19 Hydrothermal Stability of Simulated
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
Radioactive Waste Glass GREGORY J. KOMARNENI,
McCARTHY , BARRY E. SCHEETZ, SRIDHAR DEANE K . S M I T H , and WILLIAM B . WHITE 1
Materials Research Laboratory, Pennsylvania State University, University Park, PA 16802 A study of stability
of a typical
simulated
high-level
glass in contact with pressurized
water at 300°C
system has shown that extensive
reaction
occurred
few weeks.
The water acted as a catalyst-solvent
fication
the
of
recrystallization in forming was
glass
hydrated
converted
into
masses of crystalline solved species.
dissolution,
transport,
phases. partially
and noncrystalline reaction
of minerals.
Much
glass were identified
only Cs was observed
plus
were
of the Na, Mo, in the product in
disfound
and
B
solutions.
hazardous,
in the solutions
glass
dispersed
material
of long-lived,
and reactant
Solid
products
a
devitri-
and as a
fragmented
and
within in
and hydroxylated
Of the elements or analogues nuclides,
in
The crystalline
to be analogues in the original
and
of some of its constituents,
waste
in a closed
radio-
substantial
amounts.
^ o l i d state c h e m i s t r y p l a y s a n i m p o r t a n t r o l e i n m o d e r n energy r e s e a r c h ^
(1).
M a n y energy r e s e a r c h p r o b l e m s are c h a r a c t e r i z e d b y e x c e e d i n g l y
c o m p l e x c h e m i c a l systems i n w h i c h s o l i d substances m u s t b e i n c o n t a c t w i t h l i q u i d s , gases, or plasmas u n d e r extreme c o n d i t i o n s of t e m p e r a t u r e a n d pressure. Some examples i n c l u d e M H D electrode d e g r a d a t i o n ,
first-
w a l l s t a b i l i t y i n f u s i o n reactors, c h e m i c a l reactions i n o i l shales d u r i n g r e t o r t i n g , reactions of g e o t h e r m a l w a t e r s w i t h r o c k s , p u m p s , a n d p l u m b i n g , p e r f o r m a n c e of refractories i n c o a l gasification reactors, a n d m a n y p r o b l e m s associated w i t h n u c l e a r reactors a n d n u c l e a r w a s t e d i s p o s a l . A u t h o r to w h o m c o r r e s p o n d e n c e s h o u l d b e sent. C u r r e n t address: of C h e m i s t r y , N o r t h D a k o t a State U n i v e r s i t y , F a r g o , N D 58105. 1
Department
0-8412-0472-l/80/33-186-349$10^5/l ©
1980
American Chemical
Society
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
350
SOLID S T A T E
CHEMISTRY: A
CONTEMPORARY OVERVIEW
S u c h c o m p l e x p r o b l e m s are m o r e often s t u d i e d b y m a n i p u l a t i o n a n d d e t a i l e d e x a m i n a t i o n of s o l i d - l i q u i d - g a s - f l u i d - p l a s m a reactions f o l l o w e d by
combined
simpler
i n d u c t i v e - d e d u c t i v e analyses b a s e d
systems
rather than
by
exact
o n experience
thermodynamic
and
with
kinetic
calculations. T h e record for chemical complexity m a y w e l l be h e l d b y problems i n v o l v i n g the s t a b i l i t y of r a d i o a c t i v e wastes.
W h e n these wastes
are
i n t r o d u c e d i n t o u n d e r g r o u n d d i s p o s a l sites ( r e p o s i t o r i e s ) , the p o t e n t i a l
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
w a s t e - r o c k - w a t e r interactions ( 2 )
i n v o l v e m o r e t h a n h a l f the elements
i n the p e r i o d i c t a b l e . W h a t f o l l o w s is a r e p o r t of o r i g i n a l r e s e a r c h into the reactions of a c o m p l e x , s i m u l a t e d ( n o n r a d i o a c t i v e )
nuclear waste
p r o d u c t w i t h w a t e r u n d e r one m o d e r a t e l y severe set of p r e s s u r e - t e m perature (2,3).
(F-T)
conditions postulated for a nuclear waste
T h e tools a n d m e t h o d o l o g y
repository
to b e d e s c r i b e d c o u l d just as w e l l
b e a p p l i e d to a n y of t h e p r o b l e m s i n v o l v i n g c h e m i c a l l y c o m p l e x systems t h a t w e r e c i t e d earlier. D i s p o s a l of h i g h - l e v e l r a d i o a c t i v e w a s t e n u c l e a r p o w e r p l a n t s r e q u i r e s three steps: suitable waste form; (2)
(radwaste) (1)
produced
discussed
a
t h e p a c k a g i n g of the waste f o r m for h a n d l i n g ,
transport, a n d storage; a n d ( 3 ) the final d i s p o s a l of t h e w a s t e f o r m . research
by
t h e p r e p a r a t i o n of
i n this p a p e r
concerns
borosilicate
glasses
The as
a
r e p r o c e s s i n g w a s t e f o r m a n d g e o l o g i c a l repositories as t h e d i s p o s a l sites. C l e a r l y these are o n l y t w o of m a n y options, d e p e n d i n g o n p o l i c y decisions c o n c e r n i n g w h e t h e r spent reactor f u e l w i l l b e reprocessed
to
recover
u r a n i u m a n d p l u t o n i u m or d i s p o s e d of d i r e c t l y , w h e t h e r the spent f u e l or r e p r o c e s s i n g wastes w i l l b e stored for l o n g t i m e s (10 to 100 y e a r s ) to a l l o w for d e c a y of s h o r t - l i v e d isotopes, w h e t h e r there s h o u l d be a f e w n a t i o n a l respositories ( w h i c h r e q u i r e l o n g - d i s t a n c e t r a n s p o r t ) or m a n y s m a l l repositories nearer to the sources of the wastes, w h e t h e r to p e r f o r m separations a m o n g the c o m p l e x wastes a n d b u r n the l o n g - l i v e d a c t i n i d e f r a c t i o n i n reactors or dispose of i t i n space, a n d so o n . T h e b o r o s i l i c a t e glass w a s t e f o r m is one of the m o s t i n t e n s i v e l y d e v e l o p e d concepts.
I t is p r e s u p p o s e d that t h e reactor f u e l rods
have
b e e n reprocessed a n d t h a t a h i g h - l e v e l w a s t e stream c o n t a i n i n g most of the
fission
products
p l u s some c o r r o s i o n
products
and
reprocessing
c h e m i c a l s is the source m a t e r i a l for t h e w a s t e f o r m . T h e s e m a t e r i a l s are t r a n s p o r t e d i n solutions t h a t are e v a p o r a t e d , d r i e d , a n d fired to p r o d u c e a c a l c i n e t h a t is m i x e d w i t h a frit i n a n i n - c a n m e l t e r to p r o d u c e a l o w v i s c o s i t y borosilicate glass. T h e glass is m a d e , i n the f o r m of a massive i n g o t , d i r e c t l y i n the stainless steel c a n i s t e r , w h i c h t h e n serves as t h e h a n d l i n g u n i t a n d also as a n a d d i t i o n a l b a r r i e r i n final storage (4). r a t i o of h i g h - l e v e l w a s t e c a l c i n e to f r i t c a n b e c o n t r o l l e d .
The
T h e waste
canisters p r o d u c e d i n this m a n n e r are i n i t i a l l y t h e r m a l l y hot w i t h surface
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
19.
MCCARTHY
E T
AL.
Simulated
Radioactive
Waste
351
Glass
t e m p e r a t u r e s r a n g i n g u p to 4 0 0 ° C d e p e n d i n g o n t h e age of the wastes, the waste l o a d i n g (waste-to-frit r a t i o ) , a n d the t h e r m a l p r o p e r t i e s of the repository (3).
T h e surface t e m p e r a t u r e d r o p s to n e a r l y a m b i e n t o v e r a
p e r i o d of several h u n d r e d years
(the thermal period)
as s h o r t - l i v e d ,
heat-emitting, radionuclide decay ( 2 , 3 ) . Geological
repositories
are c o n c e i v e d
depths i n the r a n g e of 5 0 0 - 1 0 0 0 m .
as m i n e d - o u t
chambers
at
B e d d e d salt, basalt, g r a n i t e , a n d
shale have a l l b e e n c o n s i d e r e d as c a n d i d a t e r o c k types.
T h e repository
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
is u s u a l l y c o n c e i v e d as r e m a i n i n g o p e n for a n u m b e r of years to p e r m i t i n s e r t i o n of
a d d i t i o n a l canisters a n d to p e r m i t r e t r i e v i n g of
canisters
s h o u l d that be desirable. U l t i m a t e l y , h o w e v e r , the r e p o s i t o r y w o u l d be b a c k - f i l l e d a n d the wastes w o u l d b e i n p e r m a n e n t storage.
The
waste
f o r m itself, the canister, a n d the g e o l o g i c a l f o r m a t i o n act as b a r r i e r s to p r e v e n t m i g r a t i o n of dangerous r a d i o a c t i v e elements to t h e b i o s p h e r e . A m a j o r f a c t o r i n the t r a n s p o r t of r a d i o n u c l i d e s f r o m the r e p o s i t o r y to t h e b i o s p h e r e is w a t e r .
S o m e w a t e r occurs i n the host r o c k , a n d i t
c o u l d b e m o b i l i z e d b y the t h e r m a l heat of t h e canisters. r e p o s i t o r y rocks are selected
Although
w i t h l o w p e r m e a b i l i t y as a n i m p o r t a n t
c r i t e r i o n , t h e r e is a l w a y s some p e r c o l a t i o n o f g r o u n d w a t e r . the p o s s i b i l i t y , remote b u t r e a l , of a c c i d e n t a l
flooding
T h e r e is also
of the r e p o s i t o r y .
P r o v i d i n g that the canister r e m a i n s i n t a c t , c i r c u l a t i o n of w a t e r is of l i t t l e i m p o r t a n c e , b u t s h o u l d the c a n i s t e r b e b r e a c h e d , t h e r e a c t i o n of w a t e r w i t h the waste f o r m b e c o m e s a k e y element i n t h e analysis of r e p o s i t o r y behavior.
T h u s the present r e s e a r c h is a d d r e s s e d to t h e p r o b l e m of the
s t a b i l i t y of the b o r o s i l i c a t e glass w a s t e f o r m if i t comes i n contact w i t h w a t e r d u r i n g the t h e r m a l p e r i o d . G l a s s has b e e n a d v o c a t e d as a w a s t e f o r m because i t is c h e m i c a l l y inert, has a l o w l e a c h rate w i t h respect to r a d i o n u c l i d e s , a n d c a n f a b r i c a t e d i n r e m o t e l y o p e r a t e d f a c i l i t i e s (4).
be
E x p e r i m e n t s o n the s t a b i l i t y
a n d i n s o l u b i l i t y of glasses, h o w e v e r , h a v e m a i n l y b e e n r e s t r i c t e d to a t e m p e r a t u r e r e g i m e of 25° to 1 0 0 ° C .
L e a c h i n g e v a l u a t i o n , for e x a m p l e ,
is m a i n l y d o n e w i t h the P a i g e test ( 5 ) , w h i c h i n v o l v e s s o a k i n g t h e glass i n f r e q u e n t l y r e p l a c e d w a t e r at 2 5 ° C , or w i t h t h e Soxhlet test ( 5 ) , w h i c h bathes t h e glass i n c o n t i n u o u s l y d i s t i l l e d w a t e r at 1 0 0 ° C . W a t e r c o m i n g i n t o contact w i t h the glass d u r i n g t h e t h e r m a l p e r i o d w i l l b e
much
hotter t h a n w a t e r u s e d i n p r e v i o u s test c o n d i t i o n s , a n d i t w a s not c l e a r that the same o p t i m i s t i c conclusions c o n c e r n i n g s t a b i l i t y a n d i n s o l u b i l i t y w o u l d o b t a i n . T h e present r e s e a r c h was i n i t i a t e d to evaluate the s t a b i l i t y of a t y p i c a l r a d w a s t e glass u n d e r c o n d i t i o n s m o r e r e p r e s e n t a t i v e of t h e repository environment. T h e e x p e r i m e n t s d e s c r i b e d h e r e w e r e c a r r i e d out at 3 0 0 ° C a n d 300 b a r t o t a l pressure. T h e pressure corresponds r o u g h l y to the l o a d pressure i n a b a c k - f i l l e d r e p o s i t o r y at a d e p t h of 1000 m .
T h e t e m p e r a t u r e is i n
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
352
SOLID S T A T E
CHEMISTRY: A
CONTEMPORARY OVERVIEW
t h e r a n g e e x p e c t e d f r o m y o u n g w a s t e ( 1 0 years out o f the r e a c t o r ) at a l e v e l of w a s t e l o a d i n g c o r r e s p o n d i n g to 3.2 k W p e r 6-in.-diameter b y 8-ft-high canister ( 3 ) . although
conditions
U n d e r these c o n d i t i o n s w a t e r exists as a l i q u i d , are
r a t h e r close to
the c r i t i c a l p o i n t , 215
bar
and 373°C. B o r r o w i n g a concept from experimental geochemistry, w e
define
reactions i n v o l v i n g hot a q u e o u s solutions c o n f i n e d u n d e r pressure
as
" h y d r o t h e r m a r reactions, a l t h o u g h the p r e s s u r e - t e m p e r a t u r e c o n d i t i o n s
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
are n o t s u p e r c r i t i c a l . I n a strict sense geochemists c o n c e r n e d w i t h t h e t r a n s p o r t of ores b y a q u e o u s fluids h a v e d i v i d e d t h e t e m p e r a t u r e scale i n t o " e p i t h e r m a l , " ' ' m e s o t h e r m a l , " a n d " h y d r o t h e r m a l , " to m e a n r o u g h l y hot water, superheated water, and supercritical water, respectively. T h i s terminology
has n o t y e t
penetrated
the n u c l e a r w a s t e
management
literature. T h e experiments w e r e c l o s e d systems.
G l a s s p l u s w a t e r w a s sealed
i n t o g o l d capsules, a n d these capsules w e r e p l a c e d i n pressure vessels for r e a c t i o n . T h i s m e t h o d a l l o w s a n easy e x a m i n a t i o n of the s o l i d phases, b e c a u s e the t o t a l mass of t h e system is c o n s e r v e d .
W a t e r w a s present
i n excess so t h a t a l l phase assemblages i n c l u d e d a l i q u i d phase. A n a l y s i s of t h e final solutions p e r m i t t e d a n e v a l u a t i o n of elements e x t r a c t e d b y a q u e o u s solutions b u t , b e c a u s e the v o l u m e of f l u i d w a s l i m i t e d , c a n n o t b e u s e d to d e t e r m i n e t r a n s p o r t rates. Experimental Simulated H i g h - L e v e l Waste Glass. T h e s i m u l a t e d h i g h - l e v e l w a s t e glass u s e d i n these experiments w a s P a c i f i c N o r t h w e s t L a b o r a t o r y ( P N L ) f o r m u l a t i o n 76-68 ( 5 ) . I t w a s s u p p l i e d b y P N L . T h e glass w a s f o r m u l a t e d a c c p r d i n g to the p r o j e c t e d r e p r o c e s s i n g flow sheet of t h e N u c l e a r F u e l Services p l a n t i n W e s t V a l l e y , N . Y . , a n d is sometimes r e f e r r e d to as " N F S g l a s s / T h e c o m p o s i t i o n of P N L - 7 6 - 6 8 glass (6) is g i v e n i n T a b l e I. O n e n o t a b l e c o m p o s i t i o n a l f e a t u r e is t h a t the glass c o n t a i n s 62 w t % ( N a O + F e 0 + S i 0 ) . T h e glass w a s c o l o r e d g r e e n b l a c k i n massive pieces, b u t i n t h i n f r a g m e n t s i t h a d a n a m b e r b r o w n c o l o r a t i o n . I t c o n t a i n e d n u m e r o u s vesicles ( b u b b l e s ) , some u p to several h u n d r e d m i c r o m e t e r s i n d i a m e t e r . A l s o i n c o r p o r a t e d i n t h e glass w e r e clusters of d u l l to m e t a l l i c b l a c k c r y s t a l l i t e s . Studies at P N L ( 7 ) h a v e s h o w n t h a t these c r y s t a l l i t e s consist b o t h of c r y s t a l l i n e phases t h a t n e v e r d i s s o l v e d i n the m o l t e n glass p l u s phases that c r y s t a l l i z e o n c o o l i n g . I n w o r k specific to P N L - 7 6 - 6 8 , i t w a s s h o w n t h a t the c r y s t a l l i n e phases w e r e R u 0 a n d a f e r r i t e s p i n e l i n the a s - p r e p a r e d glass, w i t h fluorite structure p h a s e , chiefly C e 0 , f o r m e d o n h e a t t r e a t m e n t ( 7 ) . A s m a l l a m o u n t of this fluorite phase, a l o n g w i t h R u 0 , f e r r i t e s p i n e l , a n d p e r h a p s P d m e t a l , w a s i d e n t i f i e d i n diffractograms of the s l o w - c o o l e d glass r e c e i v e d f r o m P N L . T h e t o t a l a m o u n t of c r y s t a l l i n e p r o d u c t s i n t h e glass w a s r e p o r t e d to b e less t h a n 10 w t % ( 7 ) . T h e glass w a s r e c e i v e d f r o m P N L as several l a r g e f r a g m e n t s . T h e t y p i c a l specimen used i n the present study was a single shard broken a
2
3
2
2
2
2
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
19.
MCCARTHY
E T
AL.
Simulated
Radioactive
Waste
353
Glass
f r o m one of these fragments a n d w e i g h i n g a b o u t 30 m g . F i g u r e 1 is a p h o t o g r a p h of one of these shards. T h e o p a q u e regions are the c r y s t a l l i n e i n c l u s i o n s . It s h o u l d be n o t e d t h a t the r a t i o of these c r y s t a l l i n e phases to glass w a s not constant f r o m s p e c i m e n to s p e c i m e n . B e c a u s e of the v a r i a b i l i t y of t h e a m o u n t s of these i n c l u s i o n s , i t is e s t i m a t e d t h a t the a c t u a l c o m p o s i t i o n of a n e l e m e n t i n a p a r t i c u l a r s p e c i m e n c o u l d v a r y b y as m u c h as 1 0 - 2 0 % of the n o m i n a l c o m p o s i t i o n g i v e n i n T a b l e I . S e v e r a l of t h e specimens u s e d i n t h e e a r l y stages of this s t u d y w e r e m a d e i n t o s p h e r o i d a l shapes b y a n a b r a s i o n t e c h n i q u e . Hydrothermal Treatment. T h e i n e r t c o n t a i n e r c h o s e n for these experiments w a s f a s h i o n e d f r o m 5 - m m - d i a m e t e r g o l d t u b i n g . A l e n g t h of t u b i n g was c u t a n d sealed at one e n d b y e l e c t r i c arc w e l d i n g or c o l d w e l d i n g w i t h a c r i m p i n g t o o l . A w e i g h e d glass s p e c i m e n w a s p l a c e d i n the c a p s u l e a l o n g . w i t h e i t h e r d e i o n i z e d w a t e r or a r t i f i c i a l H a n f o r d g r o u n d w a t e r ( n o m i n a l c o n c e n t r a t i o n i n m i c r o g r a m s p e r m i l l i l i t e r : 168 N a , 0.5 C a , 0.1 M g , 90 C I , 14 ( S 0 ) , 56 ( H C 0 ) , 87 ( C 0 ) , 4 K ; p H = 10; w a t e r w a s i n c o n t a c t w i t h a m o r p h o u s S i 0 ) i n a w a t e r - t o - s o l i d r a t i o of 10:1 or 3 0 : 1 , a n d the c a p s u l e w a s w e l d e d shut. T h e s e a l e d capsules w e r e t h e n w e i g h e d , h e a t e d for s e v e r a l h o u r s i n a v a c u u m o v e n , a n d r e w e i g h e d . A n y leaks i n the w e l d s w o u l d s h o w u p as w e i g h t losses d u e to e v a p o r a t i o n of t h e w a t e r t h r o u g h t h e leak. T h e experiments w e r e p e r f o r m e d i n c o n v e n t i o n a l 0.5-in. ( 1 2 . 7 - m m ) sealed g o l d capsules. T h e vessel w a s i n s e r t e d i n t o a resistance-heated c o l d - s e a l pressure vessels ( 8 ) , u s i n g w a t e r as t h e p r e s s u r i z i n g m e d i u m . I n a t y p i c a l e x p e r i m e n t e a c h vessel c o n t a i n e d three to six i n d i v i d u a l s e a l e d g o l d capsules. T h e vessel w a s i n s e r t e d i n t o a resistance-heated t u b e f u r n a c e h a v i n g a s o l i d state c o n t r o l l e r - p o w e r s u p p l y . T e m p e r a t u r e was measured w i t h a chromel-alumel thermocouple inserted into a w e l l i n the vessel n e a r the l e v e l of the g o l d capsules a n d w a s d i s p l a y e d c o n t i n u o u s l y o n a d i g i t a l readout. T h e t e m p e r a t u r e w a s n o m i n a l l y 3 0 0 ° C ; b u t o v e r the course of the t y p i c a l e x p e r i m e n t i t v a r i e d b e t w e e n 2 9 4 ° C a n d 3 0 6 ° C . P r e s s u r e , m e a s u r e d c o n t i n u o u s l y w i t h a B o u r d o n gauge, w a s 4
3
3
2
Figure
1. Typical specimen of PNL-76-68
before hydrothermal
treatment
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
354
SOLID S T A T E
Table I. Oxide" (waste oxides)
CHEMISTRY: A
CONTEMPORARY OVERVIEW
Composition of P N L - 7 6 - 6 8 Wt%
Glass
0
Wt%
Oxide
0.53 Pr 0u 1.67 Nd 0 0.33 Sm 0 0.07 Eu 0 0.05 Gd 0 U 0 4.58 9.77 Fe 0 0.41 Cr 0 0.20 NiO 0.48 P 0 5.02° Na 0 (glass-forming additives) 7.49' Na 0 39.80 Si0 9.47 B 0 2.00 CaO 4.97 ZnO 2.97 Ti0 6
Rb 0 SrO Y 0 Zr0 Mo0 Ru0 Rh 0 PdO Ag 0 CdO Te0 Cs 0 BaO La20 Ce0
0.13 0.38 0.21 1.77 2.28 1.07 0.17 0.53 0.03 0.03 0.26 1.03 0.56 0.53 1.19
2
2
3
2
3
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
2
2
3
2
2
2
3
2
2
3
2
3
2
3
2
3
3
8
2
3
2
3
2
5
2
2
2
2
3
2
After Ref. 6; waste loading 33 wt % ; fission product loading 12.8 wt Composition normalized to these oxides by P N L ; the oxide compositions do not necessarily reflect the actual cation valences in the glass. Total N a 0 = 12.51 wt %. 0
6
c
2
300 ± 10 b a r . R u n d u r a t i o n s w e r e 7, 14, 2 1 , a n d 28 days. A t least t w o runs w e r e m a d e at e a c h d u r a t i o n to e v a l u a t e r e p r o d u c i b i l i t y of t h e s o l i d and solution products. C o m b i n e d t e m p e r a t u r e - p r e s s u r e c o o l i n g i n a i r w a s u s e d at t h e e n d of e a c h r u n . T h e c o o l i n g rate w a s a p p r o x i m a t e l y 10 ° C • m i n " f r o m 3 0 0 ° C to 2 0 0 ° C , 8 ° C • m i n " f r o m 2 0 0 ° C to 1 5 0 ° C , a n d 2 ° C • m i n " to 9 0 ° C . T h e capsules w e r e r e m o v e d a n d r e w e i g h e d . A n y b r e a c h of closure w o u l d s h o w u p as a w e i g h t c h a n g e . T h e capsules w e r e also e x a m i n e d m i c r o s c o p i c a l l y f o r signs of p i n h o l e s or stains f r o m l e a k e d contents. A n y r u n that h a d leaked was repeated. T h e g o l d c a p s u l e w a s c u t o p e n at o n e e n d , a n d the l i q u i d w a s p o u r e d i n t o a p l a s t i c b e a k e r . T h e o u t s i d e of the c a p s u l e , as w e l l as the scissors, w e r e g e n t l y w a s h e d w i t h d e i o n i z e d w a t e r , u s i n g a w a s h bottle. T h e c a p s u l e w a s next o p e n e d l o n g i t u d i n a l l y a n d p l a c e d i n the b e a k e r for a b o u t 10 m i n to e q u i l i b r a t e i n a b o u t 20 m t . of w a t e r . T h e s o l u t i o n f r o m the b e a k e r w a s t h e n q u a n t i t a t i v e l y t r a n s f e r r e d to a 2 5 - m L v o l u m e t r i c flask. T h e b e a k e r , the s a m p l e , a n d the g o l d c a p s u l e w e r e r i n s e d , a n d this s o l u t i o n w a s also a d d e d to t h e v o l u m e t r i c flasks. N e x t , 186 m g of K C 1 w a s a d d e d to m a k e the s o l u t i o n 0 . 1 N i n K C 1 w h e n m a d e u p to v o l u m e . T h e use of 0.1N K C 1 serves t w o p u r p o s e s : first, i t h e l p s i n the flocculation of t h e s a m p l e , i f a n y , d u r i n g c e n t r i f u g a t i o n a n d s e c o n d , i t r e m o v e s t h e ionization interference d u r i n g atomic absorption spectrophotometric analysis f o r c e s i u m , r u b i d i u m , a n d s o d i u m . T h e s o l u t i o n w a s next c e n t r i 1
1
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
1
19.
MCCARTHY
E T
AL.
Simulated
Radioactive
Waste
Glass
355
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
f u g e d i n p o l y c a r b o n a t e tubes at 2500 r e v o l u t i o n s p e r m i n u t e ( r p m ) to s e d i m e n t a n y fine p a r t i c l e s i n t h e s o l u t i o n a n d t h e n p i p e t t e d f r o m t h e p o l y c a r b o n a t e tubes i n t o p o l y e t h y l e n e bottles w i t h o u t d i s t u r b i n g a n y s e d i m e n t at the b o t t o m . A d r o p of toluene w a s a d d e d to the s o l u t i o n to prevent bacteria from growing. Characterization of Solid Products. T h e s o l i d p r o d u c t s , s t i l l c o n t a i n e d i n the o p e n g o l d c a p s u l e , w e r e i n i t i a l l y e x a m i n e d u n d e r a b i n o c u l a r m i c r o s c o p e a t u p to 40 times m a g n i f i c a t i o n . T h e extent of h y d r o t h e r m a l a l t e r a t i o n w a s first e s t i m a t e d at this stage. B e c a u s e i n a l l cases m a t e r i a l h a d b e e n t r a n s p o r t e d f r o m t h e o r i g i n a l glass s p e c i m e n o n t o t h e i n s i d e w a l l s of t h e g o l d c a p s u l e , s o l i d p r o d u c t s c h a r a c t e r i z a t i o n w a s necessary t h r o u g h o u t t h e capsule. X - r a y d i f f r a c t i o n w a s u s e d for c r y s t a l l i n e phase i d e n t i f i c a t i o n . I n d i v i d u a l clusters of crystals or a p p a r e n t l y h o m o g e n e o u s a l t e r a t i o n zones w e r e e x a m i n e d b y the G a n d o l f i c a m e r a t e c h n i q u e ( 9 ) a n d t h e b u l k product was then ground a n d studied by conventional X - r a y diffractometry. F o r the G a n d o l f i studies i n d i v i d u a l fragments or crystals w e r e extracted b y u s i n g a s h a r p e n e d n e e d l e a n d t r a n s f e r r e d to the t i p of a h o l l o w t h i n glass fiber that h a d a l r e a d y b e e n m o u n t e d i n t h e n o r m a l c a m e r a s p e c i m e n h o l d e r . T h e y w e r e c e m e n t e d to t h e fiber b y v a r i o u s m e d i a . W h e r e a cluster of crystals or several f r a g m e n t s of the same m a t e r i a l w e r e a v a i l a b l e , the crystals w e r e c r u s h e d b e t w e e n m i c r o s c o p e slides a n d the p o w d e r c a r e f u l l y c o l l e c t e d i n t o a b a l l at the t i p of the glass fiber. It w a s i m p o r t a n t to k e e p the s a m p l e size s m a l l a n d s p h e r i c a l i n o r d e r to o b t a i n s h a r p d i f f r a c t i o n lines a n d g o o d l i n e r e s o l u t i o n . H a v i n g several i n d i v i d u a l crystals o n the fiber w a s also i m p o r t a n t so that a l l o b s e r v e d D e b y e - S c h e r r e r reflections of l o w - s y m m e t r y crystals w o u l d b e i n c l u d e d o n the film. Q u a l i t a t i v e e l e m e n t a l analysis for elements a b o v e n e o n w a s o b t a i n e d b y energy-dispersive X - r a y spectrometry ( E D X ) on a scanning electron m i c r o s c o p e ( S E M ) . T h e m i c r o s t r u c t u r e s of t h e a l t e r a t i o n z o n e or m i c r o crystalline products were observed simultaneously by S E M . Quantitative e l e m e n t a l analysis a n d e l e m e n t a l d i s t r i b u t i o n s w e r e s t u d i e d o n a c o m puter-controlled electron microprobe. X - r a y p o w d e r d a t a r e a d f r o m the G a n d o l f i films, p l u s c h e m i s t r y f r o m the S E M / E D X , a l l o w e d c r y s t a l l i n e p h a s e i d e n t i f i c a t i o n to be m a d e b y reference to the J C P D S P o w d e r D i f f r a c t i o n F i l e ( P D F ) ( J O ) . The M i n e r a l Subfile of t h e PDF w a s e s p e c i a l l y u s e f u l i n this w o r k . Chemical Analyses of Solutions. S o l u t i o n s w e r e a n a l y z e d for e i g h t een of the elements i n P N L - 7 6 - 6 8 . A l l the elements e x c e p t C s , R b , N a , Z n , a n d U were analyzed w i t h a computer-interfaced atomic emission spectrometer ( A E S ) . T h e elements C s , R b , N a a n d Z n w e r e a n a l y z e d b y atomic absorption spectrophotometry ( A A S ) . U r a n i u m was determined b y a fluorometric m e t h o d . R e s u l t s of d u p l i c a t e c h e m i c a l analyses of the same s o l u t i o n h a d a m e a n d e v i a t i o n of ± 2 % . T h e o b j e c t i v e of t h e analyses is to d e t e r m i n e w h a t p r o p o r t i o n of t h e elements f r o m the glass are present i n the p r o d u c t solutions. B e c a u s e t h e p r o d u c t solutions are a l w a y s d i l u t e d to a 2 5 - m L a n a l y t i c a l s o l u t i o n , the s e n s i t i v i t y of the analyses to glass d i s s o l u t i o n is a f u n c t i o n o n l y of s p e c i m e n w e i g h t a n d the i n s t r u m e n t a l d e t e c t i o n l i m i t s . T h e l e v e l of s e n s i t i v i t y is i l l u s t r a t e d b y t h e d a t a i n T a b l e I I . D e t e c t i o n l i m i t s are
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
356
SOLID S T A T E
CHEMISTRY: A
CONTEMPORARY OVERVIEW
Table II. Comparison of Solution Analysis Detection Limits w i t h the M a x i m u m Solution Concentration for One Specimen
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
0
Ulement in Glass
Maximum Solution Concentration for a 19.5-mq Specimen (tig • mlr )
Na B Si Mo Cs Rb Sr Ba Ca Zn Ni Cr Fe La Nd Ti Zr U
73.3 23.2 146.8 12.0 7.67 0.94 2.54 3.92 11.3 31.5 1.24 2.22 48.5 3.56 11.3 14.1 10.3 29.2
1
Detection Atomic Absorption Spectrophotometry
Limits
(p.Q • mL- )
Atomic Emission Spectrometry
1
Fluorimetry
— —
0.002
—
0.08 0.03 0.05 0.005 0.01
—
—
0.002
— — — — — — — —
0.05 0.2
— — —
0.01 0.2 0.002
—
0.003 0.003 0.005 0.07 not available 0.08 0.3
—
— — — — — — — — — — — — — — —
0.001
" The concentration that would be present in the 25-mL analytical solution if the specimen had completely dissolved during hydrothermal treatment.
c o m p a r e d to the c o n c e n t r a t i o n of selected elements t h a t w o u l d b e present i n the 2 5 - m L a n a l y t i c a l s o l u t i o n of a p a r t i c u l a r glass s p e c i m e n i f i t h a d t o t a l l y d i s s o l v e d d u r i n g the h y d r o t h e r m a l r u n a n d there w e r e n o i n s o l u b l e s o l i d phases f o r m e d o n c o o l i n g . F o r e x a m p l e , the d a t a i n T a b l e I I i n d i c a t e that, for this w e i g h t o f s p e c i m e n , i t w o u l d b e p o s s i b l e to detect d i s s o l u t i o n of 0 . 0 0 3 % of t h e N a , 0 . 2 5 % of the M o , 0 . 4 % of t h e Sr, 0 . 6 % of the C s , o r 0 . 0 0 3 % of t h e U present i n the o r i g i n a l glass. T h e t y p i c a l s p e c i m e n w a s t w i c e as h e a v y , so the t y p i c a l analysis w a s t w i c e as sensitive to t h e presence of a n element f r o m the glass i n t h e solutions. Results T w e n t y i n d i v i d u a l experiments w e r e p e r f o r m e d at 3 0 0 ° C a n d 300 b a r . T h e e x p e r i m e n t a l v a r i a b l e s a n d r u n n u m b e r s are l i s t e d i n T a b l e I I I . T h e results of t h e h y d r o t h e r m a l treatments of t h e glass w i l l b e d e s c r i b e d first f o r the s o l i d p r o d u c t s a n d t h e n for t h e solutions e x t r a c t e d f r o m the r e a c t i o n capsules.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
19.
MCCARTHY
E T
Simulated
AL.
Radioactive
Waste
357
Glass
Table III. Experimental Parameters and R u n Numbers of the 3 0 0 ° C , 300-Bar Hydrothermal Treatments
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
Run
Duration (days)
Run
Number
Water
Type"
Water-to-Solids Ratio
7
G D 59 * G D 113 GH112 G D 121 GD126
DW DW HGW DW DW
10:1 10:1 10:1 30:1 30:1
14
G D 68» G D 88 G D 124 GD127 G H 150 G D 123 G D 143
DW DW DW DW HGW DW DW
10:1 10:1 10:1 10:1 10:1 30:1 30:1
21
GD GD
DW DW
10:1 10:1
28
G D 78 G D 79 G D 89 G D 90 GH111 G D 122
DW DW DW DW HGW DW
10:1 10:1 10:1 10:1 10:1 30:1
80 81
° DW t= Deionized water; HGW = artificial Hanford groundwater. These specimens were spheroids; all others were shards. 6
The
Solid Reaction
s c r i b e d elsewhere (11)
Products.
Reconnaissance
experiments
de
h a d s h o w n that p o w d e r e d P N L - 7 6 - 6 8 glass w o u l d
b e a l t e r e d b y h y d r o t h e r m a l solutions at 2 0 0 ° - 4 0 0 ° C a n d w o u l d f o r m c r y s t a l l i n e phases.
M o r e massive specimens w e r e u s e d i n t h i s s t u d y t o
e n a b l e us to f o l l o w the a l t e r a t i o n of the glass as a f u n c t i o n of t i m e . S p h e r o i d a l specimens w e r e c h o s e n for the first f e w experiments i n the e x p e c t a t i o n t h a t the h y d r o t h e r m a l a l t e r a t i o n f r o n t m i g h t e x t e n d o n l y i n t o a s m a l l p o r t i o n of t h e glass a n d thus that measurements of w e i g h t a n d v o l u m e changes as a f u n c t i o n of t i m e c o u l d b e o b t a i n e d . H o w e v e r , u p o n o p e n i n g of the first c a p s u l e , i t b e c a m e o b v i o u s t h a t , e v e n f o r times as short as 7 days, the a l t e r a t i o n of the glass w a s too extensive, a n d i t w o u l d not b e p o s s i b l e to e m p l o y these t e c h n i q u e s . A f t e r 7 days ( r y n G D 5 9 ) the a l t e r a t i o n h a d p r o c e e d e d i n t o a p p r o x i m a t e l y o n e - t h i r d of t h e s p e c i m e n a n d m a t e r i a l h a d b e e n t r a n s p o r t e d f r o m the glass a n d o n t o t h e i n s i d e w a l l s of the g o l d r e a c t i o n c a p s u l e .
F i g u r e 2 shows
a p o r t i o n of
the
cross section of this p r o d u c t m o u n t e d i n p l a s t i c a n d p h o t o g r a p h e d i n
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
358
SOLID S T A T E
CHEMISTRY: A
CONTEMPORARY OVERVIEW
Figure 2. Cross section of a spheroidal specimen of PNL-76-68 glass after hydrothermal treatment with deionized water at 300°C and 300 bars for 7 days (approximate dimensions: 2 mm X 4 mm)
reflected l i g h t .
T h e w h i t e a n d l i g h t g r a y zones are a l t e r e d glass; t h e
b l a c k i n t e r i o r z o n e is a p p a r e n t l y u n a l t e r e d glass. T h e o v a l - s h a p e d g r a y a n d w h i t e features n e a r the i n t e r i o r of the glass c o u l d b e t r a c e d to cracks t h a t p e r m i t t e d access b y the solutions. T h e s e cracks m i g h t h a v e
been
i n t r o d u c e d d u r i n g the m e c h a n i c a l t r e a t m e n t to f o r m t h e spheroids.
The
p r o d u c t f r o m the 14-day e x p e r i m e n t ( G D 68) h a d f r a g m e n t e d a n d w a s thus not r e c o v e r a b l e
i n its o r i g i n a l s p h e r o i d a l shape.
B e c a u s e of
the
p o s s i b i l i t y of m e c h a n i c a l d a m a g e f r o m f a b r i c a t i o n of t h e spheroids, i t w a s d e c i d e d to use the less d a m a g e d glass shards i n a l l f u r t h e r experiments. T h e t y p i c a l a p p e a r a n c e of the p r o d u c t s f r o m the other 18 e x p e r i m e n t s is i l l u s t r a t e d i n F i g u r e 3. T h i s p h o t o g r a p h w a s t a k e n after the l i q u i d h a d b e e n r e m o v e d f r o m the g o l d c a p s u l e a n d t h e c a p s u l e h a d b e e n c u t o p e n . I n a l l cases the first observations w i t h t h e b i n o c u l a r m i c r o s c o p e
showed
a b u n d a n t , y e l l o w n e e d l e l i k e crystals m e a s u r i n g 0.2-2 m m a l o n g the n e e d l e axis t h a t h a d g r o w n t h r o u g h o u t the c a p s u l e a n d i n fissures i n t h e a l t e r e d s h a r d , p l u s a l i g h t - c o l o r e d c o a t i n g c o v e r i n g the i n s i d e w a l l of the capsule.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
19.
MCCARTHY
Figure 3.
E T
Simulated
AL.
Radioactive
Waste
359
Glass
Typical solid products after treatment of PNL-76-68 at 300°C and 300 bar (the background is a cut-open gold capsule)
T h e product was always fragmented.
I n some cases a r e l a t i v e l y l a r g e
r e m n a n t of the o r i g i n a l s h a r d w a s present, b u t i t w a s n e s t e d i n other fragments that h a d s p a l l e d off d u r i n g the t r e a t m e n t , c o o l i n g , or o p e n i n g steps. T h e y e l l o w crystals w e r e s t u d i e d b y S E M / E D X a n d f o u n d to c o n t a i n U , S i , N a , C s , a n d m i n o r R b . F i g u r e 4 is a p h o t o m i c r o g r a p h of clusters of
these
crystals
growing
on
the w a l l s of
t h e capsule.
They
were
r e c t a n g u l a r i n cross section a n d h a d either a p i n a c o i d o r a d o m e f o r a t e r m i n a t i o n . X - r a y e x a m i n a t i o n b y the G a n d o l f i m e t h o d y i e l d e d p o w d e r d a t a that gave a v e r y g o o d m a t c h to the d a t a of the m i n e r a l w e e k s i t e , K (U0 ) (Si 0 ) 2
2
2
2
5
• 4 H 0 , p a t t e r n 12-462 i n t h e P D F ( 1 0 ) .
3
2
Table I V
is a list of the X - r a y p o w d e r d a t a for these crystals a n d for t h e m i n e r a l w e e k s i t e . T h e c o m b i n a t i o n of e l e m e n t a l c h e m i s t r y a n d X - r a y d a t a s e r v e d to i d e n t i f y these crystals as a w e e k s i t e s t r u c t u r e phase w i t h N a , C s , a n d R b s u b s t i t u t i n g for t h e K i n the p r o t o t y p e Na (U0 ) (Si 0 ) 2
of
2
2
a weeksite
2
5
3
mineral. Sodium
weeksite,
• 4 H 0 , is k n o w n ( 1 2 ) , b u t this is t h e first r e p o r t 2
s t r u c t u r e phase w i t h the l a r g e a l k a l i ions
Cs and
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Rb
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
360
SOLID S T A T E
Figure 4.
CHEMISTRY: A
CONTEMPORARY OVERVIEW
Clusters of yellow needlelike crystals (length along needle axis is typically 1-2 mm)
s u b s t i t u t i n g for K . T h e weeksites
( h e n c e f o r t h , the N a - C s - R b - w e e k s i t e
structure p h a s e w i l l b e s i m p l y r e f e r r e d to as " w e e k s i t e " ) every
observed i n
e x p e r i m e n t , w h e t h e r f o r 7 or 28 d a y s , w i t h d e i o n i z e d w a t e r or
s i m u l a t e d H a n f o r d g r o u n d w a t e r , a n d w i t h w a t e r - t o - s o l i d s ratios of
10:1
or 3 0 : 1 . I n the l o n g e r - d u r a t i o n r u n s t h e w e e k s i t e crystals a p p e a r e d to b e c o a t e d or e t c h e d a n d w e r e often n e a r l y colorless n e a r t h e i r t i p s .
The
X - r a y p a t t e r n a n d E D X c h e m i s t r y w e r e v i r t u a l l y i d e n t i c a l f o r y e l l o w as w e l l as these l i g h t e r regions of the crystals. H o w e v e r , these observations suggest t h a t the o r i g i n a l a l t e r a t i o n p r o d u c t weeksites m a y b e metastable a n d w o u l d themselves alter i n m u c h l o n g e r d u r a t i o n experiments. T h e c r e a m - or t a n - c o l o r e d p h a s e c o v e r i n g the i n s i d e of the g o l d c a p s u l e p r o v e d to b e m a d e u p o f Z-lO-pm
b l a d e l i k e crystals. F i g u r e 5 is a n S E M
p h o t o m i c r o g r a p h o f these crystals o n t h e g o l d capsule.
Their radiating
h a b i t suggests n u c l e a t i o n a n d g r o w t h f r o m s o l u t i o n o n to flaws o n the surface of the g o l d .
T h e E D X c h e m i s t r y of these crystals c o n s i s t e d of
p r i m a r y S i , F e , a n d N a , w i t h v e r y m i n o r T i , Z n , a n d p e r h a p s s e v e r a l other elements. X - r a y p o w d e r d a t a o b t a i n e d w i t h the G a n d o l f i c a m e r a s h o w e d a q u i t e g o o d i n t e r p l a n a r s p a c i n g (d)
m a t c h a n d a f a i r i n t e n s i t y (I)
to the d a t a f o r the m i n e r a l a c m i t e , N a F e S i 0 , 2
6
PDF
18-1222.
match This
i d e n t i f i c a t i o n is f u l l y consistent w i t h t h e E D X c h e m i s t r y . T a b l e V gives
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
19.
MCCARTHY
E T
Table IV.
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
Yellow
Simulated
AL.
Radioactive
Waste
361
Glass
X - r a y Powder D a t a for the Yellow Needlelike Crystals and for the Mineral Weeksite Crystals
d"
7*
8.94 7.14 5.58 4.85 4.57
ms ms s vw m
3.84 3.57 3.32
m mw m
3.20 3.00 2.93 2.81 2.52 2.41 2.38 2.30 2.24 2.18 2.15 2.11 2.00 1.982 1.936 1.905
mw vw s W W WW W
w w w W W W W
vw vw vw vw vw
Weeksite
( T D F J12-462)
d"
I'
8.98 7.11 5.57 4.83 4.58 4.48 3.84 3.55 3.34 3.30 3.20 2.99 2.91 2.80 2.51 2.41 2.37 2.28 2.29 2.20 2.13 2.11 1.994 1.973 1.922 1.905
90 100 90 30 40 30 40 70 40B 70 50 40 60 30 30 40 50 50 40 30 40 40 40 30 30 40
° Symbols: s = strong; m = medium; w == weak; v = very; B = broad reflec tion; d = interplanar spacing; I = relative intensity.
the G a n d o l f i X - r a y d a t a a n d the PDF
d a t a for a c m i t e . It is p o s s i b l e t h a t
the v e r y s m a l l size of t h e crystals a n d the p o t e n t i a l for some o r i e n t a t i o n w i t h the m o u n t i n g fiber c o u l d a c c o u n t f o r the o n l y f a i r a g r e e m e n t
of
the I d a t a . T h e v e r y l i g h t c o l o r of the a c m i t e c r y s t a l c o a t i n g w a s
somewhat
s u r p r i s i n g . I n n a t u r e , a c m i t e is u s u a l l y green or b r o w n d u e to m i n o r s o l i d s o l u t i o n substitutions a n d the p a r t i a l r e d u c t i o n of F e
3 +
to F e . T h e l i g h t 2 +
c o l o r r e q u i r e s t h a t t h e c o m p o s i t i o n b e close to s t o i c h i o m e t r i c N a F e S i 0 2
a n d that the F e b e t r i v a l e n t . T h e p r e s e n c e of a n F e
3 +
phase
6
suggests
o x i d i z i n g c o n d i t i o n s i n s i d e t h e sealed c a p s u l e . T h e u n i v e r s a l o c c u r r e n c e of the u r a n y l phase, w e e k s i t e , also supports o x i d i z i n g c o n d i t i o n s . A p p a r ently P N L - 7 6 - 6 8 w a s a n o x i d i z e d glass. T h e c o l o r of t h e a c m i t e c r y s t a l c o a t i n g turns b r o w n after several w e e k s of exposure to a i r .
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
362
SOLID S T A T E C H E M I S T R Y :
Figure 5.
A CONTEMPORARY
OVERVIEW
SEM photomicrograph of the crystals coating the inside of the gold capsule
MICROSTRUCTURE
A N D MICROCHEMISTRY.
The
microstructure
and
m i c r o c h e m i s t r y o f t h e b u l k p r o d u c t s f r o m a 7-day, 14-day, a n d 2 8 - d a y hydrothermal treatment were studied b y S E M a n d electron microprobe analysis.
T h e 7- a n d 14-day specimens w e r e f r o m t h e t w o r u n s w h e r e
glass spheroids h a d b e e n u s e d . A l t h o u g h t h e y w e r e c r a c k e d , these p r o d ucts w e r e n o t as f r a g m e n t e d as t h e p r o d u c t s f r o m glass shards.
Thus
they c o u l d b e h a n d l e d , m o u n t e d i n the plastic, sectioned, a n d polished w i t h less d a m a g e to the s p e c i m e n . F i g u r e 6 is a s e c o n d a r y e l e c t r o n i m a g e ( S E I ) o f t h e cross-sectioned s p h e r o i d s h o w n i n F i g u r e 2. T h e brightness o f the S E I c a n b e c o r r e l a t e d to t h e m e a n a t o m i c n u m b e r o f a m a t e r i a l a n d t o d e n s i t y . T h u s t h e a p p a r e n t l y u n a l t e r e d glass c o r e is b r i g h t , w i t h s t i l l f u r t h e r brightness f o r t h e c r y s t a l l i n e i n c l u s i o n s i n this glass. T h e a l t e r e d p o r t i o n s of t h e p r o d u c t give
a d u l l gray S E I .
Cracks i n the product
are black.
Note the
c o r r e l a t i o n o f the g r a y w h i t e o v a l - s h a p e d a l t e r a t i o n features i n F i g u r e 2 w i t h t h e g r a y zones i n t h e b r i g h t c o r e i n F i g u r e 6. S i m i l a r l y , t h e r e s i d u a l c r y s t a l l i n e i n c l u s i o n s i n t h e a l t e r e d glass z o n e t h a t w e r e d a r k g r a y i n F i g u r e 2 are b r i g h t e r t h a n t h e i r m a t r i x i n F i g u r e 6. A t h i n s k i n o r r i n d n o t e v i d e n t i n F i g u r e 2 is o b s e r v e d i n F i g u r e 6. T h i s w a s a c h a r a c t e r i s t i c f e a t u r e i n all p r o d u c t s .
U n d e r the binocular
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
19.
MCCARTHY
ET
Table V .
Simulated
AL.
Radioactive
363
Glass
X - r a y Powder D a t a for the Crystalline Coating and for the Mineral Acmite Coating
Acmite I
d
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
Waste
18-1222) I
d
50 50 10 2 100 20 30 20 10 10 10 10 2 5 2 2 5 5 5 2 5 5 5 2 2 5 2 5
6.37 4.42 3.62 3.20 2.998 2.912 2.536 2.475 2.201 2.122 2.032 1.937 1.834 1.731 1.687 1.664 1.637 1.613 1.598 1.533 1.506 1.475 1.400 1.379 1.328 1.302 1.271 1.230
(TDF
6.369 4.416 3.614 3.188 2.983 2.900 2.5408 2.4701 2.1995 2.1200 2.0162 1.9350 1.8263 1.7293
90 80 10 50 70 100 50 60 10 30 20 10 5 60
1.6590 1.6341 1.6210 1.5920 1.5377 1.5290 1.4671 1.3975
5 5 50 50 10 10 20 60
1.3283 1.3021 1.2687 1.2289
20 40 30 20
m i c r o s c o p e this s k i n w a s seen to consist of at least t w o b a n d s , a n o u t e r b a n d of w h i t e a n d a l m o s t s p h e r i c a l m a t e r i a l c o v e r i n g a n orange b r o w n inner band.
F i g u r e 7 is a n e l e c t r o n b a c k s c a t t e r
(EBS)
image
with
a c c o m p a n y i n g N a , S i , a n d F e X - r a y m a p s f o r a near-surface p o r t i o n of a 2-week r u n , G D - 6 8 .
Two
features are n o t a b l e .
First, the skin
is
e n r i c h e d i n F e a n d s e c o n d , there is a b r i g h t a r e a to the r i g h t t h a t has N a , Fe,
a n d S i concentrations.
T h i s area is p r o b a b l y
u n a l t e r e d or
only
p a r t i a l l y a l t e r e d glass. A cross s e c t i o n of the s k i n is s h o w n u n d e r h i g h e r m a g n i f i c a t i o n i n F i g u r e 8, a l o n g w i t h Sr, F e , a n d C a X - r a y m a p s .
It is
c l e a r f r o m this figure that the outer b a n d of the s k i n is r i c h i n C a a n d S r , w h i l e t h e a d j o i n i n g b a n d is F e - r i c h .
T h e X - r a y e m i s s i o n traces
across
this b a n d e d s k i n , s h o w n i n F i g u r e 9, c o n f i r m t h e e n r i c h m e n t of C a a n d Sr i n the outer b a n d a n d i n d i c a t e t h a t S i is associated w i t h F e i n t h e adjoining band.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
SOLID
STATE CHEMISTRY:
A
CONTEMPORARY
OVERVIEW
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
364
t5
I S o
i
8 CUD
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
19.
MCCARTHY
ET
AL.
Simulated
Radioactive
Waste
365
Glass
Figure 7. X-ray maps of the near-surface zone of the product from run GD 68 (160 times magnification): T o p left, Na; top right, EBS; bottom left, Fe; bottom right, S i . S a m p l e s of e a c h b a n d w e r e e x a m i n e d b y G a n d o l f i X - r a y d i f f r a c t i o n , a n d c r y s t a l s t r u c t u r e types for these phases w e r e o b t a i n e d . T h e o u t e r m o s t b a n d of
w h i t e m a t e r i a l h a d the
identification was based
apatite structure t y p e .
[This
phase
o n crystals o b t a i n e d f r o m t h e surface
of
the
p r o d u c t s f r o m l o n g e r - d u r a t i o n ( 3 to 4 w e e k s ) treatments. I t is n o t c e r t a i n that the a p a t i t e s t r u c t u r e b a n d i n the 1- a n d 2 - w e e k p r o d u c t s c r y s t a l l i n e . ] X - r a y d a t a for this phase a n d f o r h y d r o x y a p a t i t e ,
were
Ca (P0 )35
4
O H , are g i v e n i n T a b l e V I . A U X - r a y m a p of the E B S i m a g e k i F i g u r e 8 s h o w e d t h a t U w a s c r y s t a l l i z i n g i n this a p a t i t e phase.
E x a m i n a t i o n of
the m a t e r i a l i n the S E M s h o w e d these spheroids t o b e a c t u a l l y m a d e u p of aggregates of r a n d o m l y o r i e n t e d fibrous crystals. T h e i r E D X c h e m i s t r y w a s q u i t e c o m p l e x , w i t h C a , S r , B a , r a r e earths ( L n ) , S i , U , a n d P as the p r i m a r y elements.
T h u s the material should be
assigned
generalized solid solution formula ( C a , S r , B a , L n , U ) „[ ( S i , P ) 0 ] O H 4
3
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
to
the
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
366
SOLID S T A T E C H E M I S T R Y : A
CONTEMPORARY OVERVIEW
Figure 8. X-ray maps of a portion of Figure 7 (800 times magnification): top left, Sr; top right, EBS; bottom right, Ca; bottom left, Fe. T h e orange b r o w n b a n d gave X - r a y d a t a t y p i c a l of a p y r o x e n e c h a i n s i l i c a t e ) near t h e a c m i t e - a u g i t e , S i ) O , composition 2
e
(see PDF
(single-
(Na,Ca) (Fe,Mn,Zn,Mg,Ti) (Al,-
18-1221 a n d 1 9 - 1 ) . I n F i g u r e s 8 a n d 9 i t
w a s d e m o n s t r a t e d that this b a n d h a d h i g h - F e c o n c e n t r a t i o n , a n d i n X - r a y e m i s s i o n traces the presence of N a , Z n , a n d T i w a s o b s e r v e d . A g e n e r a l i z e d s o l i d s o l u t i o n f o r m u l a for this p h a s e is
(Na,Ca)(Fe Ti,Zn)Si 0 ;
2
6
I n the E B S i m a g e f r o m F i g u r e 8 i t is seen that there is a t h i r d , i n n e r m o s t b a n d to the s k i n .
B o t h X - r a y m a p s a n d X - r a y traces across t h e
skin
( F i g u r e 9 ) i n d i c a t e d that this b a n d w a s e s p e c i a l l y e n r i c h e d i n U r e l a t i v e to the a d j o i n i n g a l t e r e d glass zone.
This U concentration
was
higher
t h a n t h a t i n the apatite p h a s e c o n s t i t u t i n g t h e outermost b a n d . T i t a n i u m also a p p e a r e d to be c o n c e n t r a t e d i n this h i g h - U b a n d . N o p h a s e i d e n t i f i c a t i o n has as y e t b e e n m a d e f o r this i n n e r m o s t b a n d .
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
J 9.
MCCARTHY
E T AL
Simulated
Radioactive
Waste
Glass
367
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
Location of Main Structural Feature in / i m from Surface
Distance from Surface
Figure 9. X-ray from run GD 68. the left mark the and the line near
emission profiles of the near-surface zone of the product Arrows indicate the positions of cracks. Dashed lines at approximate boundaries of the three bands of the skin, the center marks the boundary between less altered and more altered glass.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
368
SOLID S T A T E
Table V I .
CHEMISTRY: A
X - r a y Powder D a t a for the White Outer Band and for Hydroxyapatite Hydroxyapatite ( " P D F 9-432)
White Band
60 10
3.45 3.18
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
CONTEMPORARY OVERVIEW
2.814
100
2.714 2.637 2.522 2.276 2.071 2.006 1.949 1.903 1.848 1.725
20 10 5 10 10 5 10 5 10 10
3.44 3.17 2.814 2.778 2.720 2.631 2.528 2.262 2.065 2.000 1.943 1.890 1.841 1.722
40 12 100 60 60 25 6 20 8 6 30 16 40 20
E l e m e n t d i s t r i b u t i o n s a m o n g the v a r i o u s a l t e r e d a n d u n a l t e r e d glass regions
were
further characterized
by
electron
microprobe
analysis.
R e s u l t s w e r e o b t a i n e d i n the f o r m of c h a r a c t e r i s t i c X - r a y e m i s s i o n traces t h r o u g h these regions a n d q u a n t i t a t i v e e l e m e n t a l analyses at spots o n the p r o d u c t .
selected
I n F i g u r e 6 the traverse of a m i c r o p r o b e s c a n is
m a r k e d b y t h e b l a c k l i n e s t a r t i n g at the b a n d e d s k i n a n d p a s s i n g t h r o u g h a r e g i o n of g e n e r a l l y a l t e r e d glass, t h e n i n t o the u n a l t e r e d c o r e , a n d t e r m i n a t i n g i n the o v a l - s h a p e d a l t e r a t i o n feature.
X - r a y e m i s s i o n traces
f o r 19 elements m o n i t o r e d d u r i n g this scan are s h o w n i n F i g u r e s 10, 11, a n d 12. T h e e n r i c h m e n t s i n N a , C a , Sr, F e , T i , a n d U i n t h e b a n d e d s k i n h a v e a l r e a d y b e e n discussed. d i d not display further major
E x c e p t f o r M o a n d N a , the X - r a y traces fluctuations
( t h e s h a r p d i p s that o c c u r i n
a l l traces i n the same p l a c e are d u e to c r a c k s ) . T h e b r o a d m a x i m u m i n M o a n d t h e sharp
fluctuations
i n N a o c c u r r i n g b e t w e e n 500 a n d 700 /xm
c o r r e l a t e w i t h t h e traverse of the b e a m out of a n a l t e r e d z o n e ,
into
u n a l t e r e d glass, a n d t h e n b a c k i n t o t h e o v a l - s h a p e d a l t e r a t i o n feature. T h i s c o r r e l a t i o n suggested the use of M o a n d N a as m a r k e r elements f o r t h e presence of a l t e r a t i o n . T h e n u m b e r s i n F i g u r e 6 m a r k i n d i v i d u a l p o i n t analyses w i t h t h e computer-interfaced microprobe.
C a l i b r a t i o n standards w e r e those a v a i l
a b l e i n the u n i v e r s i t y ' s M i n e r a l C o n s t i t u t i o n L a b o r a t o r y f o r silicate r o c k a n d m i n e r a l analyses. T h e results p r e s e n t e d i n T a b l e V I I are for 13 of the elements i n t h e glass
( p l u s K , w h i c h w a s not r e p o r t e d to be
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
a
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
19.
MCCARTHY
ET AL.
Simulated
Radioactive
Waste
Glass
369
3x10 CPS
100 200 300 400 500 600 700 /xm FROM SURFACE Figure
10.
X-ray emission traces for Na, Cs, Ca, Sr, and Zn along the traverse shown in Figure 6
c o n s t i t u e n t of t h e g l a s s ) . N o t e t h a t t h e a v a i l a b l e c o m p u t e r c o d e c a l c u l a t e d concentrations as oxides.
T h e U analyses w e r e suspect because a U
standard w i t h a suitably h i g h U concentration i n an appropriation matrix w a s n o t a v a i l a b l e . T h e r e also a p p e a r e d to b e a p r o b l e m w i t h t h e N a analyses, p e r h a p s d u e to t h e f a m i l i a r d i f f i c u l t y w i t h N a v a p o r i z a t i o n i n the e l e c t r o n b e a m .
A n a l y s e s f o r t h e 13 elements f o r a s p e c i m e n of t h e
a s - r e c e i v e d P N L - 7 6 - 6 8 glass w e r e w i t h i n 5 % o f t h e c o m p o s i t i o n s r e p o r t e d b y P N L f o r C a , T i , N d , F e , Z n , S i , a n d M o . A n a l y s e s d i f f e r e d b y greater a m o u n t s f o r C s , C e , S r , a n d Z r , as w e l l as f o r t h e p r e v i o u s l y d i s c u s s e d U a n d N a . T h e i m p o r t a n c e of these c o m p o s i t i o n a l v a r i a t i o n s is n o t k n o w n b e c a u s e t h e glass is a n i n h e r e n t l y i n h o m o g e n e o u s p r o d u c t a n d t h e P N L c o m p o s i t i o n is n o m i n a l ( t h a t i s , b a s e d o n t h e s t a r t i n g b a t c h ) r a t h e r t h a n the result of a n a c t u a l c h e m i c a l analysis.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
370
SOLID S T A T E
J
0
Figure 11.
The
I
I
CHEMISTRY: A
I
I
I
CONTEMPORARY OVERVIEW
I
100 200 300 400 500 600 Mm FROM SURFACE
I
700
X-ray emission traces for Fe, Y , Z r , Ti, U, Si, and Mo the traverse shown in Figure 6
microprobe
d a t a f o r t h e v a r i o u s zones i n t h e p r o d u c t
averages of m u l t i p l e analyses.
are
T h e core of a p p a r e n t l y u n a l t e r e d glass
g a v e a n analysis a v e r a g e d f r o m eight p o i n t s t h a t c o m p a r e s w e l l to t h a t of the o r i g i n a l glass s p e c i m e n . i n M o concentrations.
along
Note their
moderately
correspondence
I n a l t e r a t i o n zones I a n d I I the M o
and N a
concentrations w e r e a p p r e c i a b l y l o w e r . T h e d a t a f o r z o n e I w e r e a v e r a g e d f r o m three analyses i n the o v a l - s h a p e d feature i n F i g u r e s 2 a n d 6. T h r e e analyses f r o m the m o r e h e a v i l y a l t e r e d outer r e g i o n o c c u r r i n g b e t w e e n the s k i n a n d the core constitute z o n e I I . H e r e s o m e w h a t l o w e r F e , S i , a n d U concentrations w e r e n o t e d i n a d d i t i o n to the h e a v y d e p l e t i o n i n M o a n d N a . O n e of t h e m o s t consistent a n d u s e f u l o b s e r v a tions f r o m t h e s t u d y of this s p e c i m e n w a s t h a t M o a n d N a a p p e a r to b e e a r l y a n d sensitive i n d i c a t o r s of h y d r o t h e r m a l a l t e r a t i o n i n t h e glass.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
19.
MCCARTHY
ET
Simulated
AL.
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
i
LJ 0 Figure 12.
Radioactive
Waste
1
1
1
1
1
1
i
i
i
i
i
i
100 200 300 400 500 600 /xm FROM SURFACE
X-ray emission traces for the lanthanides shown in Figure 6
371
Glass
r
L_J
700
along the
traverse
T h e p a r t i a l l y a l t e r e d p r o d u c t just d e s c r i b e d for t h e 1-week t r e a t m e n t d i f f e r e d m a r k e d l y f r o m t h e p r o d u c t s f r o m l o n g e r treatments. F o r s p e c i mens t r e a t e d f o r 2 to 4 w e e k s , there a p p e a r e d to be at least p a r t i a l a l t e r a t i o n t h r o u g h o u t the s o l i d .
O n e of t h e 4-week p r o d u c t s w a s suffi
c i e n t l y i n t a c t after the t r e a t m e n t that a p a r t i a l cross s e c t i o n c o u l d p r e p a r e d for e x a m i n a t i o n b y S E M a n d t h e m i c r o p r o b e .
be
I n F i g u r e 13 i t
c a n be seen that m a j o r f r a g m e n t s of t h e p r o d u c t h a d separated a n d p a r t s of t h e surface h a d s p a l l e d off p r i o r to s p e c i m e n p r e p a r a t i o n . Y e t e n o u g h of t h e p r o d u c t w a s r e t a i n e d t h a t a l l the t y p i c a l a l t e r a t i o n features w e r e d i s p l a y e d i n one cross section. T h e a l t e r a t i o n has b e e n d i v i d e d i n t o f o u r zones a n d m i c r o p r o b e analyses (see
Table V I I I ) have been
obtained
f r o m e a c h of t h e m . T h e least a l t e r e d of t h e zones w a s t h e c o r e .
I n reflected l i g h t i t
r e t a i n e d its o r i g i n a l g r e e n b l a c k c o l o r a t i o n a n d i t a p p e a r e d to
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
have
372
SOLID S T A T E C H E M I S T R Y : A
Table VII.
Electron Microprobe Analyses of the Product Shown i n Figure 6 ( R u n G D 50) Weight
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
Oxide CaO CsoO Ti0 Ce0 Nd 0 FeO ZnO Si0 SrO Zr0 Mo0 U0 K 0 Na 0 2
2
2
2
2
3
2
2
2
3
CONTEMPORARY OVERVIEW
PNL-76-68 Nominal Composition"
PNL-76-68 Microprobe Analysis
2.0 1.0 3.0 1.2 1.7 8.9 5.0 40.3 0.4 1.8 2.3 4.5 0.0' 12.7 84.8
2.0 1.3 3.2 1.6 1.8 9.3 4.8 39.0 0.2 2.3 2.4 7.2' 0.1 8.6 83.8
Percent
Alteration
laltered Glass"
Zones
r
IV
1.9
2.0
2.0
1.0
1.0
0.9
2.9
2.9
2.3
2.3
3.0 2.9 2.0
1.7
1.5
8.9
8.8 5.3
5.5
38.2
5.8 5.2 34.2
42.1
0.1
0.1
0.1
2.0
1.9
2.7
2.4 5.4'
0.2 5.8' 0.3
0.8 4.3
0.1
0.1
2.1
3.1 77.3
10.5
82.9
66.1
° M o d i f i e d f r o m T a b l e I to show F e as F e O a n d U as U0 . A v e r a g e d f r o m p o i n t s 1-8 i n F i g u r e 6. A v e r a g e d f r o m p o i n t s 9-11, the o v a l - s h a p e d a l t e r a t i o n zone, i n F i g u r e 6. A v e r a g e d f r o m p o i n t s 12-14 i n F i g u r e 6. N o K was r e p o r t e d i n the c o m p o s i t i o n o f P N L - 7 6 - 6 8 . T h e U s t a n d a r d s were designed for lower U c o n c e n t r a t i o n s , so these v a l u e s be i n e r r o r . 2
b
c
d
e
1
b e c o m e m o r e t r a n s p a r e n t as a result of t h e treatment. h a d the b r i g h t s e c o n d a r y
may
T h e core zone
e l e c t r o n i m a g e t y p i c a l of u n a l t e r e d glass i n
F i g u r e 6, b u t the m i c r o p r o b e analyses ( T a b l e V I I I ) i n d i c a t e d t h a t this z o n e w a s h e a v i l y d e p l e t e d i n M o a n d N a . A n exterior core z o n e d i f f e r e d o n l y s l i g h t l y f r o m the core i n o p t i c a l a n d S E M i m a g e characteristics, b u t m i c r o p r o b e analysis i n d i c a t e d almost t o t a l d e p l e t i o n i n M o a n d a d i s t i n c t e n r i c h m e n t i n C s c o m p a r e d to the a d j o i n i n g a l t e r a t i o n zones.
T h e outer
c o r e z o n e w a s at least p a r t i a l l y c r y s t a l l i n e because a n X - r a y d i f f r a c t i o n p a t t e r n c o n s i s t i n g of b r o a d
reflections w a s o b t a i n e d f r o m i t . T h e d a t a ,
l i s t e d i n T a b l e I X , h a v e not b e e n m a t c h e d to a n y p h a s e or m i x t u r e of phases i n the P D F . I n reflected l i g h t the r e g i o n l a b e l e d " i n t e r i o r z o n e " i n F i g u r e 13 w a s cream white, porous,
and r i c h i n opaque microcrystalline inclusions.
T h e s e i n c l u s i o n s w e r e d u l l b l a c k a n d w e r e often s u r r o u n d e d b y a p u r p l e hue.
T h e y w e r e less a b u n d a n t i n t h e c o r e a n d o u t e r zones.
o r i e n t a t i o n i n the i n t e r i o r z o n e s e e m e d
Also their
to b e r e l a t e d t o the e x t e r n a l
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
19.
MCCARTHY
Figure 13.
ET
AL.
Simulated
Radioactive
Waste
373
Glass
SEM photomicrograph of a section through the product of a 4-week hydrothermal treatment
m o r p h o l o g y of the o r i g i n a l glass s h a r d . T h e s e t w o observations suggest t r a n s p o r t a n d r e c r y s t a l l i z a t i o n of t h e o p a q u e phases.
X - r a y diffraction
analyses i n d i c a t e d that t h e opaques consisted of several phases, a F e - r i c h spinel, ( R u 0 ) 2
8 s
, and usually
(Pd)
(the s u b s c r i p t ss refers to s o l i d
S 8
s o l u t i o n ) . T h e s p i n e l h a d a u n i t c e l l p a r a m e t e r of 8.40 A , a n d its p o w d e r d a t a c o r r e s p o n d c l o s e l y to those of the F e - s p i n e l m a g n e t i t e F e 0 , 3
19-629.
T h e R u - r i c h phase has b e e n d e s i g n a t e d as ( R u 0 ) , 2
s s
4
PDF
a solid
s o l u t i o n phase, because its p o w d e r d a t a i n d i c a t e d a s l i g h t l y l a r g e r u n i t c e l l t h a n is f o u n d f o r p u r e R u 0 , 2
PDF
21-1172.
Similarly,**in
those
products where P d - r i c h crystalline inclusions were identified, the unit c e l l p a r a m e t e r , 3.92 A , w a s l a r g e r t h a n the 3.89-A p a r a m e t e r of p u r e P d , PDF
5-681.
N o fluorite structure C e 0 - r i c h p h a s e w a s d e t e c t e d i n a n y 2
products. T h e m i c r o p r o b e d a t a for the i n t e r i o r z o n e i n d i c a t e d a d e p l e t i o n of Cs, Zr, a n d lanthanides, and enrichment i n N a , C a , F e , T i , Z n , and S i , i n c o m p a r i s o n to a d j o i n i n g zones.
T h e e n r i c h m e n t w a s most p r o n o u n c e d
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
374
SOLID S T A T E
Table VIII.
CHEMISTRY: A
Electron Microprobe Analyses of the Product Shown in Figure 13 ( R u n G D 78) Weight
CaO Cs 0 TiO Ce0 Nd 0 FeO ZnO Si0 SrO Zr0 Mo0 U0 Na,0
2.0 1.3 3.2 1.6 1.8 9.3 4.8 39.0 0.2 2.3 2.4 7.2 8.6 83.6
2
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
a
2
2
3
3
2
3
2
° Averaged Averaged Averaged Averaged 6
e
d
from from from from
Percent Alteration
PNL-76-68 Microprobe Analysis
Oxide
CONTEMPORARY OVERVIEW
points points points points
Core Zone'
Exterior Core Zone"
2.1 1.4 3.1 1.4 2.1 9.6 4.3 39.1 0.4 2.2 1.1 6.1 2.0 74.9
2.1 3.1 2.9 1.4 1.9 8.7 4.5 38.9 0.3 2.1 0.1 5.3 2.4 73.7
Zones Interior Zone'
Outer Zone*
2.5 0.4 4.3 0.9 1.2 13.2 5.3 46.3 0.4 1.5 0.0 5.5 5.2 86.8
1.6 1.5 2.6 2.0 3.2 3.7 3.8 28.0 0.4 3.1 0.1 2.0 0.7 52.7
1-11 i n F i g u r e 13. 12-14 i n F i g u r e 13. 18-20 i n F i g u r e 13. 15, 21, 22, a n d 26 i n F i g u r e 13.
i n those features i n t h e i n t e r i o r z o n e that are b r i g h t e r i n F i g u r e 13. X-ray
analysis of
these
features
gave
a pyroxenelike pattern,
with
m o d e r a t e l y b r o a d reflections c o r r e s p o n d i n g to those of the a c m i t e augites d e s c r i b e d earlier. T h e m i c r o p r o b e a n d X - r a y p o w d e r d a t a are consistent w i t h a pyroxene formula,
structure p h a s e h a v i n g a g e n e r a l i z e d s o l i d s o l u t i o n
(Na,Ca) (Fe,Ti,Zn) S i 0 . 2
6
X - r a y patterns
of
representative
samples f r o m t h e i n t e r i o r z o n e s h o w e d that t h e r e w a s a c o n s i d e r a b l e a m o u n t of a n X - r a y a m o r p h o u s p h a s e m i x e d w i t h t h e p y r o x e n e
and
o p a q u e c r y s t a l l i n e phases. T h e r e g i o n l a b e l e d " o u t e r z o n e " i n F i g u r e 13 c o n s i s t e d of
light-
c o l o r e d t r a n s l u c e n t m a t e r i a l l y i n g just b e l o w the s k i n . I n reflected l i g h t this m a t e r i a l has d i s t i n c t opalescence.
W i t h the t y p i c a l p r o d u c t m u c h
of this z o n e a n d the s k i n w e r e f o u n d to h a v e s p a l l e d off. X - r a y e x a m i n a t i o n of r a n d o m samples f r o m this z o n e i n d i c a t e d t h a t i t w a s g e n e r a l l y n o n c r y s t a l l i n e . A f e w b r o a d p y r o x e n e l i k e reflections w e r e n o t e d .
Micro
p r o b e d a t a ( T a b l e V I I I ) i n d i c a t e d m a j o r d e p l e t i o n of N a , F e , S i , a n d U . T h e s e are the k e y elements of the s k i n a n d the t w o phases c r y s t a l l i z e d after t r a n s p o r t , a c m i t e a n d w e e k s i t e . N o t e t h a t the analyses of t h e oxides l i s t e d i n t h e t a b l e s u m o n l y to a b o u t 5 6 % . T h i s fact, w h e n c o m b i n e d w i t h
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
19.
MCCARTHY
E T AL.
Simulated
the c h a r a c t e r i s t i c opalescence
Radioactive
Waste
375
Glass
of this zone, suggests that h y d r a t e d or
h y d r o x y l a t e d , p e r h a p s g e l l i k e , m a t e r i a l has b e e n f o r m e d i n this z o n e b y the h y d r o t h e r m a l t r e a t m e n t of t h e glass. T h e s k i n , seen as a t h i n , b r i g h t l a y e r o n some of t h e m o r e i n t a c t segments i n F i g u r e 13, w a s a g a i n m a d e u p of a w h i t e crust of
small
spheres o v e r l y i n g a n orange b a n d . X - r a y d i f f r a c t i o n c o n f i r m e d that here also the o r a n g e b a n d w a s a p y r o x e n e p h a s e a n d , w i t h one e x c e p t i o n , the w h i t e crust w a s a n a p a t i t e phase.
I n that o n e e x c e p t i o n , aggregates
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
l o o k i n g v e r y m u c h l i k e t h e a p a t i t e p h a s e ( t h e spheres w e r e e v e n m a d e u p of t i n y n e e d l e c r y s t a l s ) , h a d q u i t e d i s s i m i l a r X - r a y p o w d e r
data
Table I X ) .
(see
Table I X .
Outer Core Zone d 4.11 3.99 3.75 3.49 3.24 2.998 2.894 2.629 2.543 2.455 2.380
J m° m ms w w ms m vs m m m
X - r a y Powder D a t a for Additional Alteration Zones or Phases Orange Vesicle Crust'
White Spherical Aggregates"
d
/
d
J
4.13 3.68 3.47 3.18 2.978 2.940 2.84 2.515 2.259 1.961 1.684 1.637 1.480 1.388 1.182 1.130 1.088 0.9022
50 5 20 20 20 20 10 60 100 50 5 10 20 10 10 5 5 5
7.03 6.56 5.13 4.82 •4.53 4.15 3.90 3.75 3.58 3.45 3.24 3.18 3.11 2.940 2.814 2.652 2.536 2.380 2.067 1.892 1.852 1.734 1.578
80 30 50 10 5 100 5 10 5 10 50 20 50 30 30 20 20 10 10 5 5 5 5
° N o t e d o n l y i n p r o d u c t s o f 2-week t r e a t m e n t s . N o t e d o n l y i n one p r o d u c t of a 4-week t r e a t m e n t ; m o r p h o l o g i c a l l y s i m i l a r t o the apatite phase. Symbols: s = strong; m = m e d i u m ; w = weak; v = very. b
c
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
376
SOLID S T A T E C H E M I S T R Y :
A
CONTEMPORARY
OVERVIEW
T w o other a l t e r a t i o n features w e r e n o t e d . O f t e n , fissures or veins i n the a l t e r e d glass w e r e filled w i t h a t r a n s l u c e n t p a l e y e l l o w m a t e r i a l . T h i s p h a s e h a d b o t h the e l e m e n t a l c h e m i s t r y a n d c h a r a c t e r i s t i c ( a l t h o u g h b r o a d ) X - r a y reflections of the p y r o x e n e phase. A n o t h e r f e a t u r e w a s a n orange crust l i n i n g one o f the vesicles f r o m the o r i g i n a l glass. It l o o k e d q u i t e l i k e the o r a n g e p y r o x e n e b a n d o b s e r v e d o n t h e s k i n , b u t its X - r a y d a t a , g i v e n i n T a b l e I X , w e r e d i s t i n c t l y different. T h e w h i t e s p h e r i c a l aggregates
a n d orange v e s i c l e crust features
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
w e r e t w o examples of the n e e d f o r u t i l i z i n g m u l t i p l e m e t h o d s of c h a r a c t e r i z a t i o n i n this w o r k .
I f v i s u a l or S E M a p p e a r a n c e h a d b e e n
used
alone, t h e n the phases w o u l d h a v e b e e n m i s i d e n t i f i e d as a p a t i t e a n d pyroxene, respectively. BULK X-RAY
DIFFRACTION.
A t least o n e
p r o d u c t t r e a t e d at
each
different set of c o n d i t i o n s ( t i m e , w a t e r t y p e , w a t e r - t o - s o l i d r a t i o ) w a s s t u d i e d i n b u l k specimens b y r o u t i n e X - r a y d i f f r a c t o m e t r y . A l l t h e solids w e r e c o l l e c t e d f r o m i n s i d e the g o l d capsules a n d w e r e g r o u n d together to m a k e u p the diffractometer s p e c i m e n . T h e r e s u l t i n g d i f f r a c t i o n patterns w e r e r e m a r k a b l y s i m i l a r to e a c h other a n d to patterns of p r o d u c t s f r o m other h y d r o t h e r m a l e x p e r i m e n t s i n v o l v i n g P N L - 7 6 - 6 8 glass. T h e diffractog r a m of the o r i g i n a l glass s p e c i m e n is c o m p a r e d to t h a t of the p r o d u c t s of a t y p i c a l a l t e r a t i o n p r o d u c t ( r u n G H 111) i n F i g u r e 14. T h e glass is X - r a y a m o r p h o u s except f o r a f e w w e a k reflections o f ( R u 0 ) , ( C e 0 ) s s , 2
and
s s
2
the F e s p i n e l ( s ) , w h i l e the a l t e r a t i o n p r o d u c t has strong reflections
f r o m c r y s t a l l i n e phases.
T h e b r o a d h a t c h e d reflections are d u e to the
v a r i o u s a c m i t e a n d a c m i t e - a u g i t e p y r o x e n e phases a n d a l l b u t a f e w of t h e r e m a i n i n g reflections are those of the w e e k s i t e l i k e phase.
One
of
these extra reflections is consistent w i t h the strongest a p a t i t e phase reflec t i o n , but,' i n g e n e r a l , the other phases t h a t w e r e so c l e a r l y d i s c e r n i b l e as t i n y crystals b y t h e G a n d o l f i t e c h n i q u e are a p p a r e n t l y b e l o w the l e v e l of detection b y b u l k X - r a y diffraction. T h e same b a s i c d i f f r a c t o g r a m w a s o b t a i n e d for six other r u n p r o d u c t s w h e r e a 10:1 w a t e r - t o - s o l i d s r a t i o h a d b e e n u s e d . T h e major
difference
b e t w e e n 1 a n d 4 w e e k s of t r e a t m e n t w a s i n the s h a r p e r a n d m o r e intense p y r o x e n e reflections o b s e r v e d f o r t h e l o n g e r treatments. I n the diffractograms of the 4-week, 3 0 : 1
water-to-solid-ratio product,
the
weeksite
reflections w e r e just as e v i d e n t , b u t those of the pyroxenes w e r e m u c h less intense.
T h e r e w a s also a l a r g e r diffuse
scattering halo, w h i c h
suggested a h i g h e r p r o p o r t i o n of X - r a y a m o r p h o u s phases i n t h i s p r o d u c t . T h e w e e k s i t e p l u s pyroxenes phase assemblage w a s also o b s e r v e d i n a n o t h e r set o f h y d r o t h e r m a l treatments d e s c r i b e d elsewhere
(11).
In
these a 2 0 0 - m e s h p o w d e r of P N L - 7 6 - 6 8 glass h a d b e e n t r e a t e d at 3 0 0 ° C and
300 b a r f o r a n e x t e n d e d p e r i o d of t i m e .
T h e water-to-solid ratio
w a s 0.5:1 r a t h e r t h a n 10:1 or 3 0 : 1 . D i f f r a c t o g r a m s of 4-, 8-, a n d 24-week p r o d u c t s w e r e v e r y s i m i l a r to t h a t of t h e a l t e r e d glass i n F i g u r e 14.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
19.
MCCARTHY
8
12
ET AL.
16
Simulated
20
Radioactive
24 28 DEGREES 26 (CuKa)
377
Waste Glass
32
36
40
Figure 14. Portions of the X-ray diffractograms for PNL-76-68 before hydrothermal treatment and after treatment with artificial Hartford groundwater at 300°C and 300 bar for 28 days (run GH 111) I n another series of experiments w i t h the p o w d e r e d
glass a n d the
0.5:1 r a t i o , the w e e k s i t e - p l u s - p y r o x e n e s assemblage w a s w e l l c r y s t a l l i z e d after o n l y 2.5 days at 4 0 0 ° C a n d 300 b a r , a n d i t w a s seen to b e s t a r t i n g to c r y s t a l l i z e after the same 2.5-day t r e a t m e n t at 2 0 0 ° C a n d 300 b a r Chemical Analyses of Solutions.
(13).
T h e p r o d u c t solutions f r o m e a c h
g o l d c a p s u l e w e r e a n a l y z e d for 18 of the elements present i n P N L 76-68 b y the t e c h n i q u e s
described
above.
These
analyses c o v e r e d
elements w h o s e oxides w e r e present at greater t h a n 1 w t % (see
a l l the
except R u
T a b l e s I a n d I I ) . M o r e t h a n 96 w t % of the o x i d e c o m p o s i t i o n of
the glass w a s i n c l u d e d . T h e r e are t w o p o t e n t i a l c o n t r i b u t i o n s to these solutions. F i r s t , there are the elements that h a d b e e n e x t r a c t e d f r o m the glass d u r i n g t h e h y d r o t h e r m a l t r e a t m e n t a n d h a d r e m a i n e d i n s o l u t i o n d u r i n g the c o o l i n g of the r u n . A s e c o n d c o n t r i b u t i o n c o u l d c o m e f r o m a n y s o l i d p r o d u c t s t h a t were
sufficiently s o l u b l e to h a v e d i s s o l v e d d u r i n g e i t h e r the
10-min
e q u i l i b r a t i o n of the c a p s u l e i n 20 m L of w a t e r or the s u b s e q u e n t w a s h i n g of the s o l i d p r o d u c t s . T h i s s e c o n d c o n t r i b u t i o n m i g h t i n c l u d e s u c h salts as s o d i u m m o l y b d a t e s or borates t h a t either h a d f o r m e d
as solids at
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
378
SOLID S T A T E C H E M I S T R Y :
A CONTEMPORARY
OVERVIEW
t e m p e r a t u r e because t h e s o l u t i o n w a s a l r e a d y s a t u r a t e d or h a d p r e c i p i t a t e d f r o m s o l u t i o n d u r i n g t h e c o o l i n g of t h e r u n . I n t h e d i s c u s s i o n t h a t follows both contributions w i l l be considered under the "solutions" por t i o n of t h e p r o d u c t s . SOLUTIONS
FROM
RUNS
USING
DEIONIZED WATER.
The
analyses
of
the solutions f r o m 12 of t h e r u n s u s i n g d e i o n i z e d w a t e r a r e g i v e n i n T a b l e X . B e c a u s e every s p e c i m e n h a d a different w e i g h t , t h e c o n c e n t r a tions h a v e b e e n n o r m a l i z e d to a s p e c i m e n w e i g h t of 0.1 g t o f a c i l i t a t e
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
c o m p a r i s o n s a m o n g runs.
T h e elements present i n t h e solutions i n t h e
greatest concentrations w e r e N a , B , a n d M o . R e p r o d u c i b i l i t y a m o n g r e p l i c a t e r u n s t h a t u s e d glass s h a r d specimens
(that is, a l l b u t G D 59
a n d G D 6 8 ) w a s w i t h i n 1 0 % o f t h e a m o u n t present f o r these t h r e e elements. T h i s w a s a b o u t that e x p e c t e d f r o m t h e v a r i a t i o n i n s p e c i m e n c o m p o s i t i o n d u e to v a r i a b l e c o n t e n t of c r y s t a l l i n e i n c l u s i o n s . N o t e , f o r e x a m p l e , t h e C r analyses i n t h e 2-week runs. I n G D 124 there w a s n o n e d e t e c t e d , w h i l e i n G D 127 there w e r e 42 fig • m L of C r i n s o l u t i o n . C h r o m i u m is t h o u g h t to b e p r e s e n t i n P N L - 7 6 - 6 8 i n t h e s p i n e l ( s ) ( 5 , 7 ) , so G D 124 m a y h a v e c o n t a i n e d less of this c r y s t a l l i n e i n c l u s i o n t h a n G D
127. O t h e r i m p o r t a n t constituents of t h e solutions w e r e S i a n d C s .
R e p r o d u c i b i l i t y , a m o n g r e p l i c a t e analyses f o r these elements, w a s o n l y w i t h i n a f a c t o r of t w o to three t i m e s t h e a m o u n t present.
Table X .
Solution Concentrations"
1 Week
Na B Si Mo Cs Rb Sr Ba Ca Zn Ni Cr Fe La Nd Ti Zr U
2 Weeks
GD59"
GD 113
GD68"
GD88
1800 1300 750 1300 19 ND* 0.8 0.7 2.4 ND
4300 2500 510 1100 42 ND 2.0 7.4 7.4 0.8 1.5 66 3 4 ND ND ND 5.6
3900 3000 710 1100 110 6 ND
3900 2500 1070 1100 58 3 0.3 0.5 2.8 0.7 2.5
—
ND ND ND ND ND 2.6
ND 7.8 29.0 —
ND ND ND ND ND 4.8
—
N N N N
—
D D D D 1.1
GD
124
GD 127
3900 2500 430 1100 33 2 2.4 11.6 9.8 1.5 2.6 ND 3 4 ND ND ND 0.6
* I n micrograms per milliliter. T h e s e specimens were i n the f o r m of s p h e r o i d s . 6
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
4700 2800 620 1100 74 ND 2.8 13.1 10.9 0.9 3.1 42 4 ND ND ND ND 6.2
19.
MCCARTHY
E T AL.
Simulated
Radioactive
Waste
379
Glass
T h e most n o t a b l e aspect of t h e d a t a i n T a b l e X is t h a t ( w i t h t h e e x c e p t i o n of G D 59, d i s c u s s e d l a t e r ) t h e c o n c e n t r a t i o n s are r o u g h l y t h e same f o r t h e f o u r r u n d u r a t i o n s . T h i s aspect b e c o m e s e v e n m o r e e v i d e n t w h e n analyses f r o m t h e r e p l i c a t e d runs are a v e r a g e d . I n T a b l e X I these a v e r a g e d concentrations are g i v e n a l o n g w i t h t h e p e r c e n t a g e
of t h e
p a r t i c u l a r e l e m e n t f r o m t h e o r i g i n a l glass r e p r e s e n t e d b y these c o n c e n t r a tions. I t s h o u l d b e n o t e d t h a t this p e r c e n t a g e is o n l y t h e a m o u n t of a n element d e t e c t e d i n the a n a l y t i c a l s o l u t i o n a n d n o t t h e t o t a l p e r c e n t a g e
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
of a n element extracted o r l e a c h e d f r o m t h e glass.
T h e latter w o u l d
i n c l u d e at least t h e c o m p o n e n t s of t h e w e e k s i t e a n d a c m i t e phases t h a t w e r e d i s s o l v e d , t r a n s p o r t e d , a n d c r y s t a l l i z e d o n t h e i n s i d e w a l l s of t h e g o l d capsule.
T h e c o n c e n t r a t i o n s of N a , M o , a n d C s i n s o l u t i o n w e r e
n e a r l y constant f o r a l l f o u r d u r a t i o n s at a b o u t 4 5 % , 7 0 % , a n d 5 % of t h e a m o u n t a v a i l a b l e i n t h e glass. T h e B a n d R b c o n c e n t r a t i o n s i n c r e a s e d g r a d u a l l y w i t h t i m e of treatment. S o m e S i , a b o u t 4 % , w a s o b s e r v e d . V e r y little of t h e a v a i l a b l e a l k a l i n e earths, C a , S r , a n d B a , w a s f o u n d i n the solutions. T h e r e w a s v i r t u a l l y n o d e t e c t a b l e T i , Z n , Z r , L a , o r N d i n t h e solutions. O n l y a v e r y s m a l l p e r c e n t a g e of t h e a v a i l a b l e U w a s present i n solution a n d that percentage decreased w i t h longer treatment times. It is i n s t r u c t i v e to c o n s i d e r t h e t o t a l c o n c e n t r a t i o n of t h e elements i n s o l u t i o n as a p e r c e n t a g e of t h e a v a i l a b l e concentrations of t h e 18 elements
(10:1
Deionized W a t e r to Glass) 3 Weeks
4 Weeks
GD80
GD 81
GD78
GD79
GD89
GD90
4000 2500 1280 1100 50 5 0.6 0.4 15.4 1.0 ND 47 ND ND
4300 2800 1140 1000 40 3 0.8 0.1 2.4 1.0 2.3 53 ND ND
4300 2600 1180 1100 50 10 ND 0.8 9.0 ND 12.4
4400 2900 1290 1200 48 11 ND ND 10.0 ND 9.8
4200 2800 450
3900 2700 550
ND
ND
ND ND 1.5
ND ND 0.6
ND ND 0.9
— —
—
ND ND 0.9 c
N D =
—
—
—
—
—
—
1.2 0.6 30.5 0.8 1.3 73 1 3 ND ND ND 1.8
none detected.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
0.7 0.4 20.3 0.1 f.9 80 1 3 ND ND ND 0.9
380
SOLID S T A T E
Table X I .
CHEMISTRY: A CONTEMPORARY OVERVIEW
Average Solution Concentration and Percentage 1 Week"
%
pig • mL'
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
1
Na B Si Mo Cs Rb Sr Ba Ca Zn Ni Cr Fe La Nd Ti Zr U
2
4300 2500 510 1100 42 ND' 2.0 7.4 7.4 0.8 1.5 66 3 4 ND ND ND 5.6
Weeks
0
fig • mL'
%
4200 2600 700 1100 55 2 1.8 8.4 7.9 1.0 2.8 21 4 1 ND ND ND 2.6
45 87 3.7 72 5.6 1.4 0.55 1.67 0.55 0.02 1.76 8 0.06 0.24
1
46 84 2.7 72 4.3
—
0.62 1.47 0.51 0.02 0.94 23 0.05 0.88
— — —
0.15
— — —
0.07
° G l a s s s p h e r o i d r u n s G D 59 a n d G D 68 were n o t i n c l u d e d i n the average.
f r o m t h e glass that w e r e i n c l u d e d i n t h e c h e m i c a l analyses.
A f t e r first
c o n v e r t i n g e l e m e n t a l i n t o o x i d e concentrations, w e f o u n d t h a t 1 7 - 1 9 w t % of t h e glass w a s o b s e r v e d i n s o l u t i o n after a n y o n e of t h e f o u r h y d r o t h e r m a l treatments. analyses a c c o u n t e d percentage
[ N o t e t h a t t h e elements i n c l u d e d i n t h e c h e m i c a l f o r o n l y f o r o n l y 96.2 w t %
might change
b y 0.5^1 w t %
of t h e glass.
This
i f , at some later t i m e , t h e
r e m a i n i n g elements i n P N L - 7 6 - 6 8 ( R u , Y , R h , P d , A g , C d , T e , P r , S m , E u , G d , P ) w e r e i n c l u d e d i n t h e c h e m i c a l analyses.]
There was a small
increase i n p e r c e n t a g e w i t h t i m e of t r e a t m e n t : 1 2 3 4
week weeks weeks weeks
16.8% 17.2% 18.5% 18.5%
T h e results o f t h e analyses f r o m G D 59, t h e 1-week r u n t h a t u s e d a s p h e r o i d a l s p e c i m e n , a p p e a r e d to b e a n o m a l o u s w h e n c o m p a r e d , to t h e t r e n d of t h e o t h e r analyses. T h e c o n c e n t r a t i o n s of N a , B , a n d C s w e r e o n l y h a l f those f o u n d f o r t h e runs W i t h t h e glass s h a r d specimens. t h e C s analysis i n G D 68, the o t h e r
Also,
glass s p h e r o i d r u n , w a s h i g h .
A l t h o u g h t h e p o s s i b i l i t y o f a systematic a n a l y t i c a l error c a n n o t b e r u l e d
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
19
MCCARTHY
Simulated
ET AL.
Radioactive
Waste
381
Glass
of Element in Solution (10:1 Deionized Water to Glass) 3 Weeks
4 Weeks
p.g • mL'
%
ix.g • mL'
%
4100 2700 1210 1100 45 4 0.7 0.2 8.9 1.0 1.1 50 ND ND
44 89 6.4 72 4.6 3.4 0.22 0.04 0.62 0.02 0.69 18
4200 2800 870 1100 49 11 0.5 0.5 17.4 0.2 6.3 77 1 2 ND ND ND 1.0
45 93 4.6 72 5.0 8.7 0.15 0.1 1.20 0.005 3.96 27 0.02 0.48
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
1
—
— — — —
—
ND ND 1.2 6
N D=
1
0.03
— — —
0.03
none detected.
out, i t seems l i k e l y t h a t t h e r a d i c a l difference i n t h e surface c o n d i t i o n b e t w e e n t h e t w o types of specimens w a s r e s p o n s i b l e f o r different amounts of a l t e r a t i o n a n d thus t h e a p p a r e n t l y a n o m a l o u s s o l u t i o n analyses. O n e e x p l a n a t i o n f o r t h e a p p r o x i m a t e c o n s t a n c y of s o l u t i o n c o n c e n trations after o n l y one w e e k of t r e a t m e n t m i g h t b e that t h e solutions s i m p l y h a v e b e c o m e s a t u r a t e d i n v a r i o u s elements. I n o r d e r to test this e x p l a n a t i o n , five runs w e r e m a d e w h e r e t h e d e i o n i z e d water-to-glass r a t i o w a s i n c r a s e d t o 3 0 : 1 . I f t h e solutions b e c a m e s a t u r a t e d i n 1 0 : 1 w a t e r - t o s o l i d r a t i o e x p e r i m e n t s , t h e percents of elements e x t r a c t e d i n 3 0 : 1 w a t e r t o - s o l i d r a t i o experiments w h e n e q u i l i b r i u m w a s a t t a i n e d s h o u l d b e t h r e e times as m u c h as i n 1 0 : 1 w a t e r - t o - s o l i d r a t i o experiments.
Analytical
results f r o m these r u n s a r e l i s t e d i n T a b l e X I I . T h e S i content i n s o l u t i o n increased substantially w h i l e N a increased slightly, B r e m a i n e d about the same, a n d M o s h o w e d a s u b s t a n t i a l decrease.
T h e s e results i n d i c a t e t h a t
i n t h e 1 0 : 1 w a t e r - t o - s o l i d r a t i o experiments t h e s o l u t i o n m i g h t
have
b e c o m e s a t u r a t e d o n l y w i t h respect t o S i . SOLUTIONS
FROM
RUNS
USING
ARTIFICIAL
HANFORD
GROUNDWATER.
A l l t h e experiments discussed so f a r h a v e u t i l i z e d d e i o n i z e d w a t e r ( D W ) . A t first i t w o u l d a p p e a r that to m a k e t h e e x p e r i m e n t m o r e r e l e v a n t , H a n f o r d groundwater ( H G W ) should have been used. H o w e v e r , it c a n
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
382
SOLID S T A T E
CHEMISTRY: A CONTEMPORARY OVERVIEW
Table X I I . Percent of Element in Solution (30:1 Deionized Water to Glass)
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
1 Week* Na B Si Mo Cs Rb Sr Ba Ca Zn Ni Cr Fe La Nd Ti
55 81 11.5 52 2.6 b 0.6 1.8 0.4 0.03 0.8 20 0.01
— — —
Lv U a
6
2 Weeks*
4 Weeks
55 91 8.3 59 5.1
67 91 7.8 46 3.6
0.4
—
0.13 1.6 13
0.06 0 28
— — — —
— — — —
0.20
0.22
0.11
A v e r a g e of d u p l i c a t e s . I n d i a c t e s t h a t e l e m e n t was b e l o w the l e v e l of d e t e c t i o n .
be s h o w n that g r o u n d w a t e r s t y p i c a l of those b e n e a t h t h e H a n f o r d site are so l o w i n t o t a l d i s s o l v e d solids ( T D S ) t h a t , i n these
closed-system
h y d r o t h e r m a l e x p e r i m e n t s , soon after t h e e x p e r i m e n t b e g i n s t h e solutions w o u l d c o n t a i n f a r greater concentrations of T D S released f r o m t h e glass t h a n w e r e present i n t h e o r i g i n a l H G W .
F o r e x a m p l e , w h e n a 0.1-g
s p e c i m e n of glass releases 1 7 % of its constituents i n t o 1.0 m L o f s o l u t i o n , that s o l u t i o n w o u l d c o n t a i n 17,000 fig • m L
- 1
of t o t a l d i s s o l v e d solids.
T h i s c o m p a r e s to t h e 420 fig • m L " of T D S i n t h e a r t i f i c i a l H G W 1
d e s c r i b e d i n t h e e x p e r i m e n t a l p r o c e d u r e s section. T h e H G W w o u l d m a k e a c o n t r i b u t i o n of less t h a n 3 % to t h e T D S i n s u c h a r u n . T h r e e e x p e r i ments w e r e p e r f o r m e d to test t h e v a l i d i t y of this a r g u m e n t . T h e results of c h e m i c a l analyses f o r solutions f r o m 1-, 2-, a n d 4-week treatments of t h e glass w i t h a n artificial H G W a r e g i v e n i n T a b l e X I I I . F o o t n o t e b to this table gives the results of a c o n c u r r e n t c a t i o n analysis of t h e H G W . A f t e r s u b t r a c t i n g t h e c o n t r i b u t i o n of N a f r o m t h e H G W , it is e v i d e n t t h a t t h e r a n g e of N a concentrations d u p l i c a t e s t h e results of t h e c o m p a r a b l e D W experiments.
S i m i l a r l y , w i t h t h e other
major
constituents of t h e solutions, B , M o , a n d C s , t h e c o n c e n t r a t i o n ranges w e r e i n g o o d a g r e e m e n t w i t h t h e c o r r e s p o n d i n g D W experiments. A m o n g t h e m i n o r elements, C s a n d C r concentrations w e r e s o m e w h a t and S i was lower.
higher
I n g e n e r a l , these results s u p p o r t t h e p o s i t i o n t h a t
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
19.
MCCARTHY
ET AL.
Simulated
Radioactive
Waste
383
Glass
Table XIII. Solution Concentrations ( 1 0 : 1 Artificial H a n f o r d G r o u n d w a t e r to Glass) 0
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
b
Na B Si Mo Ca Rb Sr Ba Ca Zn Ni Cr Fe La Nd Ti Zr U
1 Week GH112
2 Weeks GH150
4 Weeks GH111
4600 2600 430 1200 86 2 2.0 8.4 7.5 ND 0.9 149 ND 5 ND ND ND 4.6
4100 2800 350 1200 85 ND" ND 2.2 ND ND ND 126 ND ND ND ND ND 3.5
4400 2700 190 1200 44 ND ND 6.1 32.2 0.4 ND 132 ND ND ND ND ND ND
" I n micrograms per milliliter. A n a l y z e d c o n c e n t r a t i o n s (fig • m L ' ) : tected. N D = none detected. 6
1
170 N a , 60 S i , 6.8 K , 0.4 M g ; n o C a d e
e
d e i o n i z e d w a t e r is a q u i t e satisfactory g e n e r i c g r o u n d w a t e r s in closed-system Discussion and
stand-in for l o w - T D S
experiments.
Conclusions
T h e results p r e s e n t e d s h o w t h a t , i n t h e l a b o r a t o r y , t h e r a d w a s t e glass reacts w i t h w a t e r u n d e r t h e t e m p e r a t u r e - p r e s s u r e r e g i m e o f 3 0 0 ° C a n d 300 b a r . R e a c t i o n f o r times o n t h e o r d e r of w e e k s r e s u l t e d i n t h e c o n v e r s i o n of a s o l i d s h a r d of glass into a f r a g m e n t e d a n d p a r t i a l l y d i s p e r s e d mass of c r y s t a l l i n e a n d n o n c r y s t a l l i n e m a t e r i a l p l u s d i s s o l v e d species.
T h e m o r e massive s o l i d p r o d u c t s w e r e c o m p o s i t i o n a l l y b a n d e d
a n d z o n e d , w h i c h is a c o m m o n i n d i c a t i o n o f t h e n o n a t t a i n m e n t of e q u i l i b r i u m . Y e t t h e s o l i d c r y s t a l l i n e p r o d u c t s a n d t h e species r e t a i n e d i n t h e solutions d i d n o t v a r y greatly o v e r t h e f o u r r e a c t i o n times u s e d . I t appears t h a t there is a r a p i d i n i t i a l r e a c t i o n of t h e w a t e r w i t h t h e glass to f o r m a v a r i e t y of r e c r y s t a l l i z a t i o n p r o d u c t s , f o l l o w e d b y a m u c h l o n g e r t i m e o f n e a r l y steady state c o n d i t i o n s . A l t h o u g h final t h e r m o d y n a m i c e q u i l i b r i u m w a s n o t r e a c h e d f o r t h e system as a w h o l e , m a n y of t h e c r y s t a l l i n e phases a r e l i k e l y to b e s t a b l e u n d e r t h e P - T c o n d i t i o n s o f t h e experiments.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
384
SOLID S T A T E
CHEMISTRY: A
CONTEMPORARY OVERVIEW
W a t e r p l a y s three d i s t i n c t a n d i m p o r t a n t roles i n the d e g r a d a t i o n of the glass: as a solvent a n d catalyst for glass r e c r y s t a l l i z a t i o n [ l o n g k n o w n to geochemists w h o use glasses as r e a c t i v e s t a r t i n g materials for h y d r o thermal phase
e q u i l i b r i u m experiments
c a r r y i n g elements
(8)];
as a t r a n s p o r t
medium
extracted f r o m the solids to different parts of
the
c a p s u l e a n d r e d e p o s i t i n g t h e m at t e m p e r a t u r e or d u r i n g c o o l i n g as the o b s e r v e d c r y s t a l l i n e c a p s u l e - l i n i n g phases; a n d as a c o m p o n e n t f o r m a t i o n of h y d r a t e d or h y d r o x y l a t e d phases
for the
s u c h as w e e k s i t e
and
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
apatite. The
Occurrence of Key Elements in Solid and Solution Products.
k e y elements are those that h a v e p o t e n t i a l l y h a z a r d o u s a n d r e l a t i v e l y long-lived radionuclides.
I n h i g h - l e v e l n u c l e a r wastes f r o m l i g h t - w a t e r
reactors, these elements ( r a d i o n u c l i d e s ) w o u l d i n c l u d e C s ( Np(
2 7 3
Np),
Tc ( Tc). 9 9
Pu(
2 3 9
Pu), Am (
2 4 1
'
2 4 3
Am),
Cm (
2 4 3
-
2 4 4
Cm),
1 3 7
Cs), Sr( Sr), 90
I (
1 2 9
I ) , and
O n l y t w o of these elements, C s a n d Sr, are present i n t h e
s i m u l a t e d h i g h - l e v e l w a s t e glass u s e d i n this i n v e s t i g a t i o n . there is c o n s i d e r a b l e
However,
(though certainly not complete) analogy
between
the c r y s t a l c h e m i s t r y a n d s o l u t i o n s p e c i a t i o n of N p a n d P u w i t h U , a n d A m a n d C m w i t h the l a n t h a n i d e s ( L n ) .
T h u s U a n d t h e L n ' s w i l l be
i n c l u d e d a m o n g t h e k e y elements d i s c u s s e d b e l o w . C o n c e r n i n g t h e solutions, i t s h o u l d be n o t e d a g a i n t h a t o n l y those elements r e m a i n i n g i n s o l u t i o n or f o r m i n g i n r e a d i l y s o l u b l e s o l i d phases d u r i n g the c o o l d o w n f r o m 3 0 0 ° C w o u l d b e o b s e r v a b l e i n the p r o d u c t solutions. T h e r e w e r e c e r t a i n l y other species i n s o l u t i o n at t e m p e r a t u r e t h a t either g r e w i n t o crystals d u r i n g the course of the r u n or p r e c i p i t a t e d o n c o o l i n g to f o r m phases that w e r e not d i s s o l v e d d u r i n g the subsequent procedures
u s e d to separate
solids f r o m solutions.
T h e weeksite
and
a c m i t e phases a n d , p r o b a b l y , the m u l t i p h a s e b a n d e d s k i n are examples of s u c h s o l i d phases. T a b l e X I V is a c o m p i l a t i o n of the occurrences
of e a c h P N L - 7 6 - 6 8
element i n s o l i d a l t e r a t i o n p r o d u c t s a n d i n solutions of the 10:1 w a t e r ( D W or H G W ) t o - s o l i d - r a t i o experiments. T h e occurrences i n solids are b a s e d o n S E M / E D X observations a n d m i c r o p r o b e X - r a y m a p s a n d X - r a y e m i s s i o n traces. T h e assignment of structure types a n d g e n e r a l i z e d s o l i d solution
formulas
resulted
from
X - r a y diffraction
studies.
The
key
elements are i n i t a l i c . C e s i u m w a s o b s e r v e d i n w e e k s i t e a n d i n c e r t a i n of the n o n c r y s t a l l i n e s o l i d ( N C S ) a l t e r a t i o n zones. S o m e 4 - 9 % of the C s a v a i l a b l e i n the glass w a s f o u n d i n the p r o d u c t solutions. s o l u t i o n , a n d its occurrences
O n l y traces of Sr w e r e f o u n d i n
i n the s o l i d p r o d u c t s w e r e i n the apatite
b a n d of the s k i n a n d i n v a r i o u s N C S a l t e r a t i o n zones.
Uranium
was
f o u n d i n m a n y of the solids b u t o n l y i n trace q u a n t i t i e s i n solutions. X - r a y e m i s s i o n traces of the l a n t h a n i d e s s h o w e d t h a t t h e y w e r e r e l a t i v e l y w e l l d i s t r i b u t e d a m o n g the N C S a l t e r a t i o n zones.
T h e only crystalline
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
19.
MCCARTHY
Simulated
ET AL.
Table X I V .
Radioactive
Waste
385
Glass
Occurrence of Elements i n Solids and Solutions Solutions (%)
11
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
Element
Solids
Na Si B Ca Zn Ti Rb Sr Zr Mo Ru Pd Cs Ba Ln
a c m i t e / acmite augites/ weeksite/ N C S a c m i t e , a c m i t e augites, w e e k s i t e , a p a t i t e a c m i t e augites, a p a t i t e s , N C S a c m i t e augites, N C S a c m i t e augites, N C S weeksite apatite, N C S NCS NCS (Ru0 ) (Pd) weeksite, N C S apatite, N C S apatite, N C S
U Fe Cr P Ni Te,Rh,Ag,Cd'
weeksite, a p a t i t e , N C S a c m i t e , a c m i t e augite, s p i n e l / N C S spinel apatite spinel —
8
2
8 8
8 S
h
r
44-47 1-6 84-93 0.5-2 0.2-0.05 N D ' ND-9 0.2-0.6 N D 68-78 — 4-9 0.04-2 0.2-0.9 (La, Nd) 0.03-O.15 ND-0.06 18-54 — 0.7-4 —
° P e r c e n t a g e of t h e a m o u n t o f t h e e l e m e n t present i n P N L - 7 6 - 6 8 t h a t was d e tected i n s o l u t i o n s f r o m t h e 10:1 w a t e r - t o - s o l i d - r a t i o r u n s . Acmite = N a F e S i O . A c m i t e augite = ( N a , C a ) ( F e , Z n , T i ) S i 0 . Weeksite = (Na,Cs,Rb)2(U0 )2(Si20 )3 • 4 H 0 . N C S = n o n c r y s t a l l i n e s o l i d s ; g e n e r a l d e s i g n a t i o n of the X - r a y a m o r p h o u s a l t e r a t i o n zones. ' Apatite = (Ca,Sr3a,Ln,U) [(Si,P)0 ]3(OH). N D = none detected. L n= Y,La,Ce,Pr,Nd,Sm,Eu,Gd. * Spinel = (Zn,Ni,Fe) ( F e , C r ) 0 . N o t i n c l u d e d i n a n y o f the analyses. 6
2
e
c
2
d
2
5
6
2
6
5
4
9
h
2
4
1
host f o r t h e L n elements w a s t h e a p a t i t e s t r u c t u r e p h a s e t h a t m a d e u p the outermost b a n d o f the s k i n .
L e s s t h a n 1 % of ( L a +
N d ) was
o b s e r v e d i n a n y of the v a r i o u s s o l u t i o n analyses. T h u s of t h e k e y elements, o n l y C s occurs i n t h e p r o d u c t solutions i n s u b s t a n t i a l a m o u n t s . It is i n t e r e s t i n g t o look at t h e b e h a v i o r o f some of t h e other elements. A p p r o x i m a t e l y 62 w t % of P N L - 7 6 - 6 8 glass consisted of ( N a 0 + 2
+
Fe 0 2
3
S i 0 ) , so i t w a s n o t s u r p r i s i n g to find t h a t t h e m a j o r c r y s t a l l i n e phases 2
i n t h e 1 0 : 1 w a t e r - t o - s o l i d - r a t i o experiments w e r e N a - F e - r i c h Note that nearly half the available N a was observed
pyroxenes.
i n the product
solutions. W h e n t h e a m o u n t of w a t e r w a s t r i p l e d , t h e N a i n s o l u t i o n i n c r e a s e d to as m u c h as 6 7 % i n t h e 4-week r u n , w h i l e t h e a m o u n t of
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
386
SOLID S T A T E
pyroxenes
CHEMISTRY: A
i n the s o l i d p r o d u c t s
c o n s t i t u e n t of these h i g h - F e
3 +
decreased.
CONTEMPORARY OVERVIEW
A p p a r e n t l y N a is a
key
pyroxenes, a n d w i t h m o r e N a g o i n g i n t o
s o l u t i o n , less w a s a v a i l a b l e to f o r m the pyroxenes.
T h i s t r e n d suggests
that w h e n w a t e r - t o - s o l i d ratios are less t h a n 1 0 : 1 , less N a w o u l d go i n t o t h e solutions a n d the f o r m a t i o n of c r y s t a l l i n e p y r o x e n e s i n t h e a l t e r e d p r o d u c t s w o u l d b e greater. B o r o n is a p p a r e n t l y extracted f r o m t h e glass as o n e or m o r e species of borate ions a n d m o l y b d e n u m as t h e m o l y b d a t e i o n . W h e n the solutions
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
e x t r a c t e d f r o m P N L - 7 6 - 6 8 glass are a l l o w e d to evaporate to dryness at room temperature, S E M / E D X a n d X - r a y diffraction characterization of the r e s i d u a l solids r e v e a l e d t h e p r e s e n c e of a h y d r a t e d s o d i u m m o l y b d a t e a n d the borate m i n e r a l t i n c a l c o n i t e , N a B 0 2
4
7
•5H 0
(13).
2
T h e o c c u r r e n c e of the other major constituent of t h e glass, F e , w a s almost c o m p l e t e l y confined to t h e s o l i d p r o d u c t s . p y r o x e n e , N C S , a n d s p i n e l phases.
It was found i n the
A s u b s t a n t i a l p o r t i o n of t h e o r i g i n a l
s p i n e l c r y s t a l l i n e i n c l u s i o n s i n t e r a c t e d w i t h t h e h y d r o t h e r m a l solutions. M u c h of t h e F e content of t h e glass o r i g i n a l l y present i n these i n c l u s i o n s w a s r e c r y s t a l l i z e d i n t h e p y r o x e n e phases.
This mechanism may
also
a c c o u n t for t h e l a r g e a m o u n t s of C r i n s o l u t i o n . C h r o m i u m occurs w i t h F e i n the spinels. W h e n the s p i n e l is a l t e r e d a n d F e is r e c r y s t a l l i z e d i n the pyroxenes, the C r m i g h t r e m a i n b e h i n d i n s o l u t i o n . The
preceding
discussion
illustrates t h a t w i t h
the
multiple-tool
c h a r a c t e r i z a t i o n u s e d i n this s t u d y , i t is p o s s i b l e to d e s c r i b e a l t e r a t i o n of this c o m p l e x glass i n near-mass-balance d e t a i l f o r m a n y of its elements. Glass Crystallization and Repository Design.
S o l u t i o n and r e c r y s -
t a l l i z a t i o n of the p r o t o t y p e r a d w a s t e glass takes p l a c e so r e a d i l y t h a t some c o g n i z a n c e of t h e p o t e n t i a l f o r this effect m u s t b e t a k e n d u r i n g the r e p o s i t o r y d e s i g n . B e c a u s e m a n y of the o b s e r v e d reactions r e q u i r e o n l y w a t e r as a catalyst, some of the r e c r y s t a l l i z a t i o n a n d t r a n s p o r t c o u l d b e e x p e c t e d i n the p r e s e n c e of o n l y s m a l l a m o u n t s of w a t e r . O n e c a n either v i e w the h y d r o t h e r m a l reactions as a p r o b l e m i n n e e d of a s o l u t i o n , or one c a n s i m p l y i n c o r p o r a t e the p o t e n t i a l for h y d r o t h e r m a l reactions as p a r t of the o v e r a l l w a s t e storage
concept.
T h e r e are some f a i r l y
obvious
e n g i n e e r i n g solutions to the p r o b l e m a n d also some p o t e n t i a l l y i n t e r e s t i n g w a y s o f i n c o r p o r a t i n g the reactions as a p o s i t i v e benefit, a l t h o u g h d a t a are too sparse at present to m a k e d e f i n i t i v e statements a b o u t the latter. F i r s t , a n o b v i o u s r e q u i r e m e n t for h y d r o t h e r m a l c o n d i t i o n s is a c e r t a i n a m o u n t of heat.
T h e heat o u t p u t of the canisters c a n b e a d j u s t e d
by
a d j u s t i n g the w a s t e l o a d i n g . L o a d i n g s c o u l d b e a d j u s t e d d o w n w a r d u n t i l t h e s k i n t e m p e r a t u r e of t h e canister w a s b e l o w the t e m p e r a t u r e at w h i c h the reactions w o u l d b e a p r o b l e m .
T h e cost of t h i s a p p r o a c h to
the
p r o b l e m is that m u c h l a r g e r v o l u m e s of m a t e r i a l w o u l d b e c r e a t e d f o r the d i s p o s a l of a g i v e n v o l u m e of w a s t e .
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
19.
MCCARTHY
ET AL.
Simulated
Radioactive
Waste
387
Glass
S e c o n d , i t m a y b e r e m e m b e r e d that h e a t comes f r o m t h e d e c a y of m o s t l y s h o r t - l i v e d isotopes. T h e t h e r m a l p e r i o d of t h e r e p o s i t o r y is short, a f e w h u n d r e d years at most. O n e e x p e d i e n t is to r e t a i n t h e canisters i n c o n t r o l l e d a n d c o o l e d surface storage f o r a f e w tens of years
before
r e m o v a l of t h e m a t e r i a l to t h e repository. T e m p e r a t u r e s f a l l r a p i d l y w i t h t i m e o u t of t h e reactor, a n d e v e n a f e w years of storage i m p r o v e s t h e t h e r m a l heat o u t p u t greatly. A l t e r n a t i v e l y , t h e canister d e s i g n c o u l d b e i m p r o v e d i n s u c h a w a y that b r e a c h i n g of t h e canister d u r i n g t h e t h e r m a l
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
period became unlikely. A c o m p l e t e l y different a p p r o a c h is t o e x a m i n e t h e i m p l i c a t i o n s o f w a s t e , r o c k , a n d w a t e r as a c h e m i c a l system ( 2 ) . T h e results r e p o r t e d i n this p a p e r d e a l t w i t h a glass w a s t e f o r m i n a c l o s e d system i n the p r e s e n c e of w a t e r o n l y . T h i s s i t u a t i o n w o u l d s u r e l y o b t a i n i f i n v a d i n g w a t e r s c a m e i n t o contact w i t h t h e surface o f t h e glass i n g o t o r p e n e t r a t e d i n t o cracks a n d flaws i n t h e m a t e r i a l . T h e i n i t i a l c h e m i c a l reactions w o u l d b e c o m pletely dominated b y the composition
of t h e glass.
A s t h e solutions
c a r r y i n g d i s s o l v e d species o r t h e s o l i d r e a c t i o n p r o d u c t s themselves c a m e i n t o contact w i t h t h e s u r r o u n d i n g r o c k o f t h e w a l l , t h e c h e m i s t r y w o u l d c o m e to b e d o m i n a t e d b y t h e r o c k . I f the r o c k w e r e of basalt, g r a n i t e , o r shale, n e w reactions w o u l d take p l a c e t h a t w o u l d g r e a t l y m o d i f y t h e final p h a s e assemblage.
I t is t h e final assemblage, w h e n t h e w a s t e has c o m e
i n t o steady state c o n d i t i o n s w i t h t h e r o c k , that m u s t b e r e g a r d e d as t h e source t e r m f o r f u r t h e r t r a n s p o r t a n d d i s p e r s a l of t h e w a s t e elements b y s l o w processes o v e r t h e f u n c t i o n a l l i f e of t h e r e p o s i t o r y ( 2 ) . T h e p a r a graphs b e l o w o u t l i n e some of t h e p o s s i b i l i t i e s b a s e d o n n e w b u t n o t final e x p e r i m e n t a l results f r o m c u r r e n t w a s t e r o c k i n t e r a c t i o n studies at P e n n s y l v a n i a State U n i v e r s i t y
(11,13).
STRONTIUM AND LANTHANEDES.
M u c h of t h e S r a n d L n i n t h e
glass w a s f o u n d w i t h t h e N C S a l t e r a t i o n p r o d u c t s .
original
Equilibration with
h y d r o t h e r m a l solutions c o u l d w e l l result i n c r y s t a l l i z a t i o n of apatite phases s i m i l a r to that i d e n t i f i e d as one of t h e s k i n phases. A p a t i t e s are a c o m m o n accessory m i n e r a l i n basalts a n d other igneous rocks a n d , o n c e f o r m e d , t h e y m a y r e m a i n i n , or close t o , t h e r m o d y n a m i c s t a b i l i t y w i t h t h e r o c k t h r o u g h o u t t h e t h e r m a l p e r i o d . M i x e d p h o s p h a t e - s i l i c a t e apatites of C a , Sr, L n , a n d U ( b r i t h o l i t e ) , s u c h as those f o r m e d o n t h e p r o d u c t s k i n , are k n o w n . URANIUM.
S m a l l amounts of t h e U i n P N L - 7 6 - 6 8 c r y s t a l l i z e d i n t h e
a p a t i t e phase as has a l r e a d y b e e n n o t e d . c r y s t a l l i n e host f o r U w a s w e e k s i t e .
T h e other w e l l - c h a r a c t e r i z e d
U r a n i u m i n w e e k s i t e is i n t h e
h e x a v a l e n t state. H o s t rocks c o n t a i n i n g F e , sulfides, a n d o r g a n i c m a t e + +
rials w o u l d buffer t h e o x y g e n a c t i v i t y w e l l i n t o t h e r e d u c i n g r a n g e w h e r e the U
6
+
w o u l d n o t b e stable. I n one o f a series of experiments d e s i g n e d
to e x p l o r e
this s t a b i l i t y q u e s t i o n , t h e authors h a v e t r e a t e d
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
weeksite
388
SOLID S T A T E
CHEMISTRY: A CONTEMPORARY OVERVIEW
crystals g a t h e r e d f r o m glass a l t e r a t i o n p r o d u c t w i t h H G W i n contact w i t h a s i x t y f o l d excess b y w e i g h t of c r u s h e d C o l u m b i a R i v e r basalt.
The
water-to-solids r a t i o w a s 3 0 : 1 , a n d the e x p e r i m e n t a l c o n d i t i o n s
were
3 0 0 ° C , 300 b a r , a n d 4 w e e k s .
T h e r e s u l t a n t crystals h a d t u r n e d b l a c k
a n d gave a n X - r a y p o w d e r p a t t e r n of u r a n i n i t e , U 0 p a r a m e t e r t y p i c a l of a c o m p o s i t i o n near U 0 . 2
2 5
2 + a ?
, with a cubic cell
. A s l o n g as t h e c o n d i t i o n s
r e m a i n r e d u c i n g , u r a n i n i t e s h o u l d r e m a i n a stable a n d i n s o l u b l e p h a s e (14).
It is p o s s i b l e t h a t the U i n the N C S a l t e r a t i o n zones w o u l d
be
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
c o n v e r t e d to u r a n i n i t e t h r o u g h l o n g - t e r m e q u i l i b r a t i o n w i t h b a s a l t - s a t u r a t e d h y d r o t h e r m a l solutions. CESIUM.
T h i s element w a s o b s e r v e d i n a l t e r a t i o n p r o d u c t solutions,
i n w e e k s i t e , a n d i n v a r i o u s N C S a l t e r a t i o n zones.
( N o t e that the C s
w o u l d b e released f r o m w e e k s i t e b y the d e c o m p o s i t i o n m e c h a n i s m just d e s c r i b e d . ) T h e authors h a v e c o m p l e t e d n u m e r o u s experiments i n w h i c h solutions c o n t a i n i n g C s w e r e r e a c t e d w i t h C o l u m b i a R i v e r basalts, w i t h i n d i v i d u a l basalt phases, a n d w i t h shales a n d constituent c l a y m i n e r a l s (14).
U n d e r c o n d i t i o n s of 2 0 0 ° - 3 0 0 ° C a n d 300 b a r , v i r t u a l l y a l l the C s
w a s r e m o v e d f r o m the solutions. Intense reflections analogous to those of the m i n e r a l p o l l u c i t e , ( C s , N a ) A l S i O • n H 0 , w e r e present i n X - r a y 2
diffractograms
e
of m a n y r e a c t i o n p r o d u c t s .
2
P o l l u c i t e occurs i n h y d r o -
t h e r m a l l y f o r m e d pegmatites a n d m a y b e stable i n contact w i t h basalt a n d shale u n d e r h y d r o t h e r m a l c o n d i t i o n s .
R e s u l t s to date i n d i c a t e t h a t
C s w o u l d react w i t h a l u m i n o - s i l i c a t e m i n e r a l s a n d b e c o m e i m m o b i l i z e d as p o l l u c i t e .
Glossary of Symbols AAS =
atomic absorption
AES =
a t o m i c e m i s s i o n spectrometer
spectrophotometry
d = interplanar spacing ( i n X - r a y data) DW
deionized water
EBS =
electron backscatter
EDX = HGW = I = Ln = NCS =
energy-dispersive X - r a y spectrometry H a n f o r d groundwater intensity ( i n X - r a y data) lanthanides n o n c r y s t a l l i n e solids
P D F = Powder Diffraction File PNL =
P a c i f i c N o r t h w e s t L a b o r a t o r i e s of B a t t e l l e M e m o r i a l I n s t i t u t e
P-T =
pressure-temperature
SEI =
secondary electron image
S E M — scanning electron microscopy
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
19.
MCCARTHY
ET AL.
Simulated
Radioactive
Waste
Glass
389
ss = s o l i d s o l u t i o n T D S = t o t a l d i s s o l v e d solids r a d waste = radioactive waste Acknowledgments T h i s r e s e a r c h is s u p p o r t e d b y t h e U . S . D e p a r t m e n t of E n e r g y t h r o u g h R o c k w e l l H a n f o r d O p e r a t i o n s a n d t h e Office of N u c l e a r W a s t e I s o l a t i o n . J . E . M e n d e l p r o v i d e d t h e s p e c i m e n of P N L - 7 6 - 6 8 .
C . A . S m i t h assisted
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch019
w i t h the hydrothermal experimentation.
Literature Cited 1. Goodenough, J. B.; Whittingham, M . S., Eds.; In "Solid State Chemistry of Energy Conversion and Storage," Adv. Chem. Ser. 1977, 163. 2. McCarthy, G. J.; White, W . B.; Roy, R.; Scheetz, B. E . ; Komarneni, S.; Smith, D . K.; Roy, D . M. "Interactions Between Nuclear Waste and Surrounding Rock," Nature 1978, 273, 217-219. 3. Jenks, G. J. "NWTS Program Conference on Waste-Rock Interactions"; Y/OWI/SUB-77/14268; Roy, D . M . , Ed.; Pennsylvania State University: University Park, PA, July 1977; 5-17. 4. Mendel, J. E.; McElroy, J. L.; Platt, A . M . In "High-Level Radioactive Waste Management," Adv. Chem. Ser. 1976, 153, 93-107. 5. Mendel, J. E.; Ross, W . A.; Roberts, F . P. "Annual Report on the Charac teristics of High-Level Waste Glasses"; BNWL-2252; Battelle Pacific Northwest Laboratories: Richland, W A , 1977. 6. McElroy, J. L . "Quarterly Progress Report, Research and Development Activities, Waste Fixation Program"; PNL-2264; Battelle Pacific North west Laboratory: Richland, W A , 1977. 7. Ross, W . A.; Bradley, D . J.; Bunnell, L . R. "Annual Report on the Charac terization of High-Level Waste Glasses"; PNL-2625; Battelle Pacific Northwest Laboratory: Richland, W A , 1978. 8. Roy, R.; Tuttle, O. F. In "Physics and Chemistry of the Earth"; Pergamon: New York, 1956; Vol. 1, 138-180. 9. Gandolfi, G . "Discussions Upon Methods to Obtain X-Ray Powder Pat terns from a Single Crystal," Mineral. Petrogr. Acta 1967, 13, 67. 10. "Powder Diffraction File"; McClune, W . F., E d . ; JCPDS, (International Centre for Diffraction Data): Swarthmore, PA. 11. McCarthy, G. J.; Scheetz, B . E . ; Komarneni, S. "Simulated High-Level Waste-Basalt Interaction Experiments—First Interim Progress"; Rock well Hanford Operations Report; University Park, PA, March 1978. 12. Outerbridge, W . F . ; Staatz, M . H.; Meyrowitz, R. "Weeksite, a New Uranium Mineral from the Thomas Range, Juab County Utah;" Am. Mineral. 1960, 45, 39-52. 13. McCarthy, G . J.; Scheetz, B . E.; Komarneni, S.; Barnes, M . W . ; Smith, C. A . ; Smith, D . K.; Lewis, J. F . "Simulated High-Level Waste-Basalt Interaction Experiments. Second Interim Progress Report"; Rockwell Hanford Operations Report; University Park, PA, June 1978. 14. McCarthy, G. J.; Komarneni, S.; Scheetz, B. E.; White, W . B . In "Scien tific Basis for Nuclear Waste Management," McCarthy, G. J., E d . ; Plenum: 1979; Vol. 1, 329-340. RECEIVED November 6, 1978.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.