10 Segment Density Profiles of Adsorbed Polymers
Downloaded by CORNELL UNIV on May 24, 2017 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch010
T. COSGROVE, B. VINCENT, and T. L. CROWLEY— University of Bristol, Cantock's Close, Bristol BS81TS,England M. A. COHEN STUART- Laboratory for Physical and Colloid Chemistry, Agricultural University, De Dreijen 6, 6703 BC Wageningen, The Netherlands Segment density profiles and hydrodynamic thickness measurements have been made for a series of polyethylene oxides of molecular weights from 25K to 1.3M adsorbed on polystyrene latex in the 'plateau' region of the adsorption isotherm. At high molecular weights the hydrodynamic thickness occurs at the extremity of the density profile. Comparison with a theoretical model based on solvent flow through a porous layer shows that, although the density profile and the hydrodynamic thickness results are consistent, the experimental profile is not sensitive enough to detect the low concentration of segments in tails at large distances from the interface. This is confirmed by further theoretical calculations based on the Scheutjens and Fleer lattice model for an adsorbed polymer. S e v e r a l e x p e r i m e n t a l parameters have been used t o d e s c r i b e t h e conformation o f a polymer adsorbed a t t h e s o l i d - s o l u t i o n interface; these i n c l u d e t h e t h i c k n e s s o f t h e adsorbed l a y e r (photon c o r r e l a t i o n spectroscopy(J_) ( p . c . s . ) , s m a l l angle neutron s c a t t e r i n g ( 2 ) ( s . a . n . s . ) , e l l i p s o m e t r y ( 3 ) and f o r c e - d i s t a n c e measurements b e t w e e n a d s o r b e d l a y e r s ( 4 ) , and t h e s u r f a c e bound f r a c t i o n ( e . s . r . ( 5 ) , n.m.r. ( 6 ) , c a l o r i m e t r y ( 7 ) and i . r . ( 8 ) ) . However, i t i s v e r y d i f f i c u l t t o d e s c r i b e t h e a d s o r b e d l a y e r w i t h a s i n g l e p a r a m e t e r and i d e a l l y t h e segment d e n s i t y p r o f i l e o f t h e adsorbed c h a i n i s r e q u i r e d . R e c e n t l y s.a.n.s. (9) has been used t o o b t a i n segment d e n s i t y p r o f i l e s f o r p o l y e t h y l e n e o x i d e (PEO) and p a r t i a l l y h y d r o l y s e d p o l y v i n y l a l c o h o l a d s o r b e d o n p o l y s t y r e n e latex. F o r PEO, two t y p e s o f s y s t e m w e r e e x a m i n e d : one where t h e c h a i n s were t e r m i n a l l y - a n c h o r e d a n d t h e o t h e r where t h e p o l y m e r was p h y s i c a l l y a d s o r b e d f r o m s o l u t i o n . The p r o f i l e s f o r t h e s e two 0097-6156/84/0240-0147S06.00/0 © 1984 American Chemical Society
Goddard and Vincent; Polymer Adsorption and Dispersion Stability ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
POLYMER ADSORPTION AND DISPERSION STABILITY
Downloaded by CORNELL UNIV on May 24, 2017 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch010
148
c a s e s were m a r k e d l y d i f f e r e n t . The f o r m e r gave a d e n s i t y p r o f i l e w i t h a p r o n o u n c e d maximum and t h e l a t t e r a m o n o t o n i c a l l y decreasing p r o f i l e . These two c a s e s c o r r e s p o n d r e s p e c t i v e l y t o a s y s t e m c o n s i s t i n g o f s h o r t t a i l s and a s y s t e m o f l o o p s , t r a i n s and tails. The PVA s y s t e m gave p r o f i l e s s i m i l a r q u a l i t a t i v e l y t o t h e p h y s i c a l l y a d s o r b e d PEO. I n a l l the c a s e s , however, the e x p e r i m e n t a l p r o f i l e s f e l l somewhat s h o r t o f t h e h y d r o d y n a m i c t h i c k n e s s o b t a i n e d by p . c . s . T h i s s u g g e s t e d t h a t t h e h y d r o d y n a m i c t h i c k n e s s i s d e t e r m i n e d by t h e t a i l s o f t h e d e n s i t y d i s t r i b u t i o n and t h a t s . a . n . s . may n o t be s e n s i t i v e enough t o p i c k up t h e complete d e n s i t y p r o f i l e at the p e r i p h e r y of the adsorbed l a y e r . I n t h i s p a p e r we p r e s e n t r e s u l t s f o r a s e r i e s o f PEO f r a c t i o n s p h y s i c a l l y a d s o r b e d on p e r - d e u t e r o p o l y s t y r e n e l a t e x (PSL) i n t h e ' p l a t e a u r e g i o n o f t h e a d s o r p t i o n i s o t h e r m . H y d r o dynamic and a d s o r p t i o n measurements h a v e a l s o b e e n made on t h i s s y s t e m . U s i n g a p o r o u s l a y e r t h e o r y d e v e l o p e d r e c e n t l y by Cohen S t u a r t (10) we have c a l c u l a t e d t h e h y d r o d y n a m i c t h i c k n e s s o f t h e s e adsorbed polymers d i r e c t l y from the e x p e r i m e n t a l d e n s i t y p r o f i l e s . The r e s u l t s a r e t h e n compared w i t h model c a l c u l a t i o n s b a s e d on d e n s i t y p r o f i l e s o b t a i n e d f r o m t h e S c h e u t j e n s and F l e e r (SF) l a y e r model o f p o l y m e r a d s o r p t i o n ( 1 1 ) . 1
Theoretical The the
Calculations
segment d e n s i t y p r o f i l e o b t a i n e d by s . a . n . s . i s n o r m a l i z e d i n form, #00 p(z)dz =1
(1 )
ο The p h y s i c a l s i g n i f i c a n c e o f t h e e x p e r i m e n t a l p r o f i l e i s t h a t i t i s t h e p r o b a b i l i t y t h a t a segment o f an a d s o r b e d p o l y m e r c h a i n i s a t a d i s t a n c e ζ from the i n t e r f a c e . I n o r d e r to f i n d the volume f r a c t i o n φ(ζ) a t a d i s t a n c e ζ f r o m t h e i n t e r f a c e we r e q u i r e the m a s s / u n i t a r e a Γ and t h e p a r t i a l m o l a r volume o f t h e p o l y m e r v (12) , w h e r e φ(ζ) i s g i v e n by φ(ζ)
= Γνρ(ζ)
(2)
F o r t h e c a l c u l a t i o n o f t h e h y d r o d y n a m i c t h i c k n e s s we d i v i d e the p r o f i l e a r t i f i c i a l l y i n t o e l e m e n t a r y l a y e r s , t h e r e s u l t b e i n g independent o f the d i v i s i o n chosen p r o v i d e d i t i s s u f f i c i e n t l y fine. The s . a . n . s . d a t a i s o b t a i n e d as a f u n c t i o n o f Q, t h e wave v e c t o r (4π/λ s i n ( 6 / 2 ) , where λ i s t h e n e u t r o n w a v e l e n g t h and θ t h e s c a t t e r i n g a n g l e . The Q r e s o l u t i o n c o r r e s p o n d s i n r e a l s p a c e t o a f r a c t i o n o f a bond l e n g t h w h i c h i s s m a l l enough f o r d e f i n i n g an elementary l a y e r .
Goddard and Vincent; Polymer Adsorption and Dispersion Stability ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
10.
COSGROVE ET AL.
Adsorbed Polymer Segment Density Profiles
149
F o l l o w i n g Cohen S t u a r t (10) we c h o o s e a s e m i - e m p i r i c a l c o n t i n u o u s f u n c t i o n t o r e l a t e t h e h y d r o d y n a m i c p e r m e a b i l i t y , k, t o the volume f r a c t i o n k = α(ΐ - φ)/φ
(3)
where a i s a n e x p e r i m e n t a l l y d e t e r m i n e d c o n s t a n t f r o m s e d i m e n t a t i o n experiments, k i s related to the sedimentation c o e f f i c i e n t s o f t h e p o l y m e r b y (10)
Downloaded by CORNELL UNIV on May 24, 2017 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch010
c(i
- v77v ) 1 ο
(4)
where η i s t h e s o l v e n t v i s c o s i t y , c t h e p o l y m e r c o n c e n t r a t i o n a n d V£ a n d V t h e p a r t i a l s p e c i f i c v o l u m e s o f p o l y m e r a n d s o l v e n t respectively. Hence u s i n g t h e e q u a t i o n s d e v e l o p e d i n (10) we c a n c a l c u l a t e the hydrodynamic t h i c k n e s s d i r e c t l y from the experimental density p r o f i l e . Q
Experimental The s . a . n . s . e x p e r i m e n t s w e r e c a r r i e d o u t u s i n g t h e D17 camera a t t h e I . L . L . , G r e n o b l e . D a t a w e r e c o l l e c t e d a t two w a v e l e n g t h s , 0.8 and 1.4 nm a t a sample t o d e t e c t o r d i s t a n c e o f 1.8 m. The o v e r l a p p i n g s p e c t r a w e r e combined t o g i v e a s u f f i c i e n t l y w i d e Q r a n g e to enable t h e data t o be n u m e r i c a l l y i n v e r t e d t o o b t a i n t h e d e n s i t y d i s t r i b u t i o n s . The l a t e x d i s p e r s i o n s w e r e p r e p a r e d a t a s o l i d s c o n c e n t r a t i o n o f 4% a n d p o l y m e r s o l u t i o n c o n c e n t r a t i o n s between 200 a n d 300 ppm. The s e d i m e n t a t i o n e x p e r i m e n t s w e r e c a r r i e d o u t u s i n g a n u l t r a centrifuge . The p . c . s . measurements were c a r r i e d o u t u s i n g a M a l v e r n m u l t i b i t c o r r e l a t o r and s p e c t r o m e t e r t o g e t h e r w i t h a mode s t a b i l i z e d Coherent Krypton-ion l a s e r . The r e s u l t i n g t i m e c o r r e l a t i o n f u n c t i o n s were a n a l y s e d u s i n g a n o n - l i n e a r l e a s t s q u a r e s p r o c e d u r e o n a PDP11 c o m p u t e r . The l a t e x d i s p e r s i o n s were f i r s t d i l u t e d t o a p p r o x i m a t e l y 0.02% s o l i d s a f t e r w h i c h p o l y m e r s o l u t i o n o f t h e r e q u i r e d c o n c e n t r a t i o n was added. The s a m p l e s o f t h e 9 6 % d e u t e r a t e d l a t e x w e r e p r e p a r e d b y a standard s u r f a c t a n t - f r e e procedure which i s described f u l l y e l s e where ( 1 3 ) . The n a r r o w d i s t r i b u t i o n f r a c t i o n s o f PEO w e r e o b t a i n e d f r o m P o l y m e r L a b s (Shawbury) a n d were m a n u f a c t u r e d b y t h e T o y a Soda Co. The d e t a i l s o f t h e s e s a m p l e s a r e g i v e n i n T a b l e I . Results T a b l e I g i v e s d e t a i l s o f t h e a d s o r b e d amounts f o r t h e s i x p o l y m e r f r a c t i o n s o b t a i n e d a t a n e q u i l i b r i u m c o n c e n t r a t i o n o f 2000 ppm. Based o n t h e f u l l a d s o r p t i o n i s o t h e r m (2) t h e s e v a l u e s correspond
Goddard and Vincent; Polymer Adsorption and Dispersion Stability ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CORNELL UNIV on May 24, 2017 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch010
150
POLYMER ADSORPTION AND DISPERSION STABILITY
Table I .
3
MwÎ(xl0" ) 25 40 73 150 280 660 1290 τ t * £
E x p e r i m e n t a l d a t a f o r PEO a d s o r b e d PSL ( d i a m e t e r 240 ±4nm)
2Rg*V nm 12.7 17.5 23.7 40.4 56.9 91 .4 156.4
6 /nm p . c . s . u
5.8 12.0 17.3 28.9 53.0 95.2 160.0
± 1.5 ± 3.0 ± 5.0 ± 3.0 ± 3.0 ±10.0 ±10.0
ό /run s . a . n . s . Η 2.3 2.8 5.7 7.8 12.3 15.1
-
on
Trng/m^ 0.56 0.68 0.89 0.99 1.21 1 .42 1 .74
± ± ± ± ± ± ±
0.5 0.5 0.5 0.5 0.5 0.5 0.5t
maximum p o l y d i s p e r s i t y 1.14 estimated m e a s u r e d a t a s o l u t i o n c o n c e n t r a t i o n o f 2000 ppm a t 25 C i n t e r p o l a t e d u s i n g t h e r e s u l t s o f Cabane e t a l . J . P h y s i q u e ( 1 9 8 2 ) , 4 3 , 1579.
Goddard and Vincent; Polymer Adsorption and Dispersion Stability ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
10.
COSGROVE E T A L
Adsorbed Polymer Segment Density Profiles
151
1
to a d s o r p t i o n i n t h e ' p l a t e a u r e g i o n . The h y d r o d y n a m i c t h i c k n e s s e s and 2Rg (Rg r a d i u s o f g y r a t i o n o f t h e f r e e c o i l s i n s o l u t i o n ) are a l s o g i v e n . A l s o l i s t e d are the hydrodynamic t h i c k n e s s e s c a l c u l a t e d from the s.a.n.s. d e n s i t y p r o f i l e s ( 6 ). F i g u r e 1 shows t h e u l t r a c e n t r i f u g a t i o n d a t a p l o t t e d u s i n g E q u a t i o n 3. The p l o t i s r e a s o n a b l y l i n e a r g i v i n g a v a l u e f o r α o f 0.5 ±0.03 nm^. F i g u r e 2 shows t h e e x p e r i m e n t a l d e n s i t y p r o f i l e s f o r t h r e e o f t h e s a m p l e s s t u d i e d (Mw 73K, 150K a n d 660K) and t h e c o r r e s p o n d i n g c a l c u l a t e d v a l u e s o f t h e h y d r o d y n a m i c t h i c k n e s s e s . The p . c . s . h y d r o d y n a m i c t h i c k n e s s ( 6 ) i salso shown f o r t h e 150K s a m p l e . s a n s
H
p c s
H
Downloaded by CORNELL UNIV on May 24, 2017 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch010
Discussion In p r i n c i p l e , u s i n g t h e porous l a y e r theory, i t i s p o s s i b l e t o o b t a i n the hydrodynamic t h i c k n e s s o f an adsorbed l a y e r u s i n g t h e e x p e r i m e n t a l d e n s i t y p r o f i l e a n d t h e p e r m e a b i l i t y f u n c t i o n . The r e s u l t s o f t h i s c a l c u l a t i o n are given i n Table I . I n f i g u r e 2 i t c a n be s e e n t h a t t h e c a l c u l a t e d 6 values f a l l w i t h i n the t a i l of the s.a.n.s. d e n s i t y p r o f i l e s . However, c o m p a r i s o n w i t h t h e r e s u l t s o b t a i n e d b y p . c . s . ( T a b l e I ) show a l a r g e s y s t e m a t i c discrepancy. Values o f ô ^ i n a s i m i l a r s y s t e m have b e e n p u b l i s h e d b y K a t o (14) a n d t h e r e i s v e r y good agreement w i t h t h e p r e s e n t v a l u e s a l t h o u g h t h e i r q u o t e d a d s o r b e d amounts a r e r a t h e r l a r g e . Klein and Luckham (4) h a v e u s e d a t e c h n i q u e b a s e d o n t h e d i r e c t m e a s u r e ment o f t h e f o r c e s e p a r a t i o n f u n c t i o n b e t w e e n two m i c a s u r f a c e s c o v e r e d w i t h a d s o r b e d PEO c h a i n s i n w a t e r . From t h e s e r e s u l t s they i n f e r a ' s t e r i c ' t h i c k n e s s based on an i n i t i a l i n t e r a c t i o n . I n t e r e s t i n g l y t h e i r measurements c o r r e s p o n d a l m o s t t o 2Rg. of the free c o i l s i n s o l u t i o n . Their r e s u l t s together with the p . c . s . r e s u l t s a n d 2Rg a r e shown i n F i g u r e 3. C l e a r l y b o t h t h i c k n e s s e s t i m a t e s a r e s e n s i t i v e t o p o l y m e r segments a t t h e p e r i p h e r y o f the adsorbed l a y e r . The e x p e r i m e n t a l t h i c k n e s s measurements may a l s o b e compared w i t h t h e o r e t i c a l r e s u l t s b a s e d on p r o f i l e s g e n e r a t e d b y t h e S.F., S c h e u t j e n s F l e e r , t h e o r y ( 1 1 ) . F o r t h i s c a l c u l a t i o n we u s e a v a l u e for x o f 1 ( n e t a d s o r p t i o n f r e e e n e r g y ) , f o r χ o f 0.45 ( e x p e r i m e n t a l v a l u e o f t h e F l o r y - H u g g i n s p a r a m e t e r ) and a p o l y m e r s o l u t i o n c o n c e n t r a t i o n o f 200 ppm. A l t h o u g h t h e v a l u e f o r x seems r a t h e r a r b i t r a r y i t h a s b e e n shown (10) t h a t 6^ i s i n s e n s i t i v e t o t h i s parameter. F i g u r e 4 shows t h e h y d r o d y n a m i c t h i c k n e s s c a l c u l a t e d f o r c h a i n s o f v a r i o u s l e n g t h s , t o g e t h e r w i t h 2Rg c a l c u l a t e d a c c o r d i n g to t h e r e l a t i o n R g = ( r / o ^ ^ w h e r e r i s t h e number o f monomers. The t r e n d s observed i n b o t h t h e e x p e r i m e n t a l ( F i g u r e 3 ) and t h e p u r e l y t h e o r e t i c a l ( F i g u r e 4) c a s e s a r e v e r y s i m i l a r : a t low molecular w e i g h t s 6JJ i s l e s s t h a n 2Rg b u t c r o s s e s t h e 2Rg l i n e a t h i g h molecular weight. The d i f f e r e n t e x p o n e n t s f o r 2Rg and ojj a r e due t o t h e i n c r e a s i n g i m p o r t a n c e o f t a i l s w i t h i n c r e a s i n g s a n s
H
C
S
g
s
Goddard and Vincent; Polymer Adsorption and Dispersion Stability ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Goddard and Vincent; Polymer Adsorption and Dispersion Stability ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CORNELL UNIV on May 24, 2017 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch010
Η -
73
m
ζ
Ο
•ν
N>
Goddard and Vincent; Polymer Adsorption and Dispersion Stability ACS Symposium Series; American Chemical Society: Washington, DC, 1984. 20.0
Dietanoe from e u r f α ο · (nm)
10.0
S
H
30.0
S 3 n S
40.
H
P
Figure 2. Experimental segment density p r o f i l e s f o r P E O adsorbed on P S latex i n water. Molecular weights 73K, 150K, and 660K. V e r t i c a l l i n e s correspond to estimates of the hydrodynamic thickness ( d ) from the experimental p r o f i l e s . Also shown i s the ô ° value f o r the 150K sample
0.0
Downloaded by CORNELL UNIV on May 24, 2017 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch010
Goddard and Vincent; Polymer Adsorption and Dispersion Stability ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by CORNELL UNIV on May 24, 2017 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch010
"V
Η •
ο 2
δ
73
Ο
χ.
> α
m 73
Ο Q
Goddard and Vincent; Polymer Adsorption and Dispersion Stability ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
F i g u r e 4. H y d r o d y n a m i c t h i c k n e s s (•) and 2Rg (+) as a f u n c t i o n o f c h a i n l e n g t h c a l c u l a t e d on t h e b a s i s o f t h e o r e t i c a l d e n s i t y p r o f i l e s u s i n g t h e SF t h e o r y .
Downloaded by CORNELL UNIV on May 24, 2017 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch010
POLYMER ADSORPTION AND DISPERSION STABU ITY
156
m o l e c u l a r w e i g h t . The a g r e e m e n t b e t w e e n t h e e x p o n e n t f o r t h e p . c . s . measurements (0.8 ±0.003) a n d f o r t h e p u r e l y t h e o r e t i c a l c a l c u l a t i o n (0.8 ±0.05) i s v e r y c l o s e . I t would appear t h a t the p.c.s. r e s u l t s are c o n s i s t e n t w i t h b o t h p u b l i s h e d e x p e r i m e n t a l d a t a and w i t h t h i s t h e o r e t i c a l model. T h i s must c a s t some d o u b t o n the h y d r o d y n a m i c t h i c k n e s s c a l c u l a t e d from the s.a.n.s. p r o f i l e . From T a b l e I we c a n s e e that the values o f δ a r e c o n s i d e r a b l y l a r g e r than and t h a t t h i s d i s c r e p a n c y becomes more p r o n o u n c e d a t h i g h e r m o l e c u l a r weights. T h i s i s i l l u s t r a t e d i n F i g u r e 2 where t h e p . c . s . r e s u l t f o r t h e 150K s a m p l e i s f o u n d i n a r e g i o n where t h e r e i s no d e t e c t a b l e i n t e n s i t y from the neutron s c a t t e r i n g experiment. This suggests t h a t t h e s.a.n.s. experiment i s n o t s u f f i c i e n t l y s e n s i t i v e t o d e t e c t t h e v e r y l o w segment d e n s i t y ( o f t a i l s ) w h i c h determine the p.c.s. hydrodynamic t h i c k n e s s (10). To e x p l o r e t h i s i n more d e t a i l i t i s u s e f u l t o compare t h e e x p e r i m e n t a l p r o f i l e s w i t h t h o s e c a l c u l a t e d f r o m t h e S.F. t h e o r y . F i g u r e 5 shows a p r o f i l e f o r 2000 s e g m e n t s , u s i n g t h e same p a r a m e t e r s a s a b o v e . T h i s p r o f i l e c a n b e q u a l i t a t i v e l y compared w i t h t h e e x p e r i m e n t a l p r o f i l e s i n F i g u r e 2. The m a j o r d i f f e r e n c e b e t w e e n t h e t h e o r e t i c a l a n d e x p e r i m e n t a l p r o f i l e s i s the p r e s e n c e o f a s m a l l b u t s i g n i f i c a n t segment d e n s i t y a t l a r g e d i s t a n c e s f r o m the i n t e r f a c e , which i s n o t found e x p e r i m e n t a l l y . This d i f f e r e n c e i n shape i s c l e a r l y s e e n when t h e p r o f i l e s a r e s u p e r i m p o s e d . Also i n F i g u r e 5 we show t h e h v d r o d y n a m i c t h i c k n e s s c a l c u l a t e d u s i n g the whole p r o f i l e ( 6 ^ ) and f o r a d i s t r i b u t i o n from w h i c h t a i l s were excluded (δ ) g i v i n g v a l u e s o f 32.0 a n d 12.0 l a y e r s r e s p e c t i v e l y . The r a t i o o f t h e s e numbers i s s i m i l a r t o t h e r a t i o found between δ and ô from experiment and s u g g e s t s t h a t t h e s . a . n . s . e x p e r i m e n t d e t e c t s most o f t h e d i s t r i b u t i o n a s s o c i a t e d w i t h t r a i n s and loops b u t o n l y a s m a l l p a r t o f t h e t a i l distribution. Although i t i s d i f f i c u l t t o estimate the threshold of s e n s i t i v i t y o f the s.a.n.s. experiment i t i s e s t i m a t e d t o be o f the o r d e r o f 1% o f t h e segment d e n s i t y . A simple procedure t o demonstrate t h i s e f f e c t o f s e n s i t i v i t y is to truncate thetheoretical p r o f i l e s a t d i f f e r e n t layers. I n F i g u r e 5 v a l u e s o f t h e h y d r o d y n a m i c t h i c k n e s s a r e shown when t h e p r o f i l e i s t r u n c a t e d a t 1% a n d a t 2%. T h i s c l e a r l y shows t h e e f f e c t t h a t r e d u c i n g the s e n s i t i v i t y d r a m a t i c a l l y reduces t h e h y d r o d y n a m i c t h i c k n e s s a s i t e l i m i n a t e s segments a t t h e e x t r e m i t y of the adsorbed l a y e r . I n a p r e v i o u s p a p e r (15) t h e segment d e n s i t y o f PVA a d s o r b e d on PS l a t e x i n w a t e r was p r e s e n t e d a n d i t was n o t e d t h a t δ was a t t h e e x t r e m i t y o f t h e s . a . n . s . p r o f i l e . C a l c u l a t i n g δ^ a s s u m i n g a v a l u e o f α o f 0.5 nm^ g i v e s 13 nm i n c o n t r a s t t o t h e e x p e r i m e n t a l v a l u e o f 18 nm. The d i s c r e p a n c y h e r e i s much s m a l l e r t h a n i n t h e c a s e o f PEO. T h i s e f f e c t i s d i f f i c u l t t o i n t e r p r e t w i t h o u t f u r t h e r t h e o r e t i c a l w o r k b u t may b e a t t r i b u t a b l e t o t h e f a c t t h a t t h e PVA c h a i n i s l e s s f l e x i b l e t h a n PEO a n d t h a t t h e b l o c k s t r u c t u r e (PVA i s a random b l o c k c o p o l y m e r o f v i n y l a c e t a t e , 12%, a n d v i n y l a l c o h o l ) makes t h e f o r m a t i o n o f t a i l s l e s s l i k e l y . ρ
Downloaded by CORNELL UNIV on May 24, 2017 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch010
Η
t o t a
H
o p s
Η
ρ ο δ
Η
s a n s
H
ρ
Η
Goddard and Vincent; Polymer Adsorption and Dispersion Stability ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
s
a
n
s
Goddard and Vincent; Polymer Adsorption and Dispersion Stability ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
a d
d
1.0
13.5
Lay m
truncated Λ 14 1312 loops only
Number
26.0
a. 38. 5
1 full profile
51.
F i g u r e 5. SF t h e o r e t i c a l d e n s i t y p r o f i l e f o r 2000 segments. X = 1, X = 0.45 a n d a p o l y m e r s o l u t i o n c o n c e n t r a t i o n o f 200 ppm. V e r t i c a l l i n e s c o r r e s p o n d t o 0^ v a l u e s c a l c u l a t e d u s i n g ( 1 ) t h e f u l l p r o f i l e , ( 2 ) t h e p r o f i l e f o r l o o p s o n l y , ( 3 ) t h e f u l l p r o f i l e t r u n c a t e d a t 1%, a n d ( 4 ) a t 2% volume f r a c t i o n .
: ι
m
in CM
Downloaded by CORNELL UNIV on May 24, 2017 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch010
POLYMER ADSORPTION AND DISPERSION STABILITY
158
Conclusion Segment d e n s i t y p r o f i l e s a n d h y d r o d y n a m i c t h i c k n e s s measurements have b e e n made f o r p o l y e t h y l e n e o x i d e s a d s o r b e d on p o l y s t y r e n e latex. C o m p a r i s o n w i t h t h e o r e t i c a l m o d e l s shows t h a t t h e h y d r o dynamic t h i c k n e s s i s d e t e r m i n e d b y p o l y m e r segments ( t a i l s ) a t t h e extremity of the d i s t r i b u t i o n . I t i s a l s o concluded that the s e n s i t i v i t y o f t h e s . a . n . s . e x p e r i m e n t p r e c l u d e s t h e measurement o f segments i n t h i s r e g i o n and t h a t t h e e x p e r i m e n t a l segment d e n s i t y p r o f i l e s a r e e s s e n t i a l l y d o m i n a t e d b y l o o p s and t r a i n s .
Downloaded by CORNELL UNIV on May 24, 2017 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch010
Acknowledgments The a u t h o r s w o u l d l i k e t o a c k n o w l e d g e NATO f o r p r o v i d i n g f u n d s t o e n c o u r a g e c o l l a b o r a t i o n b e t w e e n t h e r e s e a r c h g r o u p s i n Wageningen and B r i s t o l . The I . L . L . i s a c k n o w l e d g e d f o r p r o v i d i n g f a c i l i t i e s f o r c a r r y i n g o u t t h e s . a . n . s . e x p e r i m e n t s and p r o v i d i n g g e n e r a l facilities. D r . Derek Cebula i s thanked f o r h i s a s s i s t a n c e d u r i n g the e x p e r i m e n t a l r u n s . J . B i s h o p and P. C o l l i e r a r e t h a n k e d f o r obtaining the p.c.s. r e s u l t s . The SERC i s a c k n o w l e d g e d f o r g r a n t s f o r equipment (p.c.s.) and f o r p o s t - d o c t o r a l f e l l o w s h i p s f o r T.L. C r o w l e y and J . B i s h o p . D r . Th.F. T a d r o s ( I C I ) i s t h a n k e d f o r h i s c o n t i n u i n g i n t e r e s t i n t h i s p r o j e c t . D r . G.F. F l e e r i s thanked f o r s t i m u l a t i n g a n d e n l i g h t e n i n g d i s c u s s i o n s on a s p e c t s o f t h e theory o f polymer a d s o r p t i o n .
Literature Cited 1. Garvey, M.J.; Tadros, Th.F.; Vincent, B. J. Coll. and Interface Sci. 1976, 55, 440. 2. Cosgrove, T.; Vincent, B.; Crowley, T. L.; Barnett, K. G.; King, Τ. Α.; Tadros, Th. F.; Burgess, A. N. Polymer 1981, 75, 4115. 3. Grant, W. H.; Morrisey, B. W.; Stromberg, R. R. Poly. Sci. Tech. 1975, (A)9, 43. 4. Luckham, P.F.; Klein, J . ; Nature, 1983, 300, 429. 5. Robb. I.D.; Smith, R. Eur. Poly. J. 1974, 10, 1005. 6. Cosgrove, T.; Vincent, B.; Barnett, K.G.; Cohen Stuart,Μ.Α.; Macromolecules 1981, 14, 1018. 7. Killmann, E.; Korn, M. J. Coll. and Interface Sci. 1980, 76, 19. 8. Cohen Stuart, M.A.; Fleer, G.J.; Bijsterbosch, B.H. J. Coll. Interface Sci. 1982, 90, 321 9. Cosgrove, T.; Vincent, B.; Crowley, T.L. Faraday Symposia 1981, 16, 101. 10. Cohen Stuart,M.A;Cosgrove, T.; Vincent, B. Macromolecules (submitted).
Goddard and Vincent; Polymer Adsorption and Dispersion Stability ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
10.
COSGROVE ET AL.
Adsorbed Polymer Segment Density Profiles
159
11. Scheutjens, J.M.H.M.; Fleer, G.J. J. Phys. Chem. 1979, 83, 1619; 1980, 84, 178. 12. Brandrupt, J . ; Immergut, E.H. "Polymer Handbook"; J. Wiley 1975. 13. Barnett, K.G. Ph.D. Thesis, Bristol University, 1982. 14. Kato, T.; Nakamura, K.; Kawasuchi, M.; Takahashi, A. Poly J. 1981, 13, 1037. 15. Cosgrove, T.; Vincent, B.; Crowley, T. in "Adsorption from Solution"; Ottewill, R.H.; Rochester, C.H.; Smith, A.L., Eds.; Academic: New York, 1983, 287. October 7, 1983
Downloaded by CORNELL UNIV on May 24, 2017 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch010
RECEIVED
Goddard and Vincent; Polymer Adsorption and Dispersion Stability ACS Symposium Series; American Chemical Society: Washington, DC, 1984.