17 Chemical Conversion Using Sheet-Silicate Intercalates
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
JOHN M . THOMAS, JOHN M. ADAMS, SAMUEL H . GRAHAM, and D. TILAK Β. TENNAKOON Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth, SY23 1NE, U.K.
The use of layered silicates as matrices within and upon which novel chemical reactions may be carried out are summarized. The feasibility of controlled variation in the nature and siting of certain transition-metal and other cations, the magnitude of the interlamellar spacing, and ori entation as well as two-dimensional ordering of intercalated organic molecules is demonstrated. Specific examples of structures based on one-dimensional Fourier plots derived from x-ray and neutron diffraction data are cited, and one three-dimensional crystal structure for a rather special inter calate (dickite:formamide) is reported. The selective gener ation of a variety of aromatic products by thermostimulation is summarized, and the particular ability of copper mont morillonite to activate, preferentially, olefinic double bonds (in oligomerizations) is illustrated by reference to the ther mal reactivity of intercalated indene and trans-stilbene.
Because
of the mystery that still surrounds the phenomenon of catalysis,
i t is n o t y e t g e n e r a l l y p o s s i b l e t o d e s i g n , a b i n i t i o , n e w c h e m i c a l agents t h a t c a n serve as catalysts f o r t h e synthesis o f d e s i r e d s t r u c t u r a l l y or stereochemically
specified
products.
Some
progress
along
specific
d i r e c t i o n s has b e e n m a d e , h o w e v e r , a f a c t b o r n e o u t b o t h b y t h e success of Z e i g l e r - N a t t a catalysts a n d t h e existence o f a n e s t a b l i s h e d p r o c e d u r e f o r t h e " s o l i d - s t a t e " syntheses o f p o l y p e p t i d e s .
Catalyst design, however,
is s t i l l i n its i n f a n c y , n o t w i t h s t a n d i n g t h e significant advances t h a t h a v e b e e n m a d e r e c e n t l y u s i n g z e o l i t i c solids a n d t r a n s i t i o n - m e t a l c o m p l e x e s . 298
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
17.
T H O M A S
E T
Sheet-Silicate
A L .
299
Intercalates
H e t e r o g e n e o u s catalysts cannot as y e t b e d e s i g n e d w i t h the same f a c i l i t y , precision, and variation n o w
a c h i e v a b l e w i t h the syntheses
classes of o r g a n i c m o l e c u l e s — f r o m o r g a n i c
fluorescers
of
many
and photochromic
m a t e r i a l s to s y n t h e t i c s t e r o i d s — o r w i t h the same success i n e n g i n e e r i n g super-ionic inorganic conductors,
s u c h as ^ a l u m i n a , o r
continuously
variable electronic band-gaps i n I I I - V ternary or quaternary semicon ductors. O n e p a r t i c u l a r l y p r o d u c t i v e r o u t e to t h e syntheses of n e w a n d i n t e r e s t i n g m o l e c u l a r catalysts relies o n the use of m e t a l v a p o r s w h i c h are u s u a l l y c o - c o n d e n s e d w i t h a h y d r o c a r b o n reactant. I n essence, t h i s a p Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
p r o a c h , w h o s e l i n e a g e m a y b e t r a c e d to P i m e n t e l ' s m a t r i x i s o l a t i o n t e c h n i q u e , c i r c u m v e n t s the necessity to p r o v i d e t h e r m a l a c t i v a t i o n d u r i n g r e a c t i o n — a s w o u l d b e r e q u i r e d b y processes i n v o l v i n g s o l i d m e t a l s — t h e r e b y r e n d e r i n g f e a s i b l e t h e f o r m a t i o n of a n u m b e r of n o v e l m o l e c u l a r species s u c h as d i b e n z e n e t i t a n i u m o r p o l y b u t a d i e n e , a n d vinylcyclohexenes.
cyclododecatrienes,
T h e m e t a l - v a p o r synthesis, w h i c h has b e e n
ploited by T i m m s ( I ) , Green (2), Skell (3)
ex
a n d others (4, 5 ) , y i e l d s
t h e d e s i r e d p r o d u c t u n d e r solvent-free c o n d i t i o n s . A n o t h e r successful r o u t e , also u t i l i z e d to a d v a n t a g e b y G r e e n , c a p i talizes u p o n the f a c t t h a t w h e n c e n t r a l m e t a l atoms are s i t u a t e d i n l i g a n d e n v i r o n m e n t s w h i c h m a k e the m e t a l atoms h i g h l y e l e c t r o n r i c h the r e s u l t i n g c o m p l e x e s , w h i c h n o w possess o r b i t a l s of s t r o n g m e t a l c h a r a c t e r a n d h i g h energy, are l i k e l y to b e r e a c t i v e t o w a r d r e l a t i v e l y i n e r t species s u c h as N , N 0 , a n d C H o r i n e r t b o n d s s u c h as C - H a n d C - C . 2
2
4
T h e route w h i c h w e ourselves h a v e chosen to i n v e s t i g a t e
(6-15)
entails t h e use of c e r t a i n sheet s i l i c a t e structures w i t h i n w h i c h i o n e x c h a n g e m a y first b e p e r f o r m e d .
T o date, as is d e s c r i b e d b e l o w ,
our
efforts h a v e b e e n c o n c e n t r a t e d p r i n c i p a l l y o n s t r u c t u r a l studies of
the
p a r e n t silicates a n d t h e i r d e l i b e r a t e l y m o d i f i e d d e r i v a t i v e s . I t is to
be
n o t e d t h a t : ( a ) w i d e v a r i a t i o n is p o s s i b l e i n r e g a r d to t h e n a t u r e of t h e p a r t i c u l a r cations t h a t c a n b e i n s e r t e d b e t w e e n t h e infinite, t w o - d i m e n sional anions; ( b )
t h e i n t e r l a y e r s p a c i n g , w h i c h o b v i o u s l y governs
the
ease of d i f f u s i o n of i n t e r c a l a t e d reactants a n d p r o d u c t s , is, to a d e g r e e , a d j u s t a b l e d e p e n d i n g , i n t e r a h a , u p o n factors s u c h as t h e h u m i d i t y a n d t h e n a t u r e of the o r g a n i c m o l e c u l e s present i n t h e s y s t e m ; a n d ( c )
in
c e r t a i n c i r c u m s t a n c e s , h i g h l y specific reactions a m o n g t h e i n t e r c a l a t e d species m a y b e s t i m u l a t e d , a n d the p r o d u c t s released, u n d e r solvent-free conditions.
I n one
sense a n e w
t y p e of
" h o m o g e n e o u s " catalysis is
involved, the phase i n question b e i n g the two-dimensional intercalate. M o r e o v e r , there is e v i d e n c e t h a t w i t h c e r t a i n types of silicates i t m a y b e p o s s i b l e to l a y o u t a n o r d e r e d t w o - d i m e n s i o n a l sheet of one
reactant
i n w h i c h t h e i n t e r m o l e c u l a r s p a c i n g p a r a l l e l to the sheets m a y also b e adjustable.
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
SOLID S T A T E
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
300
Q.____0-—o—--o—
OICKITE
CHEMISTRY
-o
KAO UNITE
Figure 1. Projections of the structures of the sheet silicates mentioned in the text: (a) montmorillonite, (b) vermiculite, (c) kaolinite, (d) dickite. ( ) octahedral cations, (®) tetrahedral cations, (O) oxygen, ( ® j hydroxyl, (©) water molecules. 9
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
17.
THOMAS
E T
Sheet-Silicate
AL.
Resume of Structural
301
Intercalates
Characteristics
of Sheet Silicates
I n p r e v i o u s p u b l i c a t i o n s ( 8 - 1 5 ) f r o m these laboratories the v a r i o u s r e l e v a n t attributes of the p a r t i c u l a r sheet silicates of interest i n the c o n text of i n t e r c a l a t i o n h a v e b e e n s u m m a r i z e d . salient features
W e must recall here
the
of m o n t m o r i l l o n i t e , v e r m i c u l i t e , k a o l i n i t e , a n d d i c k i t e
only (Figure 1).
I n the w e l l k n o w n t e t r a h e d r a l - o c t a h e d r a l - t e t r a h e d r a l
( T O T ) f r a m e w o r k c h a r a c t e r i s t i c of m o n t m o r i l l o n i t e , t h e layers [ i d e a l i z e d f o r m u l a A l 4 S i 0 o ( O H ) ] are n e g a t i v e l y c h a r g e d b e c a u s e of r e p l a c e m e n t 8
of A l
3 +
by A l . Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
3 +
4
2
i n o c t a h e d r a l sites b y F e * or M g 2
a n d of S i
2 +
4 +
i n t e t r a h e d r a l sites
T h e cation-exchange c a p a c i t y (c.e.c.) is g o v e r n e d b y t h e extent
of these r e p l a c e m e n t s , a n d the d i s t r i b u t i o n of c h a r g e i n t u r n d e p e n d s o n t h e l o c a t i o n of the r e p l a c e d ions. C l e a r l y m u c h v a r i a t i o n is p o s s i b l e here, so that i n h o m o g e n e i t i e s
of c h a r g e d i s t r i b u t i o n i n t w o d i m e n s i o n s ,
and
c o n s e q u e n t l y of s t a c k i n g i n three, m a y arise f r o m this a n d other sources. M o n t m o r i l l o n i t e is almost i n v a r i a b l y m i c r o c r y s t a l l i n e a n d possesses s u r face areas g e n e r a l l y w e l l i n excess of several h u n d r e d m g , a n d c.e.c. of 2
_ 1
0. 5-0.7 e p e r f o r m u l a u n i t . V e r m i c u l i t e m a y , for c o n v e n i e n c e , be r e g a r d e d as a sheet s i l i c a t e i n w h i c h w a t e r has b e e n i n t e r c a l a t e d i n a m o r e or less o r d e r e d f a s h i o n . T h e s e s a n d w i c h e d w a t e r molecules m a y b e p r o g r e s s i v e l y d r i v e n out w i t h heat treatment. I n k a o l i n i t e [ i d e a l i z e d f o r m u l a A l S i O i o ( O H ) ] the T O 4
w h i c h extends
8
4
t w o - d i m e n s i o n a l l y is w e a k l y i n t e r c o n n e c t e d
direction v i a A l - O H . . . O - S i hydrogen bonds.
framework in a third
Dickite, a two-layer
m o n o c l i n i c m o d i f i c a t i o n of k a o l i n i t e , is also s h o w n i n p r o j e c t i o n i n F i g u r e 1. W e h a v e f o u n d that this p a r t i c u l a r s i l i c a t e forms a t h r e e - d i m e n s i o n a l l y o r d e r e d i n t e r c a l a t e ( 1 6 ) , w h i c h is discussed b r i e f l y b e l o w .
Formation
and Structural
Aspects of Sheet Silicate
Intercalates
A vast a m o u n t of w o r k ( a d m i r a b l y s u m m a r i z e d b y B r i n d l e y u p to 1970 a n d b y T h e n g (18)
o n the c o n d i t i o n s u n d e r w h i c h a w i d e range of o r g a n i c m o l e c u l e s b e a s s i m i l a t e d b y v a r i o u s sheet silicates. systems
r e l e v a n t to
assessment.
M a n y of
(17)
u p to 1974) has a l r e a d y b e e n p u b l i s h e d may
H e r e w e refer to o n l y those
the u l t i m a t e q u e s t i o n the o r g a n i c molecules
of
r e a c t i v i t y or s t r u c t u r a l or exchangeable
cations
chosen b y us for i n i t i a l s t u d y w e r e so selected b e c a u s e i t was felt that t h e y w o u l d f a c i l i t a t e the i n t e r p r e t a t i o n of x-ray a n d n e u t r o n d i f f r a c t i o n studies. T h u s w e see f r o m F i g u r e 2, w h i c h i n t u r n has b e e n d e r i v e d f r o m n e u t r o n d i f f r a c t i o n studies, p r e c i s e l y w h e r e a l o n g the z-axis lar to t h e b a s a l p l a n e ) the N i
2 +
(perpendicu
i o n resides i n a v e r m i c u l i t e , the cations of
w h i c h h a d b e e n e x c h a n g e d for N i . 2 +
L i k e w i s e , F i g u r e 3 shows h o w r e
p l a c i n g N a w i t h S r , w h i c h has a p p r o x i m a t e l y t w i c e its c h a r g e d e n s i t y , +
2 +
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
302
S O L I D
S T A T E
C H E M I S T R Y
as t h e i n t e r l a m e l l a r c a t i o n s i g n i f i c a n t l y modifies t h e o r i e n t a t i o n of t e t r a h y d r o p y r a n . T h e o x y g e n - r i n g a t o m lies closest to the s i l i c a t e l a y e r w h e n t h e c a t i o n is N a , a n d a c a r b o n - r i n g a t o m lies closest w h e n the c a t i o n +
is
ST *. 2
I t is e v i d e n t that w i t h t h e m o n t m o r i l l o n i t e s b o t h n e u t r a l a n d c h a r g e d o r g a n i c species m a y b e a s s i m i l a t e d i n t o the i n t e r l a m e l l a r spaces.
Neutral
species m a y b e i n t r o d u c e d e i t h e r f r o m s o l u t i o n o r f r o m t h e v a p o r , the l a t t e r a p p r o a c h b e i n g advantageous
i f traces of i n t e r c a l a t e d solvent,
n o t a b l y w a t e r , are to b e a v o i d e d . T h o u g h t h e r e is a p a u c i t y of t h e r e l e v a n t t h e r m o d y n a m i c i n f o r m a t i o n , i t is c l e a r that t h e b i n d i n g energies of Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
these i n t e r c a l a t e d species m a y v a r y w i d e l y . I t seems p o s s i b l e f o r o r g a n i c m o l e c u l e s to b e a t t a c h e d b o t h d i r e c t l y to a n associated c a t i o n — v i a σ- o r
14 -
Mg-
12 -
0 H Si
11 -
0
13 -
10 3 Ζ M
M
»
ϋ
i
OH 8 7 -
Ni
6 β 4 3 -
01
2 -
M
O
1 0 -
NUCLEAR SCATTERING DENSITY (ARB* SCALD Figure 2.
One-dimensional
Fourier map of nuclear scattering Ni *-vermiculite
density for
2
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
17.
THOMAS
Sheet-Silicate
ET AL.
Να*
Figure 3.
Electron
303
Intercalates
exchanged
clay
Sr2* exchanged
clay
density projections of Ν a*- and nite-tetrahydropyran intercalates
S^-montmoriUo-
π-bonding, the r e l a t i v e p r o p o r t i o n of w h i c h is e x p e c t e d , o n t h e basis of t h e p r i n c i p l e s of g e n e r a l o r g a n o m e t a l l i c c h e m i s t r y , to v a r y as a f u n c t i o n of t e m p e r a t u r e a n d c h e m i c a l e n v i r o n m e n t — o r loosely as i n a s e c o n d a r y " s o l v a t i o n ' shell or physically adsorbed
state.
Some
organic
entities
( s u c h as a m i n e s ) w h i c h are c a p a b l e of f o r m i n g cations m a y d i s p l a c e t h e i n t e r l a m e l l a r cations o r i g i n a l l y present i n t h e sheet s i l i c a t e . O t h e r s s h o w a greater p r o p e n s i t y to b e a d s o r b e d at t h e e x t e r n a l r a t h e r t h a n t h e i n t e r l a m e l l a r surfaces of t h e sorbent.
Another relevant phenomenon
is the
s e q u e n t i a l s e l f - c o n v e r s i o n t h a t c e r t a i n o r g a n i c intercalates of m o n t m o r i l lonite undergo.
T h e p y r i d i n e i n t e r c a l a t e of N a - e x c h a n g e d m o n t m o r i l l o +
n i t e is g r a d u a l l y c o n v e r t e d at r o o m t e m p e r a t u r e f r o m a l a r g e r to a s m a l l e r i n t e r l a m e l l a r s p a c i n g (23.3 A to 14.8 A ) : -py M(py)
4
• 2H 0
> M(py)
2
2
•4H 0 2
+H 0 2
where
M =
2[(Al3.5Mgo.5)Si 0 o(OH) Nao.5]; 8
2
4
and
the
y-butyrolac-
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
304
SOLID S T A T E
CHEMISTRY
t o n e / S r - e x c h a n g e d montmorillonite shows a double conversion i n w h i c h 2+
t h e i n t e r l a m e l l a r s p a c i n g changes f r o m 23.1 A w h e n t h e i n t e r c a l a t e is first f o r m e d to 18.3A a n d t h e n to the stable 13.2-A i n t e r c a l a t e . T h e 1 D F o u r i e r m a p s ( F i g u r e 4 ) of these three f o r m s of the
butyrolactone-Sr * 2
c o m p l e x e s , i m p l y t h a t t h e s e q u e n t i a l changes i n v o l v e a c o n v e r s i o n of t h e parent
i n t e r c a l a t e , w h i c h appears
organic
to i n c o r p o r a t e
species b e t w e e n c o n t i g u o u s
two-layer form and,
finally,
t h r e e layers of
m o n t m o r i l l o n i t e sheets,
the
first
to
a
to the m o r e stable, s i n g l e - l a y e r i n t e r c a l a t e .
( F o r f u r t h e r details o n these systems see R e f .
16).
M o r e w o r k m u s t b e d o n e o n the s t r u c t u r a l aspects of these v a r i o u s
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
types of intercalates of m o n t m o r i l l o n i t e , b u t progress is severely
ham
p e r e d b o t h b y t h e u n a v a i l a b i l i t y of this m i n e r a l i n other t h a n m i c r o c r y s t a l l i n e forms a n d b y t h e fact that the intercalates of m o n t m o r i l l o n i t e d o not seem to t a k e u p t h r e e - d i m e n s i o n a l l y o r d e r e d structures, a s i t u a t i o n w h i c h p e r h a p s is n o t u n e x p e c t e d charge
i n v i e w of the i r r e g u l a r i t i e s of
d i s t r i b u t i o n a n d s t a c k i n g sequences i n t h e c*
parent mineral (20).
the
d i r e c t i o n of
the
X - r a y d i f f r a c t i o n is n o t l i k e l y to r e v e a l t h e neces
sary, d e s i r e d i n f o r m a t i o n . H o w e v e r , c o m b i n a t i o n w i t h n e u t r o n - d i f f r a c t i o n d a t a o n w e l l o r i e n t e d samples of the intercalates leads to a greater u n d e r s t a n d i n g of the d e l i c a t e v a r i a t i o n s i n s t r u c t u r e t h a t are d i s p l a y e d b y , f o r example,
the
transition-metal exchanged
montmorillonites.
Figure
w h i c h shows F o u r i e r maps d e r i v e d f r o m neutron-diffraction data c l e a r l y i n d i c a t e s that w h e r e a s the N i calate
of
Ni -exchanged 2 +
2 +
i o n i n the t e t r a h y d r o f u r a n i n t e r
montmorillonite,
( Al . Mgo.5)Si 0 o(OH) 3
N i o . 2 5 ( C H 0 ) 2 . 3 , is s i t u a t e d c e n t r o - s y m m e t r i c a l l y 4
5,
(21),
8
5
8
2
4
i n the interlamellar
r e g i o n , the C o - i o n i n a closely s i m i l a r i n t e r c a l a t e , ( A l . 5 M g . 5 ) S i 0 o 2 +
3
8
0
2
( O H ) C o o . 2 5 ( C H 0 ) 2 . 2 , is off-center . 4
4
8
K a o l i n i t e a n d d i c k i t e also f o r m intercalates w h i c h , i n g e n e r a l ,
do
n o t a p p e a r to b e t h r e e - d i m e n s i o n a l l y o r d e r e d ( 2 2 ) .
H o w e v e r , one such
ordered
(16):
complex
intercalate of
dickite
has and
been
discovered
formamide,
recently
4
4
0
p r o j e c t i o n of its s t r u c t u r e is s h o w n i n F i g u r e 6.
8
a
1:1
dimensionally and three-dimensionally ordered
2
Rather remarkably no
t w o - d i m e n s i o n a l s u p e r l a t t i c e exists i n this structure. (23)
i t is
Al Si Oi (OH) (HCONH )2. A Contrast the
intercalates of
a n d the t r a n s i t i o n - m e t a l c h a l c o g e n i d e s (24,25,26).
two-
graphite
T h i s f a c t arises
p r o b a b l y b e c a u s e f o r m a m i d e , b e i n g s u c h a s m a l l m o l e c u l e , m a y fit s n u g l y w i t h i n t h e u n i t m e s h p a r a l l e l to (001)
of t h e d i c k i t e s t r u c t u r e . O f great
interest h e r e is t h e o c c u r r e n c e of r e l a t i v e l y
rigidly
clamped intercalated
species. I t is k n o w n f r o m W e i s s ' w o r k ( 2 2 ) that the rates of i n t e r c a l a t i o n of k a o l i n i t e s are r e l a t i v e l y s l u g g i s h a n d that at r o o m t e m p e r a t u r e
both
f o r m a m i d e a n d u r e a , after a n i n d u c t i o n p e r i o d of s o m e one or t w o days, are e a c h g r a d u a l l y i n c o r p o r a t e d i n t o the h o s t m a t r i x , t h e final p a r t of t h e f o r m a t i o n c u r v e b e i n g r e a c h e d a s y m p t o t i c a l l y after a n i n t e r v e n i n g
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Figure 4.
Electron
density projections for the three distinct "phases" of the S^-montmoriUonite-y-butyrolactone (1.6, 3.2, and 4.8 y-butyrolactone/formula unit)
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
intercalate
g ox
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Figure
5.
Projections
2
of nuclear scattering density for (a) Ni +-montmoriUonite-tetrahydrofuran (b) Co?*-montmoriUonite-tetrahydrofuran (2.2 THF/formula unit)
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
(2.3 THF/formula
unit)
and
Sheet-Silicate
THOMAS E T A L .
307
Intercalates
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
17.
Figure
6a.
Projection
of the
structure of the along the a axis
dickite-formamide
intercalate
l i n e a r rate of u p t a k e . C l e a r l y i t w o u l d b e of interest, i n the context of catalysis, to i n t r o d u c e a s e c o n d reactant i n t o the system w h e n t h e first t w o - d i m e n s i o n a l l y o r d e r e d reactant ( i n this case f o r m a m i d e ) t i a l l y completes
t h e sites a v a i l a b l e f o r its o c c u p a t i o n .
only par
Co-adsorption
studies h a v e b e e n w e l l c h a r a c t e r i z e d w i t h m o n t m o r i l l o n i t e , a n d L a i l a c h a n d B r i n d l e y (27)
f o u n d t h a t t h y m i n e , w h i c h is n o t o n its o w n i n c o r p o
r a t e d i n t o m o n t m o r i l l o n i t e f r o m aqueous s o l u t i o n , is r e a d i l y t a k e n u p i n t h e presence of a d e n i n e or h y p o x a n t h i n e , e a c h of w h i c h is also a d s o r b e d
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
308
S O L I D
S T A T E
C H E M I S T R Y
y — Figure 6b. Projection of the A10 octahedra of the dickite-formamide intercalate onto the ab plane. The hydrogen bonding of the formamide molecules is also shown. 6
i n i s o l a t i o n . I t is b e l i e v e d ( 1 7 ) t h a t a d e n i n e a n d t h y m i n e f o r m t h e w e l l k n o w n p u r i n e - p y r i m i d i n e base-pairs i n t h e i n t e r l a m e l l a r r e g i o n . E x t e n s i v e c o m p i l a t i o n s of s i m p l e c r y s t a l l o g r a p h i c i n f o r m a t i o n r e l a t i n g to t h e n u m e r o u s types of o r g a n i c m o l e c u l e s that m a y b e i n t e r c a l a t e d b y sheet silicate m i n e r a l s a r e g i v e n i n t h e r e c e n t m o n o g r a p h b y T h e n g (18),
w h o also r e v i e w s t h e w o r k of m a n y of t h e e a r l i e r
(MacEwan,
W a l k e r , H o f m a n n , Bodenheimer, Brindley, a n d W e i s s ) a n d more recent investigators
(Mortland, Matsunaga, Blumstein, Fripiat, Farmer, a n d
o t h e r s ) . T a b l e I s u m m a r i z e s a f e w facts r e l a t i n g to some of t h e s i m p l e s t r u c t u r a l characteristics of t h e intercalates d i s c u s s e d i n this section a n d studied b y us. Some Specific Chemical
Conversions
I d e a l l y o n e w o u l d w i s h to h a v e a v a i l a b l e i n f o r m a t i o n w h i c h relates the r e a c t i v i t y a n d associated stereo- o r regio-specificity o f t h e r m a l l y i n d u c e d reactions of v a r i o u s o r g a n i c intercalates of t h e sheet silicates o n t h e o n e h a n d w i t h t h e s t o i c h i o m e t r y a n d d e t a i l e d s t r u c t u r a l properties of t h e s t a r t i n g m a t e r i a l o n t h e other. U n f o r t u n a t e l y , s u c h i n f o r m a t i o n i s , at present, almost t o t a l l y u n a v a i l a b l e . W h e r e t h e r e a c t i o n is efficient, interesting, or well-identified, the accompanying structural information
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
17.
THOMAS
E T
AL.
Sheet-Silicate
Intercalates
309
has t u r n e d out to b e s i m p l y inaccessible b e c a u s e of the l a c k of c r y s t a l l i n e order, w h i c h i n t u r n y i e l d s t h e necessary w e l l - d e f i n e d x - r a y d a t a f r o m w h i c h the o n e - d i m e n s i o n a l F o u r i e r plots are extracted. those intercalates w h e r e i t has b e e n p o s s i b l e n e u t r o n - d i f f r a c t i o n d a t a to y i e l d more-or-less
Conversely,
for
to process t h e x - r a y
or
accurate s t r u c t u r a l i n f o r
m a t i o n , the degree of r e a c t i v i t y or n o v e l t y of t h e r e a c t i o n is itself l o w . O n e p a r t i c u l a r l y efficient r e a c t i o n is t h e t h e r m a l l y i n d u c e d c o n v e r s i o n to a n i l i n e of the i n t e r c a l a t e ( 1 4 . 5 À s p a c i n g ) c o n s i s t i n g of
diproto-
n a t e d , 4,4'-diamino-frans-stilbene a n d m o n t m o r i l l o n i t e ( a p p r o x i m a t e s t o i chiometry :
(Ala.sMgo.s) S i O ( O H ) ( H N C H C H = C H C N 4 N H 3 )0.25. 8
2 0
4
3
6
4
e
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
T h i s r e a c t i o n , w h i c h p r o c e e d s r a p i d l y at ca. 2 7 0 ° C , y i e l d s a n i l i n e ( c l o s e to 4 5 %
of t h e p a r e n t d i a m i n e )
as the sole gaseous p r o d u c t .
Another
efficient r e a c t i o n that o c c u r s o n the surfaces of m o n t m o r i l l o n i t e is the almost q u a n t i t a t i v e c o n v e r s i o n i n the t e m p e r a t u r e range 4 0 ° - 1 5 0 ° C of t r i p h e n y l a m i n e to
N,N,N',jV'-tetraphenylbenzidine, when
the
complex
f o r m e d b y the exposure of N a - m o n t m o r i l l o n i t e to a l c o h o l i c solutions of +
t r i p h e n y l a m i n e is h e a t e d . It seems v e r y l i k e l y that r a d i c a l cations ( w h i c h c e r t a i n l y f o r m w i t h ease at L e w i s a c i d sites i n t h e silicate w h e n b e n z i d i n e a n d other s i m i l a r m o l e c u l e s are e x p o s e d to m o n t m o r i l l o n i t e
the
(see
M o s s b a u e r a n d s p e c t r o s c o p i c studies of T r i c k e r et a l . (8, 13, 2 8 ) ) first f o r m e d a n d that these p r o c e e d a l o n g either of t w o p o s s i b l e ways:
(a)
dimerization followed
by deprotonation
a n d the
are path
benzidine
rearrangement
2 ( P h N ) -> ( P h N N P h ) 3
or ( b )
+
3
3
2 +
a d i r e c t c o u p l i n g b e t w e e n p a r a positions of the b e n z e n e rings of
t h e t w o t r i p h e n y l a m i n e r a d i c a l cations, a g a i n f o l l o w e d b y t h e e l i m i n a t i o n of t w o protons.
I t m u s t be n o t e d that t h e i n t e r a c t i o n of m o n t m o r i l l o n i t e
a n d t r i p h e n y l a m i n e m a y b e r e s t r i c t e d solely to the exterior surface of the c l a y m i n e r a l : the i n t e r l a y e r s p a c i n g ( a d m i t t e d l y a c r u d e c r i t e r i o n f o r t h e o c c u r r e n c e of i n t e r c a l a t i o n ) r e m a i n s essentially u n c h a n g e d p r i o r to a n d f o l l o w i n g u p t a k e of the t e r t i a r y a m i n e . W h e n d i p h e n y l e t h y l e n e is h e a t e d to reflux for 30 m i n i n c o n t a c t w i t h Cu(II)-exchanged
m o n t m o r i l l o n i t e , t h e i n d a n d i m e r ( s p e c i f i c a l l y 1-meth-
y l - l , 3 , 3 - t r i p h e n y l - i n d a n ) is r e a d i l y o b t a i n e d i n g o o d ( 3 0 % ) y i e l d .
The
p r o d u c t crystallizes out as s m a l l p r i s m s , m.p. 1 4 2 ° C ( h t . 1 4 2 - 1 4 3 ) f r o m acetic a c i d ( 1 2 ) .
T h i s n e w p r o c e d u r e seems to p r o v i d e t h e m o s t c o n
v e n i e n t p r e p a r a t i o n of this d i m e r .
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
310
S O L I D
Table I.
S T A T E
A Summary of the Crystallographic
C H E M I S T R Y
Information
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
System* 1. 2. 3. 4. 5. 6. 7. 8.
β
mont =
N a - m o n t (dried) N a - m o n t (hydrated) C u - m o n t (hydrated) A g - m o n t (hydrated) S r - m o n t (hydrated) N i - m o n t (hydrated) C o - m o n t (hydrated) Sr^-mont-y-butyrolactone +
+
2 +
+
2 +
2 +
2 +
9. 10. 11. 12. 13.
Na Sr Ni Co Na
14. 15. 16. 17. 18.
Ag -moni>-azobenzene Cu -mont>-azobenzene Ni -vermiculite Co -vermiculite Dickite-formamide
+
-montr-tetrahydropyran -mont-tetrahydropyran -mont-tetrahydrof uran -monk-tetrahydrofuran -mont>-py r idine
2 +
2 +
2 + +
+
2+
2 +
2 +
montmorillonite.
I t has r e c e n t l y b e e n e s t a b l i s h e d t h a t t r a n s i t i o n - m e t a l - e x c h a n g e d s a m ples of m o n t m o r i l l o n i t e r e a d i l y f o r m complexes
w i t h a w i d e range
of
a r o m a t i c h y d r o c a r b o n s a n d t h e i r s i m p l e d e r i v a t i v e s s u c h as c h l o r o b e n zene, anisole, a n d azobenzene.
I t seems t h a t m e t a l - a r e n e complexes
b e s t a b i l i z e d i n s i d e , or at the surfaces of, m o n t m o r i l l o n i t e .
may
T h e r e is
c l e a r l y a vast t e r r i t o r y of s y n t h e t i c o r g a n i c c h e m i s t r y h e r e w h i c h a w a i t s exploration.
A f e w investigations h a v e a l r e a d y b e e n i n i t i a t e d i n these
l a b o r a t o r i e s , a n d w e n o w present a b r i e f a c c o u n t of t h e b e h a v i o r dehydrated
C u - m o n t m o r i l l o n i t e (hereafter 2 +
designated
Cu-M)
of
com
plexes f o l l o w i n g exposure to a n u m b e r of selected a r o m a t i c h y d r o c a r b o n s . Spectroscopic
a n d o t h e r studies (28-^33) i n d i c a t e t h a t C u - M m a y
b i n d a r o m a t i c m o l e c u l e s , s u c h as b e n z e n e , toluene, x y l e n e , etc., i n three d i s t i n c t f o r m s : t h e s i m p l e , loosely b o u n d
(physically adsorbed)
state;
t h e m o r e s t r o n g l y a t t a c h e d state i n w h i c h t h e b o n d - s t r e n g t h s w i t h i n the a r e n e l i g a n d are s l i g h t l y p e r t u r b e d ( t h e s o - c a l l e d t y p e I complexes t h e classification of P i r m a v a i a a n d M o r t l a n d (31));
in
a n d the t y p e - I I c o m
plexes w h i c h are u s u a l l y c o l o r e d differently f r o m t h e t y p e I
complexes,
w h e r e the a r o m a t i c i t y a n d p o i n t s y m m e t r y of t h e arene is d e s t r o y e d .
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
It
17.
THOMAS
Sheet-Silicate
E T A L .
Relating to the Intercalates
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
Approx.
6
Discussed i n the T e x t
Formula*
Na .5
M M M M M M M
Na · 3.5H 0 Cu · 3.5H 0 Ago Β · 3 . 5 H 0 Sro 25 · 7 . 0 H O Ni · 7.0H O Coo 25 · 7 . 0 H O Sro. 5 · ( C H e O ) i . e
M M Μ
Sro.25 · ( C H 0 ) 3 . 2 Sro.25 · ( C H e 0 ) 4 . 8 Ν8Ο. (ΟΒΗΙ 0)Ι.,
M M M M M M M V V Al
Sr .2e(C H 0)i.o Ni . (C H O) . C0 .25(C H 0) .2 Na .5(C5H N) .o(H 0) .o Na .5(C H5N) .o(H 0)2.o Ago. (Ci H N )o.9 Cu . 5(Ci H N )o. Nio.75 COo.75 Si O (OH) · (HCONH )
2
0 2 5
2
2
2
0
2
5
2
2
2
4
a
4
e
2
4
2
β
0
0
e
0
2 5
1 0
4
0
8
4
0
5
4
2
5
0
2
1 0
3
2
5
0
4
2
8
2
1
2
1 0
2
1
2
2
1 0
2
8
8
2
3 6 6 6 5 5 5 13 14 18 13 13 12 12 16 13 6 11 12 12 22
9.6 12.4 12.5 12.5 15.2 15.1 15.2 13.2 18.3 23.1 14.99 14.81 14.50 14.58 23.3 14.8 22.3 20.5 14.4 14.4 20.19
0
5
No. of Orders of Diffraction Observed
Basal Spacing (A)
M
0
311
Intercalates
2
M = (Al .5Mgo.5)Si802o(OH) ; V = Mg (Ali. Sie. )02o(OH)4. 3
4
is t h o u g h t t h a t i n t y p e I c o m p l e x e s
e
5
5
t h e a r e n e is edge-rr-bonded t o t h e
c o p p e r , r a t h e r s i m i l a r to t h e b o n d i n g t h a t exists i n C H C u A l C l 4 e
T u r n e r a n d A m m a (34)). (12,28)
M o r t l a n d (32),
R u p e r t (33),
(see
e
and Tennakoon
h a v e s h o w n t h a t o n l y t h e s y m m e t r i c a l arenes s u c h as b e n z e n e ,
b i p h e n y l , naphthalene, a n d anthracene
form
type-II
C u - M ; a n i s o l e is a p p a r e n t l y a n e x c e p t i o n (32). f o r m e d b y b e n z e n e a n d a l l t h e a l k y l benzenes
complexes
a n d s y m m e t r i c a l arenes
s t u d i e d to date, a n d d e h y d r a t i o n of t h e C u - M complexes m e t r i c a l arenes
with
T y p e - I complexes are
u s u a l l y results i n t h e ( r e v e r s i b l e )
of the s y m
conversion
of the
t y p e - I t o t h e t y p e - I I state. L i g a n d s i n t y p e - I complexes a p p e a r to r e t a i n their aromaticity; a n d spectroscopic
e v i d e n c e also suggests t h a t i n b o t h
t y p e - I a n d t y p e - I I c o m p l e x e s t h e o r g a n i c moieties f o r m r a d i c a l cations. T y p e - I I species c a n also b e f o r m e d w i t h F e
3 +
and V 0
2 +
ions, a n d i t h a s
b e e n suggested that these species a r e p a i r s o f associated r a d i c a l cations r a t h e r t h a n i n t e r c a l a t e d o r g a n o m e t a l l i c species
(35).
T h e t h e r m a l r e a c t i v i t y of these complexes reveals i n t e r e s t i n g t r e n d s . T h u s t h e r o o m - t e m p e r a t u r e stable, t y p e - I I C u - M : b e n z e n e c o m p l e x
(this
c o m p l e x is stable i n a v a c u u m of c a . 1 0 " t o r r a t r o o m t e m p e r a t u r e )
will,
7
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
312
S O L I D
S T A T E
C H E M I S T R Y
o n h e a t i n g , b r e a k d o w n to y i e l d n u m e r o u s fragments a l l possessing m o l e c u l a r masses less t h a n t h a t of t h e b e n z e n e .
T y p e - I C u - M complexes
w i t h t o l u e n e a n d w i t h t h e v a r i o u s i s o m e r i c xylenes w i l l , u p o n g e n t l e heating, y i e l d volatile products w h i c h show that condensation, h y d r o g e n e l i m i n a t i o n , of t h e arenes has o c c u r r e d . (m/e)
T h u s mass
with peaks
of 272 a n d 182, c o r r e s p o n d i n g to t h r e e t o l u e n e u n i t s m i n u s f o u r
h y d r o g e n atoms a n d t w o toluenes m i n u s t w o h y d r o g e n atoms, respec t i v e l y , are o b s e r v e d .
T h e m a s s - s p e c t r o m e t r i c f r a g m e n t a t i o n patterns of
t h e v o l a t i l e p r o d u c t s are consonant w i t h t h e o c c u r r e n c e of t h e f o u r p r o d u c t s s h o w n i n F i g u r e 7. ( T h e i d e n t i t y of these p r o d u c t s has not, h o w e v e r , Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
b e e n i n d e p e n d e n t l y c o n f i r m e d ) . A l l t h e e v i d e n c e p o i n t s to t h e f a c t t h a t t y p e - I arene c o m p l e x e s of C u - M r e a d i l y y i e l d r a d i c a l s o r r a d i c a l ions w h e n h e a t e d , w h i c h accounts f o r t h e n a t u r e of the r e a c t i o n p r o d u c t s . W h e n t h e a r o m a t i c m o l e c u l e f o r m i n g the c o m p l e x also c o n t a i n s a n e t h y l e n i c l i n k a g e , f u n d a m e n t a l differences t h e n arise i n t h e p a t t e r n o f t h e r m a l r e a c t i v i t y . I n short b o t h frarw-stilbene a n d i n d e n e ( e a c h i n t r o d u c e d separately f r o m t h e v a p o r i n t o t h e d e h y d r a t e d C u - M ) y i e l d o l i g o m e r i c p r o d u c t s i n w h i c h n o loss of h y d r o g e n atoms has o c c u r r e d .
There
appears to b e p r e f e r e n t i a l b o n d i n g to o r a c t i v a t i o n of t h e e t h y l e n i c l i n k ,
(1)
(2)
(3)
(4)
Figure 7. Polymeric material produced upon heating the Cu *-montmorillonitetoluene system 2
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
17.
THOMAS
ET
Sheet-Silicate
AL.
11
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
11 A
Φ
y
313
Intercalates
X
ώ τ
Figure 8. Volatile products formed on heating (a) Cu -montmorillonite-tra.ns-stilbene and (b) Cu -montmonllonite-indene 2+
2+
compared
sites.
Reasonable
a m o u n t s of the t r i m e r s a n d d i m e r s of i n d e n e a n d of the
with
the benzene
ring, by
the
copper
cyclobutane
p r o d u c t ( d i m e r of f r a n s - s t i l b e n e ) are o b t a i n e d o n h e a t i n g t h e C u - M : i n d e n e a n d C u - M : f r a n s - s t i l b e n e c o m p l e x e s , r e s p e c t i v e l y , i n v a c u o at 50°— 2 5 0 ° C (see
Figure 8).
T h e r e is, therefore, s t r o n g e v i d e n c e h e r e t h a t a
s o l i d m a t r i x ( t h e m o n t m o r i l l o n i t e ) , w h i c h f u n c t i o n s b o t h as a f r a m e w o r k to w h i c h t h e reactant is a t t a c h e d a n d also as a s u p p o r t o r p r o m o t e r of t h e catalyst ( C u
2 +
ions ), c a n d i s c r i m i n a t e b e t w e e n t w o types of u n s a t u r a t e d
c a r b o n - c a r b o n b o n d s . T h i s p h e n o m e n o n c l e a r l y merits f u r t h e r s t u d y . I n n o case s t u d i e d to d a t e is there e v i d e n c e t h a t c o p p e r atoms are carried away w i t h the volatile products.
H o w e v e r , i t is n o t difficult to
d e s i g n sheet s i l i c a t e systems i n w h i c h o r g a n o m e t a l l i c p r o d u c t s , s u c h as m e t a l l a t e d benzenes, c o u l d b e p r o d u c e d to o r d e r u s i n g o r g a n i c i n t e r calates of sheet silicates. S o m e of these p o s s i b i l i t i e s ^are c u r r e n t l y u n d e r investigation. I n this a r t i c l e w e h a v e r e s t r i c t e d o u r a t t e n t i o n e n t i r e l y to t h e r m a l l y s t i m u l a t e d c h e m i c a l conversions.
It m u s t n o t b e t h o u g h t t h a t r a d i a t i o n -
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
314
SOLID
STATE
CHEMISTRY
i n d u c e d reactions are either i m p o s s i b l e or h a r d l y w o r t h i n v e s t i g a t i n g . I n d e e d some elegant studies of γ-ray i n d u c e d p o l y m e r i z a t i o n s of i n t e r c a l a t e d m o n o m e r s of a c r y l o n i t r i l e ( A N ) a n d m e t h a c r y l o n i t r i l e ( i n N a +
montmorillonite) have already been reported (36).
T h e insertion poly
mers so f o r m e d w e r e f o u n d to b e extensively c y c l i z e d , a n o c c u r r e n c e w h i c h is interprétable i n terms of the specific o r i e n t a t i o n of the i n t e r c a l a t e d m o n o m e r species.
It is often possible to i n s e r t t w o or e v e n t h r e e
layers of o r g a n i c m o l e c u l e s b e t w e e n the a l u m i n o s i l i c a t e sheets, a n d t h e r e s u l t i n g t w o - d i m e n s i o n a l o r g a n i z a t i o n is t h e n a k i n to that w h i c h p r e v a i l s i n a s m e c t i c mesophase. A g a i n , i t is o b v i o u s that m u c h scope f o r f u r t h e r Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
s t u d y exists w i t h s u c h intercalates. Acknowledgments W e are g r a t e f u l for the n u m e r o u s s t i m u l a t i n g discussions w e h a d w i t h o u r colleagues
have
M . J . Tricker, J . O. W i l l i a m s , Stephen Evans,
a n d J . S. A n d e r s o n . W e are also i n d e b t e d to P . I . R e i d a n d M . J . W a l t e r s for t h e i r h e l p f u l c o n t r i b u t i o n s . J . M . T h o m a s also t h a n k s the P e t r o l e u m R e s e a r c h F u n d of t h e A m e r i c a n C h e m i c a l Society for
financial
assistance
i n a t t e n d i n g the N e w Y o r k M e e t i n g of the Society.
Literature Cited 1. Timms, P. L., J. Chem. Soc., Chem. Comm. (1969) 1033. 2. Benfield, F. W. S., Green, M. L. H., Ogden, J. S., Young, D., J. Chem. Soc., Chem. Comm. (1973) 866. 3. Williams-Smith, D. L., Wolf, L. R., Skell, P. S., J. Am. Chem. Soc. (1972) 94, 4042. 4. Ozin, G. Α., Voet, Α. V., Acc. Chem. Res. (1973) 9, 313. 5. Ogden, J. S., Turner, J. J., Chem. Br. (1971) 7, 186. 6. Tennakoon, D. T. B., Thomas, J. M., Tricker, M. J., Graham, S. H., J. Chem. Soc., Chem. Comm. (1974) 124. 7. Tennakoon, D. T. B., Thomas, J. M., Tricker, M. J., J. Chem. Soc., Dalton Trans. (1974) 2207. 8. Tennakoon, D. T. B., Thomas, J. M., Tricker, M. J., J. Chem. Soc., Dalton Trans. (1974) 2211. 9. Adams, J. M., J. Chem. Soc., Dalton Trans. (1974) 2286. 10. Tricker, M. J., Tennakoon, D. T. B., Thomas, J. M., Heald, J., Clays Clay Miner. (1975) 23, 77. 11. Adams, J. M., Thomas, J. M., Walters, M. J., J. Chem. Soc., Dalton Trans. (1975) 1459. 12. Tricker, M. J., Tennakoon, D. T. B., Thomas, J. M., Graham, S. H., Nature (1975) 253, 110.
13. Tennakoon, D. T. B., Tricker, M. J., J. Chem. Soc., Dalton Trans. (1975) 1802. 14. Adams, J. M., Thomas, J. M., Walters, M. J., J. Chem. Soc., Dalton Trans. (1976) 1975. 15. Adams, J. M., Graham, S. H., Reid, P. I., Thomas, J. M., J. Chem. Soc., Chem. Comm. (1977) 67. 16. Adams, J. M., Jefferson, D. Α., Acta Crystallogr. (1976) B32, 1180.
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch017
17.
THOMAS
ET
AL.
Sheet-Silicate Intercalates
315
17. Brindley, G. W., Reun. Hisp.-Belga Miner. Arcilla, An. (1970) 55. 18. Theng, B. K. G., "The Chemistry of Clay-Organic Reactions," Adam Hilger, London, 1974. 19. Adams, J. M., Lukawski, K., Reid, P. I., Thomas, J. M., Walters, M . J., J. Chem. Res. (1977) 301. 20. Weiss, Α., in "Organic Geochemistry," G. Eglington and M. T. J. Murphy, Eds., Springer-Verlag, Berlin, 1969. 21. Adams, J. M., Thomas, J. M., Walters, M. J., J. Chem. Soc., Dalton Trans. (1976) 112. 22. Weiss, Α., Angew. Chem. Int. Ed. Engl. (1963) 2, 697. 23. Evans, E. L., Thomas, J. M., J. Solid State Chem. (1975) 14, 99. 24. Yoffe, A. D., in Festkoerperprobleme, XIII, H . J. Queisser, Ed., p. 1, Pergamon, London, 1973. 25. Parry, G. S., Scruby, C. B., Williams, P. M., Philos. Mag. (1974) 29, 601. 26. Thomas, J. M., Philos. Trans. R. Soc. London (1974) 277, 251. 27. Lailach, G. E., Brindley, G. W., ClaysClay Miner. (1969) 17, 95. 28. Tennakoon, D. T. B., Ph.D. thesis, University College of Wales, Aberyst wyth, 1974. 29. Donor, H. E., Mortland, M. M., Science (1969) 166, 1406. 30. Mortland, M. M., Pinnavaia, T. J., Nature (London) Phys. Sci. (1971) 229, 75. 31. Pinnavaia, T. J., Mortland, M. M., J. Phys. Chem. (1971) 75, 3957. 32. Fenn, D. B., Mortland, M. M., Pinnavaia, T. J., Clays Clay Miner. (1973) 21, 315. 33. Rupert, J. P., J. Phys. Chem. (1973) 77, 784. 34. Turner, R. W., Amma, E. L., J. Am. Chem. Soc. (1966) 88, 1877. 35. Pinnavaia, T. J., Hall, P. L., Cody, S. S., Mortland, M. M., J. Phys. Chem. (1974) 78, 994. 36. Blumstein, R., Blumstein, Α., Parkikh, Κ. K., Appl. Polym. Symp. (1974) 25, 81. RECEIVED July
27, 1976.
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.