1237
of Secondary Solvents on The Morphology of a Spiro-MeOTAD Hole Transport Layer
1238
for Lead Halide Perovskite Solar Cells. J. Phys. D. Appl. Phys. 2018, 51, 294001.
1239
(148) Ono, L. K.; Qi, Y. B., Research Progress on Organic–Inorganic Halide Perovskite
1240 1241 1242 1243
Materials and Solar Cells. J. Phys. D. Appl. Phys. 2018, 51, 093001. (149) Ono, L. K.; Qi, Y. B.; Liu, S. F., Progress toward Stable Lead Halide Perovskite Solar Cells. Joule 2018, 2, 1961-1990. (150) Zhao, X.; Kim, H.-S.; Seo, J.-Y.; Park, N.-G., Effect of Selective Contacts on the
1244
Thermal Stability of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 7148-
1245
7153.
55 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1246
(151) Cappel, U. B.; Daeneke, T.; Bach, U., Oxygen-Induced Doping of Spiro-MeOTAD in
1247
Solid-State Dye-Sensitized Solar Cells and Its Impact on Device Performance. Nano
1248
Letters 2012, 12, 4925-4931.
1249
(152) Berhe, T. A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.;
1250
Chen, L.-Y.; Dubale, A. A.; Hwang, B.-J., Organometal Halide Perovskite Solar Cells:
1251
Degradation and Stability. Energy Environ. Sci. 2016, 9, 323-356.
1252
(153) Hawash, Z.; Ono, L. K.; Qi, Y. B., Moisture and Oxygen Enhance Conductivity of
1253
LiTFSI-Doped Spiro-MeOTAD Hole Transport Layer in Perovskite Solar Cells. Adv.
1254
Mater. Interfaces 2016, 3, 1600117.
1255
Page 56 of 68
(154) Sanchez, R. S.; Mas-Marza, E., Light-Induced Effects on Spiro-OMeTAD Films and
1256
Hybrid Lead Halide Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 158, 189-
1257
194.
1258
(155) Jena, A. K.; Numata, Y.; Ikegami, M.; Miyasaka, T., Role of spiro-OMeTAD in
1259
performance deterioration of perovskite solar cells at high temperature and reuse of the
1260
perovskite films to avoid Pb-waste. J. Mater. Chem. A 2018, 6, 2219-2230.
1261
(156) Jena, A. K.; Ikegami, M.; Miyasaka, T., Severe Morphological Deformation of Spiro-
1262
OMeTAD in (CH3NH3)PbI3 Solar Cells at High Temperature. ACS Energy Lett. 2017, 2,
1263
1760-1761.
1264
(157) Domanski, K.; Correa-Baena, J.-P.; Mine, N.; Nazeeruddin, M. K.; Abate, A.; Saliba, M.;
1265
Tress, W.; Hagfeldt, A.; Grätzel, M., Not All That Glitters Is Gold: Metal-Migration-
1266
Induced Degradation in Perovskite Solar Cells. ACS Nano 2016, 10, 6306-6314.
1267
(158) Lei, L.; Zhang, S.; Yang, S.; Li, X.; Yu, Y.; Wei, Q.; Ni, Z.; Li, M., Influence of hole
1268
transport material/metal contact interface on perovskite solar cells. Nanotechnology 2018,
1269
29, 255201.
1270
(159) Ávila, J.; Momblona, C.; Boix, P. P.; Sessolo, M.; Bolink, H. J., Vapor-Deposited
1271
Perovskites: The Route to High-Performance Solar Cell Production? Joule 2017, 1, 431-
1272
442.
1273
(160) Momblona, C.; Gil-Escrig, L.; Bandiello, E.; Hutter, E. M.; Sessolo, M.; Lederer, K.;
1274
Blochwitz-Nimoth, J.; Bolink, H. J., Efficient Vacuum Deposited p-i-n and n-i-p
1275
Perovskite Solar Cells Employing Doped Charge Transport Layers. Energy Environ. Sci.
1276
2016, 9, 3456-3463.
56 ACS Paragon Plus Environment
Page 57 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1277
ACS Energy Letters
(161) Jung, M. C.; Raga, S. R.; Ono, L. K.; Qi, Y. B., Substantial Improvement of Perovskite
1278
Solar Cells Stability by Pinhole-Free Hole Transport Layer with Doping Engineering. Sci
1279
Rep 2015, 5, 9863.
1280
(162) Qiu, L.; Ono, L. K.; Jiang, Y.; Leyden, M. R.; Raga, S. R.; Wang, S.; Qi, Y. B.,
1281
Engineering Interface Structure to Improve Efficiency and Stability of Organometal
1282
Halide Perovskite Solar Cells. J. Phys. Chem. B 2018, 122, 511–520.
1283
(163) Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I.,
1284
Compositional Engineering of Perovskite Materials for High-Performance Solar Cells.
1285
Nature 2015, 517, 476-480.
1286
(164) Chen, H.; Yang, S., Carbon-Based Perovskite Solar Cells without Hole Transport
1287
Materials: The Front Runner to the Market? Adv. Mater. 2017, 29, 1603994.
1288
(165) Kato, Y.; Ono, L. K.; Lee, M. V.; Wang, S. H.; Raga, S. R.; Qi, Y. B., Silver Iodide
1289
Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top
1290
Electrodes. Adv. Mater. Interfaces 2015, 2, 1500195.
1291
(166) Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.;
1292
Grätzel, M., Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. J. Am. Chem.
1293
Soc. 2012, 134, 17396-17399.
1294
(167) Ku, Z.; Rong, Y.; Xu, M.; Liu, T.; Han, H., Full Printable Processed Mesoscopic
1295
CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode. Sci. Rep.
1296
2013, 3, 3132.
1297
(168) Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y., et
1298
al., A Hole-Conductor–Free, Fully Printable Mesoscopic Perovskite Solar Cell with High
1299
Stability. Science 2014, 345, 295-298.
1300
(169) Wei, Z.; Chen, H.; Yan, K.; Yang, S., Inkjet Printing and Instant Chemical
1301
Transformation of a CH3NH3PbI3/Nanocarbon Electrode and Interface for Planar
1302
Perovskite Solar Cells. Angew. Chem. Int. Ed. 2014, 53, 13239-13243.
1303
(170) Yang, Y.; Liu, Z.; Ng, W. K.; Zhang, L.; Zhang, H.; Meng, X.; Bai, Y.; Xiao, S.; Zhang,
1304
T.; Hu, C., et al., An Ultrathin Ferroelectric Perovskite Oxide Layer for High-
1305
Performance Hole Transport Material Free Carbon Based Halide Perovskite Solar Cells.
1306
Adv. Funct. Mater. 2019, 29, 1806506.
57 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1307
Page 58 of 68
(171) Duan, J.; Hu, T.; Zhao, Y.; He, B.; Tang, Q., Carbon-Electrode-Tailored All-Inorganic
1308
Perovskite Solar Cells To Harvest Solar and Water-Vapor Energy. Angew. Chem. Int. Ed.
1309
2018, 57, 5746-5749.
1310
(172) Ku, Z.; Xia, X.; Shen, H.; Tiep, N. H.; Fan, H. J., A Mesoporous Nickel Counter
1311
Electrode for Printable and Reusable Perovskite Solar Cells. Nanoscale 2015, 7, 13363-
1312
13368.
1313
(173) Chu, Q.-Q.; Ding, B.; Peng, J.; Shen, H.; Li, X.; Liu, Y.; Li, C.-X.; Li, C.-J.; Yang, G.-J.;
1314
White, T. P., et al., Highly Stable Carbon-Based Perovskite Solar Cell with a Record
1315
Efficiency of Over 18% via Hole Transport Engineering. Journal of Materials Science &
1316
Technology 2019, 35, 987-993.
1317
(174) Baranwal, A. K.; Kanda, H.; Shibayama, N.; Ito, S., Fabrication of Fully Non-Vacuum
1318
Processed Perovskite Solar Cells Using an Inorganic CuSCN Hole-Transporting Material
1319
and Carbon-Back Contact. Sustain. Energy Fuels 2018, 2, 2778-2787.
1320
(175) Arora, N.; Dar, M. I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S. M.;
1321
Grätzel, M., Perovskite Solar Cells with CuSCN Hole Extraction Layers Yield Stabilized
1322
Efficiencies Greater than 20%. Science 2017, 358, 768-771.
1323
(176) Mashhoun, S.; Hou, Y.; Chen, H.; Tajabadi, F.; Taghavinia, N.; Egelhaaf, H.-J.; Brabec,
1324
C. J., Resolving a Critical Instability in Perovskite Solar Cells by Designing a Scalable
1325
and Printable Carbon Based Electrode-Interface Architecture. Adv. Energy Mater. 2018,
1326
8, 1802085.
1327
(177) Christians, J. A.; Fung, R. C. M.; Kamat, P. V., An Inorganic Hole Conductor for
1328
Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper
1329
Iodide. J. Am. Chem. Soc. 2014, 136, 758-764.
1330
(178) Peiris, T. A. N.; Baranwal, A. K.; Kanda, H.; Fukumoto, S.; Kanaya, S.; Cojocaru, L.;
1331
Bessho, T.; Miyasaka, T.; Segawa, H.; Ito, S., Enhancement of The Hole Conducting
1332
Effect of NiO by a N2 Blow Drying Method in Printable Perovskite Solar Cells with
1333
Low-Temperature Carbon as the Counter Electrode. Nanoscale 2017, 9, 5475-5482.
1334
(179) Liu, X.; Tan, X.; Liu, Z.; Ye, H.; Sun, B.; Shi, T.; Tang, Z.; Liao, G., Boosting the
1335
Efficiency of Carbon-Based Planar CsPbBr3 Perovskite Solar Cells by a Modified
1336
Multistep Spin-Coating Technique and Interface Engineering. Nano Energy 2019, 56,
1337
184-195.
58 ACS Paragon Plus Environment
Page 59 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1338
ACS Energy Letters
(180) You, J.; Meng, L.; Song, T.-B.; Guo, T.-F.; Yang, Y.; Chang, W.-H.; Hong, Z.; Chen, H.;
1339
Zhou, H.; Chen, Q., et al., Improved Air Stability of Perovskite Solar Cells via Solution-
1340
Processed Metal Oxide Transport Layers. Nat. Nanotech. 2015, 11, 75.
1341
(181) Ye, H.; Liu, Z.; Liu, X.; Sun, B.; Tan, X.; Tu, Y.; Shi, T.; Tang, Z.; Liao, G., 17.78%
1342
Efficient Low-Temperature Carbon-Based Planar Perovskite Solar Cells Using Zn-Doped
1343
SnO2 Electron Transport Layer. Appl. Sur. Sci. 2019, 478, 417-425.
1344
(182) Chu, Q.-Q.; Ding, B.; Qiu, Q.; Liu, Y.; Li, C.-X.; Li, C.-J.; Yang, G.-J.; Fang, B., Cost
1345
Effective Perovskite Solar Cells with a High Efficiency and Open-Circuit Voltage Based
1346
on a Perovskite-Friendly Carbon Electrode. J. Mater. Chem. A 2018, 6, 8271-8279.
1347
(183) Yan, K.; Wei, Z.; Li, J.; Chen, H.; Yi, Y.; Zheng, X.; Long, X.; Wang, Z.; Wang, J.; Xu,
1348
J., et al., High-Performance Graphene-Based Hole Conductor-Free Perovskite Solar
1349
Cells: Schottky Junction Enhanced Hole Extraction and Electron Blocking. Small 2015,
1350
11, 2269-2274.
1351
(184) Yan, J.; Lin, S.; Qiu, X.; Chen, H.; Li, K.; Yuan, Y.; Long, M.; Yang, B.; Gao, Y.; Zhou,
1352
C., Accelerated Hole-Extraction in Carbon-Electrode Based Planar Perovskite Solar Cells
1353
by Moisture-Assisted Post-Annealing. Appl. Phys. Lett. 2019, 114, 103503.
1354
(185) Jiang, P.; Jones, T. W.; Duffy, N. W.; Anderson, K. F.; Bennett, R.; Grigore, M.; Marvig,
1355
P.; Xiong, Y.; Liu, T.; Sheng, Y., et al., Fully Printable Perovskite Solar Cells with
1356
Highly-Conductive, Low-Temperature, Perovskite-Compatible Carbon Electrode.
1357
Carbon 2018, 129, 830-836.
1358
(186) Aitola, K.; Domanski, K.; Correa-Baena, J.-P.; Sveinbjörnsson, K.; Saliba, M.; Abate, A.;
1359
Grätzel, M.; Kauppinen, E.; Johansson, E. M. J.; Tress, W., et al., High Temperature-
1360
Stable Perovskite Solar Cell Based on Low-Cost Carbon Nanotube Hole Contact. Adv.
1361
Mater. 2017, 29, 1606398.
1362
(187) Wei, Z.; Chen, H.; Yan, K.; Zheng, X.; Yang, S., Hysteresis-Free Multi-Walled Carbon
1363
Nanotube-Based Perovskite Solar Cells with a High Fill Factor. J. Mater. Chem. A 2015,
1364
3, 24226-24231.
1365
(188) Cheng, N.; Liu, P.; Qi, F.; Xiao, Y.; Yu, W.; Yu, Z.; Liu, W.; Guo, S.-S.; Zhao, X.-Z.,
1366
Multi-Walled Carbon Nanotubes Act as Charge Transport Channel to Boost the
1367
Efficiency of Hole Transport Material Free Perovskite Solar Cells. J. Power Sources
1368
2016, 332, 24-29.
59 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1369
Page 60 of 68
(189) Zhang, H.; Xiao, J.; Shi, J.; Su, H.; Luo, Y.; Li, D.; Wu, H.; Cheng, Y.-B.; Meng, Q.,
1370
Self-Adhesive Macroporous Carbon Electrodes for Efficient and Stable Perovskite Solar
1371
Cells. Adv. Funct. Mater. 2018, 28, 1802985.
1372
(190) Meng, X.; Zhou, J.; Hou, J.; Tao, X.; Cheung, S. H.; So, S. K.; Yang, S., Versatility of
1373
Carbon Enables All Carbon Based Perovskite Solar Cells to Achieve High Efficiency and
1374
High Stability. Adv. Mater. 2018, 30, 1706975.
1375
(191) Wu, Z.; Liu, Z.; Hu, Z.; Hawash, Z.; Qiu, L.; Jiang, Y.; Ono, L. K.; Qi, Y. B., Highly
1376
Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the
1377
Perovskite/Carbon Electrode Interface. Adv. Mater. 2019, 31, e1804284.
1378
(192) Zhu, W.; Zhang, Q.; Chen, D.; Zhang, Z.; Lin, Z.; Chang, J.; Zhang, J.; Zhang, C.; Hao,
1379
Y., Intermolecular Exchange Boosts Efficiency of Air-Stable, Carbon-Based All-
1380
Inorganic Planar CsPbIBr2 Perovskite Solar Cells to Over 9%. Adv. Energy Mater. 2018,
1381
8, 1802080.
1382
(193) Teng, P.; Han, X.; Li, J.; Xu, Y.; Kang, L.; Wang, Y.; Yang, Y.; Yu, T., Elegant Face-
1383
Down Liquid-Space-Restricted Deposition of CsPbBr3 Films for Efficient Carbon-Based
1384
All-Inorganic Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 9541-
1385
9546.
1386
(194) Zhang, Q.; Zhu, W.; Chen, D.; Zhang, Z.; Lin, Z.; Chang, J.; Zhang, J.; Zhang, C.; Hao,
1387
Y., Light Processing Enables Efficient Carbon-Based, All-Inorganic Planar CsPbIBr2
1388
Solar Cells with High Photovoltages. ACS Appl. Mater. Interfaces 2019, 11, 2997-3005.
1389
(195) Jiang, X.; Yu, Z.; Lai, J.; Zhang, Y.; Hu, M.; Lei, N.; Wang, D.; Yang, X.; Sun, L.,
1390
Interfacial Engineering of Perovskite Solar Cells by Employing a Hydrophobic Copper
1391
Phthalocyanine Derivative as Hole-Transporting Material with Improved Performance
1392
and Stability. ChemSusChem 2017, 10, 1838-1845.
1393
(196) Zhang, F.; Yang, X.; Wang, H.; Cheng, M.; Zhao, J.; Sun, L., Structure Engineering of
1394
Hole–Conductor Free Perovskite-Based Solar Cells with Low-Temperature-Processed
1395
Commercial Carbon Paste As Cathode. ACS Appl. Mater. Interfaces 2014, 6, 16140-
1396
16146.
1397 1398
(197) Zhou, H.; Shi, Y.; Dong, Q.; Zhang, H.; Xing, Y.; Wang, K.; Du, Y.; Ma, T., HoleConductor-Free, Metal-Electrode-Free TiO2/CH3NH3PbI3 Heterojunction Solar Cells
60 ACS Paragon Plus Environment
Page 61 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
1399
Based on a Low-Temperature Carbon Electrode. J. Phys. Chem. Lett. 2014, 5, 3241-
1400
3246.
1401
(198) Zhou, H.; Shi, Y.; Wang, K.; Dong, Q.; Bai, X.; Xing, Y.; Du, Y.; Ma, T., Low-
1402
Temperature Processed and Carbon-Based ZnO/CH3NH3PbI3/C Planar Heterojunction
1403
Perovskite Solar Cells. J. Phys. Chem. C 2015, 119, 4600-4605.
1404
(199) Yang, Y.; Xiao, J.; Wei, H.; Zhu, L.; Li, D.; Luo, Y.; Wu, H.; Meng, Q., An All-Carbon
1405
Counter Electrode for Highly Efficient Hole-Conductor-Free Organo-Metal Perovskite
1406
Solar Cells. RSC Advances 2014, 4, 52825-52830.
1407
(200) Gong, J.; Darling, S. B.; You, F., Perovskite Photovoltaics: Life-Cycle Assessment of
1408
Energy and Environmental Impacts. Energy Environ. Sci. 2015, 8, 1953-1968.
1409
(201) Chang, N. L.; Yi Ho-Baillie, A. W.; Basore, P. A.; Young, T. L.; Evans, R.; Egan, R. J.,
1410
A Manufacturing Cost Estimation Method with Uncertainty Analysis and Its Application
1411
to Perovskite on Glass Photovoltaic Modules. Prog. Photovolt. Res. Appl. 2017, 25, 390-
1412
405.
1413
(202) Berry, J.; Buonassisi, T.; Egger, D. A.; Hodes, G.; Kronik, L.; Loo, Y.-L.; Lubomirsky,
1414
I.; Marder, S. R.; Mastai, Y.; Miller, J. S., et al., Hybrid Organic–Inorganic Perovskites
1415
(HOIPs): Opportunities and Challenges. Adv. Mater. 2015, 27, 5102-5112.
1416
(203) Editorial, A Decade of Perovskite Photovoltaics. Nat. Energy 2019, 4, 1.
1417
(204) Booth, H., Laser Processing in Industrial Solar Module Manufacturing. J Laser Micro
1418
Nanoen 2010, 5, 183-191.
1419
(205) Hofmann, A. I.; Cloutet, E.; Hadziioannou, G., Materials for Transparent Electrodes:
1420
From Metal Oxides to Organic Alternatives. Advanced Electronic Materials 2018, 4,
1421
1700412.
1422
(206) Ono, L. K.; Juárez-Pérez, E. J.; Qi, Y. B., Progress on Novel Perovskite Materials and
1423
Solar Cells with Mixed Cations and Halide Anions. ACS Appl. Mater. Interfaces 2017, 9,
1424
30197-30246.
1425
(207) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as
1426
Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-
1427
6051.
1428 1429
(208) Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E., et al., Lead Iodide Perovskite Sensitized
61 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 62 of 68
1430
All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding
1431
9%. Sci. Rep. 2012, 2, 591.
1432
(209) Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-
1433
Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular
1434
Exchange. Science 2015, 348, 1234-1237.
1435
(210) Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.;
1436
Seo, J.; Kim, E. K.; Noh, J. H., et al., Iodide Management in Formamidinium-Lead-
1437
Halide–Based Perovskite Layers for Efficient Solar Cells. Science 2017, 356, 1376-1379.
1438
(211) Bi, D.; Yi, C.; Luo, J.; Décoppet, J.-D.; Zhang, F.; Zakeeruddin, Shaik M.; Li, X.;
1439
Hagfeldt, A.; Grätzel, M., Polymer-Templated Nucleation and Crystal Growth of
1440
Perovskite Films for Solar Cells with Efficiency Greater than 21%. Nat. Energy 2016, 1,
1441
16142.
1442
(212) Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Gratzel, C.; Zakeeruddin, S.
1443
M.; Rothlisberger, U.; Gratzel, M., Entropic Stabilization of Mixed A-Cation ABX3
1444
Metal Halide Perovskites for High Performance Perovskite Solar Cells. Energy Environ.
1445
Sci. 2016, 9, 656-662.
1446 1447 1448
(213) Yin, W.-J.; Yan, Y.; Wei, S.-H., Anomalous Alloy Properties in Mixed Halide Perovskites. J. Phys. Chem. Lett. 2014, 5, 3625-3631. (214) Zheng, X.; Wu, C.; Jha, S. K.; Li, Z.; Zhu, K.; Priya, S., Improved Phase Stability of
1449
Formamidinium Lead Triiodide Perovskite by Strain Relaxation. ACS Energy Lett. 2016,
1450
1, 1014-1020.
1451
(215) Juarez-Perez, E. J.; Ono, L. K.; Maeda, M.; Jiang, Y.; Hawash, Z.; Qi, Y. B.,
1452
Photodecomposition and Thermal Decomposition in Methylammonium Halide Lead
1453
Perovskites and Inferred Design Principles to Increase Photovoltaic Device Stability. J.
1454
Mater. Chem. A 2018, 6, 9604-9612.
1455
(216) García-Fernández, A.; Juarez-Perez, E. J.; Castro-García, S.; Sánchez-Andújar, M.; Ono,
1456
L. K.; Jiang, Y.; Qi, Y. B., Benchmarking Chemical Stability of Arbitrarily Mixed 3D
1457
Hybrid Halide Perovskites for Solar Cell Applications. Small Methods 2018, 2, 1800242.
1458
(217) Manser, J. S.; Saidaminov, M. I.; Christians, J. A.; Bakr, O. M.; Kamat, P. V., Making
1459
and Breaking of Lead Halide Perovskites. Acc. Chem. Res. 2016, 49, 330-338.
62 ACS Paragon Plus Environment
Page 63 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1460
ACS Energy Letters
(218) Turren-Cruz, S.-H.; Hagfeldt, A.; Saliba, M., Methylammonium-Free, High-
1461
Performance, and Stable Perovskite Solar Cells on a Planar Architecture. Science 2018,
1462
362, 449-453.
1463
(219) Song, Z.; Wang, C.; Phillips, A. B.; Grice, C. R.; Zhao, D.; Yu, Y.; Chen, C.; Li, C.; Yin,
1464
X.; Ellingson, R. J., et al., Probing the Origins of Photodegradation in Organic–Inorganic
1465
Metal Halide Perovskites with Time-Resolved Mass Spectrometry. Sustain. Energy Fuels
1466
2018, 2, 2460-2467.
1467
(220) Latini, A.; Gigli, G.; Ciccioli, A., A study on the Nature of the Thermal Decomposition
1468
of Methylammonium Lead Iodide Perovskite, CH3NH3PbI3: an Attempt to Rationalise
1469
Contradictory Experimental Results. Sustain. Energy Fuels 2017, 1, 1351-1357.
1470
(221) Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y. B., Thermal Degradation
1471
of CH3NH3PbI3 Perovskite into NH3 and CH3I Gases Observed by Coupled
1472
Thermogravimetry-Mass Spectrometry Analysis. Energy Environ. Sci. 2016, 9, 3406-
1473
3410.
1474 1475 1476
(222) Fakharuddin, A.; Schmidt-Mende, L.; Garcia-Belmonte, G.; Jose, R.; Mora-Sero, I., Interfaces in Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1700623. (223) Habisreutinger, S. N.; McMeekin, D. P.; Snaith, H. J.; Nicholas, R. J., Research Update:
1477
Strategies for Improving The Stability of Perovskite Solar Cells. APL Mater. 2016, 4,
1478
091503.
1479
(224) Xu, F.; Zhang, T.; Li, G.; Zhao, Y., Mixed Cation Hybrid Lead Halide Perovskites with
1480
Enhanced Performance and Stability. J. Mater. Chem. A 2017, 5, 11450-11461.
1481
(225) Wang, S.; Jiang, Y.; Juarez-Perez, Emilio J.; Ono, L. K.; Qi, Y. B., Accelerated
1482
Degradation of Methylammonium Lead Iodide Perovskites Induced by Exposure to
1483
Iodine Vapour. Nat. Energy 2016, 2, 16195.
1484 1485 1486
(226) Wilks, R. G.; Bär, M., Perovskite Solar Cells: Danger from Within. Nat. Energy 2017, 2, 16204. (227) Ono, L. K.; Raga, S. R.; Remeika, M.; Winchester, A. J.; Gabe, A.; Qi, Y. B., Pinhole-
1487
Free Hole Transport Layers Significantly Improve the Stability of MAPbI3-Based
1488
Perovskite Solar Cells Under Operating Conditions. J. Mater. Chem. A 2015, 3, 15451-
1489
15456.
63 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1490 1491 1492
(228) Wang, M.; Yim, W.-L.; Liao, P.; Shen, Y., Temperature Dependent Characteristics of Perovskite Solar Cells. Chem. Select 2017, 2, 4469-4477. (229) Ono, L. K.; Raga, S. R.; Wang, S.; Kato, Y.; Qi, Y. B., Temperature-Dependent
1493
Hysteresis Effects in Perovskite-Based Solar Cells. J. Mater. Chem. A 2015, 3, 9074-
1494
9080.
1495 1496 1497
(230) Zhang, H.; Qiao, X.; Shen, Y.; Wang, M., Effect of Temperature on the Efficiency of Organometallic Perovskite Solar Cells. J. Energy Chem. 2015, 24, 729. (231) Zhang, H.; Qiao, X.; Shen, Y.; Moehl, T.; Zakeeruddin, S. M.; Gratzel, M.; Wang, M.,
1498
Photovoltaic Behaviour of Lead Methylammonium Triiodide Perovskite Solar Cells
1499
Down to 80 K. J. Mater. Chem. A 2015, 3, 11762-11767.
1500
Page 64 of 68
(232) Milot, R. L.; Eperon, G. E.; Snaith, H. J.; Johnston, M. B.; Herz, L. M., Temperature-
1501
Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films. Adv. Funct.
1502
Mater. 2015, 25, 6218-6227.
1503 1504 1505
(233) Solanki, A.; Yadav, P.; Turren-Cruz, S.-H.; Lim, S. S.; Saliba, M.; Sum, T. C., Cation influence on carrier dynamics in perovskite solar cells. Nano Energy 2019, 58, 604-611. (234) Bush, K. A.; Palmstrom, A. F.; Yu, Z. J.; Boccard, M.; Cheacharoen, R.; Mailoa, J. P.;
1506
McMeekin, D. P.; Hoye, R. L. Z.; Bailie, C. D.; Leijtens, T., et al., 23.6%-Efficient
1507
Monolithic Perovskite/Silicon Tandem Solar Cells with Improved Stability. Nat. Energy
1508
2017, 2, 17009.
1509
(235) Wu, Z.; Raga, S. R.; Juarez-Perez, E. J.; Yao, X.; Jiang, Y.; Ono, L. K.; Ning, Z.; Tian,
1510
H.; Qi, Y. B., Improved Efficiency and Stability of Perovskite Solar Cells Induced by
1511
C=O Functionalized Hydrophobic Ammonium-Based Additives. Adv. Mater. 2017, 29,
1512
1703670.
1513
(236) Zhou, Y.; Zhou, Z.; Chen, M.; Zong, Y.; Huang, J.; Pang, S.; Padture, N. P., Doping and
1514
Alloying for Improved Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 17623-17635.
1515
(237) Christians, J. A.; Zhang, F.; Bramante, R. C.; Reese, M. O.; Schloemer, T. H.; Sellinger,
1516
A.; van Hest, M. F. A. M.; Zhu, K.; Berry, J. J.; Luther, J. M., Stability at Scale:
1517
Challenges of Module Interconnects for Perovskite Photovoltaics. ACS Energy Lett.
1518
2018, 3, 2502-2503.
64 ACS Paragon Plus Environment
Page 65 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1519
ACS Energy Letters
(238) Cheacharoen, R.; Boyd, C. C.; Burkhard, G. F.; Leijtens, T.; Raiford, J. A.; Bush, K. A.;
1520
Bent, S. F.; McGehee, M. D., Encapsulating perovskite solar cells to withstand damp heat
1521
and thermal cycling. Sustain. Energy Fuels 2018, 2, 2398-2406.
1522 1523
(239) Uddin, A.; Upama, M. B.; Yi, H.; Duan, L., Encapsulation of Organic and Perovskite Solar Cells: A Review. Coatings 2019, 9, 65.
1524
(240) Jiang, Y.; Qiu, L.; Juarez-Perez, E. J.; Ono, L. K.; Hu, Z.; Liu, Z.; Wu, Z.; Meng, L.;
1525
Wang, Q.; Qi, Y. B., Reduction of lead leakage from damaged lead halide perovskite
1526
solar modules using self-healing polymer-based encapsulation. Nat. Energy 2019, 4, 585-
1527
593.
1528
(241) Boyd, C. C.; Cheacharoen, R.; Leijtens, T.; McGehee, M. D., Understanding Degradation
1529
Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews
1530
2019, 119, 3418-3451.
1531
(242) Niu, G. D.; Li, W. Z.; Meng, F. Q.; Wang, L. D.; Dong, H. P.; Qiu, Y., Study on the
1532
Stability of CH3NH3PbI3 Films and The Effect of Post-Modification by Aluminum Oxide
1533
in All-Solid-State Hybrid Solar Cells. J. Mater. Chem. A 2014, 2, 705-710.
1534 1535
(243) Zhao, P.; Kim, B. J.; Jung, H. S., Passivation in Perovskite Solar Cells: A Review. Mater. Today Energy 2018, 7, 267-286.
1536
(244) Ip, A. H.; Quan, L. N.; Adachi, M. M.; McDowell, J. J.; Xu, J.; Kim, D. H.; Sargent, E.
1537
H., A Two-Step Route to Planar Perovskite Cells Exhibiting Reduced Hysteresis. Appl.
1538
Phys. Lett. 2015, 106, 143902.
1539
(245) Yang, D.; Zhou, X.; Yang, R.; Yang, Z.; Yu, W.; Wang, X.; Li, C.; Liu, S.; Chang, R. P.
1540
H., Surface optimization to eliminate hysteresis for record efficiency planar perovskite
1541
solar cells. Energy Environ. Sci. 2016, 9, 3071-3078.
1542
(246) Jiang, J.; Jin, Z.; Lei, J.; Wang, Q.; Zhang, X.; Zhang, J.; Gao, F.; Liu, S., ITIC surface
1543
modification to achieve synergistic electron transport layer enhancement for planar-type
1544
perovskite solar cells with efficiency exceeding 20%. J. Mater. Chem. A 2017, 5, 9514-
1545
9522.
1546
(247) Wang, Q.; Dong, Q.; Li, T.; Gruverman, A.; Huang, J., Thin Insulating Tunneling
1547
Contacts for Efficient and Water-Resistant Perovskite Solar Cells. Adv. Mater. 2016, 28,
1548
6734-6739.
65 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1549
(248) Wang, K.; Zhao, W.; Liu, J.; Niu, J.; Liu, Y.; Ren, X.; Feng, J.; Liu, Z.; Sun, J.; Wang,
1550
D., et al., CO2 Plasma-Treated TiO2 Film as an Effective Electron Transport Layer for
1551
High-Performance Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9,
1552
33989-33996.
1553
Page 66 of 68
(249) Chander, N.; Khan, A. F.; Chandrasekhar, P. S.; Thouti, E.; Swami, S. K.; Dutta, V.;
1554
Komarala, V. K., Reduced Ultraviolet Light Induced Degradation and Enhanced Light
1555
Harvesting Using YVO4:Eu3+ Down-Shifting Nano-Phosphor Layer in Organometal
1556
Halide Perovskite Solar Cells. Appl. Phys. Lett. 2014, 105, 033904.
1557
(250) Bella, F.; Griffini, G.; Correa-Baena, J.-P.; Saracco, G.; Grätzel, M.; Hagfeldt, A.; Turri,
1558
S.; Gerbaldi, C., Improving Efficiency and Stability of Perovskite Solar Cells with
1559
Photocurable Fluoropolymers. Science 2016, 354, 203-206.
1560
(251) Wang, Q.; Zhang, X.; Jin, Z.; Zhang, J.; Gao, Z.; Li, Y.; Liu, S. F., Energy-Down-Shift
1561
CsPbCl3:Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar
1562
Cells. ACS Energy Lett. 2017, 2, 1479-1486.
1563
(252) Yang, D.; Zhang, X.; Wang, K.; Wu, C.; Yang, R.; Hou, Y.; Jiang, Y.; Liu, S.; Priya, S.,
1564
Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-
1565
Optimized PCBM Electron-Transport Layers. Nano Letters 2019, 19, 3313-3320.
1566
(253) Li, M.-H.; Yeh, H.-H.; Chiang, Y.-H.; Jeng, U.-S.; Su, C.-J.; Shiu, H.-W.; Hsu, Y.-J.;
1567
Kosugi, N.; Ohigashi, T.; Chen, Y.-A., et al., Highly Efficient 2D/3D Hybrid Perovskite
1568
Solar Cells via Low-Pressure Vapor-Assisted Solution Process. Adv. Mater. 2018, 30,
1569
1801401.
1570
(254) Wang, Z.; McMeekin, D. P.; Sakai, N.; van Reenen, S.; Wojciechowski, K.; Patel, J. B.;
1571
Johnston, M. B.; Snaith, H. J., Efficient and Air-Stable Mixed-Cation Lead Mixed-Halide
1572
Perovskite Solar Cells with n-Doped Organic Electron Extraction Layers. Adv. Mater.
1573
2017, 29, 1604186.
1574
(255) Wang, Z.; Lin, Q.; Chmiel, F. P.; Sakai, N.; Herz, L. M.; Snaith, H. J., Efficient Ambient-
1575
Air-Stable Solar Cells with 2D–3D Heterostructured Butylammonium-Caesium-
1576
Formamidinium Lead Halide Perovskites. Nat. Energy 2017, 2, 17135.
1577 1578
(256) Christians, J. A.; Schulz, P.; Tinkham, J. S.; Schloemer, T. H.; Harvey, S. P.; Tremolet de Villers, B. J.; Sellinger, A.; Berry, J. J.; Luther, J. M., Tailored Interfaces of
66 ACS Paragon Plus Environment
Page 67 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Energy Letters
1579
Unencapsulated Perovskite Solar Cells for >1,000 Hour Operational Stability. Nat.
1580
Energy 2018, 3, 68-74.
1581
(257) Ren, X.; Yang, D.; Yang, Z.; Feng, J.; Zhu, X.; Niu, J.; Liu, Y.; Zhao, W.; Liu, S. F.,
1582
Solution-Processed Nb:SnO2 Electron Transport Layer for Efficient Planar Perovskite
1583
Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 2421-2429.
1584
(258) Yang, D.; Yang, R.; Wang, K.; Wu, C.; Zhu, X.; Feng, J.; Ren, X.; Fang, G.; Priya, S.;
1585
Liu, S., High efficiency planar-type perovskite solar cells with negligible hysteresis using
1586
EDTA-complexed SnO2. Nat. Commun. 2018, 9, 3239.
1587
(259) Yang, D.; Yang, R.; Ren, X.; Zhu, X.; Yang, Z.; Li, C.; Liu, S., Hysteresis-Suppressed
1588
High-Efficiency Flexible Perovskite Solar Cells Using Solid-State Ionic-Liquids for
1589
Effective Electron Transport. Adv. Mater. 2016, 28, 5206-5213.
1590
(260) Feng, J.; Yang, Z.; Yang, D.; Ren, X.; Zhu, X.; Jin, Z.; Zi, W.; Wei, Q.; Liu, S., E-beam
1591
evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite
1592
solar cells. Nano Energy 2017, 36, 1-8.
1593
(261) Zhao, W.; Wang, K.; Li, H.; Yang, Z.; Liu, Z.; Sun, J.; Wang, D.; Liu, S., Stoichiometry
1594
control of sputtered zinc oxide films by adjusting Ar/O2 gas ratios as electron transport
1595
layers for efficient planar perovskite solar cells. Sol. Energy Mater. Sol. Cells 2018, 178,
1596
200-207.
1597
(262) Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J.-P.;
1598
Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K.-H., et al., A Molecularly Engineered
1599
Hole-Transporting Material for Efficient Perovskite Solar Cells. Nat. Energy 2016, 1,
1600
15017.
1601 1602 1603
(263) Cai, M.; Wu, Y.; Chen, H.; Yang, X.; Qiang, Y.; Han, L., Cost-Performance Analysis of Perovskite Solar Modules. Adv. Sci. 2016, 3, 1600269. (264) Han, L., Improved Charge Carrying for Solar Cells. Nature 2019, 567, 465-467.
67 ACS Paragon Plus Environment
ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1604
Page 68 of 68
A list of selected quotes from the manuscript:
1605 1606
Page 5, Lines 99-101: In this perspective, we analyze the current progress of solution- and
1607
vapor-based upscalable techniques that allowed fabrication of solar modules with a total area
1608
larger than 10 cm2
1609
Page 13, Lines 235-236: Fabrication of solar modules based on all vapor methods (i.e., solvent-
1610
free processes) could be also envisaged for the perovskite PV technology
1611
Page 26, Lines 477-479: Organic HTLs and Au metal as electrode constitute a major portion of
1612
the fabrication cost of perovskite solar modules, i.e., about 64% of the total raw material cost
1613
Page 33, Lines 640-642: The analyses of strategies that led to the best lab-scale research-cell
1614
efficiencies provide important insights and promising trend that enhanced performance and
1615
stability can be achieved in large area perovskite solar modules
68 ACS Paragon Plus Environment