Solubilities of Adipic Acid and Succinic Acid in a Glutaric Acid +

Ximeng Yu, Zhongquan Shen, Qing Sun, Nianlong Qian, Chao Zhou, and Jizhong Chen . Solubilities of Adipic Acid in Cyclohexanol + Cyclohexanone Mixtures...
0 downloads 0 Views 390KB Size
Article pubs.acs.org/jced

Solubilities of Adipic Acid and Succinic Acid in a Glutaric Acid + Acetone or n‑Butanol Mixture Yanyan Li,† Yatao Wang,‡ Zhuoyuan Ning,† Jianfang Cui,‡ Qiaoye Wu,† and Xunqiu Wang*,† †

School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China Coal Chemical R&D Center, Kailuan Group, Tangshan, Hebei 063611, People’s Republic of China



ABSTRACT: In order to provide thermodynamic data for mixed dibasic acid separation technology, the solubilities of adipic acid (AA) and succinic acid (SA) in glutaric acid (GA) + acetone mixture and GA + n-butanol mixture were measured by dynamic method at atmospheric pressure. The mass fraction of GA (wGA) ranged from (0 to 30.11) %. The results show that solubilities of AA and SA in acetone or n-butanol increased with increasing mass fraction of GA in the mixed solvent GA and acetone (or n-butanol) at the same temperature. The ideal solution equation, Apelblat equation, and λh equation were applied to correlation of the experimental solubility data, which were all in good agreement with the three equations. The Apelblat equation is regarded as the best one of the three equations for describing the dissolving of two acids in solvent at the same time.

1. INTRODUCTION Large amounts of dibasic acid (DBA) were produced as a kind of byproduct during the nitric acid oxidation of cyclohexanol or cyclohexanone with copper- and vanadium-based catalysts.1 For instance, DBA output of adipic acid (AA) production units of China Pingmei Shenma Group alone was over 5000 tons per year. The components of DBA included succinic acid (SA), glutaric acid (GA), and AA, the mass fraction of which was about 25.2 %, 62.8 %, and 12.0 %, respectively, and each of them was a widely applied chemical in medicine, agriculture, food, and textile industries, etc.2−4 Therefore, it is of significant importance and high industrial value to research the separation process of DBA. At present, a better approach to the separation of DBA is crystallization in solvent;5 thus determination of solubility of the three acids turned out to be a fundamental requirement. Previous studies have given solubility data of only one acid in a certain solvent, such as water, methanol, or acetone, etc.6−8 That brought us to an interest in finding what change would happen to the solubility data if two or more acids were dissolved in the same solvent simultaneously. Results indicate that the solubility of each acid could be affected by others, so it is necessary to determine the solubility of one acid in the presence of another, which has a tight and direct connection with DBA separation. © 2014 American Chemical Society

Figure 1. Measured mole fraction solubility x values of AA in water compared with the literature values: ■, literature values14; ○, experimental values.

Received: July 26, 2014 Accepted: October 29, 2014 Published: November 10, 2014 4062

dx.doi.org/10.1021/je500682v | J. Chem. Eng. Data 2014, 59, 4062−4069

Journal of Chemical & Engineering Data

Article

Table 1. General Property of Chemicals Used in the Experimenta ΔHm/(kJ·mol−1)

Tm/K

a

material

mass fraction purity

anal method

this work

succinic acid (SA) adipic acid (AA) glutaric acid (GA) acetone

0.995 0.995 0.990 0.995

LC LC LC GC

458.65 425.15 372.25

n-butanol

0.995

GC

literature 459.05 424.15 370.85

ref 9 ref 10 ref 10

this work 32.72 35.15 21.20

literature 32.95 34.85 20.90

ref 11 ref 11 ref 11

source Sinopharm Chemical Reagent Co., Ltd. China Pingmei Shenma Group Sinopharm Chemical Reagent Co., Ltd. Tianjin Fengchuan Chemical Reagent Co., Ltd. Tianjin Fengchuan Chemical Reagent Co., Ltd.

Standard uncertainties u are u(Tm) = 0.46 K and ur(ΔHm) = 0.026.

Figure 2. Mass fraction solubility of SA (SSA) in GA (wGA) + acetone (1 − wGA): ■, wGA = 0; △, wGA = 9.76 %; ●, wGA = 19.80 %; ▽, wGA = 29.73 %.

Figure 4. Mass fraction solubility of SA (SSA) in GA (wGA) + n-butanol (1 − wGA): ■, wGA = 0; △, wGA = 20.10 %; ●, wGA = 30.11 %.

Figure 3. Mass fraction solubility of AA (SAA) in GA (wGA) + acetone (1 − wGA): ■, wGA = 0; △, wGA = 10.00 %; ●, wGA = 20.00 %; ▽, wGA = 30.00 %.

Figure 5. Mass fraction solubility of AA (SAA) in GA (wGA) + n-butanol (1 − wGA): ■, wGA = 0; △, wGA = 19.99 %; ●, wGA = 30.11 %.

To the extent of our knowledge, no such reports have been published. In this work, the solubility of AA or SA in the presence of GA in acetone or n-butanol has been determined, respectively, and the results were used to test the suitability of different theoretical equations in the systems.

2. EXPERIMENTAL SECTION 2.1. Chemicals. SA and GA were purchased from Sinopharm Chemical Reagent Co., Ltd. Acetone and n-butanol were obtained from Tianjin Fengchuan Chemical Reagent Co., Ltd. AA was provided by China Pingmei Shenma Group. The general properties of these materials are listed in Table 1. Melting point 4063

dx.doi.org/10.1021/je500682v | J. Chem. Eng. Data 2014, 59, 4062−4069

Journal of Chemical & Engineering Data

Article

Table 2. Solubility of SA in GA (wGA) + Acetone (1 − wGA) at 0.1 MPaa xc T/K

x

ideal

RD λh

Apelblat

ideal

Apelblat

λh

0.46 −0.93 −0.34 −0.19 0.41 0.65 1.36 −0.23 −0.87 −0.24

0.85 −0.78 −0.40 −0.43 0.12 0.38 1.16 −0.33 −0.74 0.20

−1.08 −2.28 −1.54 −1.11 −0.23 0.38 1.51 0.28 0.17 1.49

0.87 −1.02 −0.60 −0.24 0.06 0.36 1.35 0.04 −0.16 −0.78

1.19 −0.87 −0.67 −0.36 −0.17 0.15 1.16 0.00 −0.04 −0.46

1.11 −0.87 −0.67 −0.36 −0.11 0.20 1.21 0.00 −0.04 −0.46

−0.47 −0.31 0.70 0.05 0.10 0.45 −0.33 0.34 −0.52

−0.07 −0.19 0.58 −0.16 −0.20 0.23 −0.50 0.45 −0.10

−9.77 −10.66 −9.85 −9.00 −8.97 −8.70 −8.49 −9.89 −10.45

0.51 −0.48 0.06 0.17 0.00 −0.33 −0.35 0.24 −0.44 0.57

0.59 −0.41 0.06 0.11 −0.05 −0.33 −0.39 0.24 −0.44 0.64

0.66 −0.41 0.00 0.06 −0.16 −0.47 −0.48 0.24 −0.37 0.88

b

287.55 290.25 292.95 296.55 299.45 302.55 306.15 308.75 311.95 315.85

0.01294 0.01403 0.01490 0.01621 0.01724 0.01846 0.01987 0.02137 0.02303 0.02484

0.01300 0.01390 0.01485 0.01618 0.01731 0.01858 0.02014 0.02132 0.02283 0.02478

284.95 287.30 290.55 294.05 297.45 301.05 304.95 308.05 311.60 315.15

0.01263 0.01376 0.01501 0.01645 0.01796 0.01966 0.02150 0.02352 0.02569 0.02812

0.01274 0.01362 0.01492 0.01641 0.01797 0.01973 0.02179 0.02353 0.02565 0.02790

288.85 291.65 294.95 297.85 301.30 305.00 308.55 312.75 316.35

0.01494 0.01604 0.01726 0.01867 0.02029 0.02207 0.02416 0.02638 0.02881

0.01487 0.01599 0.01738 0.01868 0.02031 0.02217 0.02408 0.02647 0.02866

286.45 288.65 292.35 295.35 298.55 301.75 305.05 308.65 311.70 315.35

0.01360 0.01465 0.01621 0.01762 0.01928 0.02108 0.02301 0.02510 0.02730 0.02957

0.01367 0.01458 0.01622 0.01765 0.01928 0.02101 0.02293 0.02516 0.02718 0.02974

wGA = 0 0.01305 0.01280 0.01392 0.01371 0.01484 0.01467 0.01614 0.01603 0.01726 0.01720 0.01853 0.01853 0.02010 0.02017 0.02130 0.02143 0.02286 0.02307 0.02489 0.02521 wGA = 9.76 %b 0.01278 0.01277 0.01364 0.01364 0.01491 0.01491 0.01639 0.01639 0.01793 0.01794 0.01969 0.01970 0.02175 0.02176 0.02352 0.02352 0.02568 0.02568 0.02799 0.02799 wGA = 19.80 %c 0.01493 0.01348 0.01601 0.01433 0.01736 0.01556 0.01864 0.01699 0.02025 0.01847 0.02212 0.02015 0.02404 0.02211 0.02650 0.02377 0.02878 0.02580 wGA = 29.73 %c 0.01368 0.01369 0.01459 0.01459 0.01622 0.01621 0.01764 0.01763 0.01927 0.01925 0.02101 0.02098 0.02292 0.02290 0.02516 0.02516 0.02718 0.02720 0.02976 0.02983

a Standard uncertainties are u(T) = 0.05 K and ur(p) = 0.05. bStandard uncertainty for solubility is u(x) = 0.0004. cStandard uncertainty for solubility is u(x) = 0.0005.

temperature water circulating bath. The actual temperature in the vessel was monitored by a mercury thermometer (uncertainty of 0.05 K). In the initial heating stage, the temperature could be allowed to ascend fleetly, as there is plenty of undissolved solute. As the dissolution process proceeded, the heating rate was reduced gradually to 1 K·h−1 at equilibrium. A laser monitoring system was introduced to observe the solubility condition and determine the terminal points. The accuracy of the solubility measurement by dynamic method might be influenced by multiple factors, including the following: accuracy of the temperature measurement, heating rate, sample weight, and analytical method, etc. Thus, the AA− water system was selected as the standard system to test the

temperature (Tm) and enthalpy of fusion (ΔHm) of SA, AA, and GA were measured by using DSC-60 (Shimadzu Co.; uncertainty of 0.46 K). A heating rate of 5 K·min−1 was implemented in all measurements. The results and the literature data9−11 are also summarized in Table 1. 2.2. Apparatus and Procedures. The solubility was measured by dynamic method as described previously.12,13 In the experiment, the masses of the solvent and solute were measured by an electronic analytical balance (type BSA224S, Sartorius Scientific Instrument Co. Ltd.; uncertainty of 0.0001 g). The core part of the experimental apparatus is a glass vessel with a jacket and magnetic stirrer. The temperature of the circulating water running through the jacket is controlled by a constant 4064

dx.doi.org/10.1021/je500682v | J. Chem. Eng. Data 2014, 59, 4062−4069

Journal of Chemical & Engineering Data

Article

Table 3. Solubility of AA in GA (wGA) + Acetone (1 − wGA) at 0.1 MPaa xc T/K

x

ideal

RD

Apelblat

λh

ideal

Apelblat

λh

0.01023 0.01090 0.01190 0.01256 0.01349 0.01433 0.01543 0.01676 0.01816 0.01993 0.02187 0.02429 0.02688

−1.45 −1.63 0.68 −0.08 0.67 0.28 0.91 1.88 0.89 0.50 −0.68 −0.70 −1.29

0.10 −0.72 0.85 −0.24 0.15 −0.49 −0.07 0.85 0.00 −0.10 −0.77 0.00 0.44

−1.16 −1.45 0.76 −0.08 0.60 0.14 0.78 1.70 0.72 0.40 −0.73 −0.61 −1.03

0.01102 0.01184 0.01265 0.01333 0.01408 0.01482 0.01567 0.01670 0.01767 0.01859 0.01959 0.02033 0.02158 0.02271 0.02392 0.02519 0.02628

−0.72 −0.25 −0.08 0.08 0.28 0.14 0.00 0.54 0.80 0.49 0.67 −0.93 −0.14 −0.35 −0.33 0.04 −0.27

−0.63 −0.25 −0.08 0.00 0.14 0.07 −0.13 0.42 0.68 0.43 0.67 −0.88 −0.05 −0.18 −0.04 0.44 0.23

−0.54 −0.08 0.00 0.08 0.21 0.07 −0.13 0.42 0.63 0.32 0.56 −1.02 −0.19 −0.35 −0.25 0.20 0.00

0.01349 0.01428 0.01501 0.01590 0.01690 0.01789 0.01879 0.01984 0.02090 0.02200 0.02308 0.02448 0.02570 0.02693 0.02807 0.02935

0.22 0.14 −0.27 −0.31 0.00 0.11 −0.05 0.00 −0.05 0.09 −0.47 0.20 0.39 0.26 −0.18 −0.34

0.22 0.14 −0.27 −0.31 0.00 0.11 −0.05 0.00 −0.05 0.09 −0.47 0.20 0.39 0.26 −0.18 −0.34

0.37 0.21 −0.20 −0.31 −0.06 0.06 −0.16 −0.10 −0.14 0.00 −0.52 0.20 0.43 0.34 −0.04 −0.14

0.01564 0.01631 0.01757 0.01850 0.01962 0.02061 0.02171 0.02303 0.02412

0.26 −1.15 0.52 −0.16 0.31 0.05 −0.09 0.74 0.08

0.51 −0.97 0.57 −0.22 0.20 −0.10 −0.23 0.57 −0.08

0.39 −1.09 0.57 −0.22 0.26 0.00 −0.18 0.66 0.00

wGA = 0b 284.95 286.65 289.05 290.55 292.55 294.25 296.35 298.75 301.10 303.85 306.65 309.85 313.00

0.01035 0.01106 0.01181 0.01257 0.01341 0.01431 0.01531 0.01648 0.01803 0.01985 0.02203 0.02444 0.02716

0.01020 0.01088 0.01189 0.01256 0.01350 0.01435 0.01545 0.01679 0.01819 0.01995 0.02188 0.02427 0.02681

284.25 286.25 288.15 289.65 291.25 292.75 294.40 296.30 298.00 299.55 301.15 302.30 304.15 305.75 307.40 309.05 310.40

0.01108 0.01185 0.01265 0.01332 0.01405 0.01481 0.01569 0.01663 0.01756 0.01853 0.01948 0.02054 0.02162 0.02279 0.02398 0.02514 0.02628

0.01100 0.01182 0.01264 0.01333 0.01409 0.01483 0.01569 0.01672 0.01770 0.01862 0.01961 0.02035 0.02159 0.02271 0.02390 0.02515 0.02621

288.25 289.85 291.25 292.90 294.65 296.30 297.75 299.35 300.90 302.45 303.90 305.70 307.20 308.65 309.95 311.35

0.01344 0.01425 0.01504 0.01595 0.01691 0.01788 0.01882 0.01986 0.02093 0.02200 0.02320 0.02443 0.02559 0.02684 0.02808 0.02939

0.01347 0.01427 0.01500 0.01590 0.01691 0.01790 0.01881 0.01986 0.02092 0.02202 0.02309 0.02448 0.02569 0.02691 0.02803 0.02929

291.55 292.70 294.75 296.20 297.85 299.25 300.75 302.45 303.80

0.01558 0.01649 0.01747 0.01854 0.01957 0.02061 0.02175 0.02288 0.02412

0.01562 0.01630 0.01756 0.01851 0.01963 0.02062 0.02173 0.02305 0.02414

0.01036 0.01098 0.01191 0.01254 0.01343 0.01424 0.01530 0.01662 0.01803 0.01983 0.02186 0.02444 0.02728 wGA = 10.00 %b 0.01101 0.01182 0.01264 0.01332 0.01407 0.01482 0.01567 0.01670 0.01768 0.01861 0.01961 0.02036 0.02161 0.02275 0.02397 0.02525 0.02634 wGA = 20.00 %c 0.01347 0.01427 0.01500 0.01590 0.01691 0.01790 0.01881 0.01986 0.02092 0.02202 0.02309 0.02448 0.02569 0.02691 0.02803 0.02929 wGA = 30.00 %c 0.01566 0.01633 0.01757 0.01850 0.01961 0.02059 0.02170 0.02301 0.02410

4065

dx.doi.org/10.1021/je500682v | J. Chem. Eng. Data 2014, 59, 4062−4069

Journal of Chemical & Engineering Data

Article

Table 3. continued xc T/K 305.35 306.75 308.20 309.65 310.90 312.30

x 0.02542 0.02675 0.02800 0.02930 0.03064 0.03207

ideal 0.02544 0.02666 0.02798 0.02935 0.03058 0.03200

RD λh

Apelblat

wGA = 30.00 %c 0.02541 0.02543 0.02665 0.02666 0.02799 0.02798 0.02939 0.02936 0.03064 0.03060 0.03210 0.03204

ideal

Apelblat

λh

0.08 −0.34 −0.07 0.17 −0.20 −0.22

−0.04 −0.37 −0.04 0.31 0.00 0.09

0.04 −0.34 −0.07 0.20 −0.13 −0.09

a

Standard uncertainties u are u(T) = 0.05 K and ur(p) = 0.05. bStandard uncertainty for solubility is u(x) = 0.0004. cStandard uncertainty for solubility is u(x) = 0.0005.

Table 4. Solubility of SA in GA (wGA) + n-Butanol (1 − wGA) at 0.1 MPaa xc T/K

x

ideal

RD

Apelblat

λh

ideal

Apelblat

λh

0.02297 0.02558 0.02886 0.03344 0.03860 0.04486 0.05349 0.06101 0.06979 0.07737 0.08611 0.09590 0.10531 0.11544 0.12807

−2.78 −3.42 −3.27 −1.33 −0.13 1.52 5.36 5.99 6.74 4.56 2.95 1.32 −1.85 −5.60 −8.65

3.83 0.56 −1.77 −2.27 −2.89 −2.54 0.49 1.24 2.67 1.53 1.32 1.51 0.19 −1.57 −2.04

−3.28 −3.83 −3.61 −1.53 −0.23 1.54 5.48 6.18 6.96 4.78 3.14 1.49 −1.74 −5.56 −8.68

0.01708 0.01922 0.02255 0.02695 0.03263 0.03927 0.04671 0.05638 0.06564 0.07596 0.08783 0.10111 0.11466

−4.45 −3.21 −0.66 1.66 3.23 3.16 2.44 3.77 2.23 0.53 −0.67 −2.35 −5.11

0.06 −0.50 0.04 0.49 0.63 −0.21 −1.08 0.65 0.02 −0.41 0.08 0.43 −0.21

−5.01 −3.61 −0.88 1.62 3.39 3.45 2.79 4.14 2.55 0.74 −0.61 −2.53 −5.54

0.01831 0.02006 0.02339 0.02672 0.03108 0.03602 0.04494 0.05374 0.06388 0.07579 0.08939 0.10380 0.11994

0.38 −2.18 −0.76 −0.82 −0.86 −1.59 3.33 3.48 2.95 2.08 0.82 −1.69 −4.79

2.99 −0.49 −0.25 −1.15 −1.95 −3.18 1.25 1.45 1.36 1.24 1.06 −0.22 −1.91

−0.33 −2.67 −1.02 −0.85 −0.70 −1.26 3.81 4.03 3.45 2.45 0.93 −1.93 −5.45

b

304.95 307.75 310.95 314.95 318.95 323.25 328.45 332.45 336.65 339.95 343.45 347.05 350.25 353.45 357.15

0.02375 0.02660 0.02994 0.03396 0.03869 0.04418 0.05071 0.05746 0.06525 0.07384 0.08349 0.09449 0.10717 0.12223 0.14025

0.02309 0.02569 0.02896 0.03351 0.03864 0.04485 0.05343 0.06090 0.06965 0.07721 0.08595 0.09574 0.10519 0.11538 0.12812

303.70 306.40 310.15 314.45 319.20 323.95 328.55 333.70 338.00 342.25 346.60 350.95 354.95

0.01798 0.01994 0.02275 0.02652 0.03156 0.03796 0.04544 0.05414 0.06401 0.07540 0.08837 0.10373 0.12138

0.01718 0.01930 0.02260 0.02696 0.03258 0.03916 0.04655 0.05618 0.06544 0.07580 0.08778 0.10129 0.11518

305.75 307.75 311.20 314.25 317.80 321.35 326.85 331.45 336.05 340.75 345.45 349.85 354.25

0.01837 0.02061 0.02363 0.02695 0.03130 0.03648 0.04329 0.05166 0.06175 0.07398 0.08857 0.10584 0.12685

0.01844 0.02016 0.02345 0.02673 0.03103 0.03590 0.04473 0.05346 0.06357 0.07552 0.08930 0.10405 0.12077

wGA = 0 0.02466 0.02675 0.02941 0.03319 0.03757 0.04306 0.05096 0.05817 0.06699 0.07497 0.08459 0.09592 0.10737 0.12031 0.13739 wGA = 20.11 %c 0.01799 0.01984 0.02276 0.02665 0.03176 0.03788 0.04495 0.05449 0.06402 0.07509 0.08844 0.10418 0.12113 wGA = 30.11 %c 0.01892 0.02051 0.02357 0.02664 0.03069 0.03532 0.04383 0.05241 0.06259 0.07490 0.08951 0.10561 0.12443

a

Standard uncertainties u are u(T) = 0.05 K and ur(p) = 0.05. bStandard uncertainty for solubility is u(x) = 0.0006. cStandard uncertainty for solubility is u(x) = 0.0008. 4066

dx.doi.org/10.1021/je500682v | J. Chem. Eng. Data 2014, 59, 4062−4069

Journal of Chemical & Engineering Data

Article

Table 5. Solubility of AA in GA (wGA) + n-Butanol (1 − wGA) at 0.1 MPaa xc T/K

x

ideal

RD

Apelblat

λh

ideal

Apelblat

λh

0.02916 0.03226 0.03571 0.04022 0.04445 0.05005 0.05458 0.06026 0.06591 0.07282 0.08090 0.08938 0.09856 0.10659 0.11675 0.12680 0.13776 0.15469 0.17237 0.18192

−5.74 −4.89 −3.47 −0.88 0.20 2.79 1.75 2.28 2.27 3.55 4.62 4.71 4.82 3.23 3.01 1.68 −0.01 −4.11 −6.09 −8.15

1.48 0.06 −0.51 0.02 −0.38 0.70 −1.16 −1.36 −1.79 −0.80 0.29 0.71 1.42 0.57 1.39 1.24 0.94 −0.97 −0.52 −1.30

−6.45 −5.45 −3.88 −1.16 0.07 2.77 1.83 2.45 2.50 3.85 4.96 5.05 5.15 3.53 3.24 1.82 0.04 −4.25 −6.45 −8.62

0.02481 0.03082 0.03785 0.04618 0.05500 0.06433 0.07428 0.08854 0.09955 0.10641 0.12102 0.13075 0.13792 0.14757 0.15657 0.16658 0.17581 0.18280 0.18868 0.20014

−6.07 −3.73 −1.83 −0.52 −0.36 6.87 4.36 6.73 3.28 2.85 1.91 3.09 1.64 1.45 0.84 0.54 −0.63 −3.29 −6.58 −8.81

2.11 0.28 −1.06 −2.19 −3.54 2.52 −0.28 2.08 −0.80 −0.84 −0.72 1.25 0.47 1.22 1.54 2.30 2.13 0.16 −2.60 −3.66

−8.15 −5.08 −2.52 −0.67 −0.07 7.52 5.21 7.75 4.26 3.79 2.72 3.76 2.18 1.79 0.99 0.44 −0.96 −3.81 7.24 9.78

0.02287 0.02495 0.02769 0.03132 0.03597 0.04169 0.04726 0.05509 0.06829 0.07801 0.08750 0.09955 0.11334 0.12507 0.14233 0.15894

−1.44 −2.32 −2.07 −1.19 −0.39 0.00 −2.47 −1.34 5.92 5.05 3.65 4.12 4.88 2.40 1.78 −0.80

3.27 1.12 0.07 −0.44 −0.97 −1.73 −4.87 −4.37 2.30 1.57 0.54 1.61 3.24 1.66 2.47 1.31

−3.01 −3.59 −3.01 −1.76 −0.55 0.19 −1.99 −0.56 7.04 6.24 4.82 5.20 5.75 3.01 1.96 −1.11

wGA = 0b 304.95 307.25 309.60 312.40 314.80 317.70 319.85 322.35 324.65 327.25 330.05 332.75 335.45 337.65 340.25 342.65 345.10 348.60 351.95 353.65

0.03117 0.03412 0.03715 0.04069 0.04442 0.04870 0.05360 0.05882 0.06430 0.07012 0.07708 0.08508 0.09373 0.10296 0.11309 0.12453 0.13770 0.16155 0.18425 0.19908

0.02938 0.03245 0.03586 0.04033 0.04451 0.05006 0.05454 0.06016 0.06576 0.07261 0.08064 0.08909 0.09825 0.10629 0.11649 0.12662 0.13769 0.15491 0.17302 0.18285

305.75 310.05 314.25 318.45 322.25 325.75 329.05 333.20 336.05 337.70 340.95 342.95 344.35 346.15 347.75 349.45 350.95 352.05 352.95 354.65

0.02701 0.03247 0.03883 0.04649 0.05504 0.05983 0.07060 0.08217 0.09548 0.10252 0.11782 0.12601 0.13498 0.14497 0.15504 0.16585 0.17752 0.19005 0.20341 0.22183

0.02537 0.03126 0.03812 0.04625 0.05484 0.06394 0.07368 0.08770 0.09861 0.10544 0.12007 0.12990 0.13719 0.14707 0.15635 0.16675 0.17641 0.18379 0.19002 0.20229

304.70 306.35 308.35 310.75 313.50 316.50 319.10 322.35 327.05 330.05 332.70 335.75 338.90 341.35 344.65 347.55

0.02358 0.02588 0.02855 0.03188 0.03617 0.04161 0.04822 0.05540 0.06380 0.07343 0.08348 0.09463 0.10718 0.12142 0.13959 0.16072

0.02324 0.02528 0.02796 0.03150 0.03603 0.04161 0.04703 0.05466 0.06758 0.07714 0.08653 0.09853 0.11241 0.12433 0.14208 0.15943

0.03163 0.03414 0.03696 0.04070 0.04425 0.04904 0.05298 0.05802 0.06315 0.06956 0.07730 0.08568 0.09506 0.10355 0.11466 0.12607 0.13899 0.15999 0.18330 0.19649 wGA = 19.99 %c 0.02758 0.03256 0.03842 0.04547 0.05309 0.06134 0.07040 0.08388 0.09472 0.10166 0.11697 0.12759 0.13562 0.14674 0.15742 0.16967 0.18130 0.19036 0.19812 0.21370 wGA = 30.11 %d 0.02435 0.02617 0.02857 0.03174 0.03582 0.04089 0.04587 0.05298 0.06527 0.07458 0.08393 0.09615 0.11065 0.12344 0.14304 0.16282

4067

dx.doi.org/10.1021/je500682v | J. Chem. Eng. Data 2014, 59, 4062−4069

Journal of Chemical & Engineering Data

Article

Table 5. continued xc T/K 349.95 353.15

x

ideal

0.18698 0.21596

0.17513 0.19809

RD λh

Apelblat

wGA = 30.11 %d 0.18125 0.17374 0.20911 0.19500

ideal

Apelblat

λh

−6.34 −8.27

−3.06 −3.17

−7.08 −9.71

a

Standard uncertainties u are u(T) = 0.05 K and ur(p) = 0.05. bStandard uncertainty for solubility is u(x) = 0.0006. cStandard uncertainty for solubility is u(x) = 0.0007. dStandard uncertainty for solubility is u(x) = 0.0008.

contained GA of different mass fraction are summarized in Figures 2 to 5. Obviously the solubility of AA or SA in acetone increases as the mass fraction of GA (wGA) in the mixture of GA and acetone increases from (0 to 30.11) %, as shown in Figures 2 and 3. The same behavior was also observed for the n-butanol system at higher temperature as shown in Figures 4 and 5. These results implied that the solubilities of AA and SA in acetone or nbutanol increased with increasing mass fraction of GA at the same temperature. 3.2. Thermodynamic Correlation. The temperature dependence of AA solubility and SA solubility in solvents was described by the modified ideal solution equation (eq 1), Apelblat equation (eq 2), and λh equation (eq 3).15−21

Table 6. Parameters of Correlation Equation for the Solubility of SA in GA (wGA) + Acetone (1 − wGA) for given wGA models and params A′ B′ σ R2 A B C σ R2 λ h σ R2

0

9.76 %

19.80 %

Ideal Solution Equation 2.8582 3.8153 3.3413 −2070.6445 −2330.3374 −2180.7927 0.57 0.55 0.36 0.9990 0.9993 0.9996 Apelblat Equation −38.6467 −24.3325 −41.9452 −207.7311 −1073.2117 −142.1442 6.1876 4.1999 6.7478 0.54 0.51 0.27 0.9991 0.9993 0.9998 λh Equation 0.1566 0.2236 0.1785 12656.8484 9778.0783 11143.0666 1.01 0.50 9.53 0.9967 0.9993 0.9997

29.73 % 4.1917 −2430.3662 0.32 0.9998 −2.4890 −2131.2096 0.9964 0.33 0.9998 0.2710 8506.4558 0.37 0.9997

A′ B′ σ R2 A B C σ R2 λ h σ R2

10.00 %

20.00 %

Ideal Solution Equation 6.1946 5.8020 6.1640 −3071.6080 −2931.2685 −3018.4060 0.90 0.36 0.19 0.9988 0.9997 0.9999 Apelblat Equation −153.5691 −24.6569 7.3311 4042.9674 −1589.4171 −3070.5002 23.8506 4.5559 −0.1742 0.37 0.31 0.19 0.9997 0.9998 0.9999 λh Equation 0.3063 0.2826 0.3368 9653.5914 9929.1184 8622.2706 0.78 0.30 0.20 0.9991 0.9998 0.9999

ln x = A +

B + C ln(T /K) (T /K)

(1)

(2)

(3)

The experimental data of mole fraction solubility (x) in Tables 2 to 5 were correlated with eq 1, eq 2, and eq 3; meanwhile the parameter values of A′, B′, A, B, C, λ, h, and the mean relative deviation (σ) are given in Tables 6 to 9. The RD, σ, x, and w are defined as x −x (RD/%) = c · 100 (4) x

for given wGA 0

B′ (T /K)

⎞ ⎛ 1 ⎛ 1 − x ⎞⎟ 1 ⎟⎟ ln⎜1 + λ = λh⎜⎜ − ⎝ x ⎠ (T m/K) ⎠ ⎝ (T /K)

Table 7. Parameters of Correlation Equation for the Solubility of AA in GA (wGA) + Acetone (1 − wGA) models and params

ln x = A′ +

30.00 % 6.6317 −3146.0690 0.30 0.9996

(σ /%) =

−45.5762 −800.0842 7.7819 0.29 0.9997

(x /%) =

(w/%) =

0.4075 7474.1975 0.28 0.9997

1 n

n

∑ i=1

xci − xi ·100 xi

(5)

m1/M1 ·100 m1/M1 + m2 /M 2 + m3 /M3

(6)

m2 /M 2 ·100 m2 /M 2 + m3 /M3

(7)

where n is the number of experimental points, xc is the solubility calculated from eq 1, eq 2, or eq 3, and x is the experimental value of solubility. Besides, m1, m2, and m3 represent the masses (g) of SA (or AA), GA, and acetone (or n-butanol), respectively. M1, M2, and M3 are molecular weight (g·mol−1) of SA (or AA), GA, and solvent acetone (or n-butanol), respectively. In Tables 6 to 9, the minimum value of the coefficient of determination (R2) is 0.9932, which is quite close to 1, showing that the experimental data follow the modified ideal solution equation, Apelblat equation, and λh equation. From the correlation results, σ ranged from (0.19 to 3.94) %, which led to a conclusion that ideal solution equation, Apelblat equation, and λh equation could all satisfactorily describe the

reliability of the device. Comparing the experimental values with literature values14 in Figure 1, it is clear that the experimental values were consistent with literature values, proving the device is reliable for the determination of solubility.

3. RESULTS AND DISCUSSION 3.1. Effect of the Mass Fraction of GA on the Solubility. The solubilities of AA and SA in acetone or n-butanol that 4068

dx.doi.org/10.1021/je500682v | J. Chem. Eng. Data 2014, 59, 4062−4069

Journal of Chemical & Engineering Data

Article

the equations in these systems. Of all three equations, the modified Apelblat equation matched the experimental data best.

Table 8. Parameters of Correlation Equation for the Solubility of SA in GA (wGA) + n-Butanol (1 − wGA)



for given wGA models and params A′ B′ σ R2 A B C σ R2 λ h σ R2

0

20.10 %

Ideal Solution Equation 7.9547 9.1139 −3574.8782 −4002.1231 3.70 2.57 0.9937 0.9977 Apelblat Equation −243.3123 −176.9725 8600.7948 4973.3635 36.9581 27.3929 1.76 0.37 0.9987 0.9999 λh Equation 1.2452 1.6176 2914.7691 2525.2185 3.87 2.83 0.9932 0.9972

30.11 %

Corresponding Author

*Tel.: +86 371 67781292. E-mail: [email protected]. 9.7340 −4197.1275 1.98 0.9985

Notes

The authors declare no competing financial interest.



−111.2387 1646.9861 17.8033 1.42 0.9993 2.0475 2108.5368 2.22 0.9980

for given wGA

A′ B′ σ R2 A B C σ R2 λ h σ R2

0

19.99 %

Ideal Solution Equation 9.7497 11.3836 −4048.8394 −4603.9366 3.41 3.27 0.9949 0.9956 Apelblat Equation −277.1383 −271.4113 9808.3762 9137.9967 42.2228 41.5766 0.88 1.59 0.9997 0.9991 λh Equation 1.3776 2.16919 3012.3760 2237.0491 3.68 3.94 0.9939 0.9937

REFERENCES

(1) Steinhoff, G.; Vogtel, P. Process for the recovery of adipic acid. U.S. Patent 5,264,624, Nov. 23, 1993. (2) Hong, Y. K.; Hong, W. H.; Chang, H. N. Selective extraction of succinic acid from binary mixture of succinic acid and acetic acid. Biotechnol. Lett. 2000, 22, 871−874. (3) Hoot, W. F.; Kobe, K. A. Oxidation of cyclohexane to adipic acid with nitrogen dioxide. Ind. Eng. Chem. 1955, 47, 782−785. (4) Pehlivanoǧlu, N.; Uslu, H.; Kırbaşlar, S. I. Experimental and modeling studies on the extraction of glutaric acid by trioctylamine. J. Chem. Eng. Data 2009, 54, 3202−3207. (5) Wang, X. Q.; Jing, D. G.; Zou, C. R. Recovery of glutaric acid from the mixture of binary acids. Filtr. Sep. 2002, 12, 37−38. (6) Apelblat, A.; Manzurola, E. Solubility of oxalic, malonic, succinic, adipic, maleic, malic, citric, and tartaric acids in water from 278.15 to 338.15 K. J. Chem. Thermodyn. 1987, 19, 317−320. (7) Gaivoronskii, A. N.; Granzhan, V. A. Solubility of adipic acid in organic solvents and water. Russ. J. Appl. Chem. 2005, 78, 404−408. (8) Wei, D.; Cao, W. Solubility of adipic acid in acetone, chloroform, and toluene. J. Chem. Eng. Data 2009, 54, 152−153. (9) Good, D. J.; Hornedo, N. R. Solubility Advantage of Pharmaceutical Cocrystals. Cryst. Growth Des. 2009, 9, 2252−2264. (10) Paluch, K. J.; Tajber, L.; Elcoate, C. J.; Corrigan, O. I.; Lawrence, S. E.; Healy, A. M. Solid-State Characterization of Novel Active Pharmaceutical Ingredients: Cocrystal of a Salbutamol Hemiadipate Salt with Adipic Acid (2:1:1) and Salbutamol Hemisuccinate Salt. J. Pharm. Sci. 2011, 100, 3268−3283. (11) Dean, J. A.; Wei, J. In Lang’s Handbook of Chenistry, 2nd ed.; Huang, H., Wang, Z., Eds.; Science Press: Beijing, 2003. (12) Domanska, U. Solid−liquid phase relations of some normal longchain fatty acids in selected organic one- and two-component solvents. Ind. Eng. Chem. Res. 1987, 26, 1153−1162. (13) Gao, Y. G.; Zhou, C. R.; Shi, X. H.; Wang, H. F. Solid−Liquid equilibria of the trans-1, 2-cyclohexanediol + ethyl acetate + water ternary system. J. Chem. Eng. Data 2006, 51, 412−415. (14) Stephen, H.; Stephen, T. Solubilities of inorganic and organic compounds; Pergamon: New York, 1963; Vol. 1, p 451. (15) Wei, D.; Zhang, X. Solubility of puerarin in the binary system of methanol and acetic acid solvent mixtures. Fluid Phase Equilib. 2013, 339, 67−71. (16) Ren, Y.; Shui, H.; Peng, C.; Liu, H.; Hu, Y. Solubility of elemental sulfur in pure organic solvents and organic solvent-ionic liquid mixtures from 293.15 to 353.15 K. Fluid Phase Equilib. 2011, 312, 31−36. (17) Buchowski, H.; Ksiazczak, A.; Pietrzyk, S. Solvent activity along a saturation line and solubility of hydrogen-bonding solids. J. Phys. Chem. 1980, 84, 975−979. (18) Thati, J.; Nordström, F. L.; Rasmuson, Å. C. Solubility of benzoic acid in pure solvents and binary mixtures. J. Chem. Eng. Data 2010, 55, 5124−5127. (19) Maia, G. D.; Giulietti, M. Solubility of acetylsalicylic acid in ethanol, acetone, propylene glycol, and 2-propanol. J. Chem. Eng. Data 2008, 53, 256−258. (20) Liang, M.; Hu, Y.; Liu, X.; Guan, J.; Yang, W.; Liu, Y. Solubility of maleic anhydride in methanol + (acetone, ethyl acetate) from 278.15 to 323.15 K. J. Mol. Liq. 2014, 197, 35−39. (21) Prapasawat, T.; Hronec, M.; Štolcová, M.; Lothongkum, A. W.; Pancharoen, U.; Phatanasri, S. Thermodynamic models for determination of the solubility of 2,5-bis(2-furylmethylidene) cyclopentan-1one in different solvents at temperatures ranging from 308.15 to 403.15 K. Fluid Phase Equilib. 2014, 367, 57−62.

Table 9. Parameters of Correlation Equation for the Solubility of AA in GA (wGA) + n-Butanol (1 − wGA) models and params

AUTHOR INFORMATION

30.11 % 11.8562 −4758.7654 3.02 0.9970 −200.8686 5489.4442 31.3214 2.10 0.9987 2.4220 2064.4066 3.70 0.9953

solubility dependence on temperature in the given temperature range. In addition, when the Apelblat equation was used to correlate the experimental data, the value of σ was the smallest; therefore the Apelblat equation was considered to be the best and most suitable to describe dissolution behavior in these systems.

4. CONCLUSION To obtain basic data for separation of DBA, solubility of AA and SA in GA (wGA) + acetone (1 − wGA) and GA (wGA) + n-butanol (1 − wGA) have been determined at atmospheric pressure. The results showed solubility increases with the increase of temperature. And the solubility also increases with the increasing mass fraction of GA in the mixture of GA and acetone (or n-butanol) at the same temperature, implying that solubilities of certain dibasic acids were interdependent rather than independent when dissolved together in solvents. In addition, the modified ideal solution equation, Apelblat equation, and λh equation were employed to correlate the experimental data, which were found generally to be a good match with 4069

dx.doi.org/10.1021/je500682v | J. Chem. Eng. Data 2014, 59, 4062−4069