Subscriber access provided by UNIV OF NEW ENGLAND ARMIDALE
Article
Selenium-catalyzed oxidative C-H amination of (E)-3(arylamino)-2-styrylquinazolin-4(3H)-ones: a metal-free synthesis of 1,2-diarylpyrazolo[5,1-b]quinazolin-9(1H)-ones Yetong Zhang, Yinlin Shao, Julin Gong, Jianghe Zhu, Tianxing Cheng, and Jiuxi Chen J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b03179 • Publication Date (Web): 11 Feb 2019 Downloaded from http://pubs.acs.org on February 11, 2019
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Selenium-catalyzed
oxidative
C−H
amination
(E)-3-(arylamino)-2-styrylquinazolin-4(3H)-ones:
a
of
metal-free
synthesis of 1,2-diarylpyrazolo[5,1-b]quinazolin-9(1H)-ones Yetong Zhang, Yinlin Shao,* Julin Gong, Jianghe Zhu, Tianxing Cheng, and Jiuxi Chen* College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
O N
R N
Ar NH
O cat. (PhSe)2 Ph
Oxidant metal-f ree
R1
Ar N N
Ph
N 23 examples up to 87% yield
ABSTRACT: A novel metal-free catalysis protocol for the synthesis of 1,2-diarylpyrazolo[5,1-b]quinazolin-9(1H)-ones via intramolecular oxidative C-H amination of (E)-3-(arylamino)-2-styrylquinazolin-4(3H)-ones has been developed with moderate to good yield. The method shows good functional group tolerance. The presented approach offers a new synthetic pathway toward the core structures of 2,3-fused quinazolinones. Moreover, the present synthetic route could be readily scaled up to gram quantity without difficulty. A possible mechanism involves seleniranium ion followed by three-membered ring opening to form C-N bond. _______________________________________________________________________________
INTRODUCTION Among the numerous nitrogen-containing compounds, 2,3-fused quinazolinones with 1
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 2 of 42
diverse heterocycles represents an important scaffold ubiquitously found in many natural products, drugs, agrochemicals and other pharmaceutically active ingredients (eg. tryptanthrin and rutaecarpine),1 they are known to exhibit antibiotic, anticancer and antimalarial activities (Fig. 1).2 In view of their importance, a series of methods has been developed for the construction of these 2,3-heterocycles-fused quinazolinones.3 Fig.1 Bioactive 2,3-heterocycle fused quinazolinones CF3
O O
O
N N
N N
N
N N Ph
N
N Anti cancer
PED4 inhibitor
O
O N
COOH
N H
N N
O
OCH3 Antiallergic
combined
Antimicrobial
O
N N
The
N N
F
S
EGFR inhibitor
molecules
of
indazole
and
quinazolinone
frameworks,
indazoloquinazolinone derivatives, are important biological molecules, some of them are potent inhibitors of phosphodiesterase 4 (PDE4)4a and specificity against cancer cells.4b Our group developed three strategies for the construction of the indazolo[3,2-b]quinazolinones
via
copper-catalyzed
coupling
reaction5a-b
or
palladium-catalyzed sequential cyclization/C−H activation cascade reaction.5c Recently,
we
reported
palladium-catalyzed
synthesis
of 2
ACS Paragon Plus Environment
Page 3 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
indazolo[3,2-b]quinazolinones which were further proved to be potential as a new class of small-molecule blue fluorophores for fluorescent materials involving intramolecular
aerobic
oxidative
2-aryl-3-(arylamino)quinazolinones
(Scheme
C–H 1a).5d
amination
Moreover,
the
of
combined
molecules of pyrazole and quinazolinone skeletons, pyrazolo[5,1-b]quinazolinones, are important biological molecules which exhibit a broad spectrum of activities such as antiallergic,6a antimicrobial activity.6b Traditionally, pyrazolo[5,1-b]quinazolinone structures are constructed by the condensation of isatoic anhydride with pyrazolone, which is limited in scope and inconvenient operation.6 Wang group reported transition-metal catalyzed
synthesis of pyrazolo[5,1-b]quinazolinone derivatives.7
Although the transition-metal-catalyzed strategies that have shown high efficiency, metal-free protocols are also desirable due to their advantages with regard to purity requirements in biological and medicinal research.8 Organoselenium catalysis is an important and unique subject that presents additional opportunities to develop novel green synthetic methods with industrial potential compared with transition metals.9 Also selenium is much less expensive than noble metals, and the organoselenium catalysts are sufficiently robust to be recycled and reused with little deactivation.10 Recently, organoselenium catalysts have been successfully employed in a series of useful transformations.11 Since Breder’s pioneering contributions to the direct oxidative vinylic amination of alkenes by selenium catalysis,12 remarkable advances in selenium-catalyzed C=C functionalization have been documented. In continuation of our interest on N-heterocycles synthesis,13 we herein report the first example of 3
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 42
metal-free method for the synthesis of pyrazolo[5,1-b]quinazolinones through selenium-catalyzed
oxidative
C−H
amination
of
easily
available
(E)-3-(arylamino)-2-styrylquinazolin-4(3H)-ones (Scheme 1b). Scheme 1. The new strategy for the synthesis of pyrazolo[5,1-b]quinazolinones
a) Pd-catalyzed synthesis of indazolo[3,2-b]quinazolinones O R
Ar NH N H
N
O [Pd] R1
ref. 5d Our previous work
R
Ar N N
R1
N
b) Selenium-catalyzed synthesis of pyrazolo[5,1-b]quinazolinones (This work) O N
R
O
Ar NH
N
cat. (PhSe)2 Oxidant metal-free
Ph
R1
Ar N N
Ph
N
RESULTS AND DISCUSSION At
the
outset
of
our
studies,
we
used
(E)-3-(phenylamino)-2-styrylquinazolin-4(3H)-one (1a) as the test substrate to determine optimal conditions for the title reaction. In initial experiments 1a was reacted with 2 equivalent of N-Fluorobenzenesulfonimide (NFSI) in the presence of various catalysts in toluene at 110 oC for 48 h. The reaction did not work in the absence of any catalyst (Table 1, entry 1). However, diphenyl diselane as a catalyst provided access to target structure 1,2-diphenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2a) in 49% yield (Table 1, entry 2), while 1,2-dibenzyldisulfane (DBDS) furnished the oxidative amination product 2a only in 17% (Table 1, entry 3). Replacement of 4
ACS Paragon Plus Environment
Page 5 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
diphenyl diselane with other common transition metal catalysts, such as PdCl2 or FeCl3, was ineffective (Table 1, entries 4−5). A survey of solvent revealed that acetonitrile was optimal to give a best 79% yield, and the use of dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), xylene and pyridine led to lower yields (Table 1, entries 6−10). Encouraged by the promising result, we further examined the reaction temperature and found 90 oC was enough for such oxidative/cyclization process (Table 1, entries 11−12). The yield of the desired product decreased when the reaction time was shortened to 24 h (Table 1, entry 11). The classical oxidants such as K2S2O8, 2,3-dicyano-5,6-dichlorobenzoquinone (DDQ) and Cu(OAc)2 diminished the yield of 2a sharply (Table 1, entries 13−15). The yield decreased to some extent by either removing 4 Å molecular sieves from the reaction medium or decreasing the amount of oxidant to 1.0 equivalent (Table 1, entries 16-17). Therefore, the optimal reaction conditions can be summarized as follows: 0.2 mmol substrate in acetonitrile (5 mL) with PhSeSePh catalyst (5 mol %), NFSI (2 equiv) and 4 Å molecular sieves 0.06 g at 90 °C for 48 h under air atmosphere. The structure of 2a was further confirmed by X-ray diffraction analysis (Fig. 2)14. Fig.2 X-ray crystal structure of product 2a.
5
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 42
Table 1. Optimization of reaction conditionsa O N
H N
O catalyst, oxidant
Ph
solvent
Ph
N
Ph N N
Ph
N
1a
2a
catalyst
oxidant
temp. (oC)
solvent
1
-
NFSI
110
Toluene
trace
2
(PhSe)2
NFSI
110
Toluene
49
3
DBDS
NFSI
110
Toluene
17
4
PdCl2
NFSI
110
Toluene
trace
5
FeCl3
NFSI
110
Toluene
trace
6
(PhSe)2
NFSI
110
DMF
41
7
(PhSe)2
NFSI
110
DMSO
14
8
(PhSe)2
NFSI
110
xylene
49
9
(PhSe)2
NFSI
110
Pyridine
trace
10
(PhSe)2
NFSI
110
CH3CN
79
11
(PhSe)2
NFSI
90
CH3CN
79(70)c
12
(PhSe)2
NFSI
70
CH3CN
65
13
(PhSe)2
K2S2O8
90
CH3CN
5
14
(PhSe)2
DDQ
90
CH3CN
35
15
(PhSe)2
Cu(OAc)2
90
CH3CN
4
16d
(PhSe)2
NFSI
90
CH3CN
65
e
(PhSe)2
NFSI
90
CH3CN
70
entry
17
yield (%)b
a
Conditions: 1a (0.2 mmol), catalyst (5 mol%), oxidant (2 equiv), solvent (5 mL), 4A MS (0.06 g), 90 oC, 48 h. bIsolated yield. c24 h. d 1.0 eq.NFSI was used. e without 4A MS.
With optimized conditions in hand, investigations continued with the exploration of the scope of our oxidative amination/cyclization protocol for the construction of pyrazolo[5,1-b]quinazolinones (Table 2). A variety of substituents (R1, R2, R3) in compound 1 were tested and delivered to product 2 in uniformly high efficiency. First,
the
variation
of
the
R1
group
of 6
ACS Paragon Plus Environment
Page 7 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
(E)-3-(phenylamino)-2-styrylquinazolin-4(3H)-ones 1 was investigated. The results showed that both electron-donating and electron-withdrawing substituents were well-tolerated and provided the corresponding products in moderate to good yields. For example, substrates bearing a methyl group afforded the cyclized products 2b, 2c and 2d in 80-85% yield, respectively (Table 2, entries 1-3). Substrate (E)-7,8-dimethyl-3-(phenylamino)-2-styrylquinazolin-4(3H)-one
afforded
the
corresponding desired product 2e in 82% yield similarly (Table 2, entry 4). Electron-donating group such as -OMe at the 6 position of the aryl ring in quinazolinone furnished product 2f in 87% yield. To our delight, the method tolerates the entire range of halogen substituents and strong electron-withdrawing substituent (e.g., -CF3), although the yield of cyclized products 2g-2n were slight lower than those of electron-sufficient substrates, which makes this method particularly appealing, enabling further access to more complex compounds in combination with cross-coupling transformations (Table 2, entries 6−13). We next examined the substitution effect of R2 on the aromatic ring of (E)-3-(phenylamino)-2-styrylquinazolin-4(3H)-ones. Substrates bearing an o-, m- or p-methyl substituent attaching to the amino group were evaluated, affording 2o-2q in 67-82% yield respectively (Table 2, entries 14−16). The lower yield of 2o may arise from the steric hindrance. The electronic property of the substituents is not critical for this transformation. In general, the substrates bearing an electron-donating substituent (eg.
−OMe)
provided
a
slightly
higher
yield
than
those
bearing
an
electron-withdrawing substituent e.g. −F, −Cl and −CF3 (Table 2, entries 17−22). 7
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 42
Encouraged by the promising result, we further examined the variation of aryl group in styrene motif of (E)-3-(phenylamino)-2-styrylquinazolin-4(3H)-ones (Table 2, entries 23−25). It is obvious that electron-withdrawing groups decreased the cyclization yield to some extent, probably due to the decreasing activity to form active electrophilic additional intermediate with Se species. Alkyl substituents such as isopropyl on the nitrogen atom was also fine compatible with this intramolecular oxidative amination cyclization reaction (Table 2, entries 26). Table 2. Synthesis of 1,2-diarylpyrazolo[5,1-b]quinazolin-9(1H)-onesa
8
ACS Paragon Plus Environment
Page 9 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
R2 N
R1
NH
PhSeSePh, NFSI o
N
MS 4A, MeCN, 90 C, 48 h
R3
N 2
(1)
(2)
(3)
N N
N
2c, 83%
2d, 80%
F
F
2h, 65%
O Br
N N
N
N
2l 78%
2m, 71%
(15) O
(19)
N N
(21)
CF3
(22) O
N N
N
N 2w, 62%
2v, 65% (25)
N
2t, 70%
2u, 66%
(23)
(24) O
O
O
N N
N N
N 2s, 55%
F
O
N N
N
Cl
(20)
Cl
O
Cl
N N
N 2q, 80%
2p, 82%
(18) O
2r, 85%
N N
N
2o, 67%
N
O
N N
N
O
(16)
O
N N
N N
2n, 60% OCH3
N N
N
(14)
N
O I
N N
2k, 69%
Cl
2j, 70%
O
2i, 71% (12)
O
(13)
N
(11)
N N N
N N
N
2g, 70% (10)
O
O
N N
N
2f, 87%
F3C
(8) Cl
O N N
N (9)
2e, 82%
(7) O
N N
N
N
(6) O
N N
N N
N
2b, 85% (5)
O
O
N N
(17)
(4)
O
O
Cl
R3
N N
R1
o
1
H3CO
R2
O
O
N N N 2x, 85 %
F N N
OCH3
N
F
2y, 29 %
(26) O O
N N
N N N
Cl Cl
2z, trace a
N
2za, 79 %
Conditions: 1 (0.2 mmol), (PhSe)2 (5 mol %), NFSI (2 equiv), CH3CN (5 mL), MS 4A (0.06 g), 90 oC, 48 h, isolated yield.
9
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 10 of 42
The present synthetic route to pyrazolo[5,1-b]quinazolinone derivatives could be readily scaled up to gram quantity without difficulty. For instance, the reaction at the 3 mmol scale afforded the corresponding product 2a in 78% isolated yield. In addition, N-methylation of 2a gave pyrazolo[5,1-b]quinazolin-4-ium iodide 3a in 95% yield (Scheme 2). Furthermore, the structure of 3a was confirmed by X-ray diffraction analysis (Fig. 3).14
Scheme 2 Gram-scale synthesis of 2a and subsequent methylation
O N N
NH
PhSeSePh (5 mol%) NFSI (2 eq), MS 4Å MeCN, 90 oC, 36 h 78% yield Ph
3 mmol, 1.017g
O
O N N N
Ph
CH3I (12.5 equiv) THF, 70 oC, 24 h 95% yield
0.789 g
N N
Ph
N I CH3 3a
Fig. 3 X-ray crystal structure of product 3a.
Scheme 3 Control experiments
10
ACS Paragon Plus Environment
Page 11 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
O N
PhSeSePh (5 mol%)
NH
O N N
o
MS 4A, MeCN, 90 oC, 48 h
N
N 1a
(a)
2a
O O N
N
+ PhSeSePh (1 equiv)
N
N
NFSI (2 equiv) o
MS 4A, MeCN, 90 oC, 48 h 50% yield
4a
N (b)
N Se 5a
To gain insight into the diphenyl diselane-catalyzed oxidative amination cyclization reaction mechanism, further experiments were performed (Scheme 3). Our initial attempts to perform the reaction in the absence of NFSI failed to give the desired product 2a (Scheme 3a). However, (Z)-3-(Methyl(phenyl)amino)-2-(2-phenyl-1(phenylselanyl)vinyl)-quinazolin-4(3H)-one (5a) was obtained in 50% yield when (E)-3-(methyl(phenyl)amino)-2-styrylquinazolin-4(3H)-one (4a)
was reacted with
stoichiometric PhSeSePh under standard conditions (Scheme 3b), indicating that an intermolecular electrophilic addition of Se species with C=C bonds may occur in this catalytic transformation. A plausible mechanism for this diphenyl diselane-catalyzed oxidative amination cyclization reaction is shown in Scheme 4. First, NFSI undergoes nucleophilic attack by diphenyl diselane leading to cationic species I. Subsequent electrophilic addition to the C=C double of 1 gives rise to seleniranium ion II, and then intramolecular attack of the amino group leads to three-membered ring opening to yield intermediate III. Which in turn undergoes elimination of HF and HN(SO2Ph)2 together with removal of the catalyst to complete the catalytic cycle. 11
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 12 of 42
Scheme 4 Proposed mechanism. NFSI
HF + HN(SO2Ph)2 + 2a O
Ph N N
PhSeSePh
Ph
N
Se FPh Ph Se N(SO Ph) 2 2 III
Ph O N N
Se
Se
Ph
F N(SO2Ph)2 I
NHPh
Ph F Se Ph Ph Se N(SO Ph) 2 2 II
1a
CONCLUSIONS In summary, we have developed a new approach for the synthesis of 1,2-diarylpyrazolo[5,1-b]quinazolin-9(1H)-ones by the diphenyl diselane-catalyzed intramolecular
oxidative
amination
cyclization
reaction
of
(E)-3-(phenylamino)-2-styrylquinazolin-4(3H)-ones. This protocol provides an alternative synthetic pathway to access 2,3-heterocycles-fused quinazolinones. Further studies on the other bioactivities of the pyrazolo[5,1-b]quinazolinones and the construction of other useful N-heterocycles are underway in our laboratory.
EXPERIMENTAL SECTION General Methods. Melting points are uncorrected. 1H NMR and 13C NMR spectra were measured on a 500 MHz spectrometer (1H at 500 MHz, 13C at 125 MHz), using CDCl3 and d6-DMSO as the solvent at room temperature. Chemical shifts are given δ 12
ACS Paragon Plus Environment
Page 13 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
relative to TMS, and the coupling constants J are given in hertz. High-resolution mass spectra
were
recorded
on
an
ESI-Q-TOF
mass
spectrometer.
All
(E)-3-(phenylamino)-2-styrylquinazolin-4(3H)-one substrates (1a-1w) were prepared by the modified literature methods.15 Other commercially obtained reagents were used without further purification. Column chromatography was performed using EM silica gel 60 (300−400 mesh). X-ray crystallographic analysis was done at the X-ray crystallography facility, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences (CAS). General
procedure
for
the
Synthesis
of
1,2-diphenylpyrazolo[5,1-b]quinazolin-9(1H)-ones. To a Schlenk tube were added (E)-3-(phenylamino)-2-styrylquinazolin-4(3H)-one 1 (0.2 mmol), (PhSe)2 (0.01 mmol), NFSI (0.4 mmol), MS 4Å (60 mg) and MeCN (5 mL) under air. The tube was tightly capped and stirred for 10 minutes at room temperature for proper mixing of the reactants, and then heated at 90 °C with vigorous stirring for 48 hours. Then the mixture was poured into 10 mL water, extracted with ethyl acetate (10 mL X 3), the combined organic layers were dried over anhydrous Na2SO4 and filtrated. The solvent was evaporated under vacuum and the residue was purified by flash column chromatography with petroleum ether/ethyl acetate (4:1) to afford the desired products. (E)-3-(Phenylamino)-2-styrylquinazolin-4(3H)-one (1a): white solid (2.7 g, 80%). 1H
NMR (500 MHz, DMSO-d6) δ 9.23 (s, 1H), 8.12-8.05 (m, 2H), 7.91-7.80 (m, 2H),
7.63 (d, J = 6.5 Hz, 2H), 7.55-7.40 (m, 5H), 7.21 (t, J = 7.5 Hz, 2H), 6.86 (t, J = 7.0 13
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 14 of 42
Hz, 1H), 6.71 (d, J = 8.0 Hz, 2H); 13C{1H} NMR (125 MHz, CDCl3) δ 160.1, 154.0, 147.2, 146.8, 140.3, 135.0, 134.9, 129.8, 129.2, 129.0, 127.7, 127.4, 126.5, 126.3, 121.1, 120.5, 118.2, 112.8. HRMS (ESI) calcd for C22H18N3O1 [M+H]+: 340.1450, found 340.1454. (E)-5-Methyl-3-(phenylamino)-2-styrylquinazolin-4(3H)-one (1b): white solid (1.50 g, 85%). IR (KBr) v (cm-1): 3267, 3022, 2972, 1658, 1633, 1599, 1551, 1494, 1475, 1447, 1354, 811, 755, 698. 1H NMR (500 MHz, DMSO-d6) δ 9.11 (s, 1H), 8.04 (d, J = 16 Hz, 1H), 7.71 (s, 1H), 7.62 (d, J = 8.0 Hz, 3H), 7.44-7.39 (m, 4H), 7.28 (d, J = 7.5 Hz, 1H), 7.20 (t, J = 8.0 Hz, 2H), 6.85 (s, 1H), 6.71 (d, J = 8.0 Hz, 2H), 2.73 (s, 3H);
13C{1H}
NMR (125 MHz, CDCl3) δ 161.7, 153.1, 149.0, 146.9, 141.5, 141.4,
135.8, 134.0, 129.8, 129.7, 129.2, 128.9, 128.2, 126.1, 122.9, 119.7, 118.4, 114.7, 22.9. HRMS (ESI) calcd for C23H20N3O1 [M+H]+: 354.1601, found 354.1609. (E)-6-Methyl-3-(phenylamino)-2-styrylquinazolin-4(3H)-one (1c): white solid (1.50 g, 85%). IR (KBr) v (cm-1): 3257, 3040, 2982, 1660, 1626, 1597, 1545, 1489, 1444, 1358, 1342, 827, 774, 692. 1H NMR (500 MHz, DMSO-d6) δ 9.23 (s, 1H), 8.02 (d, J = 16 Hz, 1H), 7.90 (s, 1H), 7.71 (s, 2H), 7.62-7.61 (m, 2H), 7.47-7.37 (m, 4H), 7.21-7.18 (m, 2H), 6.85 (t, J = 7.5 Hz, 1H), 6.68 (d, J = 8.0 Hz, 2H), 2.46 (s, 3H); 13C{1H}
NMR (125 MHz, CDCl3) δ 160.4, 151.7, 145.7, 144.6, 140.1, 135.9, 135.5,
134.8, 128.8, 128.6, 127.9, 127.2, 126.6, 125.5, 122.0, 119.9, 117.3, 113.8, 20.5. HRMS (ESI) calcd for C23H20N3O1 [M+H]+: 354.1601, found 354.1603. (E)-7,8-Dimethyl-3-(phenylamino)-2-styrylquinazolin-4(3H)-one (1e): white solid (1.56 g, 85%). IR (KBr) v (cm-1): 3254, 3056, 1661, 1629, 1603, 1550, 1495, 1447, 14
ACS Paragon Plus Environment
Page 15 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
1360, 1339, 783, 755, 691. 1H NMR (500 MHz, CDCl3) δ 8.20 (d, J = 15.5 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.60-7.55 (m, 3H), 7.38-7.34 (m, 3H), 7.26-7.22 (m, 4H), 6.98 (t, J = 7.5 Hz, 1H), 6.80 (d, J = 8.0 Hz, 2H), 2.71 (s, 3H), 2.46 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 161.5, 151.6, 146.7, 145.4, 143.8, 141.0, 135.8, 134.1, 129.6, 129.4, 128.8, 128.6, 128.1, 123.8, 122.7, 119.0, 118.5, 114.6, 21.0, 13.2. HRMS (ESI) calcd for C24H22N3O1 [M+H]+: 368.1763, found 368.1763. (E)-6-Methoxy-3-(phenylamino)-2-styrylquinazolin-4(3H)-one (1f): white solid (1.48 g, 80%). IR (KBr) v (cm-1): 3268, 3024, 2976, 1662, 1632, 1599, 1549, 1491, 1439, 1339, 822, 769, 690. 1H NMR (500 MHz, DMSO-d6) δ 9.22 (s, 1H), 7.99 (d, J = 16.0 Hz, 1H), 7.76 (d, J = 8.5 Hz, 1H), 7.60 (d, J = 7.0 Hz, 2H), 7.51-7.37 (m, 6H), 7.20 (t, J = 8.0 Hz, 2H), 6.85 (t, J = 7.5 Hz, 1H), 6.69 (d, J = 8.0 Hz, 2H), 3.88 (s, 3H);
13C{1H}
NMR (125 MHz, CDCl3) δ 161.3, 158.3, 151.3, 146.7, 142.3, 140.6,
135.9, 129.7, 129.6, 129.5, 128.9, 128.1, 125.4, 123.0, 121.9, 118.3, 114.8, 106.3, 56.0. HRMS (ESI) calcd for C23H20N3O2 [M+H]+: 370.1566, found 370.1560. (E)-6-Fluoro-3-(phenylamino)-2-styrylquinazolin-4(3H)-one (1g): white solid (1.55 g, 87%). IR (KBr) v (cm-1): 3261, 3039, 1660, 1628, 1602, 1548, 1483, 1445, 1344, 832, 777, 690. 1H NMR (500 MHz, DMSO-d6) δ 9.24 (s, 1H), 8.05 (d, J = 16.0 Hz, 1H), 7.87 (d, J = 5.0 Hz, 1H), 7.80-7.77 (m, 2H), 7.63-7.61 (m, 2H), 7.47-7.39 (m, 4H), 7.22-7.19 (m, 2H), 6.87 (d, J = 7.5 Hz, 1H), 6.72 (d, J = 8.0 Hz, 2H); 13C{1H} NMR (125 MHz, CDCl3) δ 161.7, 152.8, 146.4, 144.3, 141.7, 135.6, 130.3 (d, J = 8.3 Hz), 130.0, 129.7, 129.0, 128.3, 123.6 (d, J = 24.2 Hz), 123.2, 117.9, 114.8, 111.9 (d, J = 23.8 Hz). HRMS (ESI) calcd for C22H17F1N3O1 [M+H]+: 358.1356, found 15
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 16 of 42
358.1360. (E)-7-Fluoro-3-(phenylamino)-2-styrylquinazolin-4(3H)-one (1h): white solid (1.52 g, 85%). IR (KBr) v (cm-1): 3263, 3042, 1667, 1619, 1579, 1546, 1476, 1443, 1344, 867, 774, 699. 1H NMR (500 MHz, DMSO-d6) δ 9.24 (s, 1H), 8.18-8.15 (m 1H), 8.08 (d, J = 16.0 Hz, 1H), 7.64-7.56 (m, 3H), 7.48-7.38 (m, 5H), 7.21 (t, J = 8.0 Hz, 2H), 6.86 (t, J = 7.5 Hz, 1H), 6.72 (d, J = 8.5 Hz, 2H); 13C{1H} NMR (125 MHz, CDCl3) δ 160.7, 154.7, 146.5, 142.6, 135.5, 130.2, 129.7, 129.7, 129.0, 128.4, 123.5, 117.9, 116.5, 115.4 (d, J = 23.8 Hz), 114.8, 112.9 (d, J = 21.8 Hz).
HRMS (ESI) calcd for
C22H17F1N3O1 [M+H]+: 358.1356, found 358.1361. (E)-5-Chloro-3-(phenylamino)-2-styrylquinazolin-4(3H)-one (1i): white solid (1.62 g, 87%). IR (KBr) v (cm-1): 3268, 3055, 1672, 1628, 1581, 1542, 1496, 1450, 1346, 814, 753, 693. 1H NMR (500 MHz, DMSO-d6) δ 9.24 (s, 1H), 8.11-8.06 (m, 2H), 7.86 (d, J = 2.0 Hz, 1H), 7.64-7.62 (m, 2H), 7.57-7.55 (m, 1H), 7.48-7.40 (m, 4H), 7.21 (t, J = 8.0 Hz, 2H), 6.86 (t, J = 7.5 Hz, 1H), 6.72 (d, J = 8.0 Hz, 2H); 13C{1H} NMR (125 MHz, CDCl3) δ 160.9, 154.7, 148.5, 146.4, 142.6, 141.2, 135.5, 130.2, 129.7, 129.0, 128.5, 128.4, 127.3, 127.1, 123.2, 119.5, 117.8, 114.8. HRMS (ESI) calcd for C22H17Cl1N3O1 [M+H]+: 374.1060, found 374.1066. (E)-6-Chloro-3-(phenylamino)-2-styrylquinazolin-4(3H)-one (1j): white solid (1.48 g, 88%). IR (KBr) v (cm-1): 3265, 3032, 1678, 1635, 1604, 1542, 1496, 1471, 1335, 831, 754, 669. 1H NMR (500 MHz, DMSO-d6) δ 9.27 (s, 1H), 8.09-8.04 (m, 2H), 7.93-7.90 (m, 1H), 7.82 (d, J = 9.0 Hz, 1H), 7.64-7.62 (m, 2H), 7.47-7.39 (m, 4H), 7.21 (t, J = 8.0 Hz, 2H), 6.86 (t, J = 7.5 Hz, 1H), 6.72 (d, J = 8.5 Hz, 2H); 13C{1H} 16
ACS Paragon Plus Environment
Page 17 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
NMR (125 MHz, CDCl3) δ 160.5, 153.7, 146.3, 146.1, 142.2, 135.6, 135.4, 132.3, 130.1, 129.7, 129.5, 129.0, 128.3, 126.4, 123.2, 122.1, 117.9, 114.8. HRMS (ESI) calcd for C22H17Cl1N3O1 [M+H]+: 374.1060, found 374.1069. (E)-6-Bromo-3-(phenylamino)-2-styrylquinazolin-4(3H)-one (1l): white solid (1.81 g, 87%). IR (KBr) v (cm-1): 3266, 3030, 1676, 1635, 1601, 1541, 1496, 1468, 1333, 829, 751, 691. 1H NMR (500 MHz, DMSO-d6) δ 9.25 (s, 1H), 8.18 (d, J = 2.0 Hz, 1H), 8.09-8.01 (m, 2H), 7.75 (d, J = 9.0 Hz, 1H), 7.63-7.62 (m, 2H), 7.47-7.40 (m, 4H), 7.20 (t, J = 8.0 Hz, 2H), 6.86 (t, J = 7.5 Hz, 1H), 6.72 (d, J = 8.0 Hz, 2H); 13C{1H}
NMR (125 MHz, CDCl3) δ 160.3, 153.9, 146.4, 146.3, 142.3, 138.1, 135.5,
130.1, 129.7, 129.6, 129.6, 129.0, 128.3, 123.2, 122.4, 120.0, 117.9, 114.8. HRMS (ESI) calcd for C22H17Br1N3O1 [M+H]+: 418.0555, found 418.0557. (E)-6-Iodo-3-(phenylamino)-2-styrylquinazolin-4(3H)-one (1m): white solid (1.97 g, 85%). IR (KBr) v (cm-1): 3263, 3059, 1671, 1629, 1602, 1541, 1495, 1464, 1331, 830, 756, 691. 1H NMR (500 MHz, DMSO-d6) δ 9.25 (s, 1H), 8.37 (d, J = 2.0 Hz, 1H), 8.17-8.06 (m, 2H), 7.63-7.58 (m, 3H), 7.46-7.40 (m, 4H), 7.20 (t, J = 8.0 Hz, 2H), 6.86 (t, J = 7.5 Hz, 1H), 6.71 (d, J = 8.0 Hz, 2H);
13C{1H}
NMR (125 MHz,
CDCl3) δ 160.1, 154.1, 146.3, 143.7, 142.4, 135.9, 135.5, 130.2, 129.7, 129.6, 129.0, 128.3, 123.2, 122.7, 117.9, 114.8, 100.1. HRMS (ESI) calcd for C22H17I1N3O1 [M+H]+: 466.0416, found 466.0410. (E)-3-(Phenylamino)-2-styryl-6-(trifluoromethyl)quinazolin-4(3H)-one (1n): white solid (1.63 g, 80%). IR (KBr) v (cm-1): 3274, 3042, 1677, 1629, 1603, 1546, 1495, 1451, 1299, 846, 761, 691. 1H NMR (500 MHz, CDCl3) δ 8.50 (s, 1H), 8.25 (d, J = 17
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 18 of 42
16.0 Hz, 1H), 7.97-7.88 (m, 2H), 7.60-7.57 (m, 3H), 7.39-7.34 (m, 4H), 7.26-7.24 (m, 2H), 7.01 (t, J = 7.5 Hz, 1H), 6.82 (d, J = 8.0 Hz, 2H);
13C{1H}
NMR (125 MHz,
CDCl3) δ 160.7, 155.4, 149.5, 146.1, 143.2, 135.2, 130.9, 130.3, 129.6, 128.9, 128.6, 128.1 (d, J = 33.5 Hz), 124.9, 124.9 (d, J = 4.1 Hz), 123.7 (d, J = 272.3 Hz), 123.1, 120.7, 117.5, 114.7. HRMS (ESI) calcd for C23H17F3N3O1 [M+H]+: 408.1324, found 408.1322. (E)-2-Styryl-3-(o-tolylamino)quinazolin-4(3H)-one (1o): white solid (1.41 g, 80%). IR (KBr) v (cm-1): 3333, 3071, 1683, 1634, 1608, 1548, 1471, 1449, 1339, 820, 755, 698. 1H NMR (500 MHz, DMSO-d6) δ 8.53 (s, 1H), 8.12-8.06 (m, 2H), 7.90 (t, J = 8.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 6.5 Hz, 2H), 7.54 (t, J = 7.5 Hz, 1H), 7.48 (d, J = 16.0 Hz, 1H), 7.43-7.39 (m, 3H), 7.17 (d, J = 7.5 Hz, 1H), 6.95 (t, J = 8.0 Hz, 1H), 6.79 (t, J = 7.5 Hz, 1H), 6.20 (d, J = 8.0 Hz, 1H), 2.41 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 160.1, 154.1, 146.3, 143.7, 142.4, 135.9, 135.5, 130.2, 129.7, 129.6, 129.0, 128.3, 123.2, 122.7, 117.9, 114.8, 100.1. HRMS (ESI) calcd for C23H20N3O1 [M+H]+: 354.1606, found 354.1600. (E)-2-Styryl-3-(m-tolylamino)quinazolin-4(3H)-one (1p): white solid (1.46 g, 83%). IR (KBr) v (cm-1): 3243, 3078, 1658, 1631, 1609, 1548, 1468, 1448, 1341, 823, 779, 693. 1H NMR (500 MHz, DMSO-d6) δ 9.13 (s, 1H), 8.12-8.05 (dd, 2H), 7.89 (t, J = 8.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 8.0 Hz, 2H), 7.53 (t, J = 7.5 Hz, 1H), 7.48-7.39 (m, 4H), 7.08 (t, J = 8.0 Hz, 1H), 6.67 (d, J = 7.5 Hz, 1H), 6.54 (s, 1H), 6.48 (d, J = 8.0 Hz, 1H), 2.20 (s, 3H);
13C{1H}
NMR (125 MHz, CDCl3) δ
160.1, 154.1, 146.3, 143.7, 142.4, 135.9, 135.5, 130.2, 129.7, 129.6, 129.0, 128.3, 18
ACS Paragon Plus Environment
Page 19 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
123.2, 122.7, 117.9, 114.8, 100.1. HRMS (ESI) calcd for C23H20N3O1 [M+H]+: 354.1606, found 354.1599. (E)-2-Styryl-3-(p-tolylamino)quinazolin-4(3H)-one (1q): white solid (1.43 g, 82%). IR (KBr) v (cm-1): 3253, 3026, 1682, 1634, 1609, 1546, 1467, 1448, 1339, 873, 786, 695. 1H NMR (500 MHz, CDCl3) δ 8.23-8.15 (m, 2H), 7.80-7.79 (m, 2H), 7.60-7.57 (m, 3H), 7.46-7.43 (m, 1H), 7.36 (d, J = 8.0 Hz, 3H), 7.15 (s, 1H), 7.05 (d, J = 8.5 Hz, 2H), 6.73 (d, J = 8.5 Hz, 2H), 2.25 (s, 3H);
13C{1H}
NMR (125 MHz, CDCl3) δ
161.4, 153.5, 147.6, 144.2, 141.6, 135.7, 134.9, 132.6, 130.2, 129.9, 129.0, 128.3, 127.8, 127.1, 126.5, 121.2, 118.4, 115.0, 20.8. HRMS (ESI) calcd for C23H20N3O1 [M+H]+: 354.1606, found 354.1611. (E)-3-((4-Methoxyphenyl)amino)-2-styrylquinazolin-4(3H)-one (1r): white solid (1.57 g, 85%). IR (KBr) v (cm-1): 3253, 3026, 2832, 1678, 1631, 1605, 1545, 1469, 1448, 1332, 823, 758, 698. 1H NMR (500 MHz, CDCl3) δ 8.24-8.16 (m, 2H), 7.82-7.77 (m, 2H), 7.63-7.59 (m, 3H), 7.45-7.42 (m, 1H), 7.39-7.35 (m, 3H), 7.21 (s, 1H), 6.82-6.78 (m, 4H), 3.72 (s, 3H);
13C{1H}
NMR (125 MHz, CDCl3) δ 161.3,
155.8, 153.3, 147.4, 141.4, 139.8, 135.6, 134.7, 129.8, 128.8, 128.1, 127.6, 126.9, 126.4, 121.0, 118.3, 116.6, 114.8, 55.6. HRMS (ESI) calcd for C23H20N3O2 [M+H]+: 370.1556, found 370.1559. (E)-3-((2-Chlorophenyl)amino)-2-styrylquinazolin-4(3H)-one (1s): white solid (1.49 g, 80%). IR (KBr) v (cm-1): 3318, 3060, 1689, 1633, 1607, 1548, 1471, 1449, 1334, 823, 758, 698. 1H NMR (500 MHz, DMSO-d6) δ 8.82 (s, 1H), 8.11-8.05 (m, 2H), 7.90 (t, J = 8.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 7.0 Hz, 2H), 7.54 19
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 20 of 42
(t, J = 7.5 Hz, 1H), 7.46-7.39 (m, 5H), 7.10 (t, J = 8.0 Hz, 1H), 6.90 (t, J = 8.0 Hz, 1H), 6.49 (d, J = 8.0 Hz, 1H);
13C{1H}
NMR (125 MHz, CDCl3) δ 160.9, 153.6,
147.5, 142.8, 142.1, 135.6, 135.1, 130.1, 130.0, 129.0, 128.3, 128.1, 127.9, 127.2, 126.7, 123.3, 121.3, 121.2, 117.7, 114.0. HRMS (ESI) calcd for C22H17Cl1N3O1 [M+H]+: 374.1060, found 374.1062. (E)-3-((3-Chlorophenyl)amino)-2-styrylquinazolin-4(3H)-one (1t): white solid (1.56 g, 84%). IR (KBr) v (cm-1): 3242, 3079, 1667, 1632, 1607, 1548, 1469, 1448, 1342, 856, 782, 696. 1H NMR (500 MHz, DMSO-d6) δ 9.44 (s, 1H), 8.12-8.05 (m, 2H), 7.90 (t, J = 8.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 7.0 Hz, 2H), 7.54 (t, J = 7.5 Hz, 1H), 7.45-7.39 (m, 4H), 7.22 (t, J = 8.0 Hz, 1H), 6.89 (d, J = 8.5 Hz, 1H), 6.80 (s, 1H), 6.65 (d, J = 8.0 Hz, 1H);
13C{1H}
NMR (125 MHz, CDCl3) δ
161.3, 153.2, 147.9, 147.5, 142.1, 135.6, 135.1, 130.8, 130.1, 129.0, 128.3, 127.9, 127.1, 126.7, 123.2, 121.0, 120.3, 117.7, 114.9, 112.8. HRMS (ESI) calcd for C22H17Cl1N3O1 [M+H]+: 374.1060, found 374.1062. (E)-3-((4-Chlorophenyl)amino)-2-styrylquinazolin-4(3H)-one (1u): white solid (1.62 g, 87%). 1H NMR (500 MHz, DMSO-d6) δ 9.37 (s, 1H), 8.12-8.04 (m, 2H), 7.89 (d, J = 7.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 6.5 Hz, 2H), 7.54 (d, J = 7.5 Hz, 1H), 7.45-7.39 (m, 4H), 7.24 (d, J = 9.0 Hz, 2H), 6.74 (d, J = 9.0 Hz, 2H); 13C{1H}
NMR (125 MHz, CDCl3) δ 161.3, 153.2, 147.5, 145.2, 142.0, 135.6, 135.1,
130.1, 129.7, 129.0, 128.3, 128.2, 127.9, 127.1, 126.7, 121.0, 117.8, 116.1. HRMS (ESI) calcd for C22H17Cl1N3O1 [M+H]+: 374.1060, found 374.1062. (E)-3-((4-Fluorophenyl)amino)-2-styrylquinazolin-4(3H)-one (1v): white solid 20
ACS Paragon Plus Environment
Page 21 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
(1.53 g, 86%). IR (KBr) v (cm-1): 3244, 3022, 1668, 1633, 1608, 1548, 1469, 1448, 1341, 829, 755, 695. 1H NMR (500 MHz, DMSO-d6) δ 9.21 (s, 1H), 8.11-8.05 (m, 2H), 7.89 (t, J = 7.5 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 7.0 Hz, 2H), 7.54-7.39 (m, 5H), 7.04 (t, J = 9.0 Hz, 2H), 6.76-6.73 (m, 2H);
13C{1H}
NMR (125
MHz, CDCl3) δ 161.4, 153.2, 147.5, 142.6, 141.9, 135.6, 135.0, 130.0, 129.0, 128.2, 127.9, 127.1, 126.7, 121.0, 118.0, 116.5, 116.3 (d, J = 22.9 Hz).
HRMS (ESI) calcd
for C22H17F1N3O1 [M+H]+: 358.1356, found 358.1360. (E)-2-Styryl-3-((4-(trifluoromethyl)phenyl)amino)quinazolin-4(3H)-one (1w): white solid (1.70 g, 84%). IR (KBr) v (cm-1): 3259, 3087, 1678, 1633, 1618, 1545, 1466, 1448, 1332, 831, 774, 695. 1H NMR (500 MHz, DMSO-d6) δ 9.76 (s, 1H), 8.13-8.06 (m, 2H), 7.91 (t, J = 8.5 Hz, 1H), 7.82 (d, J = 8.5 Hz, 1H), 7.65 (d, J = 7.0 Hz, 2H), 7.55 (d, J = 8.0 Hz, 3H), 7.42 (d, J = 16.5 Hz, 4H), 6.88 (d, J = 8.0 Hz, 2H); 13C{1H} NMR (125 MHz, CDCl3) δ 161.4, 153.2, 147.5, 142.6, 141.9, 135.6, 135.0, 130.0, 129.0, 128.2, 127.9, 127.1 (d, J = 4.4 Hz), 126.7, 121.0, 118.0, 116.5, 116.4, 116.2. HRMS (ESI) calcd for C23H17F3N3O1 [M+H]+: 408.1324, found 408.1330. (E)-2-(4-Methoxystyryl)-3-(phenylamino)quinazolin-4(3H)-one (1x): Pale-yellow solid (1.47 g, 80%). IR (KBr) v (cm-1): 3253, 3022, 1685, 1633, 1603, 1543, 1470, 1445, 1338, 827, 773, 690. 1H NMR (500 MHz, CDCl3) δ 8.21 (d, J = 7.5 Hz, 2H), 7.80 (m, 2H), 7.55 (d, J = 8.5 Hz, 2H), 7.44–7.41 (m, 2H), 7.26-7.22 (m, 3H), 7.00 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 8.5 Hz, 2H), 6.82 (d, J = 8.0 Hz, 2H), 3.83 (s, 3H); 13C{1H}
NMR (125 MHz, CDCl3) δ 161.3, 154.0, 146.4, 134.9, 129.9, 129.5, 128.3,
127.0, 126.3, 122.9, 120.6, 114.7, 114.3, 55.4. HRMS (ESI) calcd for C23H20N3O2 21
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 22 of 42
[M+H]+: 370.1550, found 370.1555. (E)-2-(2,5-Difluorostyryl)-3-(phenylamino)quinazolin-4(3H)-one (1y): Pale-yellow solid (1.50 g, 80%). IR (KBr) v (cm-1): 3254, 3060, 1681, 1635, 1604, 1549, 1470, 1446, 1338, 852, 780, 691. 1H NMR (500 MHz, CDCl3) δ 8.25-8.22 (m, 2H), 7.82-7.81 (m, 2H), 7.61 (d, J = 16.0 Hz, 1H), 7.49-7.46 (m, 1H), 7.27-7.23 (m, 4H), 7.06-7.00 (m, 3H), 6.81 (d, J = 7.5 Hz, 2H);
13C{1H}
NMR (125 MHz, CDCl3) δ
161.1, 152.7, 147.2, 146.3, 134.8, 132.6, 129.5, 127.9, 127.0, 126.8, 123.0, 121.6 (d, J = 6.1 Hz), 121.2, 117.5 (dd, J1 = 9.0 Hz, J2 = 24.6 Hz), 117.2 (dd, J1 = 8.8 Hz, J2 = 25.1 Hz), 114.6, 114.4 (dd, J1 = 2.9 Hz, J2 = 24.3 Hz). HRMS (ESI) calcd for C22H16F2N3O1 [M+H]+: 376.1256, found 376.1250. (E)-2-(2,4-Dichlorostyryl)-3-(phenylamino)quinazolin-4(3H)-one (1z): Pale-yellow solid (85%). 1H NMR (500 MHz, CDCl3) δ 8.47 (d, J = 16.0 Hz, 1H), 8.23 (d, J = 8.0 Hz, 1H), 7.83 (m, 2H), 7.57-7.44 (m, 4H), 7.28-7.26 (m, 2H), 7.21 (m, 2H), 7.01 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 8.0 Hz, 2H); 13C{1H} NMR (125 MHz, CDCl3) δ 161.1, 152.6, 147.3, 146.3, 136.1, 135.7, 135.4, 134.8, 132.4, 129.9, 129.6, 128.4, 128.0, 127.5, 126.9, 126.8, 123.0, 121.2, 114.6. HRMS (ESI) calcd for C22H16Cl2N3O1 [M+H]+: 408.0665, found 408.0669. (E)-3-(Isopropylamino)-2-styrylquinazolin-4(3H)-one (1za): Pale-yellow solid (1.34 g, 88%). IR (KBr) v (cm-1): 3261, 2967, 1678, 1632, 1607, 1546, 1467, 1448, 1336, 873, 771, 689. 1H NMR (500 MHz, CDCl3) δ 8.26 (d, J = 8.0 Hz, 1H), 8.06 (d, J = 16.0 Hz, 1H), 7.79 (m, 3H), 7.66 (d, J = 7.5 Hz, 2H), 7.46-7.37 (m, 4H), 5.60 (d, J = 4.0 Hz, 1H), 3.42 (m, 1H), 1.15 (m, 6H);
13C{1H}
NMR (125 MHz, CDCl3) δ 22
ACS Paragon Plus Environment
Page 23 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
161.8, 153.1, 147.3, 140.0, 135.9, 134.4, 129.6, 128.9, 127.9, 127.4, 126.7, 126.1, 120.6, 119.4, 51.8, 20.8. HRMS (ESI) calcd for C19H20N3O1 [M+H]+: 306.1601, found 306.1601.1,2-Diphenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2a): Yellow solid (53.3 mg, 79%), mp 256-257 oC (lit.7a 257-258 oC). 1H NMR (500 MHz, CDCl3) δ 8.23 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 4.0 Hz, 2H), 7.57-7.55 (m, 2H), 7.40-7.30 (m, 9H), 6.66 (s, 1H);
13C{1H}
NMR (125 MHz, CDCl3) δ 158.7, 156.5, 152.0, 149.5,
140.1, 133.9, 130.7, 129.6, 129.0, 128.9, 128.8, 128.0, 126.6, 126.2, 124.1, 118.0, 101.9. HRMS (ESI) calcd for C22H16N3O1 [M+H]+: 338.1288, found 338.1284. 8-Methyl-1,2-diphenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2b): Yellow solid (59.7 mg, 85%), mp 257-258 oC. IR (KBr) v (cm-1): 3055, 2960, 1675, 1614, 1590, 1557, 1491, 1472, 1449, 1360, 799, 763, 689. 1H NMR (500 MHz, DMSO-d6) δ 7.70-7.68 (m, 2H), 7.61 (t, J = 8.0 Hz, 1H), 7.51-7.41 (m, 6H), 7.34-7.29 (m, 3H), 7.11 (d, J = 7.0 Hz, 1H), 7.01 (s, 1H), 2.67 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 159.5, 157.3, 152.3, 151.5, 141.2, 140.7, 133.2, 130.7, 129.4, 129.2, 129.1, 128.9, 128.4, 127.7, 126.9, 124.8, 116.9, 102.2, 23.5. HRMS (ESI) calcd for C23H18N3O1 [M+H]+: 352.1445, found 352.1441 7-Methyl-1,2-diphenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2c): Yellow solid, (58.3 mg, 83%), mp 238-239 oC (lit.7a 238-239 oC). 1H NMR (500 MHz, DMSO-d6) δ 7.83 (s, 1H), 7.72-7.70 (m, 2H), 7.64-7.59 (m, 2H), 7.46-7.40 (m, 5H), 7.33-7.29 (m, 3H), 7.05 (s, 1H), 2.41 (s, 3H);
13C{1H}
NMR (125 MHz, CDCl3) δ 158.7, 156.6,
151.7, 147.8, 140.5, 135.8, 134.3, 130.7, 129.6, 129.1, 129.0, 128.9, 128.3, 128.1, 126.3, 125.8, 118.0, 102.2, 21.4. HRMS (ESI) calcd for C23H18N3O1 [M+H]+: 23
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 24 of 42
352.1445, found 352.1440. 6-Methyl-1,2-diphenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2d): Yellow solid (56.2 mg, 80%), mp 257-258 oC. IR (KBr) v (cm-1): 3064, 2956, 1681, 1618, 1588, 1544, 1483, 1447, 1360, 777, 758, 691. 1H NMR (500 MHz, DMSO-d6) δ 7.93 (d, J = 8.5 Hz, 1H), 7.71-7.69 (m, 2H), 7.48-7.41 (m, 6H), 7.33-7.30 (m, 3H), 7.21 (d, J = 8.0 Hz, 1H), 7.06 (s, 1H), 2.47 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 158.8, 156.6, 152.3, 150.0, 144.9, 140.4, 130.7, 129.6, 129.1, 129.0, 128.9, 128.3, 128.2, 126.4, 126.2, 126.0, 115.8, 102.2, 22.2. HRMS (ESI) calcd for C23H18N3O1 [M+H]+: 352.1445, found 352.1442. 5,6-Dimethyl-1,2-diphenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2e): Yellow solid (59.9 mg, 82%), mp 195-196 oC. 1H NMR (500 MHz, CDCl3) δ 8.01 (d, J = 8.0 Hz, 1H), 7.56-7.55 (m, 2H), 7.38-7.26 (m, 8H), 7.16 (d, J = 8.5 Hz, 1H), 6.72 (s, 1H), 2.64 (s, 3H), 2.45 (s, 3H);
13C{1H}
NMR (125 MHz, CDCl3) δ 158.4, 156.8, 151.1,
148.1, 142.4, 140.4, 132.1, 130.5, 129.4, 128.9, 128.8, 128.7, 128.3, 128.0, 126.6, 123.3, 116.1, 102.6, 21.0, 13.5. HRMS (ESI) calcd for C24H20N3O1 [M+H]+: 366.1601, found 366.1603 7-Methoxy-1,2-diphenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2f): Yellow solid (63.9 mg, 87%), mp 199-200 oC. IR (KBr) v (cm-1): 3051, 2992, 1671, 1622, 1590, 1569, 1484, 1453, 1354, 760, 703, 626. 1H NMR (500 MHz, DMSO-d6) δ 7.72-7.71 (m, 2H), 7.65 (d, J = 8.5 Hz, 1H), 7.47-7.41 (m, 7H), 7.33-7.29 (m, 3H), 7.07 (s, 1H), 3.82 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 158.2, 156.7, 156.4, 150.6, 144.7, 140.5, 130.7, 129.7, 129.1, 129.0, 128.9 128.3, 128.2, 128.1, 125.3, 118.7, 105.1, 24
ACS Paragon Plus Environment
Page 25 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
102.2, 55.8. HRMS (ESI) calcd for C23H18N3O2 [M+H]+: 368.1394, found 368.1394 7-Fluoro-1,2-diphenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2g): Yellow solid (49.7 mg, 70%), mp 240-242 oC. IR (KBr) v (cm-1): 3060, 1680, 1624, 1571, 1559, 1478, 1456, 1345, 774, 761, 693. 1H NMR (500 MHz, DMSO-d6) δ 7.99 (d, J = 2.5 Hz, 1H), 7.82-7.80 (m, 1H), 7.72-7.69 (m, 3H), 7.49-7.48 (m, 2H), 7.42 (d, J = 7.0 Hz, 3H), 7.34-7.32 (m, 3H), 7.11 (s, 1H); 13C{1H} NMR (125 MHz, CDCl3) δ 160.1, 158.6, 158.2, 155.7, 155.6, 151.5, 146.1, 139.9, 130.8, 129.7, 129.1, 129.0, 128.9, 128.8, 128.4 (d, J = 8.1 Hz), 128.1, 127.9, 126.4, 123.0 (d, J = 24.7 Hz), 118.7 (d, J = 8.5 Hz), 110.8 (d, J = 23.7 Hz), 101.6. HRMS (ESI) calcd for C22H15F1N3O1 [M+H]+: 356.1194, found 356.1192 6-Fluoro-1,2-diphenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2h): Yellow solid (46.2 mg, 65%), mp 264-265 oC. IR (KBr) v (cm-1): 3041, 1683, 1625, 1587, 1558, 1474, 1446, 1366, 772, 759, 690. 1H NMR (500 MHz, DMSO-d6) δ 8.12-8.09 (m, 1H), 7.71-7.69 (m, 2H), 7.49-7.47 (m, 2H), 7.43-7.41 (m, 4H), 7.34-7.32 (m, 3H), 7.26-7.22 (m, 1H), 7.08 (s, 1H);
13C{1H}
NMR (125 MHz, CDCl3) δ 167.5, 165.5,
159.0, 155.8, 152.7, 139.7, 130.9, 129.8, 129.3 (d, J = 11.1 Hz), 129.1, 129.0, 128.9, 128.8, 128.1, 127.8, 114.6, 113.3 (d, J = 24.3 Hz), 110.7 (d, J = 22.0 Hz), 101.33. HRMS (ESI) calcd for C22H15F1N3O1 [M+H]+: 356.1194, found 356.1195 8-Chloro-1,2-diphenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2i): Yellow solid (52.7 mg, 71%), mp 200-202 oC. IR (KBr) v (cm-1): 3055, 1687, 1613, 1588, 1534, 1490, 1449, 1363, 801, 765, 691. 1H NMR (500 MHz, DMSO-d6) δ 8.04 (d, J = 8.5 Hz, 1H), 7.72-7.68 (m, 3H), 7.49-7.47 (m, 2H), 7.44-7.37 (m, 4H), 7.35-7.32 (m, 3H), 25
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 26 of 42
7.10 (s, 1H); 13C{1H} NMR (125 MHz, CDCl3) δ 159.1, 156.1, 152.9, 150.7, 140.2, 139.9, 131.0, 129.9, 129.2, 129.1, 129.0, 128.3, 128.1, 128.0, 125.8, 124.8, 116.5, 101.8. HRMS (ESI) calcd for C22H15Cl1N3O1 [M+H]+: 372.0898, found 372.0894 7-Chloro-1,2-diphenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2j): Yellow solid (52.0 mg, 70%), mp 235-236 oC (lit.7a 237-238 oC). 1H NMR (500 MHz, DMSO-d6) δ 7.99-7.98 (m, 1H), 7.82-7.79 (m, 1H), 7.72-7.69 (m, 3H), 7.49-7.42 (m, 5H), 7.34-7.32 (m, 3H), 7.11 (s, 1H);
13C{1H}
NMR (125 MHz, CDCl3) δ 159.0, 155.6,
152.3, 148.3, 139.9, 134.5, 130.9, 129.9, 129.6, 129.2, 129.1, 129.0, 128.2, 128.1, 128.0, 125.8, 118.9, 101.9. HRMS (ESI) calcd for C22H15Cl1N3O1 [M+H]+: 372.0898, found 372.0898 6-Chloro-1,2-diphenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2k): Yellow solid (51.2 mg, 69%), mp 246-247 oC (lit.7a 246-247 oC). 1H NMR (500 MHz, DMSO-d6) δ 8.04 (d, J = 8.5 Hz, 1H), 7.72-7.69 (m, 3H), 7.49-7.48 (m, 2H), 7.43-7.37 (m, 4H), 7.34-7.33 (m, 3H), 7.10 (s, 1H);
13C{1H}
NMR (125 MHz, CDCl3) δ 159.1, 156.1,
152.9, 150.7, 140.3, 139.9, 131.0, 129.9, 129.2, 129.1, 129.0, 128.3, 128.1, 128.0, 125.7, 124.8, 116.5, 101.8. HRMS (ESI) calcd for C22H15Cl1N3O1 [M+H]+: 372.0898, found 372.0897 7-Bromo-1,2-diphenylpyrazolo[5,1-b]quinazolin-9(1H)-one
(2l):
Yellow
solid
(64.8 mg, 78%), (lit.7a 259-260 oC), mp 260-261 oC. 1H NMR (500 MHz, DMSO-d6) δ 8.13-8.12 (m, 1H), 7.92-7.90 (m, 1H), 7.70-7.69 (m, 2H), 7.63 (d, J = 9.0 Hz, 1H), 7.49-7.42 (m, 5H), 7.34-7.32 (m, 3H), 7.10(s, 1H); 13C{1H} NMR (125 MHz, CDCl3) δ 159.1, 155.5, 152.4, 148.6, 139.9, 137.2, 131.0, 129.9, 129.2, 129.1, 129.0, 128.9, 26
ACS Paragon Plus Environment
Page 27 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
128.3, 128.2, 128.0, 119.4, 117.1, 101.9. HRMS (ESI) calcd for C22H15Br1N3O1 [M+H]+: 416.0393, found 416.0397 7-Iodo-1,2-diphenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2m): Yellow solid (65.8 mg, 71%), mp 250-252 oC. IR (KBr) v (cm-1): 3061, 1673, 1603, 1581, 1533, 1489, 1460, 1333, 828, 764, 694. 1H NMR (500 MHz, DMSO-d6) δ 8.31-8.30 (m, 1H), 8.05-8.02 (m, 1H), 7.70-7.69 (m, 2H), 7.49-7.46 (m, 3H), 7.42 (d, J = 7.0 Hz, 3H), 7.33-7.32 (m, 3H), 7.09 (s, 1H);
13C{1H}
NMR (125 MHz, CDCl3) δ 159.2, 155.2,
152.5, 149.1, 142.6, 139.9, 135.5, 131.0, 129.9, 129.2, 129.1, 129.0, 128.4, 128.2, 128.0, 119.8, 101.9, 87.3. HRMS (ESI) calcd for C22H15I1N3O1 [M+H]+: 464.0255, found 464.0258 1,2-Diphenyl-7-(trifluoromethyl)pyrazolo[5,1-b]quinazolin-9(1H)-one
(2n):
Yellow solid (48.6 mg, 60%), mp 248-250 oC. IR (KBr) v (cm-1): 2959, 1684, 1590, 1548, 1533, 1488, 1453, 1316, 838, 767, 668. 1H NMR (500 MHz, CDCl3) δ 8.52 (s, 1H), 7.90-7.88 (m, 1H), 7.80 (d, J = 9.0 Hz, 1H), 7.56-7.54 (m, 2H), 7.40-7.33 (m, 8H), 6.69 (s, 1H);
13C{1H}
NMR (125 MHz, CDCl3) δ 159.1, 155.8, 153.1, 151.5,
139.3, 131.0, 129.9, 129.9, 129.1, 129.0, 128.9, 128.2, 127.5, 127.1, 126.4, 125.8, 125.5, 125.1, 124.8 (d, J = 4.3 Hz), 122.9, 117.1, 101.4.
HRMS (ESI) calcd for
C23H14F3N3O1Na [M+Na]+: 428.0987, found 428.0972 2-Phenyl-1-(o-tolyl)pyrazolo[5,1-b]quinazolin-9(1H)-one (2o): Yellow solid (47.1 mg, 67%), mp 220-221 oC. IR (KBr) v (cm-1): 3081, 1684, 1601, 1548, 1560, 1479, 1456, 1345, 815, 767, 698. 1H NMR (500 MHz, DMSO-d6) δ 8.05 (d, J = 7.0 Hz, 1H), 7.80-7.77 (m, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.59-7.58 (m, 2H), 7.43-7.41 (m, 27
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 28 of 42
3H), 7.36 (t, J = 8.0 Hz, 1H), 7.26-7.24 (m, 3H), 7.15-7.12 (m, 1H), 7.04 (s, 1H), 2.29 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 157.1, 156.4, 151.5, 149.9, 138.4, 137.9, 134.0, 131.1, 130.7, 130.1, 128.9, 128.8, 128.6, 128.2, 126.7, 126.6, 126.3, 123.8, 117.7, 100.5, 18.2. HRMS (ESI) calcd for C23H18N3O1 [M+H]+: 352.1445, found 352.1447 2-Phenyl-1-(m-tolyl)pyrazolo[5,1-b]quinazolin-9(1H)-one (2p): Yellow solid (57.6 mg, 82%), mp 241-242 oC. IR (KBr) v (cm-1): 3076, 1682, 1592, 1550, 1488, 1467, 1447, 1362, 808, 770, 688. 1H NMR (500 MHz, DMSO-d6) δ 8.05 (d, J = 8.0 Hz, 1H), 7.81-7.68 (m, 4H), 7.43-7.32 (m, 5H), 7.23-7.20 (m, 2H), 7.11 (d, J = 7.5 Hz, 1H), 7.07 (s, 1H), 2.21 (s, 3H);
13C{1H}
NMR (125 MHz, CDCl3) δ 159.0, 156.6,
152.2, 149.8, 140.2, 139.0, 134.0, 130.8, 130.5, 129.1, 128.9, 128.7, 128.2, 128.1, 126.7, 126.4, 125.3, 124.2, 118.1, 102.0, 21.4. HRMS (ESI) calcd for C23H18N3O1 [M+H]+: 352.1445, found 352.1439 2-Phenyl-1-(p-tolyl)pyrazolo[5,1-b]quinazolin-9(1H)-one (2q): Yellow solid (56.2 mg, 80%), mp 273-274 oC (lit.7a 273-274 oC). 1H NMR (500 MHz, DMSO-d6) δ 8.05 (d, J = 7.0 Hz, 1H), 7.81-7.78 (m, 1H), 7.72-7.67 (m, 3H), 7.43-7.33 (m, 6H), 7.12 (d, J = 8.0 Hz, 2H), 7.06 (s, 1H), 2.24 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 158.7, 156.4, 151.8, 149.2, 139.8, 137.3, 134.0, 130.7, 129.6, 129.1, 128.8, 128.0, 127.9, 126.6, 126.0, 124.1, 117.8, 101.4, 21.3. HRMS (ESI) calcd for C23H18N3O1 [M+H]+: 352.1445, found 352.1444 1-(4-Methoxyphenyl)-2-phenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2r): Yellow solid (62.4 mg, 85%), mp 244-245 oC. IR (KBr) v (cm-1): 3080, 1676, 1597, 1553, 28
ACS Paragon Plus Environment
Page 29 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
1507, 1463, 1449, 1328, 844, 760, 686. 1H NMR (500 MHz, CDCl3) δ 8.23 (d, J = 8.0 Hz, 1H), 7.74-7.73 (m, 2H), 7.57-7.55 (m, 2H), 7.38-7.31 (m, 6H), 6.80 (d, J = 9.0 Hz, 2H), 6.67 (s, 1H), 3.75 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 160.1, 158.6, 156.5, 151.8, 149.2, 134.0, 132.2, 130.7, 129.6, 129.0, 128.8, 128.0, 126.6, 125.9, 124.1, 117.9, 114.0, 101.2, 55.4. HRMS (ESI) calcd for C23H18N3O2 [M+H]+: 368.1394, found 368.1405 1-(2-Chlorophenyl)-2-phenylpyrazolo[5,1-b]quinazolin-9(1H)-one
(2s):
Yellow
solid (40.8 mg, 55%), mp 215-216 oC. IR (KBr) v (cm-1): 3060, 1680, 1587, 1548, 1489, 1467, 1448, 1325, 811, 766, 689. 1H NMR (500 MHz, DMSO-d6) δ 8.06 (d, J = 8.0 Hz, 1H), 7.84-7.78 (m, 2H), 7.69-7.66 (m, 3H), 7.46-7.36 (m, 7H), 7.06 (s, 1H); 13C{1H}
NMR (125 MHz, CDCl3) δ 157.0, 156.4, 151.4, 149.8, 136.4, 134.8, 134.1,
131.7, 131.3, 130.9, 130.4, 129.0, 128.9, 127.8, 127.3, 126.6, 126.5, 124.0, 117.7, 101.3. HRMS (ESI) calcd for C22H15Cl1N3O1 [M+H]+: 372.0898, found 372.0889 1-(3-Chlorophenyl)-2-phenylpyrazolo[5,1-b]quinazolin-9(1H)-one
(2t):
Yellow
solid (52.0 mg, 70%), mp 208-209 oC. IR (KBr) v (cm-1): 3056, 1674, 1597, 1550, 1489, 1467, 1447, 1328, 792, 762, 694. 1H NMR (500 MHz, DMSO-d6) δ 8.07 (d, J = 7.0 Hz, 1H), 7.83-7.79 (m, 1H), 7.74-7.69 (m, 4H), 7.46-7.32 (m, 7H), 7.10 (s, 1H); 13C{1H}
NMR (125 MHz, CDCl3) δ 158.9, 156.6, 152.1, 149.7, 141.5, 134.6, 134.2,
131.1, 130.1, 129.9, 129.1, 129.0, 128.0, 127.8, 126.6, 124.6, 118.2, 102.9. HRMS (ESI) calcd for C22H15Cl1N3O1 [M+H]+: 372.0898, found 372.0894 1-(4-Chlorophenyl)-2-phenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2u): Yellow solid (49.0 mg, 66%), mp 220-221 oC (lit.7a 220-221 oC). 1H NMR (500 MHz, 29
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 30 of 42
DMSO-d6) δ 8.06 (d, J = 8.0 Hz, 1H), 7.81 (t, J = 7.5 Hz, 1H), 7.72-7.69 (m, 3H), 7.54 (d, J = 7.5 Hz, 2H), 7.45-7.39 (m, 6H), 7.11 (s, 1H); 13C{1H} NMR (125 MHz, CDCl3) δ 158.8, 156.7, 152.1, 149.8, 138.9, 135.6, 134.2, 131.0, 129.5, 129.4, 129.1, 129.0, 127.9, 126.6, 126.5, 124.5, 118.2, 102.6. HRMS (ESI) calcd for C22H15Cl1N3O1 [M+H]+: 372.0898, found 372.0897 1-(4-Fluorophenyl)-2-phenylpyrazolo[5,1-b]quinazolin-9(1H)-one
(2v):
Yellow
solid (46.2 mg, 65%), mp 197-200 oC. IR (KBr) v (cm-1): 3034, 1682, 1589, 1551, 1501, 1467, 1449, 1361, 844, 773, 690. 1H NMR (500 MHz, DMSO-d6) δ 8.06 (d, J = 7.5 Hz, 1H), 7.82-7.78 (m, 1H), 7.72-7.68 (m, 3H), 7.58-7.55 (m, 2H), 7.44-7.37 (m, 4H), 7.16 (t, J = 8.5 Hz, 2H), 7.09 (s, 1H); 13C{1H} NMR (125 MHz, CDCl3) δ 158.9, 156.8, 152.0, 149.8, 136.1, 134.2, 131.0, 130.2 (d, J = 9.1 Hz), 129.0 (d, J = 2.2 Hz), 128.0, 126.5 (d, J = 7.3 Hz), 124.4, 118.2, 116.1 (d, J = 23.2 Hz), 102.3. HRMS (ESI) calcd for C22H15F1N3O1 [M+H]+: 356.1194, found 356.1199 2-Phenyl-1-(4-(trifluoromethyl)phenyl)pyrazolo[5,1-b]quinazolin-9(1H)-one (2w): Yellow solid (50.2 mg, 62%), mp 211-212 oC. IR (KBr) v (cm-1): 3080, 1686, 1592, 1553, 1490, 1462, 1448, 1330, 852, 759, 689. 1H NMR (500 MHz, DMSO-d6) δ 8.06 (d, J = 7.0 Hz, 1H), 7.84-7.80 (m, 1H), 7.75-7.70 (m, 7H), 7.46-7.39 (m, 4H), 7.14 (s, 1H);
13C{1H}
NMR (125 MHz, CDCl3) δ 158.9, 156.6, 152.0, 149.7, 143.6, 134.3,
131.2, 129.2, 129.1, 128.4, 127.8, 126.7, 126.6, 126.3 (d, J = 3.6 Hz), 124.7, 118.1, 103.2. HRMS (ESI) calcd for C23H15F3N3O1 [M+H]+: 406.1162, found 406.1165 2-(4-Methoxyphenyl)-1-phenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2x): Yellow solid (62.4 mg, 85%). mp 220-222oC. IR (KBr) v (cm-1): 3076, 1684, 1597, 1555, 30
ACS Paragon Plus Environment
Page 31 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
1502, 1467, 1447, 1362, 833, 756, 690. 1H NMR (500 MHz, CDCl3) δ 8.22 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 4.0 Hz, 2H), 7.50 (d, J = 9.0 Hz, 2H), 7.41-7.39 (m, 2H), 7.33-7.32 (m, 4H), 6.86 (d, J = 8.5 Hz, 2H), 6.61 (s, 1H), 3.79 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 161.5, 158.8, 156.5, 152.1, 140.4, 134.0, 130.5, 129.6, 128.9, 128.2, 126.6, 126.0, 124.0, 120.2, 117.8, 114.3, 100.6, 55.4. HRMS (ESI) calcd for C23H18N3O2 [M+H]+: 368.1394, found 368.1388. 2-(2,4-Difluorophenyl)-1-phenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2y): Yellow solid (21.6 mg, 29%). mp 280-282 oC. IR (KBr) v (cm-1): 3057, 1683, 1597, 1533, 1503, 1470, 1447, 1333, 845, 777, 688. 1H NMR (500 MHz, CDCl3) δ 8.24 (d, J = 8.0 Hz, 1H), 7.78-7.75 (m, 2H), 7.38-7.34 (m, 6H), 7.17 (s, 1H), 7.10-7.07 (m, 2H), 6.82 (s, 1H); 13C{1H} NMR (125 MHz, CDCl3) δ 159.2, 157.2, 156.1, 151.4, 151.1, 139.3, 134.2, 129.9, 129.1, 127.4, 126.6, 126.1, 124.6, 119.3, 119.2 (d, J = 22.1 Hz), 119.1 (d, J = 21.9 Hz), 117.9, 117.8, 117.6 (d, J = 24.5 Hz), 117.5 (d, J = 19.9 Hz), 105.0. HRMS (ESI) calcd for C22H14F2N3O1 [M+H]+: 374.1100, found 374.1101. 1-Isopropyl-2-phenylpyrazolo[5,1-b]quinazolin-9(1H)-one (2za): Yellow oil (47.9 mg, 79%). IR (KBr) v (cm-1): 3003, 1698, 1613, 1607, 1550, 1467, 1450, 1346, 853, 778, 699. 1H NMR (500 MHz, CDCl3) δ 8.37 (d, J = 8.0 Hz, 1H), 7.75-7.68 (m, 2H), 7.64-7.62 (m, 2H), 7.54-7.52 (m, 3H), 7.38 (t, J = 7.5 Hz, 1H), 6.38 (s, 1H), 4.80-4.77 (m, 1H), 1.29 (d, J = 7.0 Hz, 6H); 13C{1H} NMR (125 MHz, CDCl3) δ 159.8, 157.8, 152.9, 149.4, 133.9, 130.9, 130.3, 129.0, 126.7, 126.1, 123.9, 117.5, 102.9, 56.6, 20.2. HRMS (ESI) calcd for C19H18N3O1 [M+H]+: 304.1445, found 304.1448. 1,2-Diphenylpyrazolo[5,1-b]quinazolin-9(1H)-one-4-ium iodide (3a): Yellow solid 31
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 32 of 42
(91.0mg, 95%), mp 273-275 oC. 1H NMR (500 MHz, DMSO-d6) δ 8.23 (d, J = 8.0 Hz, 1H), 8.15 (t, J = 8.0 Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.88 (s, 1H), 7.71-7.62 (m, 5H), 7.58-7.49 (m, 6H), 4.15 (s, 3H); 13C{1H} NMR (125 MHz, DMSO-d6) δ 157.4, 153.3, 148.9, 139.5, 136.9, 136.3, 132.1, 130.9, 129.7, 129.1, 129.0, 127.8, 125.8, 125.2, 116.3, 115.4, 95.3, 36.1. HRMS (ESI) calcd for C23H18N3O [M-I]+: 352.1444, found 352.1455 (E)-3-(Methyl(phenyl)amino)-2-styrylquinazolin-4(3H)-one (4a): Pale-yellow solid (158.9mg, 90%). IR (KBr) v (cm-1): 2924, 2891, 1687, 1629, 1597, 1550, 1471, 1448, 1357, 825, 756, 699. 1H NMR (500 MHz, CDCl3) δ 8.19 (m, 2H), 7.80 (m, 2H), 7.58 (m, 2H), 7.43 (t, J = 7.0 Hz, 1H), 7.35 (m, 4H), 7.28 (t, J = 8.0 Hz, 2H), 6.92 (t, J = 7.0 Hz, 1H), 6.74 (d, J = 8.0 Hz, 2H), 3.49 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 160.4, 154.6, 147.9, 147.2, 142.1, 135.5, 134.8, 129.9, 129.5, 128.8, 128.1, 127.5, 127.1, 126.5, 122.2, 120.7, 117.7, 112.7, 39.4. HRMS (ESI) calcd for C23H20N3O1 [M+H]+: 354.1606, found 354.1609 (Z)-3-(methyl(phenyl)amino)-2-(2-phenyl-1-(phenylselanyl)vinyl)quinazolin-4(3H)one (5a): yellow solid (50.9 mg, 50%). mp 65-66 oC. IR (KBr) v (cm-1): 2981, 2885, 1695, 1603, 1588, 1547, 1477, 1447, 1339, 805, 731, 689. 1H NMR (500 MHz, CDCl3) δ 8.22-8.19 (m, 2H), 7.83-7.79 (m, 2H), 7.60-7.59 (m, 2H), 7.48-7.36 (m, 8H), 7.29-7.20 (m, 4H), 6.68 (d, J = 8.0 Hz, 2H), 3.50 (s, 3H);
13C{1H}
NMR (125
MHz, CDCl3) δ 160.3, 154.3, 147.8, 147.0, 142.6, 136.1, 135.3, 135.0, 132.6, 131.5, 130.1, 129.2, 128.9, 128.2, 127.5, 127.1, 126.6, 122.0, 120.3, 117.2, 113.6, 39.5. HRMS (ESI) calcd for C29H24N3O1Se1 [M+H]+: 510.1079, found 510.1085 32
ACS Paragon Plus Environment
Page 33 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
ASSOCIATED CONTENT Supporting Information 1H
and 13C NMR spectra for all products. This material is available free of charge on
the ACS Publications website. The X-ray crystallographic analysis data and copies of NMR spectra (PDF) CIF file for compounds 2a and 3a (CIF) AUTHOR INFORMATION Corresponding Author E-mail:
[email protected]; E-mail:
[email protected] ORCID Jiuxi Chen: 0000-0001-6666-9813 Yinlin Shao: 0000-0003-1935-0345 Notes The authors declare no competing financial interest. ACKNOWLEDGMENTS We thank the National Natural Science Foundation of China (No. 21572162), the Natural Science Foundation of Zhejiang Province (LQ18B020006), the Science and Technology Project of Zhejiang Province (No. 2016C31022) and the Xinmiao Talent Planning Foundation of Zhejiang Province (No. 2017R426046) for financial support. 33
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 34 of 42
REFERENCES (1) (a) Bhattacharjee, A. K.; Skanchy, D. J.; Jennings, B.; Hudson, T. H.; Brendle, J. J.; Werbovetz, K. A. Analysis of Stereoelectronic Properties, Mechanism of Action and Pharmacophore of Synthetic Indolo[2,1-b]quinazoline-6,12-dione Derivatives in Relation to Antileishmanial Activity Using Quantum Chemical, Cyclic Voltammetry and 3-D-QSAR CATALYST Procedures. Bioorg. Med. Chem. 2002, 10, 1979; (b) Michael, J. P. Quinoline, Quinazoline and Acridone Alkaloids. Nat. Prod. Rep. 2005, 22, 627; (c) Mhaske, S. B.; Argade, N. P. The Chemistry of Recently Isolated Naturally Occurring Quinazolinone Alkaloids. Tetrahedron 2006, 62, 9787; (d) Liang, J. L.; Cha, H. C.; Jahng, Y. Recent Advances in the Studies on Luotonins. Molecules 2011, 16, 4861; (e) Beyrati, M.; Forutan, M.; Hasaninejad, A.; Rakovský, E.; Babaei, S.; Maryamabadi, A.; Mohebbi, G. One-pot, Four-component Synthesis of Spiroindoloquinazoline Derivatives as Phospholipase Inhibitors. Tetrahedron 2017, 73, 5144; (f) Ashok, P.; Chander, S.; Chow, L. M. C.; Wong, I. L. K.; Singh, R. P.; Jha, P. N.; Sankaranarayanan, M. Synthesis and In-vitro Anti-leishmanial Activity of (4-Arylpiperazin-1-yl) (1-(thiophen-2-yl)-9H-pyrido[3,4-b]indol-3-yl)methanone Derivatives. Bioorg. Chem. 2017, 70, 100; (g) Ashok, P.; Chander, S.; Smith, T. K.; Sankaranarayanan, M. Design, Synthesis and Biological Evaluation of piperazinyl-β-carbolinederivatives as Anti-leishmanial Agents. Eur. J. Med. Chem. 2018, 150, 559; (h) Zhang, G.; Yuan, J.-M.; Qian, G.; Gu, C.-X.; Wei, K.; Mo, D.-L.; Qin, J.-K.; Peng, Y.; Zhou, Z.-P.; Pan, C.-X.; Su, G.-F. 34
ACS Paragon Plus Environment
Page 35 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Phthalazino[1,2-b]quinazolinones as p53 Activators: Cell Cycle Arrest, Apoptotic Response and Bak–Bcl-xl Complex Reorganization in Bladder Cancer Cells. J. Med. Chem. 2017, 60, 6853. (2) (a) Sena, T.; Neogb, K.; Sarma, S.; Manna, P.; Boruaha, H. P. D.; Gogoic, P.; Singh, A. K. Efflux Pump Inhibition by 11H-pyrido[2,1-b]quinazolin-11-one Analogues in Mycobacteria. Bioorg. Med. Chem. 2018, 26, 4942; (b) Ma F.; Du, H. Novel Deoxyvasicinone Derivatives as Potent Multitarget-directed Ligands for the Treatment of Alzheimer's Disease: Design, Synthesis, and Biological Evaluation. Eur. J. Med. Chem. 2017, 140, 118; (c) Fei, X. F.; Wang, B. X.; Li, T. J.; Tashiro, S.-i.; Minami, M.; Xing, D. J.; Ikejima, T. Evodiamine, a Constituent of Evodiae Fructus, Induces Anti-proliferating Effects in Tumor Cells. Cancer Sci. 2003, 94, 92; (d) Kuriyama, T.; Kakemoto, E.; Takahashi, N.; Imamura, K.-I.; Oyama, K.; Suzuki, E.; Harimaya, K.; Yaguchi, T.; Ozoe, Y. Receptor Assay-Guided Isolation of Anti-GABAergic Insecticidal Alkaloids from a Fungal Culture. J. Agric. Food Chem. 2004, 52, 3884; (e) Vidule, R. R.; Shirodkar, S. G. Synthesis and Antimicrobial Studies of Some New Substituted 3-arylidene-2-methylpyrazolo[5,1-b]quinazolin-9(3H)-ones. J. Chem. Pharm. Res. 2013, 5, 167; (f) Darras, F. H.; Wehle, S.; Huang, G.; Sotriffer, C. A.; Decker, M. Amine Substitution of Quinazolinones Leads to Selective Nanomolar AChE Inhibitors with ‘Inverted’ Binding Mode. Bioorg. Med. Chem. 2014, 22, 4867; (g) Alagarsamya, V.; Pathak, U. S. Synthesis and Antihypertensive Activity
of
Novel 35
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 36 of 42
3-benzyl-2-substituted-3H-[1,2,4]triazolo[5,1-b]quinazolin-9-ones. Bioorg. Med. Chem. 2007, 15, 3457. (3) (a) Liu, J.; Zou, J.; Yao, J.; Chen, G. Copper-Mediated Tandem C(sp2)-H Amination and Annulation of Arenes with 2-Aminopyridines: Synthesis of Pyrido-fused Quinazolinone Derivatives. Adv. Synth. Catal. 2018, 360, 659; (b) Sultan, S.; Gupta, V.; Shah, B. A. Photoredox-Catalyzed Isatin Reactions: Access to Dibenzo-1,7-Naphthyridine Carboxylate and Tryptanthrin. ChemPhotoChem. 2017, 1, 120; (c) Pham, P. H.; Doan, S. H.; Vuong, N. T. H.; Nguyen, V. H. H.; Ha, P. T. M.; Phan, N. T. S. Copper-Catalyzed Domino Sequences: A New Route To
Pyrido-Fused
Quinazolinones
from
2’-Haloacetophenones
and
2-Aminopyridines. RSC Adv. 2018, 8, 20314; (d) Yang, R.; Yu, J.-T.; Sun, S.; Cheng,
J.
Palladium-Catalyzed
CO-Free
Cyclizative
Carbonylation
of
2-Benzylpyridines Leading to Pyridoisoquinolinones. Org. Chem. Front. 2018, 5, 962; (e) Wu, H.; Zhang, Z.; Liu, Q.; Liu, T.; Ma, N.; Zhang, G. Syntheses of Acridones
via
Copper(II)-Mediated
Relay
Reactions
from
o-Aminoacetophenones and Arylboronic Acids. Org. Lett. 2018, 20, 2897; (f) Liu, M.; Shu, M.; Yao, C.; Yin, G.; Wang, D.; Huang, J. Synthesis of Pyrido-Fused
Quinazolinone
Derivatives
via
Copper-Catalyzed
Domino
Reaction. Org. Lett. 2016, 18, 824; (g) Wei, L.-S.; He, G.-X.; Kong, X.-F.; Pan, C.-X.; Mo, D.-L.; Su, G.-F. Gold(III)-Catalyzed Selective Cyclization of Alkynyl Quinazolinone-Tethered Pyrroles: Synthesis of Fused Quinazolinone Scaffolds. J. Org. Chem. 2018, 83, 6719; (h) Chandrasekhar, A.; Ramkumar, V.; 36
ACS Paragon Plus Environment
Page 37 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Sankararaman, S. Palladium Catalyzed Carbonylative Annulation of the C(sp2)–H Bond of N,1-diaryl-1H-tetrazol-5-amines and N,4-diaryl-4H-triazol-3-amines to Quinazolinones. Org. Biomol. Chem. 2018, 16, 8629; (i) Banerji, B.; Bera, S.; Chatterjee, S.; Killi, S. K.; Adhikary, S. Regioselective Synthesis of Quinazolinone-/Phenanthridine-Fused Heteropolycycles by Pd-Catalyzed Direct Intramolecular Aerobic Oxidative C-H Amination from Aromatic Strained Amides. Chem. Eur. J. 2016, 22, 3506. (4)
(a) Kumar, K. S.; Kumar, P. M.; Rao, V. S.; Jafar, A. A.; Meda, C. L. T.; Kapavarapu, R.; Parsac, K. V. L.; Pal, M. A New Cascade Reaction: Concurrent Construction of Six and Five Membered Rings Leading to Novel Fused Quinazolinones. Org. Biomol. Chem. 2012, 10, 3098; (b) Zhang, Y.; Qiao, R.; He, D.; Zhao, Z.; Yang, S.; Zou, H.; Zhang, X.; Wu, M.; Chen, J.; Chen, P. Indazolo[3,2-b]quinazolinones Attack Hepatocellular Carcinoma Hep3B Cells by Inducing Mitochondrial-Dependent Apoptosis and Inhibition of Nrf2/ARE Signaling Pathway. Curr. Mol. Med. 2016, 16, 820.
(5)
(a) Yang, W.; Ye, L.; Huang, D.; Liu, M.; Ding, J.; Chen, J.; Wu, H. Copper-Catalyzed
Intramolecular
C–N
Bond
3-Amino-2-(2-bromophenyl)dihydroquinazolinones:
Formation
Reaction
Synthesis
of of
Indazolo[3,2-b]quinazolinones. Tetrahedron 2013, 69, 9852; (b) Qiao, R.; Ye, L.; Hu, K.; Yu, S.; Yang, W.; Liu, M.; Chen, J.; Ding, J.; Wu, H. Copper-Catalyzed C–O Bond Cleavage and Cyclization: Synthesis of Indazolo[3,2-b]quinazolinones. Org. Biomol. Chem. 2017, 15, 2168; (c) Yang, 37
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 38 of 42
W.; Qiao, R.; Chen, J.; Huang, X.; Liu, M.; Gao, W.; Ding, J.; Wu, H. Palladium-Catalyzed Cascade Reaction of 2-Amino-N’-arylbenzohydrazides with Triethyl Orthobenzoates To Construct Indazolo[3,2-b]quinazolinones. J. Org. Chem. 2015, 80, 482; (d) Yang, W.; Chen, J.; Huang, X.; Ding, J.; Liu M.; Wu, H. Pd-Catalyzed Intramolecular Aerobic Oxidative C–H Amination of 2-Aryl-3-(arylamino)quinazolinones:
Synthesis
of
Fluorescent
Indazolo[3,2-b]quinazolinones. Org. Lett. 2014, 16, 5418. (6) (a) Sircar, J. C.; Capiris, T.; Kesten, S. J.; Herzig, D. J. Pyrazolo[5,lb]quinazolin-9-ones: A New Series of Antiallergic Agents. J. Med. Chem. 1981, 24, 735; (b) Vidule, R. R.; Shirodkar, S.G. Synthesis and Antimicrobial Studies of
Few
New
Substituted
2-Methyl-3-(aryldiazenyl)pyrazolo[5,1-b]quinazolin-9(3H) -ones. Res. J. Chem. Sci. 2013, 3, 60. (7) (a)
Chen,
D.-S.;
Zhang,
M.-M.;
Li,
Y.-L.;
Liu,
Y.;
Wang,
X.-S.
Copper(I)-Catalyzed Synthesis of 1-Arylpyrazolo[5,1-b]quinazolin-9(1H)-one via Intramolecular Alkyne Hydroamination. Tetrahedron 2014, 70, 2889; (b) Zhang, Y.;
Xu,
J.;
Li,
C.;
Wang,
X-S.
Domino
Synthesis
of
Fused
Pyrazolo[5,1-b]quinazolin-9(1H)-ones Catalyzed by CuI via Subsequent Michael Addition and Elimination. Tetrahedron 2015, 71, 8732. (8) (a) Garrett, C. E.; Prasad, K. The Art of Meeting Palladium Specifications in Active Pharmaceutical Ingredients Produced by Pd-Catalyzed Reactions. Adv. Synth. Catal. 2004, 346, 889; (b) Rosso, V. W.; Lust, D. A.; Bernot, P. J.; Grosso, 38
ACS Paragon Plus Environment
Page 39 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
J. A.; Modi, S. P.; Rusowicz, A.; Sedergran, T. C.; Simpson, J. H.; Srivastava, S. K.; Humora, M. J.; Anderson, N. G. Removal of Palladium from Organic Reaction Mixtures by Trimercaptotriazine. Org. Process Res. Dev. 1997, 1, 311. (c) Pan, C.; Zhang, H.; Han, J.; Cheng Y.; Zhu, C. Metal-free Radical Oxidative Decarboxylation/Cyclization of Acyl Peroxides and 2-Isocyanobiphenyls. Chem. Commun. 2015, 51, 3786; (d) Yang, W.; Yang, S.; Li, P.; Wang, L. Visible-light Initiated Oxidative Cyclization of Phenyl Propiolates with Sulfinic Acids to Coumarin Derivatives under Metal-free Conditions. Chem. Commun. 2015, 51, 7520; (e) Sharma, R.; Patel, N.; Vishwakarma, R. A.; Bharatam, P. V.; Bharate, S. B. Metal-free Oxidative Cyclization of Acetophenones with Diamines: A Facile Access to Phenylpyridines. Chem. Commun. 2016, 52, 1009. (f) Huo, C.; Xie, H.; Chen, F.; Tang, J.; Wang Y. Double-OxidativeDehydrogenative(DOD) Cyclization of Glycine Derivatives with Dioxane under Metal-Free Aerobic Conditions. Adv.Synth. Catal. 2016, 358,724. (g) Zhang, Y-Q.; Zhu, X-Q.; Chen, Y.-B.; Tan, T-D.; Yang, M-Y.; Ye, L-W. Synthesis of Isothiochroman-3-ones via Metal-Free Oxidative Cyclization of Alkynyl Thioethers. Org. Lett. 2018, 20, 7721. (h) Xie, Y.; Chen, X.; Wang, Z.; Huang, H.; Yi, B.; Deng, G-J. Metal-free Oxidative Cyclization of 2-Aminobenzothiazoles and Cyclic Ketones Enabled by the Combination of Elemental Sulfur and Oxygen. Green Chem. 2017, 19, 4294. (9)
For reviews, see: (a) Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Green Chemistry with Selenium Reagents: Development of Efficient Catalytic Reactions. Angew. Chem. Int. Ed. 2009, 48, 8409; (b) Santi, C.; 39
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 40 of 42
Santoro, S.; Battistelli, B. Organoselenium Compounds as Catalysts in Nature and Laboratory. Curr. Org. Chem. 2010, 14, 2442; (c) Breder A.; Ortgies, S. Recent Developments in Sulfur- and Selenium-catalyzed Oxidative and Isohypsic Functionalization Reactions of Alkenes. Tetrahedron Lett. 2015, 56, 2843; (d) Młochowski, J.; Wójtowicz-Młochowska, H. Developments in Synthetic Application of Selenium(IV) Oxide and Organoselenium Compounds as Oxygen Donors and Oxygen-Transfer Agents. Molecules 2015, 20, 10205. (10) (a) Sancineto, L.; Tidei, C.; Bagnoli, L.; Marini, F.; Lenardao, E. J.; Santi, C. Selenium Catalyzed Oxidation of Aldehydes: Green Synthesis of Carboxylic Acids and Esters. Molecules 2015, 20, 10496; (b) Zhang, X.; Ye, J.-Q.; Yu, L.; Shi, X.-K.; Zhang, M.; Xu, Q.; Lautens, M. Organoselenium-Catalyzed Baeyer-Villiger Oxidation of α, β-Unsaturated Ketones by Hydrogen Peroxide to Access Vinyl Esters. Adv. Synth. Catal. 2015, 357, 955; (c) Yu, L.; Li, H.-Y.; Zhang, X.; Ye, J.-Q.; Liu, J.-P.; Xu, Q.; Lautens, M. Organoselenium-Catalyzed Mild Dehydration of Aldoximes: An Unexpected Practical Method for Organonitrile Synthesis. Org. Lett. 2014, 16, 1346. (11) (a) Yan, D.; Wang, G.; Xiong, F.; Sun, W.-Y.; Shi, Z.; Lu, Y.; Li, S.; Zhao, J. A Selenium-Catalysed Para-amination of Phenols. Nature Commun. 2018, 9, 4293; (b)
Krätzschmar,
F.;
Kaßel,
M.;
Delony,
D.;
Breder,
A.
Selenium-Catalyzed C(sp3)H Acyloxylation: Application in the Expedient Synthesis of Isobenzofuranones. Chem. Eur. J. 2015, 21, 7030; (c) Chen, F.; Tan, C. K.; Yeung, Y.-Y. C2-Symmetric Cyclic Selenium-Catalyzed 40
ACS Paragon Plus Environment
Page 41 of 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Enantioselective Bromoaminocyclization. J. Am. Chem. Soc. 2013, 135, 1232; (d) Jin, W.; Zheng, P.; Wong, W.-T.; Law, G.-L. Efficient Selenium-Catalyzed Selective C(sp3)−H Oxidation of Benzylpyridines with Molecular Oxygen. Adv. Synth. Catal. 2017, 359, 1588; (e) Singh, F. V.; Wirth, T. Selenium-Catalyzed Regioselective Cyclization of Unsaturated Carboxylic Acids Using Hypervalent Iodine Oxidants. Org. Lett. 2011, 13, 6504; (f) Zhu, Z.; Luo, J.; Zhao, X. Combination of Lewis Basic Selenium Catalysis and Redox Selenium Chemistry: Synthesis of Trifluoromethylthiolated Tertiary Alcohols with Alkenes. Org. Lett. 2017, 19, 4940; (g) Horibe, T.; Ohmura, S.; Ishihara, K. Selenium–Iodine Cooperative Catalyst for Chlorocyclization of Tryptamine Derivatives. Org. Lett. 2017, 19, 5525; (h) Trofymchuk, O. S.; Zheng, Z.; Kurogi, T.; Mindiola, D. J.; Walsh, P. J. Selenolate Anion as an Organocatalyst: Reactions and Mechanistic Studies. Adv. Synth. Catal. 2018, 360, 1685; (i) Depken, C.; Krätzschmar, F.; Rieger, R.; Rode, K.; Breder, A. Photocatalytic Aerobic Phosphatation of Alkenes. Angew. Chem. Int. Ed. 2018, 57, 2459; (j) Liao, L.; Guo, R.; Zhao, X. Organoselenium-Catalyzed Regioselective C−H Pyridination of 1,3-Dienes and Alkenes. Angew. Chem. Int. Ed. 2017, 56, 3201. (12) Trenner, J.; Depken, C.; Weber, T.; Breder, A. Direct Oxidative Allylic and Vinylic Amination of Alkenes through Selenium Catalysis. Angew. Chem. Int. Ed. 2013, 52, 8952. (13) (a) Hu, K.; Zhen, Q.; Gong, J.; Cheng, T.; Qi, L.; Shao, Y.; Chen, J. Palladium-Catalyzed Three-Component Tandem Process: One-Pot Assembly of 41
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 42 of 42
Quinazolines. Org. Lett. 2018, 20, 3083; (b) Hu, K.; Qi, L.; Yu, S.; Cheng, T.; Wang, X.; Li, Z.; Xia, Y.; Chen, J.; Wu, H. Efficient Synthesis of Isoquinolines in Water by a Pd-catalyzed Tandem Reaction of Functionalized Alkylnitriles with Arylboronic Acids. Green Chem. 2017, 19, 1740; (c) Zhang, Y.; Shao, Y.; Gong, J.; Hu, K.; Cheng, T.; Chen, J. Palladium-Catalyzed Tandem Reaction of Quinazolinone-Based
Nitriles
with
Arylboronic
Acids:
Synthesis
of
2-(4-Arylquinazolin-2-yl)anilines. Adv. Synth. Catal. 2018, 360, 3260; (d) Ye, P.; Shao, Y.; Xie, L.; Shen, K.; Cheng, T.; Chen, J. Lanthanide-Catalyzed Tandem Insertion of Secondary Amines with 2-Alkynylbenzonitriles: Synthesis of Aminoisoindoles. Chem. Asian J. 2018, 13, 3681. (14) CCDC-1510965 contains the supplementary crystallographic data for compound 2a. CCDC-1882008 contains the supplementary crystallographic data for compound 3a. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. (15) (a) Georgios, R.; Athanasios, K.; George, V. Synthesis of A Novel Pyrrolo[1,2-c][1.3]benzodiazepine Analogue of VPA-985. Tetrahedron 2011, 67, 7805; (b) Manivannan, E.; Chaturvedi, S. C. Analogue-based Design, Synthesis and Molecular Docking Analysis of 2,3-Diaryl Quinazolinones as Non-ulcerogenic Anti-inflammatory Agents. Bioorg. Med. Chem. 2011, 19, 4520.
42
ACS Paragon Plus Environment