Sequential Layer Analysis of Protein ... - ACS Publications

Aug 23, 2010 - Connecticut 06269- 3060,‡Institute of Materials Science, University ... University of Connecticut Health Center, Farmington, Connecti...
0 downloads 0 Views 3MB Size
pubs.acs.org/Langmuir © 2010 American Chemical Society

Sequential Layer Analysis of Protein Immunosensors Based on Single Wall Carbon Nanotube Forests Ruchika Malhotra,† Fotios Papadimitrakopoulos,†,‡ and James F. Rusling*,†,‡,§ †

Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269- 3060, ‡Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, and §Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06032 Received June 7, 2010. Revised Manuscript Received August 2, 2010 Electrochemical immunosensors using vertically aligned single wall carbon nanotube (SWNT) forests can provide ultrasensitive, accurate cancer biomarker protein assays. Herein we report a systematic investigation of the structure, thickness, and functionality of each layer of these immunosensors using atomic force microscopy (AFM), quartz crystal microbalance (QCM), and scanning white light interferometry (SWLI). This provides a detailed picture of the surface morphology of each layer along with surface concentration and thickness of each protein layer. Results reveal that the major reasons for sensitivity gain can be assigned to the dense packing of carboxylated SWNT forest tips, which translate to a large surface concentration of capture antibodies, together with the high quality of conductive SWNT forests.

Introduction Carbon nanotubes (CNTs) are promising nanomaterials for fabrication of nanodevices,1-5 sensors,6-9 and high-aspect-ratio scanning microscopy probes.10-12 We have used single wall carbon nanotubes (SWNTs) in upright “forest” configurations13 to develop ultrasensitive electrochemical immunosensors14,15 for cancer biomarker proteins such as prostate specific antigen (PSA detection limit (DL) of 4 pg mL-1),16 interleukin-6 (IL-6, DL of *Corresponding author. E-mail: [email protected]. (1) Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317– 1320. (2) Lefebvre, J.; Antonov, R. D.; Radosavljevic, M.; Lynch, J. F.; Llaguno, M.; Johnson, A. T. Carbon 2000, 38, 1745–1749. (3) Bockrath, M.; Cobden, D. H.; McEuen, P. L.; Chopra, N. G.; Zettl, A.; Thess, A.; Smalley, R. E. Science 1997, 275, 1922–1925. (4) Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C. Nature 1999, 402, 273–276. (5) Tans, S. J.; Devoret, M. H.; Dal, H.; Thess, A.; Smalley, R. E.; Geerligs, L. J.; Dekker, C. Nature 1997, 386, 474–477. (6) Kong, J.; Franklin, N. R.; Zhou, C.; Chappline, M. G.; Peng, S.; Chao, K.; Dai, H. Science 2000, 287, 622–625. (7) O’Connor, M.; Kim, S. N.; Killard, A. J.; Forster, R. J.; Smyth, M. R.; Papadimitrakopoulos, F.; Rusling, J. F. Analyst 2004, 129, 1176–1180. (8) Yu, X.; Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F.; Rusling, J. F. Electrochem. Commun. 2003, 5, 408–411. (9) Sinha, N.; Ma, J.; Yeow, J. T. W. J. Nanosci. Nanotechnol. 2006, 6, 573–590. (10) Stevens, R.; Nguyen, C.; Cassel, A.; Delzeit, L.; Meyyappan, M.; Han, J. Appl. Phys. Lett. 2000, 77, 3453–3455. (11) Hafner, J. H.; Cheung, C. L.; Lieber, C. M. Nature 1999, 398, 761–762. (12) Hafner, J. H.; Cheung, C. L.; Oosterkamp, T. H.; Lieber, C. M. J. Phys. Chem. B 2001, 105, 743–746. (13) Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F. J. Am. Chem. Soc. 2001, 123, 9451–9452. (14) (a) Kim, S. N.; Rusling, J. F.; Papadimitrakopoulos, F. Adv. Mater. 2007, 19, 3214–3228. (b) Rusling, J. F.; Yu, X.; Munge, B. S.; Kim, S. N.; Papadimitrakopoulos, F. In Engineering the Bioelectronic Interface; Davis, J., Ed.; Royal Society of Chemistry: London, 2009; pp 94-118. (15) Rusling, J. F.; Sotzing, G.; Papadimitrakopoulos, F. Bioelectrochemistry 2009, 76, 189–194. (16) Yu, X.; Munge, B.; Patel, V.; Jensen, G.; Bhirde, A.; Gong, J. D.; Kim, S. N.; Gillespie, J.; Gutkind, J. S.; Papadimitrakopoulos, F.; Rusling, J. F. J. Am. Chem. Soc. 2006, 128, 11199–11205. (17) (a) Munge, B. S.; Krause, C. E.; Malhotra, R.; Patel, V.; Gutkind, J. S.; Rusling, J. F. Electrochem. Commun. 2009, 11, 1009–1012. (b) Malhotra, R.; Patel, V.; Vaque, J. P.; Gutkind, J. S.; Rusling, J. F. Anal. Chem. 2010, 82, 3118–3123. (18) Chikkaveeraiah, B. V.; Bhirde, A.; Malhotra, R.; Patel, V.; Gutkind, J. S.; Rusling, J. F. Anal. Chem. 2009, 81, 9129–9234.

15050 DOI: 10.1021/la102306z

0.5 pg mL-1),17 and simultaneous detection of four prostate cancer biomarkers in human serum.18 We also used SWNT forests to develop an electrochemiluminescent immunosensor for proteins.19 These sensors feature 20-30 nm long, dense, terminally carboxylated, SWNT forests13 with capture antibodies attached to their ends (Figure 1). In typical amperometric sandwich immunoassays, antibodies on the sensor selectively capture analyte proteins from the sample, and an enzyme-labeled secondary antibody is added that binds to the analyte and generates an appropriate electrochemical signal. The SWNT forest platform itself has consistently provided a 3-10-fold gain in sensitivity over immunosensors fabricated on flat carboxylated carbon surfaces without nanotubes.14-16,20 We have speculated that reasons for this may include a high density of antibodies on the high surface area nanostructured surface and SWNT catalysis.14,15 In this paper, scanning probe microscopy, optical reflectance, and quartz microbalance techniques21-23 were used for sequential characterization of each layer of the nanostructured SWNT forest immunosensors to elucidate surface morphologies, surface concentrations, and thicknesses for each protein layer. Results confirm for the first time that a major reason for the sensitivity gain is the large surface area of SWNT forests that together with their densely populated carboxylate tips enable large concentrations of capture antibodies on the sensor surface.

Experimental Section Chemicals and Materials. Monoclonal (mouse) primary antihuman prostate specific antigen (PSA) antibody (clone no. CHYH1, MW 150 000 Da), tracer secondary anti-PSA antibody (clone no. CHYH2) with HRP conjugation (MW 184 000 Da), (19) Sardesai, N.; Pan, S.; Rusling, J. F. Chem. Commun. 2009, 4968–4970. (20) Yu, X.; Kim, S. N.; Papadimitrakopoulos, F.; Rusling, J. F. Mol. Biosyst. 2005, 1, 70–78. (21) May, R. A.; Kondrachova, L. V.; Hahn, B. P.; Stevenson, K. J. J. Phys. Chem. C 2007, 111, 18251–18257. (22) McEvoy, T. M.; Stevenson, K. J. Langmuir 2005, 1, 3521–3528. (23) Jensen, G. C.; Yu, X.; Gong, J. D.; Munge, B.; Bhirde, A.; Kim, S. N.; Papadimitrakopoulos, F.; Rusling, J. F. J. Nanosci. Nanotechnol. 2009, 9, 249–255.

Published on Web 08/23/2010

Langmuir 2010, 26(18), 15050–15056

Malhotra et al.

Article

Figure 1. Strategy for amperometric SWNT forests immunosensors. On left in the SWNT forests assembly followed by the immunosensor that has been equilibrated with analyte protein PSA (center), along with biomaterials used in the assay protocol. On left, the immunosensor has been treated with enzyme-labeled secondary antibody: HRP-Ab2 (HRP = horseradish peroxidase). Detection involves immersing the sensor in an electrochemical cell containing buffer and mediator, applying voltage, and injecting a small amount of hydrogen peroxide (H2O2) to activate HRP for amperometric reduction of H2O2. and PSA (MW 33 000 Da) standard in calf-serum were obtained from Anogen/Yes Biotech Lab, Ltd. Bovine serum albumin (BSA) and Tween-20 were obtained from Sigma-Aldrich. Single wall carbon nanotubes (Hipco) were procured from Carbon Nanotechnologies, Inc. Immunoreagents were dissolved in pH 7.0 phosphate saline (PBS) buffer (0.01 M phosphate, 0.14 M NaCl, 2.7 mM KCl). 1-(3-(Dimethylamino)propyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (Sulfo-NHS) from Sigma were dissolved in water immediately before use. Instrumentation. A Veeco Nanoscope IV multimode atomic force microscope (AFM) in AC mode (Tapping mode) was used for imaging. Weight and thickness were measured using quartz crystal microbalance (QCM, USI Japan) Au-coated resonators (9 MHz, AT-cut, International Crystal Mfg.) and 3D noncontact scanning white light interferometer (Zygo NewView 5000, Zygo Corp., Middlefield, CT). A Renishaw Ramascope 2000 using 1.58 eV (785 nm) excitation laser focused on a