6 Silicones in Artificial Organs Ε. E. FRISCH
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
Dow Corning Corporation, Midland, MI 48640
Starting with the silicone elastomer hydroceph alus shunt in 1955, silicone elastomer has become widely used as a soft, f l e x i b l e , elastomeric material of construction for artificial organs and implants for the human body. When prepared with controls to assure its duplication and freedom from contamination, specific formulations have excellent biocompatibility, b i o d u r a b i l i t y , and a long history of c l i n i c a l safety. Properties can be varied to meet the needs in many different implant applica tions. Silicone elastomer can be fabricated in a wide variety of forms and shapes by most all of the techniques used to fabricate thermosetting elasto mers. Radiopacity can be increased by fillers such as barium sulfate or powdered metals. It can be s t e r i l i z e d by ethylene oxide, steam autoclave, dry heat, or radiation. S h e l f - l i f e at ambient condi tions i s indefinite. When implanted the host reaction i s t y p i c a l l y limited to encapsulation of the implant in fibrous tissue. Silicone elastomer implants have become used in essentially a l l surgical specialties including neurosurgery, ophthalmology, plastic surgery, urology, orthopae dic surgery, obstetrics and gynecology, otolaryn gology, cardiovascular surgery, and others. Significant advances have been made in silicone elastomer technology in recent years. A medical grade high performance s i l i c o n e elastomer with excellent resistance to tear propagation and fatigue flexing has been developed and qualified for use in the implants used in bone and j o i n t reconstruction. Properties, biocompatibility, biodurability and medical applications for silicone elastomers w i l l be discussed. 0097-6156/84/0256-0063S09.75/0 © 1984 American Chemical Society
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
64
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
S i l i c o n e i s t h e common name f o r p o l y d i o r g a n o s i l o x a n e s . The t e r m a l l e g e d l y o r i g i n a t e d b e c a u s e i t was t h o u g h t s i l i c o n - c o n t a i n i n g m a t e r i a l s f i r s t p r e p a r e d by K i p p i n g O J a t about t h e t u r n o f t h e c e n t u r y might be s i l i c o n - c o n t a i n i n g a n a l o g u e s o f k e t o n e s . C(CH3)2=0
-
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
Acetone
[Si(CH3)20-]
x
Polydimethylsiloxane
Modern p r o c e s s e s f o r s y n t h e s e s o f s i l i c o n e s were developed from research conducted i n the 1930's. S i l i c o n e s were first manufactured in quantity during World War I I f o r t h e U. S. g o v e r n m e n t t o i m p r o v e t h e p e r f o r m a n c e o f U. S . a i r c r a f t . After W o r l d War I I a n d p r i o r t o d i s t r i b u t i o n f o r o t h e r t h a n aircraft use, animal studies were undertaken to evaluate biological c h a r a c t e r i s t i c s . The f i n d i n g s i n d i c a t e d t h a t n o n - v o l a t i l e methyl and mixed m e t h y l - p h e n y l p o l y s i l o x a n e s as a c l a s s were v e r y l o w i n toxicity. Also, f i n i s h e d s i l i c o n e r e s i n s were physiologically i n e r t a n d p r e s e n t e d no h e a l t h h a z a r d s . Publication (2-3) of the study stimulated interest in using silicones for artificial organs because o f t h e need f o r i m p l a n t a b l e , b i o c o m p a t i b l e , soft, flexible, elastomeric materials. This paper will review the chemistry, the physical and b i o l o g i c a l characteristics, and applications of silicones in a r t i f i c i a l organs. CHEMISTRY The s y n t h e s i s o f s i l i c o n e s t a r t s w i t h n a t u r a l l y o c c u r r i n g s i l i c o n dioxide (quartz, sand, or quartzite rock). Silicon dioxide is reacted with carbon at high temperature to y i e l d elemental silicon. Si0
2
+ C
£
• Si + C02
The h a r d , c r y s t a l l i n e , b r i t t l e e l e m e n t a l s i l i c o n i s p u l v e r ized and r e a c t e d directly with methyl chloride at elevated temperature. Si +
+ CH3C1 _ ^ S i C l (CH3)3SiCl
+
4
+ CH3SiCl3
+
(CH3)2SiCl
2
(CH3)4Si
A mixture o f m e t h y l - and c h l o r i n e - c o n t a i n i n g s i l a n e s ranging from t e t r a c h l o r o s i l a n e to t e t r a m e t h y l s i l a n e i s o b t a i n e d . Condi tions are generally adjusted to produce a maximum amount of dimethyldichlorosilane, t h e monomer f o r polydimethylsiloxanes. The l i q u i f i e d s i l a n e s a r e s e p a r a t e d by f r a c t i o n a l d i s t i l l a t i o n . Polydimethylsiloxane i s prepared by c o n d e n s a t i o n copolymerization of dimethyldichlorosilane with water. χ
(CH3)2SiCl
2
+ χ
H20
-[Si(CH3)20-]
x
+ 2x
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
HC1
6.
FRISCH
65
Silicones in Artificial Organs
The p r e p o l y m e r t h u s o b t a i n e d i s f u r t h e r p o l y m e r i z e d t o y i e l d specific s i l i c o n e polymers which can vary in molecular weight (average and d i s t r i b u t i o n ) , p r e s e n c e o r absence and c o n t e n t of f i l l e r s or other a d d i t i v e s , type of organic l i g a n d s attached to s i l i c o n , the p o s s i b l e presence of r e a c t i v e r a d i c a l s such as v i n y l l i g a n d s on s i l i c o n f o r u s e i n c r o s s - l i n k i n g , a n d i n o t h e r ways. A b o u t 6 0 , 0 0 0 s i l i c o n - c o n t a i n i n g compounds a r e known. However, o n l y a few have been f o u n d t o be u s e f u l and have t h u s become commercially available. S i l i c o n e s used i n a r t i f i c i a l o r g a n s and i m p l a n t s have p r i m a r i l y been the p o l y d i m e t h y l s i l o x a n e s .
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
Hydrocephalus
Shunt
Holter's s u c c e s s f u l development of a s i l i c o n e elastomer hydrocephalus shunt (4) (Figures 1-2) i n 1955 heralded the era of implants. No e f f e c t i v e t r e a t m e n t f o r h y d r o c e p h a l u s w a s k n o w n a t the time. Thus, by 1 9 5 7 , o n l y two y e a r s a f t e r the shunt was f i r s t u s e d , and c o n t i n u i n g t o d a y , e s s e n t i a l l y e v e r y h y d r o c e p h a l i c c h i l d born i n t h e d e v e l o p e d c o u n t r i e s o f t h e w o r l d has r e c e i v e d a silicone elastomer hydrocephalus shunt implant. Hydrocephalus o c c u r s i n a p p r o x i m a t e l y one o u t o f e v e r y 400 t o 600 c h i l d r e n b o r n alive. The h y d r o c e p h a l u s s h u n t i s one o f t h e o l d e s t , and a l s o one o f t h e most w i d e l y used o f a l l s i l i c o n e e l a s t o m e r implants. Some i n d i v i d u a l s h a v e now h a d s h u n t i m p l a n t s f o r more t h a n 25 years. The excellent biocompatibility of implant grades of silicone elastomer is evidenced by the essential absence of adverse b i o l o g i c a l response i n t h i s long t e r m , l a r g e volume u s e . Medical
Grade
Silicone
Elastomers
M e d i c a l g r a d e s i l i c o n e e l a s t o m e r s became a v a i l a b l e i n t h e early 1960's. "Medical grade" r e f e r s to s i l i c o n e elastomers specifically formulated, manufactured and q u a l i f i e d f o r implant uses. The f o r m u l a t i o n s c o n t a i n no m a t e r i a l s w i t h p o t e n t i a l f o r b i o d é g r a d a t i o n o r a d v e r s e b i o c o m p a t i b i l i t y . M a n u f a c t u r i n g and p r o c e s s i n g a r e done under c a r e f u l l y c o n t r o l l e d , c l e a n c o n d i t i o n s t o a s s u r e batch-to-batch duplication, and freedom from adulteration, contamination, and cross contamination. Batch-to-batch tests i n c l u d e a s s e s s m e n t o f c h e m i c a l , p h y s i c a l , and b i o l o g i c a l p r o p e r ties. The m a t e r i a l s m u s t e l i c i t no c y t o t o x i c r e a c t i o n by d i r e c t contact tissue-cell culture testing (5,6). Q u a l i f i c a t i o n of a c o n t r o l l e d f o r m u l a t i o n f o r implant use t y p i c a l l y r e q u i r e s 2-year minimum biocompatibility (host and tissue reaction) {7) and 2-year biodurability (implant reaction) studies. H i g h - c o n s i s t e n c y thermosetting medical grade s i l i c o n e e l a s tomer compounds a r e p r e p a r e d f r o m h i g h m o l e c u l a r w e i g h t polydiorganosiloxanes compounded w i t h h i g h - s u r f a c e fumed s i l i c a (approximately 400 m /g). Silica is the only material known that adequately reinforces s i l i c o n e elastomer. V u l c a n i z a t i o n requires c r o s s - l i n k i n g polymer c h a i n s . In one
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
F i g u r e 1. A s i l i c o n e elastomer hydrocephalus shunt. This type of shunt i s used to d r a i n c e r e b r o s p i n a l f l u i d from the v e n t r i c l e of the b r a i n to e i t h e r the v a s c u l a r system or to the p e r i t o n e a l c a v i t y . The f i r s t hydrocephalus s h u n t was d e v e l o p e d by H o l t e r i n 1 9 5 5 . The s h u n t i n t h i s i l l u s t r a t i o n c o n t a i n s a dual f l u s h i n g chamber to a s s u r e c o n t i n u a l f u n c t i o n o f t h e s h u n t , and i s d e s i g n e d to d r a i n cerebral s p i n a l f l u i d from the v e n t r i c l e of the b r a i n to the p e r i t o n e a l cavity.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
FRISCH
Silicones in Artificial Organs
F i g u r e 2. P o s i t i o n i n g of the hydrocephalus shunt i n a c h i l d ' s body. The e n t i r e s h u n t i s i m p l a n t e d s u b d e r m a l l y . The t i p o f t h e s h u n t i s i n s e r t e d i n t o t h e v e n t r i c l e o f t h e b r a i n t h r o u g h a h o l e made i n t h e s k u l l , w h i l e t h e d r a i n a g e catheter i s placed in the peritoneal c a v i t y through a small i n c i s i o n in the p e r i t o n e a l l i n i n g . An e x t r a length of the p e r i t o n e a l c a t h e t e r i s g e n e r a l l y l e f t so t h a t the c h i l d may g r o w w i t h o u t d i s l o d g i n g t h e c a t h e t e r f r o m t h e peritoneal cavity.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
68
POLYMERIC MATERIALS AND ARTIFICIAL ORGANS
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
type o f c r o s s - l i n k i n g , s i l i c o n - h y d r o g e n l i g a n d s , c o n t a i n e d as small amounts o f methylhydrogensiloxy copolymer i n one formulat i o n , r e a c t with s i l i c o n - v i n y l l i g a n d s , c o n t a i n e d as m e t h y l v i n y l s i l o x y copolymer i n small amounts i n a second f o r m u l a t i o n . When the two f o r m u l a t i o n s a r e i n t i m a t e l y blended and heated i n t h e presence o f a c a t a l y s t , c r o s s - l i n k i n g o c c u r s . T y p i c a l c a t a l y s t s i n c l u d e t r a c e q u a n t i t i e s o f r a r e metals, such as platinum. The c r o s s - l i n k s a r e dimethylene r a d i c a l s c o v a l e n t l y bonded between s i l i c o n atoms i n separate polymer c h a i n s . C r o s s - l i n k i n g e s s e n t i a l l y forms a c h e m i c a l l y bonded network matrix o f one g i a n t molecule. Organic peroxides a r e a l s o used as vulcanization catalysts. B i o c o m p a t i b i l i t y o f Medical Grade S i l i c o n e Elastomers When once formulated o r processed s i l i c o n e elastomer cannot be adequately c h a r a c t e r i z e d by s h o r t term s t u d i e s t o guarantee t h a t h i s t o r i c animal and c l i n i c a l data a r e r e l e v a n t t o assure reasona b l e s a f e t y f o r implant use. U n l i k e some substances where a n a l y s i s and acute e v a l u a t i o n s can p r o v i d e thorough c h a r a c t e r i z a t i o n c h e m i c a l , p h y s i c a l , and acute b i o c o m p a t i b i l i t y t e s t s , used alone o r i n combination, a r e n o t adequate. Formulation e r r o r s or contamination, which c o u l d a d v e r s e l y a f f e c t c h r o n i c biocompati b i l i t y c h a r a c t e r i s t i c s , may i n a d v e r t e n t l y o c c u r and n o t be d e t e c t e d by short-term t e s t i n g . When used i n implants reasonable assurance o f d u p l i c a t i o n must i n c l u d e c h a r a c t e r i z a t i o n o f a l l b a s i c i n g r e d i e n t s , c o n t r o l o f t h e manufacturing p r o c e s s e s , and s t r i n g e n t q u a l i t y assurance. A l l f o r m u l a t i o n , compounding, and p r o c e s s i n g o f elastomers must be done i n f a c i l i t i e s which comply with Good Manufacturing P r a c t i c e Regulations as a minimum. S i l i c o n e elastomer prepared under l e s s s t r i n g e n t c o n d i t i o n s , such as those t y p i c a l l y used t o produce elastomer f o r i n d u s t r i a l use cannot be adequately upgraded by a f t e r - t h e - f a c t s h o r t - t e r m t e s t i n g t o assure t h a t c h r o n i c b i o c o m p a t i b i l i t y c h a r a c t e r i s t i c s have been d u p l i c a t e d . The c h r o n i c b i o c o m p a t i b i l i t y and b i o d u r a b i l i t y o f medical grade s i l i c o n e elastomers have been e v a l u a t e d . In one study specimens o f medical grade s i l i c o n e elastomer were implanted i n purebred beagle dogs f o r 3 y e a r s . T i s s u e r e a c t i o n s t y p i c a l l y i n c l u d e d an i n i t i a l inflammatory r e a c t i o n a s s o c i a t e d with t h e i n t r o d u c t i o n o f a f o r e i g n m a t e r i a l . The r e a c t i o n appeared t o be s e l f - l i m i t i n g and f u r t h e r d i m i n i s h e d with time, l e a v i n g a d e f i n a b l e f i b r o u s c a p s u l e around t h e implant as t h e t e r m i n a l observat i o n . The most n o t i c e a b l e f i b r o u s - t i s s u e responses were caused by t h e i n t r a m u s c u l a r i m p l a n t s , w i t h l e s s i n t e n s e r e a c t i o n s r e s p e c t i v e l y i n subcutaneous and i n t r a p e r i t o n e a l s i t e s . The r e s u l t s o f t e s t i n g done on c l i n i c a l l a b o r a t o r y specimens c o l l e c t ed d u r i n g t h e t e r m i n a l weeks o f t h e 3-year i m p l a n t a t i o n study f o r e v a l u a t i o n o f c l i n i c a l chemistry i n d i c a t e d t h a t a l l values were w i t h i n normal l i m i t s f o r t h e s p e c i e s , with no a b n o r m a l i t i e s
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
6.
FRlSCH
d e t e c t e d . The g r o s s a u t o p s y r e v e a l e d no
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
69
Silicones in Artificial Organs
and m i c r o s c o p i c f i n d i n g s i n t i s s u e s t a k e n at pattern of polymer-induced systemic toxicity.
In a s t u d y w i t h a l b i n o r a t s s p e c i m e n s o f t e s t m a t e r i a l s were i m p l a n t e d i n a g r o u p o f 100 r a t s , c o n s i s t i n g o f 50 m a l e s a n d 50 females. S i m i l a r g r o u p s , s e r v i n g as c o n t r o l s , r e c e i v e d implants o f USP p o l y e t h y l e n e a n d s h a m s u r g e r y o n l y . The s t u d y was c o n t i n ued for the lifetime of the animals, or 2 years, whichever occurred f i r s t . Mortality d a t a r e v e a l e d no s i g n i f i c a n t differences between test, treated control, or control groups with respect to the frequency o r number of deaths. There were no untoward b e h a v i o r a l r e a c t i o n s i n any of the a n i m a l s . Histopathol o g i c a l e v a l u a t i o n s r e v e a l e d t h a t t i s s u e changes found i n t r e a t e d r a t s were s i m i l a r to those i n c o n t r o l r a t s . The t y p e and incidence of neoplasms observed were considered normal for the laboratory r a t s o f t h e age and s t r a i n i n v o l v e d in this study. None o f t h e n e o p l a s m s o b s e r v e d w e r e a t t r i b u t a b l e to the experimental procedures. B i o d u r a b i l i t y was a s s e s s e d by a 2 - y e a r s u b c u t a n e o u s implantat i o n s t u d y i n dogs ( 8 ) . The s t u d y f o u n d no s i g n i f i c a n t c h a n g e s in physical properties of s i l i c o n e e l a s t o m e r as a r e s u l t of 2 years of subcutaneous implantation. Thus, medical grade silicone elastomers are biodurable, noncytotoxic, nonallergenic, nonpyrogenic, noncarcinogenic, nontoxic, and nonirritating. When implanted, the reaction is l i m i t e d to a m i l d foreign-body r e a c t i o n and e n c a p s u l a t i o n o f the i m p l a n t i n f i b r o u s t i s s u e as a normal p h y s i o l o g i c a l r e s p o n s e . Physical
Properties
of
Medical
Grade
Silicone
Elastomers
The e a r l i e r m e d i c a l g r a d e s i l i c o n e e l a s t o m e r s v a r i e d p r i m a r i l y i n durometer ( S h o r e A , ASTM 2 2 4 0 ) f r o m a l o w o f a b o u t 30 t o a h i g h o f a b o u t 70 ( s o f t , m e d i u m a n d f i r m g r a d e s ) . D u r o m e t e r was v a r i e d primarily by increasing or decreasing filler content. Other p h y s i c a l p r o p e r t i e s v a r i e d e s s e n t i a l l y as e x p e c t e d . H o w e v e r , as t h e e l a s t o m e r s became u s e d i n a p p l i c a t i o n s w h e r e p h y s i c a l propert y r e q u i r e m e n t s were more d e m a n d i n g , s u c h as i n t h e i m p l a n t s u s e d i n b o n e a n d j o i n t r e c o n s t r u c t i o n [9) the performance of convent i o n a l m e d i c a l g r a d e e l a s t o m e r s was no l o n g e r adequate. Technology for substantially increasing tear propagation strength and resistance to flaw propagation during fatigue f l e x i n g was d e v e l o p e d i n t h e e a r l y 1 9 7 0 ' s a l l o w i n g t h e development o f m e d i c a l g r a d e h i g h p e r f o r m a n c e s i l i c o n e e l a s t o m e r . Crack growth r e s i s t a n c e e v a l u a t i o n s w e r e d o n e by ASTM D 8 1 3 . In this t e s t a DeMattia specimen i s f a t i g u e f l e x e d s h a r p l y at the precut f l e x i o n groove through a 180° bend. The g r o w t h o f an initial through-and-through 2 MÏ\ (0.080 inch) cut i s monitored as the specimen i s f l e x e d 10 cycles, or u n t i l the c u t grows t o 12.7 mm (0.5) whichever occurs first. With conventional medium hardness medical grade s i l i c o n e elastomer the length of the cut t y p i c a l l y e q u a l l e d or exceeded 12.7 mm a t 7 3 3 3 c y c l e s , w i t h an 9
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
70
POLYMERIC MATERIALS A N D ARTIFICIAL
extrapolated inches)
cat
per
10
rate
equal
By
silicone
elastomer
2.5
inch)
10
mm
(0.1
in
high
Table
studies
testing,
was
made
cut
was
in
a
typically
the from
1459
medical cut
by
flaw
but
finger
After confirm
that
joints
a
mm
(57.3
grade
high
growth
rate
was
factor
of
approx-
properties
of
medical
the
and
implant.
the
were
designed
elastomer
in
flex-life
in
were
now
and
conducted Medical
become
construction by
silicone
increase
times.
durable. has
the
Implants
biocompatibility
studies
including
as
vitro 100
chronic
elastomer
applications
in
an
cut
of
comparison,
grade
with
than
highly
By
medical
Thus,
and
joints.
plane
silicone
flexes.
times
clinical
implants
of
performance
acute
silicone
The
grade
i n c r e a s e d more by
hinge.
90,000
million
finger
through-and-through
axis
by
elastomer.
preflawed
implant medical
9
implants
joint
on
separation.
was
silicone
inch)
long
high
evaluations,
biomedical
bone
the
flexed
without
performance
various
the
to
qualification
biodurability
of
from
routinely
size
conducted (0.0652
completely
fabricated
physical
mm
conventional
separated
implants
ble
typical
conventional
were
center
elastomer
high
with
(reduced
typical
and
1.57
perpendicular
fabricated
flawed
the
cycles
are
I
performance
Flex-life Before
approximately
570).
Listed grade
at
to
comparison,
performance imately
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
growth cycles.
ORGANS
Swanson
to
grade
used of
in
flexi(Figures
{9)
3-8). Applications Artificial have
organs
allowed
conditions
or
where
for
and
Medical
implants
improved no
Grade
fabricated
treatment
equally
Silicone
of
a
effective
from
Elastomers silicone
variety
of
treatment
elastomer
human is
health
otherwise
available. Plastic The
& Reconstructive implants used i n
Surgery p l a s t i c and
as space-occupying tissue that r e s u l t in contour or
reconstructive
and organ s u b s t i t u t e s cosmetic changes. The
surgery
serve
in applications h a r d n e s s c a n be
v a r i e d w i t h i n l i m i t s to simulate the t e x t u r e of t i s s u e s r e p l a c e d . Implants used in reconstruction of the nose and chin (11,12) ( F i g u r e s 9-11) are u s u a l l y r e l a t i v e l y f i r m to s i m u l a t e bone. The ear implant (13) (Figures 12-14) cartilage. The implants used for
is flexible to simulate breast reconstruction (14)
(Figures 15-20) typically contain a solid, thin silicone e l a s t o m e r e n v e l o p e ( f a b r i c a t e d from d i s p e r s i o n ) and f i l l e d w i t h a s o f t , c r o s s - l i n k e d s i l i c o n e gel to simulate the t e x t u r e of breast tissue. Custom i m p l a n t s from e i t h e r s o l i d s i l i c o n e e l a s t o m e r , or of the silicone gel type may also be prepared to meet o n e - o f - a - k i n d c o n t o u r needs w i t h s p e c i f i c p a t i e n t s . Ophthalmology Silicone elastomer
in
both
solid
and
sponge
form
is
used
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
as
a
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
I.
Typical
growth,
10
Durometer, Shore A Specific gravity
Crack
Tensile Elongation M o d u l u s a t 100% Tear, Die C Tear, Die B g
Property
Table
cycles 52 1.15
psi)
D2240 D924
(1200
700% 2 . 4 1 3 MPa ( 3 5 0 p s i ) 5 2 . 5 4 k N/m ( 3 0 0 p p i ) 5 2 . 5 4 k N/m ( 3 0 0 p p i ) 2 . 5 mm ( 0 . 1 inch)
D412 D412 D624 D624 D813
MPa
8.274
D412
Performance
High
ASTM
Medium
Hardness
Performance
1.14
6.895 MPa(1000psi) 500% 2 . 0 6 8 MPa ( 3 0 0 p s i ) Varies widely 13.13 k N/m(75ppi) 1459 ( 5 7 . 3 inch), Extrapolated 50
P h y s i c a l P r o p e r t i e s of Medical Grade High and C o n v e n t i o n a l S i l i c o n e Elastomer
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
ORGANS
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
POLYMERIC MATERIALS A N D ARTIFICIAL
F i g u r e 3. T y p i c a l a p p e a r a n c e o f a hand d e f o r m e d by r h e u m a t o i d a r t h r i t i s and a c a n d i d a t e f o r r e c o n s t r u c t i o n by implant resection arthroplasty. U l n a r d e v i a t i o n and s u b l u x a t i o n i n t h e m e t a t a r s o p h a l a n g e a l j o i n t s , and d e f o r m i t y o f t h e thumb a r e evident.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
6.
FRISCH
Silicones in Artificial
73
Organs
F i g u r e 4. An x - r a y o f t h e hand shown i n F i g u r e i l l u s t r a t e s the extent of the deformities.
3
clearly
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
74
POLYMERIC MATERIALS A N D ARTIFICIAL
Figure
5.
Flexible
hinge
by A l f r e d B. S w a n s o n , diseased or destroyed
finger
d u r a b i l i t y of these implants i s the l o a d - d i s t r i b u t i n g h i n g e and resistance elastomer.
of
medical
joint
M.D. f o r use i n finger joints.
grade
high
implants
ORGANS
designed
reconstruction of The h i g h f l e x u r a l
derived from the f l e x u r a l performance
the design fatigue silicone
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
of
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
6.
FRISCH
Silicones in Artificial
Organs
Figure 6. S u r g i c a l placement of the f l e x i b l e hinge f i n g e r j o i n t implant. The m e t a c a r p a l head i s removed t o c r e a t e an a p p r o p r i a t e j o i n t s p a c e a n d t h e i n t r a m e d u l l a r y c a n a l s are then prepared to accept the implant stems. When t h e i m p l a n t i s p l a c e d i n p o s i t i o n t h e stems f i t s e c u r e l y i n the i n t r a m e d u l l a r y canals with the f l e x i b l e hinge permitt i n g 9 0 ° a c t i v e m o t i o n . J o i n t s p a c e i s m a i n t a i n e d by t r a n s f e r of the compressive forces of j o i n t motion across the implant t o c o r t i c a l bone. Careful attention to r e c o n s t r u c t i o n s o f t e n d o n s , l i g a m e n t s , and j o i n t c a p s u l e s and p o s t o p e r a t i v e t h e r a p y a r e v e r y i m p o r t a n t i n t h i s procedure.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
75
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
POLYMERIC MATERIALS AND ARTIFICIAL ORGANS
F i g u r e 7. A p p e a r a n c e o f t h e hand reconstruction. T h e h a n d now h a s appearance, i s p a i n - f r e e , mobile,
shown i n F i g u r e 3 a f t e r e s s e n t i a l l y a normal and f u n c t i o n a l .
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
FRISCH
Silicones in Artificial
Organs
F i g u r e 8. An x - r a y o f t h e hand shown i n F i g u r e 7 w i t h i m plants i n a l l of the metatarsophalangeal j o i n t s . Correct i o n o f d e f o r m i t y i n t h e thumb i n c l u d e d f u s i o n o f t h e interphalangeal j o i n t to provide a strong pinch strength. Postoperatively, the patient returned to gainful employment. T h e i l l u s t r a t i o n s s h o w n i n F i g u r e s 3-8 a r e c o u r t e s y A l f r e d B. Swanson, M.D.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
78
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
F i g u r e 9. Chin i m p l a n t s molded from medical cone e l a s t o m e r to i n c r e a s e the p r o j e c t i o n of
grade s i l i the mandible.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
FRISCH
Silicones in Artificial
Organs
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
6.
Figure 10. P r e o p e r a t i v e a p p e a r a n c e o f a p a t i e n t who b e l i e v e d h e r q u a l i t y o f l i f e w o u l d be i m p r o v e d by a c h i n augmentation.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
79
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
Figure shown
11. in
Postoperative Figure
appearance
of
the
same
patient
10.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
6.
FRISCH
Silicones in Artificial
Organs
Figure 12. An e a r i m p l a n t m o l d e d f r o m m e d i c a l grade s i l i c o n e elastomer and used as a r t i f i c i a l c a r t i l a g e i n e a r reconstruction.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
81
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
F i g u r e 13. Preoperative missing ear.
appearance
of
a child
with
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
a
Silicones in Artificial
Organs
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
FRISCH
F i g u r e 14. P o s t o p e r a t i v e a p p e a r a n c e o f t h e same c h i l d s h o w n i n F i g u r e 13 f o l l o w i n g e a r r e c o n s t r u c t i o n w i t h t h e silicone elastomer implant. H i s own s u b c u t a n e o u s t i s s u e and s k i n were shaped a r o u n d t h e s i l i c o n e framework d u r i n g the process of e a r r e c o n s t r u c t i o n .
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
84
POLYMERIC MATERIALS AND ARTIFICIAL ORGANS
F i g u r e 15. P r e o p e r a t i v e a p p e a r a n c e o f a p a t i e n t who h a s undergone a u n i l a t e r a l mastectomy f o r carcinoma of the breast.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
FRISCH
Silicones in Artificial
Organs
Figure 16. A p p e a r a n c e o f t h e p a t i e n t s h o w n i n F i g u r e 16 f o l l o w i n g r e c o n s t r u c t i o n o f a b r e a s t shape w i t h a s i l i c o n e - g e l t y p e mammary i m p l a n t . T h e n i p p l e may b e r e c o n s t r u c t e d by e i t h e r a s p l i t t h i c k n e s s s k i n g r a f t from t h e r e m a i n i n g n i p p l e , o r t h e c o l o r c a n be e s t a b l i s h e d by tattooing.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
POLYMERIC MATERIALS AND ARTIFICIAL ORGANS
F i g u r e 17. Preoperative appearance of a patient with c h r o n i c c y s t i c m a s t i t i s and a f a m i l y h i s t o r y o f b r e a s t c a n c e r , making h e r a h i g h r i s k p a t i e n t and a c a n d i d a t e p r o p h y l a c t i c subcutaneous mastectomy to substantively reduce the p o t e n t i a l of developing carcinoma of the breast.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
for
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
FRISCH
Silicones in Artificial
Organs
Figure 18. P o s t o p e r a t i v e a p p e a r a n c e o f t h e p a t i e n t shown i n F i g u r e 17 f o l l o w i n g s i m p l e s u b c u t a n e o u s m a s t e c t o m y w i t h r e p l a c e m e n t o f b r e a s t t i s s u e by s i l i c o n e - g e l mammary implants.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
88
POLYMERIC MATERIALS AND ARTIFICIAL ORGANS
Figure patient
19. who
Preoperative has
not
appearance
developed
normal
of
an
adult
female
female
breast
con-
tour.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
FRISCH
Silicones in Artificial
Organs
Figure 20. P o s t o p e r a t i v e a p p e a r a n c e o f t h e p a t i e n t shown i n F i g u r e 19 f o l l o w i n g b r e a s t r e c o n s t r u c t i o n w i t h s i l i c o n e - g e l mammary i m p l a n t s .
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
90
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
space-occupying implant to buckle the s c l e r a f o r treatment of a d e t a c h e d r e t i n a (10) (Figures 21-22). S i l i c o n e implants are used in r e p a i r i n g f r a c t u r e of the f l o o r of the o r b i t . Space-occupying implants are a l s o used f o l l o w i n g e n u c l e a t i o n to f i l l or adjust t h e v o i d l e f t by removal o f t h e e y e , a l l o w i n g a p r o s t h e t i c eye t o be w o r n . S i l i c o n e elastomer tubes are often used to restore patency to blocked or destroyed l a c r i m a l ducts. Orthopaedic Surgery A v a r i e t y o f f l e x i b l e s i l i c o n e e l a s t o m e r i m p l a n t s have been d e v e l o p e d (9) f o r r e c o n s t r u c t i o n o f d i s e a s e d o r d e s t r o y e d s m a l l j o i n t s of the body. A t o t a l o f 14 d i f f e r e n t i m p l a n t s h a v e b e e n developed, each in a range of sizes, for reconstruction of f i n g e r s , thumbs, w r i s t s , e l b o w s , and f e e t . The d e v i c e s i n c l u d e a p a s s i v e tendon implant used i n 2-stage procedures f o r r e c o n s t r u c tion of tendons. Finger, wrist, and t o e joint implants are available with f l e x i b l e hinges. A l l bone and j o i n t i m p l a n t s have intramedullary stems which a i d i n p o s i t i o n i n g the i m p l a n t s and help maintain the implant spacer i n c o r r e c t anatomical position. The i m p l a n t s a r e f a b r i c a t e d f r o m m e d i c a l g r a d e h i g h performance s i l i c o n e e l a s t o m e r t o p r o v i d e maximum d u r a b i l i t y . Cardiovascular Surgery One o f t h e e a r l i e s t u s e s o f m e d i c a l g r a d e s i l i c o n e e l a s t o m e r i n c a r d i o v a s c u l a r s u r g e r y was f o r t h e b a l l i n the ball-and-cage heart valve (Figure 23). In the early I960's some o f these valves f a i l e d because of s w e l l i n g of the s i l i c o n e elastomer b a l l s due t o a b s o r p t i o n o f l i p i d - t y p e s u b s t a n c e s f r o m t h e b l o o d . This resulted in e i t h e r loss of b a l l motion because of a t i g h t f i t w i t h i n the cage, or fragmentation of the b a l l s . However; the d i f f i c u l t i e s were t r a c e d to improper p r o c e s s i n g of the s i l i c o n e e l a s t o m e r , and when t h e s e p r o c e s s i n g d i f f i c u l t i e s w e r e c o r r e c t e d these types of problems with s i l i c o n e elastomer heart valve b a l l s have not r e c u r r e d . O t h e r c a r d i o v a s c u l a r u s e s have i n c l u d e d c o a t i n g s on pacemakers and pacemaker l e a d - w i r e s f o r purposes o f i n s u l a t i o n and for achieving biocompatibility. Medical grade s i l i c o n e elastomer has been w i d e l y used as a m a t e r i a l o f c o n s t r u c t i o n i n e x p e r i m e n t a l a r t i f i c i a l h e a r t s and h e a r t a s s i s t d e v i c e s . Silicone tubing is often preferred for use i n r o l l e r - t y p e b l o o d pumps during cardiopulmonary bypass. Medical grade s i l i c o n e elastomer cont a i n s no l e a c h a b l e o r o r g a n i c p l a s t i c i z e r s a n d t h u s contributes minimal contamination in blood contact a p p l i c a t i o n s . Medical
Applications
for
Silicone
Fluid
The b i o m e d i c a l c h a r a c t e r i s t i c s o f m e d i c a l g r a d e s i l i c o n e f l u i d (liquid polydimethylsiloxanes) have become w i d e l y misunderstood. This i s p r i m a r i l y because of the p u b l i c i t y given i n both the l a y and p r o f e s s i o n a l p r e s s to c o m p l i c a t i o n s a r i s i n g from " s i l i c o n e
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
FRISCH
Silicones in Artificial Organs
Sclera F i g u r e 21. Drawing o f a c r o s s - s e c t i o n o f an eye w i t h detached r e t i n a which t y p i c a l l y r e s u l t s in loss of v i s i o n and r e t i n a l d e t e r i o r a t i o n .
F i g u r e 22. C o r r e c t i o n o f d e t a c h e d r e t i n a by s c l e r a l buckling. A s i l i c o n e e l a s t o m e r band c o m p l e t e l y e n c i r c l e s the eye to i n c r e a s e i n t r a o c c u l a r p r e s s u r e . An e x t r a pad o f m e d i c a l grade s i l i c o n e i s o f t e n used beneath the band at the p o i n t of detachment i n order to buckle the s c l e r a inward and p l a c e i t i n c o n t a c t w i t h the r e t i n a . Reattachm e n t may b e e n c o u r a g e d b y l a s e r b e a m o r d i a t h e r m y s t i m u l a tion.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
Figure 23. Ball-and-cage heart valves constructed with silicone elastomer b a l l s . Compared t o metal o r r i g i d p l a s t i c b a l l s , s i l i c o n e e l a s t o m e r b a l l s c r e a t e no n o i s e a s the heart beats. Problems from s w e l l i n g and fragmentation of the b a l l s which o c c u r r e d i n a few p a t i e n t s i n the m i d - 1 9 6 0 ' s were t r a c e a b l e to the p r o c e s s i n g t e c h n i q u e s u s e d i n f a b r i c a t i n g b a l l s , and when o n c e c o r r e c t e d t h e problems have not r e c u r r e d . S i l i c o n e b a l l s c o n t i n u e t o be used i n heart v a l v e s .
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
6.
FRISCH
Silicones in Artificial Organs
93
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
fluid" injections. Injection is a serious misuse since no manufacturer recommends i n j e c t i o n as a use f o r silicone fluid, a n d no s i l i c o n e f l u i d h a s b e e n a p p r o v e d v i a t h e FDA premarket a p p r o v a l a p p l i c a t i o n p r o c e s s f o r u s e a s an i n j e c t a b l e . Furthermore, many o f t h e c o m p l i c a t i o n s r e s u l t e d f r o m t h e i n j e c t i o n of n o n - s i l i c o n e o r i n d u s t r i a l s i l i c o n e m a t e r i a l s and were done under uncontrolled, s c i e n t i f i c a l l y unsound conditions. Those making the i n j e c t i o n s t y p i c a l l y represented to t h e i r p a t i e n t s that the material being injected was "medical grade silicone fluid" without regard for i t s actual composition. Essentially a l l i n j e c t i o n misuses involved subdermal injection for purposes of soft tissue augmentation. Many o f the c o m p l i c a t i o n s r e p o r t e d were a s s o c i a t e d w i t h i n j e c t i o n s i n t o the female breast. By c o m p a r i s o n , i n c o n t r o l l e d c l i n i c a l investigat i o n s (where i n j e c t i o n s i n t o the female b r e a s t were s p e c i f i c a l l y excluded), done i n k e e p i n g w i t h r e g u l a t o r y procedures, clinical e v i d e n c e has s u g g e s t e d t h a t m e d i c a l grade s i l i c o n e f l u i d may, in s e l e c t e d c a s e s p r o p e r l y d o n e by a t r a i n e d p h y s i c i a n , be reasona b l y s a f e and e f f e c t i v e for soft t i s s u e augmentation by injection. However; a d e m o n s t r a t i o n o f s a f e t y and e f f i c a c y as r e q u i r ed for premarket approval by FDA has not been accomplished. Accordingly, no s i l i c o n e f l u i d s h o u l d be a d m i n i s t e r e d t o humans by i n j e c t i o n f o r any p u r p o s e u n l e s s done as p a r t o f a c o n t r o l l e d clinical investigation and done in keeping with all of the regulatory provisions. In t h e i n t e r i m t h e r e a r e o t h e r i m p o r t a n t h e a l t h c a r e a p p l i c a tions for silicone fluids. Many o f t h e s e i n v o l v e i t s use as a lubricant. The a v a i l a b i l i t y o f s i l i c o n e f l u i d as a l u b r i c a n t for u s e on d i s p o s a b l e h y p o d e r m i c n e e d l e s ( F i g u r e 24) contributed to the development of the d i s p o s a b l e hypodermic needle. Essentially all d i s p o s a b l e hypodermic needles are l u b r i c a t e d with silicone f l u i d t o p e r m i t e a s y i n s e r t i o n and r e m o v a l , and t o m i n i m i z e pain. P r i o r to the use of s i l i c o n e f l u i d l u b r i c a n t s d i s p o s a b l e needles tended to be very painful and sometimes broke or bent upon insertion. S i l i c o n e f l u i d i s a l s o used to l u b r i c a t e d i s p o s a b l e hypodermic s y r i n g e s ( F i g u r e 25). Without a suitable lubricant it is u n l i k e l y t h a t t h e d i s p o s a b l e h y p o d e r m i c s y r i n g e w o u l d h a v e become available. Silicone fluid lubricants allow the rubber plunger tip to slide easily down t h e molded plastic barrel while it continues to provide a tight seal to prevent leakage of the material being injected or inflow of air upon aspiration. S y r i n g e s t h u s l u b r i c a t e d may b e s t o r e d f o r l o n g p e r i o d s o f time w i t h o u t change i n the l u b r i c i t y p r o p e r t i e s o r the f o r c e required for plunger movement, very important considerations in the control over the speed and volume w i t h which injections are given. W i t h each i n j e c t i o n a s m a l l amount o f s i l i c o n e i s deposited in the patient's tissue from the needle, and also from the syringe. However; studies (JL5) suggest that in these small
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
POLYMERIC MATERIALS A N D ARTIFICIAL ORGANS
F i g u r e 24. Disposable hypodermic needle l u b r i c a t e d with silicone fluid. The u s e o f m e d i c a l g r a d e s i l i c o n e f l u i d l u b r i c a n t s m i n i m i z e p a i n and p e r m i t n e e d l e s t o be i n s e r t e d and w i t h d r a w n from t i s s u e w i t h m i n i m a l f o r c e and w i t h o u t breakage or bending.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
FRISCH
Silicones in Artificial Organs
Figure 25. D i s p o s a b l e h y p o d e r m i c s y r i n g e w a s made p o s s i b l e by t h e a v a i l a b i l i t y o f m e d i c a l g r a d e s i l i c o n e f l u i d t o l u b r i c a t e the plunger. W i t h o u t an a p p r o p r i a t e l u b r i c a n t i t w o u l d be e s s e n t i a l l y i m p o s s i b l e t o move t h e p l u n g e r t i p i n s i d e the molded p l a s t i c b a r r e l . S i l i c o n e f l u i d does not d e t e r i o r a t e w i t h t i m e , t h u s s y r i n g e s may b e s t o r e d f o r long p e r i o d s of time w i t h o u t change i n the f o r c e s r e q u i r e d t o move t h e p l u n g e r w i t h i n t h e b a r r e l .
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
96
POLYMERIC MATERIALS AND ARTIFICIAL ORGANS
quantities patients
silicone who
suffering
from
must
fluids receive
elicit
adverse
effect,
frequently
such
even as
with those
diabetes. D I S C U S S I O N AND
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
no
injections
CONCLUSIONS
A r t i f i c i a l organs and i m p l a n t s to r e p l a c e d i s e a s e d , d e f e c t i v e , o r d e s t r o y e d c o m p o n e n t s o f t h e b o d y a r e u s e d by e s s e n t i a l l y e v e r y medical s p e c i a l t y . Medical grade s i l i c o n e elastomer i s the only e l a s t o m e r g e n e r a l l y r e c o g n i z e d as s a f e and e f f e c t i v e as a m a t e r ial of construction for soft, f l e x i b l e , elastomeric implants. C a r e f u l l y c o n t r o l l e d f o r m u l a t i o n s have been q u a l i f i e d by c h r o n i c biocompatibility and b i o d u r a b i l i t y studies to provide a soft, flexible, e l a s t o m e r i c m a t e r i a l o f c o n s t r u c t i o n t o m e e t many of the needs i n t h e s e a p p l i c a t i o n s .
Literature Cited 1. F. S. Kipping, "Organic derivatives of silicon, Part II: The synthesis of benzylethylpropylsilicol, its sulfonation, and resolution of the D-L sulfonic derivatives into its optically active components", J. Chem. Soc. 91:209-240, 1907. 2. V. K. Rowe, H. C. Spencer, and S. L. Bass, "Toxicological studies on certain commercial silicones", J. Indust. Hyg. Tox. 30(6):332-352, Nov. 1948. 3. V. K. Rowe, H. C. Spencer, and S. L. Bass, "Toxicologic studies on certain commercial silicones", Arch. Indust. Hyg. Occup. Med. 1:539-544, May 1950. 4. J. Holter, "A father's last-chance invention saves his son", Reprint from The Reader's Digest, Jan. 1957. 5. R. E. Wilsnack, "Quantitative cell culture biocompatibility testing of medical devices and correlation to animal tests", Biomater. Med. Devices Artif. Organs 4(3 & 4):235-261, 1976. 6. R. E. Wilsnack, F. S. Meyer, and J. G. Smith, "Human cell culture toxicity testing of medical devices and correlation to animal tests", Biomater. Med. Devices Artif. Organs 1(3):543-562, 1973. 7. ASTM F748, "Recommended Practices for Selecting Generic Biological Test Methods for Materials and Devices", ASTM Standards for Medical and Surgical Materials and Devices. 8. J. W. Swanson and J. E. LeBeau, "The effect of implantation on the physical properties of silicone rubber", J. Biomed. Mater. Res. 8:357-367, 1974. 9. A. B. Swanson, "Flexible implant resection arthroplasty in the hand and extremities, The C. V. Mosby Co., St. Louis, 1973. 10. H. A. Lincoff, I. Baras, and J. McLean, "Modifications of the Custodis procedure for retinal detachment", Arch. Ophthalmol. 73:160-163, 1965.
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
6.
FRISCH
97
Silicones in Artificial Organs
11. J. Safian, "Progress in nasal and chin augmentation", Plast. Reconstr. Surg. 7:446-452, 1966. 12. G. B. Snyder, E. H. Courtiss, Β. M. Kaye, and G. P. Gradinger, "A new chin implant for microgenia", Plast. Reconstr. Surg. 61:854-860, 1978. 13. T. D. Cronin, "Use of a Silastic frame for total and subtotal reconstruction of the external ear: preliminary report", Plast. Reconstr. Surg. 37(5):399-405, May 1966. 14. T. D. Cronin and F. J. Gerow, "Augmentation mammaplasty: a new 'natural feel' prosthesis", Excerpta Medica International Congress, Series No. 66, Proceedings of the Third International Congress of Plastic Surgery, Washington, D.C., pp. 41-49, Oct. 1963. 15. C. H. Hine, H. W. Elliott, R. R. Wright, R. D. Cavalli, and C. D. Porter, "Evaluation of a Silicone Lubricant Injected Spinally", Toxicol. Appl. Pharmacol. 15, 566-573 (1969).
Downloaded by UNIV OF IOWA on November 13, 2014 | http://pubs.acs.org Publication Date: June 8, 1984 | doi: 10.1021/bk-1984-0256.ch006
®
RECEIVED
March 19, 1984
In Polymeric Materials and Artificial Organs; Gebelein, C.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.