Article Cite This: J. Chem. Eng. Data XXXX, XXX, XXX−XXX
pubs.acs.org/jced
Solubility Behavior of 2‑Chloro-3- (trifluoromethyl)pyridine in (Ethyl Acetate + n‑Butanol, DMF + n‑Butanol, DMF + Ethanol) Solvent Mixtures Liqing Zhao, Bing Zhang, and Li Xu*
J. Chem. Eng. Data Downloaded from pubs.acs.org by TULANE UNIV on 02/16/19. For personal use only.
School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, People’s Republic of China ABSTRACT: The solubility of 2-chloro-3-(trifluoromethyl)pyridine in ethyl acetate + n-butanol, DMF + n-butanol, and DMF + ethanol solvent mixtures was determined via an isothermal static method within the temperature scope of 263.15−303.15 K under 101.3 KPa. The solubility of 2-chloro-3-(trifluoromethyl)pyridine increased with increasing temperature and mass fraction of ethyl acetate or DMF in the binary solvent systems. The modified Apelblat model, Jouyban−Acree model, and Sun model were used to correlate the solubility data of 2-chloro-3-(trifluoromethyl)pyridine in the binary mixtures. The values of RD and RMSD indicated that three models fit the solubility data quite well, and the Sun model gave the best correlation of the solubility data in the binary ethyl acetate + n-butanol and DMF + n-butanol solvents. The Apelblat model gave the best correlation of the solubility data in the binary DMF + ethanol solvent.
1. INTRODUCTION 2-Chloro-3-(trifluoromethyl)pyridine (C6H3ClF3N, white crystal, CAS registry no 65753-47-1, molar mass 181.54 g·mol−1) is a useful chemical for an intermediate, and it usually has been used in the synthesis of medicine and pesticide.1 2-Chloro-3(trifluoromethyl)pyridine is used to synthesize high-efficiency and low-residue pesticides, such as fluazifop-butyl, poppenatemethyl, and flazasulfuron. This kind of efficient and low-residue fluorine-containing pesticide is environmentally friendly. In our team, 2-chloro-3-(trifluoromethyl)pyridine was used to make ordered mesoporous carbon material; ordered mesoporous carbon material was made via the impregnation method.2,3 In our team, 2-chloro-3-(trifluoromethyl)pyridine was needed to dissolve in some pure or binary solvents.2,3 But the solubility behavior of 2-chloro-3-(trifluoromethyl)pyridine in our selected binary solvents (ethyl acetate + n-butanol, DMF + n-butanol, DMF + ethanol) was not found yet. In Wang et al.’s paper,4 they measured the solubility of 2-chloro-3-(trifluoromethyl)pyridine in methylbenzene, dichloromethane, ethanol, n-propanol, n-hexane, n-heptane, and ethanol + n-propanol mixtures. In order to further know the solubility behavior of 2-chloro-3-(trifluoromethyl)pyridine in mixed solvent, we measured the solubility of 2-chloro-3-(trifluoromethyl)pyridine in binary (ethyl acetate + n-butanol, DMF + n-butanol, DMF + ethanol) solvents. In addition, the solubility data are important for the process of crystallization. The mixed solvents may change the solubility of 2-chloro-3-(trifluoromethyl)pyridine. To select an appropriate solvent system, the objective of the present work was to measure and correlate the solubility data of 2-chloro-3-(trifluoromethyl)pyridine in the binary solvents mixtures of ethyl acetate + n-butanol, DMF + n-butanol, and DMF + ethanol. In this paper, because of the low melting point (melting point: 312.19 K; melting enthalpy = 19.23 kJ·mol−1; from Neway Chemicals Co., Ltd.) and high solubility in ethyl © XXXX American Chemical Society
acetate and n-butyl alcohol, the solubility of 2-chloro-3(trifluoromethyl)pyridine in binary (ethyl acetate + n-butanol, DMF + n-butanol, DMF + ethanol) solvent mixtures was measured experimentally at temperatures ranging from 263.15 to 303.15 K under atmospheric pressure. The solubility data were correlated via the Jouyban−Acree model,5 the modified Apelblat model,6 and the Sun model.6,7
2. EXPERIMENTAL SECTION 2.1. Chemicals and Equipment. The purity of 2-chloro-3(trifluoromethyl)pyridine (mass fraction ≥ 0.995) was determined by gas phase chromatography (GC type: Agilent GC7890B). Ethyl acetate, n-butyl alcohol, N,N-dimethylformamide (DMF), and analytical grade ethanol were used in the experiment without additional purification. The purity of solvents was measured by GC (GC type: Agilent GC7890B); the mass fraction purities of selected solvents were 0.9975 (ethyl acetate), 0.9980 (n-butyl alcohol), 0.9981 (DMF), and 0.9973 (ethanol), respectively. A detailed description of the solvents is shown in Table 1. The constant-temperature water bath (type, DC4006; precision, ±0.01 K), which was produced by Shanghai Bilon Precision Instrument Co., Ltd., was used to maintain the temperature. The analytical balance used in the experiment was provided by Shenzhen Shengmei Instrument Co., Ltd. and had an uncertainty of ±0.0001 g. The water was stirred using a magnetic stirring (Shanghai Mei Yingpu instrument and Meter Manufacturing Co., Ltd.); the rotational speed of magnetic stirring was 260 r/min. The concentration of the sample was analyzed by GC. GC conditions: The capillary column was an HP-5 column Received: October 29, 2018 Accepted: February 1, 2019
A
DOI: 10.1021/acs.jced.8b00989 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 1. Purity and Sources of Solute and Solvents chemical name
ω1 =
mass fraction purity
source
≥0.995a ≥0.990a
Neway Chemicals Co., LTD Tianjin Jiangtian Chemical Co., LTD
≥0.995a ≥0.995a ≥0.995a
Tianjin Jiangtian Chemical Co., LTD Tianjin Jiangtian Chemical Co., LTD Tianjin Jiangtian Chemical Co., LTD
C6H3ClF3N N,Ndimethylformamide ethanol ethyl acetate (EAC) n-butanol
3. RESULTS AND DISCUSSION 3.1. The Comparison between the Experimental Data and Reference Data. The experimental solubility data and reference solubility data of 2-chloro-3-(trifluoromethyl)pyridine in ethyl acetate, n-butanol, and ethanol are listed in Table 2. The values of RD were less than 0.0498, which indicated that the experimental equipment and method were reliable. The literature data4,24 and experimental mole fraction solubility data are plotted in Figure 1.
Determined by GC (gas chromatography).
(30 m × 0.32 mm). Temperatures: injector, 473 K; FID, 423 K. Carrier gas: N2; flow rate, 25 mL·min−1. Temperature program: from 323.15 K (0 min) to 493.15 K (20 min) at 8.5 K × min−1. Injection mode, split; split ratio, 10:1; injection volume, 1 μL. 2.2. Preparation of Solvent Mixtures. The binary (ethyl acetate + n-butanol, DMF + n-butanol, DMF + ethanol) solvent mixtures were prepared by means of an analytical balance. The amount of mixed solvent was about 50 g, and the precision was estimated to ±0.0001 g. The mass fractions of ethyl acetate in the binary mixtures prepared varied from 0 to 1.0. The Erlenmeyer flask was covered with a stopper to prevent the solvent from escaping during the preparation of solvent mixtures. During the experiment, the atmospheric pressure was 101.3 kPa. 2.3. Solubility Measurement. In the present work, the solubility of 2-chloro-3-(trifluoromethyl)pyridine in binary solvent mixtures of ethyl acetate + n-butanol, DMF + n-butanol, and DMF + ethanol were determined via an isothermal static equilibrium method, which was previously described in many works.8−10 First, an excessive amount of 2-chloro-3(trifluoromethyl)pyridine and about 5 mL of solvent (prepared binary solvent mixtures) were added into a doubled jacketed glass container. The double jacketed glass vessel was kept at the desired temperature, which was controlled with a thermostatic water bath. The actual temperature was shown using a mercury thermometer (precision, 0.01 K) in the jacketed glass vessel. The mixture was stirred via magnetic stirring for over 24 h. Then, after that, the mixture was kept static for 12 h. At last, the concentration of the upper portion clear solution was analyzed using GC. Every analysis was carried out three times, and the average values were considered as the final values. The mole fraction solubility of 2-chloro-3-(trifluoromethyl)pyridine in the binary solvent mixtures are based on eq 1, and the composition of binary mixtures (ω) was defined using eq 2: m3 /M3 m1/M1 + m2 /M 2 + m3 /M3
(2)
in which m1 and m2 represent the masses of solvents and m3 represents the masses of 2-chloro-3-(trifluoromethyl)pyridine, respectively. Furthermore, M1, M2, and M3 are the corresponding molar masses.
a
x=
m1 m2 + m1
Figure 1. Comparison between the experimental data and reference data (“exp” and “ref” represent experimental data and reference data, respectively).
3.2. Solubility Data. The mole fraction solubilities of 2-chloro-3-(trifluoromethyl)pyridine in binary solvent mixtures of ethyl acetate + n-butanol, DMF + n-butanol, and DMF + ethanol at different temperature (263.15 to 303.15 K) are summarized in Tables 3, 4, and 5. The graphs of corresponding mole fraction solubility against temperature and solvent composition are shown in Figures 2, 3, and 4. The figures and tables show that
(1)
Table 2. Comparison between the Experimental Data and Reference Data n-butanol
ethyl acetate T/K 263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
xa
xexp
0.3951 0.4516 0.5104 0.5836 0.6567 0.7378 0.8227
0.3063 0.3499 0.3991 0.4546 0.5084 0.5826 0.6517 0.7388 0.8237
RD/%
−1.01 −0.66 0.39 0.17 0.76 −0.14 −0.12
xa
xexp
0.1449 0.1875 0.2308 0.2858 0.3480 0.4235 0.5002
0.0947 0.1184 0.1401 0.1835 0.2285 0.2838 0.3453 0.4215 0.5102
ethanol RD/%
3.31 2.13 1.00 0.70 0.78 0.47 −2.00
xb
xexp
RD/%
0.1366 0.1818 0.2530 0.3553 0.4753 0.6350 0.8747
0.0807 0.1115 0.1406 0.1858 0.2623 0.3633 0.4763 0.6205 0.8311
−2.93 −2.20 −3.68 −2.25 −0.21 2.28 4.98
a
The values from ref 24. bThe values from ref 4. B
DOI: 10.1021/acs.jced.8b00989 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 3. Mole Fraction Solubility Data (xcal) of 2-Chloro-3-(trifluoromethyl)pyridine in Binary Ethyl Acetate(ω1) + n-butanol(1 − ω1) Mixtures (P = 0.1 MPa)a modified Apelblat T/K
x
xcal
RD/%
263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
0.0947 0.1184 0.1401 0.1835 0.2285 0.2838 0.3453 0.4215 0.5102
0.0912 0.1161 0.1466 0.1836 0.2283 0.2819 0.3457 0.4213 0.5103
3.65 1.91 −4.64 −0.07 0.08 0.68 −0.11 0.06 −0.01
263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
0.1391 0.1716 0.2076 0.2505 0.3075 0.3692 0.4413 0.5189 0.5979
0.1392 0.1716 0.2099 0.2546 0.3066 0.3667 0.4356 0.5142 0.6034
−0.09 −0.04 −1.08 −1.65 0.30 0.68 1.30 0.90 −0.92
263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
0.1817 0.2148 0.2457 0.3023 0.3482 0.4123 0.4829 0.5598 0.6446
0.1773 0.2123 0.2527 0.2992 0.3523 0.4127 0.4811 0.5583 0.6451
2.40 1.16 −2.87 1.04 −1.17 −0.08 0.37 0.28 −0.07
263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
0.2123 0.2517 0.2909 0.3442 0.4075 0.4762 0.5467 0.6284 0.7092
0.2115 0.2512 0.2965 0.3479 0.4059 0.4711 0.5439 0.6250 0.7148
0.36 0.19 −1.95 −1.08 0.39 1.07 0.51 0.54 −0.80
263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
0.2574 0.3004 0.3432 0.4036 0.4592 0.5336 0.6091 0.6878 0.7663
0.2568 0.3000 0.3486 0.4028 0.4631 0.5298 0.6034 0.6842 0.7726
0.24 0.12 −1.57 0.21 −0.84 0.72 0.94 0.53 −0.82
263.15 268.15 273.15 278.15 283.15 288.15 293.15
0.3063 0.3499 0.3991 0.4546 0.5084 0.5826 0.6517
0.3035 0.3485 0.3985 0.4538 0.5147 0.5817 0.6551
0.91 0.40 0.16 0.19 −1.24 0.16 −0.52
Jouyban−Acree model xcal
RD/%
Sun model xcal
RD/%
ω1 = 0 0.0947 0.1184 0.1401 0.1835 0.2285 0.2838 0.3453 0.4215 0.5102
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.0954 0.1202 0.1501 0.1859 0.2286 0.2791 0.3383 0.4076 0.4880
−0.74 −1.52 −7.14 −1.31 −0.04 1.66 2.03 3.30 4.35
0.1365 0.1676 0.1964 0.2504 0.3052 0.3728 0.4459 0.5361 0.6382
1.85 2.31 5.40 0.03 0.76 −0.98 −1.04 −3.32 −6.75
0.1378 0.1701 0.2084 0.2534 0.3061 0.3672 0.4379 0.5190 0.6118
0.92 0.85 −0.38 −1.17 0.47 0.54 0.77 −0.03 −2.33
0.1689 0.2038 0.2373 0.2948 0.3523 0.424 0.4993 0.5921 0.6942
7.02 5.13 3.42 2.49 −1.18 −2.83 −3.40 −5.76 −7.69
0.1707 0.2070 0.2492 0.2980 0.3541 0.4183 0.4914 0.5741 0.6672
6.03 3.64 −1.42 1.43 −1.70 −1.45 −1.77 −2.55 −3.50
0.2073 0.2459 0.2845 0.3440 0.4026 0.4772 0.5530 0.6466 0.7463
2.34 2.30 2.19 0.05 1.21 −0.22 −1.15 −2.90 −5.23
0.2099 0.2498 0.2954 0.3473 0.4058 0.4717 0.5455 0.6278 0.7192
1.11 0.75 −1.56 −0.90 0.42 0.94 0.22 0.09 −1.41
0.2506 0.2930 0.3369 0.3984 0.4584 0.5364 0.6133 0.7087 0.8073
2.64 2.46 1.83 1.30 0.17 −0.52 −0.69 −3.03 −5.35
0.2541 0.2977 0.3468 0.4017 0.4630 0.5310 0.6062 0.6889 0.7797
1.28 0.90 −1.05 0.48 −0.83 0.49 0.48 −0.15 −1.74
0.3063 0.3499 0.3991 0.4546 0.5084 0.5826 0.6517
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.3113 0.3557 0.4043 0.4575 0.5155 0.5784 0.6464
−1.63 −1.66 −1.30 −0.64 −1.40 0.72 0.81
ω1 = 0.2857
ω1 = 0.4445
ω1 = 0.6406
ω1 = 0.8261
ω1 = 1.0000
C
DOI: 10.1021/acs.jced.8b00989 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 3. continued modified Apelblat T/K
x
cal
x
Jouyban−Acree model cal
x
RD/%
RD/%
Sun model cal
x
RD/%
ω1 = 1.0000 298.15 303.15
0.7388 0.8237
0.7353 0.8227
0.48 0.12
0.7388 0.8237
0.00 0.00
0.7198 0.7986
2.57 3.05
The standard uncertainties u are u(T) = 0.02 K, ur(p) = 0.05, ur(x) = 0.06, and ur(ω) = 0.05. ω is the mass-fraction composition of the mixed solvent. a
Table 4. Mole Fraction Solubility Data (xcal) of 2-Chloro-3-(trifluoromethyl)pyridine in Binary DMF(ω1) + n-Butanol(1 − ω1) Mixtures (P = 0.1 MPa)a modified Apelblat T/K
x
xcal
RD/%
263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
0.0895 0.1144 0.1401 0.1835 0.2285 0.2838 0.3453 0.4215 0.5102
0.0912 0.1161 0.1466 0.1836 0.2283 0.2819 0.3457 0.4213 0.5103
−1.96 −1.50 −4.64 −0.07 0.08 0.68 −0.11 0.06 −0.01
263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
0.1566 0.1913 0.2290 0.2805 0.3355 0.3968 0.4653 0.5455 0.6403
0.1571 0.1916 0.2319 0.2788 0.3330 0.3953 0.4665 0.5475 0.6393
−0.31 −0.16 −1.28 0.62 0.76 0.39 −0.26 −0.37 0.17
263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
0.1970 0.2362 0.2783 0.3345 0.3940 0.4599 0.5330 0.6178 0.7126
0.1970 0.2362 0.2814 0.3331 0.3920 0.4587 0.5339 0.6183 0.7125
−0.01 0.00 −1.11 0.40 0.52 0.27 −0.16 −0.08 0.01
263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
0.2351 0.2798 0.3243 0.3891 0.4574 0.5319 0.6137 0.7072 0.8020
0.2364 0.2813 0.3328 0.3912 0.4573 0.5317 0.6150 0.7080 0.8112
−0.55 −0.54 −2.59 −0.53 0.02 0.05 −0.22 −0.12 −1.15
263.15 268.15 273.15 278.15 283.15 288.15 293.15
0.2946 0.3445 0.3970 0.4642 0.5348 0.6117 0.6958
0.2952 0.3450 0.4009 0.4634 0.5329 0.6100 0.6950
−0.21 −0.13 −0.98 0.17 0.35 0.29 0.13
Jouyban−Acree model
Sun model
xcal
RD/%
xcal
RD/%
0.0947 0.1184 0.1401 0.1835 0.2285 0.2838 0.3453 0.4215 0.5102
−5.83 −3.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.0950 0.1194 0.1489 0.1841 0.2260 0.2755 0.3335 0.4012 0.4796
−6.16 −4.36 −6.28 −0.33 1.09 2.92 3.42 4.82 6.00
0.1428 0.1788 0.2161 0.2752 0.3367 0.4115 0.4918 0.5906 0.7039
8.84 6.52 5.62 1.89 −0.36 −3.70 −5.70 −8.27 −9.93
0.1511 0.1863 0.2279 0.2768 0.3338 0.4000 0.4764 0.5641 0.6641
3.54 2.60 0.46 1.32 0.51 −0.81 −2.39 −3.41 −3.71
0.1787 0.2201 0.2637 0.3274 0.3949 0.4766 0.5613 0.6650 0.7826
9.29 6.83 5.25 2.11 −0.22 −3.63 −5.31 −7.64 −9.82
0.1886 0.2288 0.2757 0.3300 0.3924 0.4638 0.5452 0.6373 0.7412
4.26 3.15 0.94 1.33 0.42 −0.84 −2.29 −3.16 −4.01
0.2213 0.2680 0.3182 0.3847 0.4572 0.5446 0.6317 0.7382 0.8575
5.86 4.22 1.89 1.14 0.04 −2.38 −2.93 −4.39 −6.92
0.2327 0.2778 0.3295 0.3885 0.4553 0.5307 0.6154 0.7100 0.8153
1.01 0.72 −1.59 0.16 0.46 0.23 −0.28 −0.40 −1.66
0.2740 0.3269 0.3850 0.4553 0.5344 0.6295 0.7207
6.98 5.12 3.03 1.92 0.08 −2.91 −3.57
0.2873 0.3382 0.3958 0.4606 0.5332 0.6141 0.7038
2.47 1.84 0.31 0.77 0.30 −0.39 −1.14
ω1 = 0
ω1 = 0.2857
ω1 = 0.4445
ω1 = 0.6406
ω1 = 0.8261
D
DOI: 10.1021/acs.jced.8b00989 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 4. continued modified Apelblat T/K
x
cal
x
Jouyban−Acree model cal
x
RD/%
RD/%
Sun model cal
x
RD/%
ω1 = 0.8261 298.15 303.15
0.7917 0.8865
0.7884 0.8906
0.42 −0.47
263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
0.3245 0.3786 0.4412 0.5034 0.5796 0.6715 0.7536 0.8548 0.9657
0.3244 0.3786 0.4392 0.5069 0.5819 0.6648 0.7560 0.8560 0.9651
0.02 0.00 0.44 −0.69 −0.40 1.00 −0.32 −0.14 0.06
0.8323 0.9563
−5.13 −7.87
0.8030 0.9121
−1.43 −2.89
0.3063 0.3499 0.3991 0.4546 0.5084 0.5826 0.6517 0.7388 0.8237
5.61 7.58 9.54 9.69 12.28 13.24 13.52 13.57 14.70
0.3386 0.3557 0.4043 0.4575 0.5155 0.5784 0.6464 0.7198 0.7986
−4.35 −1.66 −1.30 −0.64 −1.40 0.72 0.81 2.57 3.05
ω1 = 1.0000
a The standard uncertainties u are u(T) = 0.02 K, ur(p) = 0.05, ur(x) = 0.06, and ur(ω) = 0.05. ω is the mass-fraction composition of the mixed solvent.
Table 5. Mole Fraction Solubility Data (xcal) of 2-Chloro-3-(trifluoromethyl)pyridine in Binary DMF(ω1) + Ethanol(1 − ω1) Mixtures (P = 0.1 MPa)a modified Apelblat T/K
x
cal
x
Jouyban−Acree model x
RD/%
cal
RD/%
Sun model x
cal
RD/%
ω1 = 0 263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
0.0807 0.1115 0.1406 0.1858 0.2623 0.3633 0.4763 0.6205 0.8311
0.0774 0.1061 0.1446 0.1959 0.2640 0.3541 0.4724 0.6274 0.8294
4.03 4.83 −2.82 −5.43 −0.66 2.55 0.81 −1.11 0.21
263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
0.1390 0.1797 0.2328 0.2906 0.3656 0.4578 0.5724 0.7053 0.8553
0.1386 0.1794 0.2301 0.2923 0.3681 0.4599 0.5701 0.7016 0.8574
0.24 0.13 1.17 −0.59 −0.70 −0.46 0.39 0.52 −0.25
263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
0.1757 0.2201 0.2814 0.3365 0.4092 0.5045 0.6051 0.7398 0.8798
0.1757 0.2201 0.2736 0.3376 0.4139 0.5042 0.6104 0.7347 0.8795
0.00 0.01 2.79 −0.34 −1.15 0.07 −0.87 0.69 0.04
263.15 268.15 273.15 278.15 283.15 288.15 293.15
0.2306 0.2796 0.3378 0.4027 0.4772 0.5703 0.6657
0.2308 0.2797 0.3368 0.4030 0.4793 0.5670 0.6670
−0.10 −0.05 0.31 −0.08 −0.45 0.58 −0.21
0.0807 0.1115 0.1406 0.1858 0.2623 0.3633 0.4763 0.6205 0.8311
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.0883 0.1193 0.1593 0.2106 0.2756 0.3573 0.4592 0.5852 0.7398
−9.45 −7.01 −3.71 −2.33 2.37 1.65 3.59 5.69 8.79
0.1218 0.1629 0.2173 0.2824 0.3746 0.4721 0.6008 0.7622 0.9689
12.36 9.34 6.65 2.81 −2.47 −3.13 −4.97 −8.07 −13.29
0.1327 0.1735 0.2248 0.2884 0.3668 0.4627 0.5790 0.7191 0.8868
4.51 3.44 3.42 0.74 −0.34 −1.07 −1.16 −1.96 −3.69
0.1577 0.2043 0.2642 0.3332 0.4280 0.5289 0.6540 0.8086 1.0005
10.26 7.18 6.12 0.97 −4.60 −4.84 −8.08 −9.29 −13.72
0.1710 0.2169 0.2728 0.3402 0.4210 0.5171 0.6308 0.7643 0.9203
2.70 1.45 3.06 −1.11 −2.89 −2.50 −4.25 −3.31 −4.60
0.2019 0.2533 0.3171 0.3876 0.4813 0.5829 0.6994
12.44 9.40 6.14 3.74 −0.86 −2.22 −5.07
0.2181 0.2680 0.3268 0.3957 0.4758 0.5686 0.6754
5.41 4.14 3.27 1.73 0.29 0.29 −1.46
ω1 = 0.2857
ω1 = 0.4445
ω1 = 0.6406
E
DOI: 10.1021/acs.jced.8b00989 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 5. continued modified Apelblat T/K
x
cal
x
Jouyban−Acree model x
RD/%
cal
RD/%
Sun model x
cal
RD/%
ω1 = 0.6406 298.15 303.15
0.7802 0.9101
0.7808 0.9096
−0.08 0.06
263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
0.2777 0.3291 0.3912 0.4561 0.5287 0.6138 0.7043 0.8188 0.9388
0.2778 0.3291 0.3877 0.4543 0.5298 0.6148 0.7103 0.8171 0.9361
0.00 0.00 0.90 0.39 −0.21 −0.17 −0.86 0.21 0.29
263.15 268.15 273.15 278.15 283.15 288.15 293.15 298.15 303.15
0.3245 0.3786 0.4412 0.5034 0.5796 0.6715 0.7536 0.8548 0.9657
0.3244 0.3786 0.4392 0.5069 0.5819 0.6648 0.7560 0.8560 0.9651
0.02 0.00 0.44 −0.69 −0.40 1.00 −0.32 −0.14 0.06
0.8419 1.0127
−7.91 −11.27
0.7975 0.9366
−2.22 −2.91
0.2515 0.3072 0.3745 0.4463 0.5389 0.6419 0.7514 0.8848 1.0400
9.45 6.64 4.27 2.15 −1.94 −4.58 −6.69 −8.05 −10.78
0.2707 0.3241 0.3853 0.4553 0.5349 0.6248 0.7261 0.8395 0.9659
2.54 1.51 1.51 0.17 −1.18 −1.79 −3.10 −2.52 −2.88
0.3245 0.3786 0.4412 0.5034 0.5796 0.6715 0.7536 0.8548 0.9657
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.3470 0.3972 0.4525 0.5131 0.5792 0.6511 0.7289 0.8130 0.9036
−6.94 −4.91 −2.56 −1.93 0.07 3.04 3.28 4.89 6.43
ω1 = 0.8261
ω1 = 1.0000
The standard uncertainties u are u(T) = 0.02 K, ur(p) = 0.05, ur(x) = 0.06, and ur(ω) = 0.05. ω is the mass-fraction composition of the mixed solvent. a
Figure 2. Experimental mole fraction solubility (x) (trifluoromethyl)pyridine with mole fraction in binary (ω1) + n-butanol(1 − ω1)) mixtures at different ■, ω1 = 0; ●, ω1 = 0.2857; ★, ω1 = 0.4445; ☆, □, ω1 = 0.8261; ○, ω1 = 1.0000.
of 2-chloro-3(ethyl acetatetemperatures: ω1 = 0.6406;
Figure 3. Experimental mole fraction solubility (x) of 2-chloro-3(trifluoromethyl)pyridine with mole fraction in binary (DMF(ω1) + n-butanol(1 − ω1)) mixtures at different temperatures: ■, ω1 = 0; ●, ω1 = 0.2857; ★, ω1 = 0.4445; ☆, ω1 = 0.6406; □, ω1 = 0.8261; ○, ω1 = 1.0000.
in binary solvent mixtures there was an increase with an increase in temperature, when the solvent composition was fixed. For the n-butyl alcohol + ethyl acetate binary solvent, at a given temperature, it increases monotonously with the rising mole fraction of ethyl acetate; for DMF + ethanol or DMF + n-butanol, at a given temperature, it increases monotonously with the rising mole fraction of DMF. This phenomenon may be caused by the strong
intermolecular interactions between the solute and the solvent molecules, which favor the dissolution of 2-chloro-3(trifluoromethyl)pyridine.23 In terms of the polarity of solvents, the polarity order of the experimental solvents is n-butyl alcohol > ethyl acetate. With the increasing of content of ethyl F
DOI: 10.1021/acs.jced.8b00989 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 6. Modified Apelblat Parameters and RMSD Values for 2-Chloro-3-(trifluoromethyl)pyridine in Mixed Solvents of Ethyl Acetate(ω1) + n-Butanol(1 − ω1), DMF(ω1) + n-Butanol(1 − ω1), and DMF(ω1) + Ethanol(1 − ω1)a modified Apelblat ω1 0.0000 0.2857 0.4445 0.6406 0.8261 1.0000 0.0000 0.2857 0.4445 0.6406 0.8261 1.0000
Figure 4. Experimental mole fraction solubility (x) of 2-chloro-3(trifluoromethyl)pyridine with mole fraction in binary (DMF(ω1) + ethanol(1 − ω1)) mixtures at different temperatures: ■, ω1 = 0; ●, ω1 = 0.2857; ★, ω1 = 0.4445; ☆, ω1 = 0.6406; □, ω1 = 0.8261; ○, ω1 = 1.0000.
0.0000 0.2857 0.4445 0.6406 0.8261 1.0000
acetate, the polarity of mixed solvents decreases. So, with the decreasing of polarity, the solubility of 2-chloro-3-(trifluoromethyl)pyridine in mixed solvents increases. The polarity order of the experimental solvents is DMF > ethanol > n-butyl alcohol. With the increasing of the content of DMF, the polarity of mixed solvents (DMF + n-butanol, DMF + ethanol) increases. With the increasing of polarity, the solubility of 2-chloro-3(trifluoromethyl)pyridine in mixed solvents increases. 3.3. Solubility Modeling. 3.3.1. Modified Apelblat Equation. The modified Apelblat equation, which is a semiempirical equation with three parameters,10−15 is an accurate mathematical correlation for binary solid−liquid phase equilibrium. The modified Apelblat equation is B ln x = A + + C ln(T /K) (3) T where x and T respectively represent the measured solubility and studied temperature. A, B, and C are model parameters; the corresponding values are listed in Table 4. The correlated solubility values are presented in Tables 3, 4, and 5. The expression of relative deviation (RD) and the root-meansquare deviation (RMSD) are defined as follows: x − xical RD = i xi
RMSD = [
1 n
a
i=1
B
C
103 RMSD
ethyl acetate + n-butanol −2950.06 1.71179 −3443.58 −1.83780 −2027.20 1.94376 −2427.51 0.00420 −2192.92 0.01380 −1356.60 2.23998 DMF + n-butanol 7.99426 −3356.41 0.42112 8.15504 −2771.85 0.09468 7.58503 −2541.23 0.08029 7.52174 −2443.31 0.05659 6.12139 −2158.70 0.15465 8.81312 −2245.39 −0.25231 DMF + ethanol −3.22083 −3814.17 2.72796 14.8663 −3762.70 −0.45642 −3.90872 −2601.19 2.16317 −0.05891 −2353.42 1.35231 −4.43369 −1898.11 1.86008 8.81312 −2245.39 −0.25231 −0.72303 21.3558 −4.85836 7.64792 6.89692 −8.51993
2.65 13.92 12.69 10.04 6.77 12.63 2.41 2.86 5.49 51.96 7.55 1.83 3.23 8.53 16.82 1.70 13.35 1.83
Relative standard uncertainty ur(A) = ur(B) = ur(C) = 0.02.
3.3.2. Jouyban−Acree Model. The Jouyban−Acree model usually provides mathematic descriptions for the solubility dependence on both temperature and solvent composition for binary solvents.16−19 The model is described in eq 6: 2
ln x3 = ω1 ln x1 + ω2 ln x 2 +
ω1ω2 ∑ J (ω1 − ω2)i T i=0 i
(6)
In the above formula, x3 represents the mole fraction solubility of 2-chloro-3-(trifluoromethyl)pyridine in the binary solvent mixtures, x1 and x2 represent the mole fraction solubility of 2-chloro3-(trifluoromethyl)pyridine in pure solvent, ω1 and ω2 mean the mass fractions of solvent in binary solvent, respectively, and Ji represents parameter of the Jouyban−Acree model. 3.3.3. Sun Model. The Sun model is used to correlate the solubility data at different temperatures and different compositions of mixed solvents,20−22,25 which could be written as eq 7: ln x3 = D1 + D2 /T + D3ω1 + D4 ω1/T + D5ω12 /T + D6ω13/T + D7ω14 /T
(7)
where D1 to D7 are the model parameters Equations 6 and 7 can correlate the solubility of 2-chloro-3(trifluoromethyl)pyridine in mixed solvents of ethyl acetate + n-butanol, DMF + n-butanol, and DMF + ethanol, and the model parameters are listed in Table 5. The values of RMSD are also shown in Table 7. The solubility of 2-chloro-3(trifluoromethyl)pyridine in the binary solvents of ethyl acetate + n-butanol, DMF + n-butanol, and DMF + ethanol was calculated via the regressed parameters. In order to evaluate fitting results of the three models and measured solubility data, the corresponding values of RD and RMSD are listed in Tables 3−7 together with the evaluation
(4)
n
∑ (xical − xi)2 ]1/2
A
(5)
where n represents the number of experimental points, xi represents the experimental solubility of 2-chloro-3-(trifluoromethyl)pyridine, and xical is the calculated solubility. xical, along with RD, are listed in Tables 3, 4, and 5. The corresponding values of RMSD are listed in Table 6. The calculated values from the modified Apelblat equation are presented in Tables 3, 4, and 5. G
DOI: 10.1021/acs.jced.8b00989 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 7. Parameters for Jouyban−Acree Model and Sun Model, RMSD Values for 2-Chloro-3(trifluoromethyl)pyridine in Mixed Solvents of (Ethyl Acetate + n-Butanol, DMF + n-Butanol, DMF + Ethanol)a Jouyban−Acree model ethyl acetate + n-butanol
103 RMSD DMF + n-butanol
103 RMSD DMF + ethanol
103 RMSD
J0 J1 J2
142.223 49.8814 286.069
J0 J1 J2
14.02 205.008 73.8141 450.865
J0 J1 J2
23.55 156.183 54.8661 280.164
38.12
Sun model D1 D2 D3 D4 D5 D6 D7 D1 D2 D3 D4 D5 D6 D7 D1 D2 D3 D4 D5 D6 D7
5.97251 −1878.7 4.0446 −996.98 −1423.3 2189.49 −1144.6 8.34 6.5454 −2007.4 3.37082 −639.17 −2239 3461.39 −1804.6 12.62 6.19474 −1908.7 7.48482 −1948.7 −1388.9 2122.87 −1114.9 20.54
Figure 5. Experimental mole fraction solubility (x) of 2-chloro-3(trifluoromethyl)pyridine with mole fraction in binary (ethyl acetate(ω1) + n-butanol(1 − ω1)) mixtures at different temperatures: ■, ω1 = 0; ●, ω1 = 0.2857; ★, ω1 = 0.4445; ☆, ω1 = 0.6406; □, ω1 = 0.8261; ○, ω1 = 1.0000. ―, calculated values from modified Apelblat equation.
a
Relative standard uncertainty ur(J0) = ur(J1) = ur(J2) = ur(D1) = ur(D2) = ur(D3) = ur(D4) = ur(D5) = ur(D6) = ur(D7) 0.02.
parameters. The values of RD and RMSD indicate that three models fit the solubility data quite well. In addition, the fitting parameters could provide an accurate prediction of the solubility data at any point within the experimental conditions. The maximum values of RMSD were 0.01392 (Apelblat), 0.01402 (Jouyban−Acree), and 0.00834 (Sun) in ethyl acetate + n-butanol, and for DMF + n-butanol, RMSDs were 0.05196 (Apelblat), 0.02355 (Jouyban−Acree), and 0.01262 (Sun), which indicates that the Sun model gives the best correlation of the solubility data in the binary ethyl acetate + n-butanol and DMF + n-butanol solvents. For DMF + ethanol, the maximum values of RMSD were 0.01682 (Apelblat), 0.03812 (Jouyban−Acree), and 0.02054 (Sun), which indicates that the Apelblat model gives the best correlation of the solubility data in the binary DMF + ethanol solvent. In order to show the obvious relation between temperature and the solubility of 2-chloro-3-(trifluoromethyl)pyridine in three binary solvents and the fitting results by modified Apelblat equation, the calculated values from the modified Apelblat equation are presented in Figures 5, 6, and 7.
Figure 6. Experimental mole fraction solubility (x) of 2-chloro-3(trifluoromethyl)pyridine with mole fraction in binary (DMF(ω1) + n-butanol(1 − ω1)) mixtures at different temperatures: ■, ω1 = 0; ●, ω1 = 0.2857; ★, ω1 = 0.4445; ☆, ω1 = 0.6406; □, ω1 = 0.8261; ○, ω1 = 1.0000. ―, calculated values from modified Apelblat equation.
acetate. With the increasing of the content of ethyl acetate, the polarity of mixed solvents decreases. So, with the decreasing of polarity, the solubility of 2-chloro-3-(trifluoromethyl)pyridine in mixed solvents increases. The polarity order of the experimental solvents is DMF > ethanol > n-butyl alcohol. With the increasing of the content of DMF, the polarity of mixed solvents increases. With the increasing of polarity, the solubility of 2-chloro-3-(trifluoromethyl)pyridine in mixed solvents increases. The experimental solubility data were correlated via using three models. The RD and RMSD values of every model were less than 0.147 and 0.051, respectively. Accordingly, the modified Apelblat model, Jouyban−Acree model, and Sun model were used to correlate the obtained experimental solubility data. The values
4. CONCLUSIONS In this paper, the solubility of 2-chloro-3-(trifluoromethyl)pyridine in binary (ethyl acetate + n-butanol, DMF + n-butanol, DMF + ethanol) solvent mixtures was measured experimentally at temperatures ranging from 263.15 to 303.15 K under atmospheric pressure. The solubility of 2-chloro-3-(trifluoromethyl)pyridine in binary solvent mixtures increased with increasing temperature. In terms of the polarity of solvents, the polarity order of the experimental solvents is n-butyl alcohol > ethyl H
DOI: 10.1021/acs.jced.8b00989 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
several temperatures and correlation with the Jouyban−Acree model. Fluid Phase Equilib. 2012, 320, 49−55. (6) Li, R. R.; Han, S.; Du, C. B.; Cong, Y.; Wang, J.; Zhao, H. K. Solubility measurement and correlation of 4-nitrophthalimide in (methanol, ethanol, or acetone) + N, N-dimethylformamide mixed solvents at temperatures from 273.15 to 323.15 K. J. Chem. Thermodyn. 2016, 103, 99−106. (7) Zhao, K. F.; Yang, P.; Du, S. C.; Li, K. F.; Li, X. N.; Li, Z. F.; Liu, Y. M.; Lin, L. L.; Hou, B. H.; Gong, J. B. Determination and correlation of solubility and thermodynamics of mixing of 4-aminobutyric acid in mono-solvents and binary solvent mixtures. J. Chem. Thermodyn. 2016, 102, 276−286. (8) Zhao, H. K.; Xu, H.; Yang, Z. P.; Li, R. R. Solubility of 3,4dichloronitrobenzene in methanol, ethanol, and liquid mixtures (methanol + water, ethanol + water): experimental measurement and thermodynamic modeling. J. Chem. Eng. Data 2013, 58, 3061−3068. (9) Zhao, H. K.; Ji, H. Z.; Meng, X. C.; Li, R. R. Solubility of 3chlorophthalic anhydride and 4-chlorophthalic anhydride in organic solvents and solubility of 3-chlorophthalic acid and 4-chlorophthalic acid in water from (283.15 to 333.15) K. J. Chem. Eng. Data 2009, 54, 1135−1137. (10) Zhang, F.; Tang, Y. C.; Wang, L.; Xu, L.; Liu, G. J. Solubility determination and thermodynamic models for 2-methylnaphthalene in different solvents from T = (278.15 to 303.15) K. J. Chem. Eng. Data 2015, 60, 1699−1705. (11) Apelblat, A.; Manzurola, E. Solubilities of o-acetylsalicylic, 4aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesiumDL-aspartate in water from T = (278 to 348) K. J. Chem. Thermodyn. 1999, 31, 85−91. (12) Fan, J. P.; Zheng, B.; Liao, D. D.; Yu, J. X.; Cao, Y. H.; Zhang, X. H.; Zhu, J. H. Determination and modeling of the solubility of (limonin in methanol or acetone + water) binary solvent mixtures at T = 283.2 to 318.2 K. J. Chem. Thermodyn. 2016, 98, 353−360. (13) Apelblat, A.; Manzurola, E. Solubilities of L-glutamic acid, 3nitrobenzoic acid, p-toluic acid, calcium-L-lactate, calcium gluconate, magnesium-DL-aspartate, and magnesium-L-lactate in water. J. Chem. Thermodyn. 2002, 34, 1127−1136. (14) Apelblat, A.; Manzurola, E. Solubilities of L-aspartic, DL-aspartic, DL-glutamic, p-hydroxybenzoic, o-anistic, p-anisic, and itaconic acids in water from T = 278 K to T = 345 K. J. Chem. Thermodyn. 1997, 29, 1527−1533. (15) Yang, P.; Du, S. C.; Qin, Y. J.; Zhao, K. F.; Li, K. L.; Hou, B. H.; Gong, J. B. Determination and correlation of solubility and thermodynamic properties of pyraclostrobin in pure and binary solvents. J. Chem. Thermodyn. 2016, 101, 84−91. (16) Shakeel, F.; Bhat, M. A.; Haq, N.; Fathi-Azarbayjani, A.; Jouyban, A. Solubility and thermodynamic parameters of a novel anti-cancer drug (DHP-5) in polyethylene glycol400 + water mixtures. J. Mol. Liq. 2017, 229, 241−245. (17) Cárdenas, Z. J.; Jiménez, D. M.; Delgado, D. R.; Almanza, O. A.; Jouyban, A. F.; Martínez, W. E.; Acree, W. E. Acree, Solubility and preferential solvation of some n-alkyl-parabens in methanol+ water mixtures at 298.15 K. J. Chem. Thermodyn. 2017, 108, 26−37. (18) Jouyban, A.; Eghrary, S. H.; Zarghami, R. Solubility of amiodarone HCl in propylene glycol + ethanol, propylene glycol + water and their ternary solvent mixtures at 25 and 37°C. J. Mol. Liq. 2013, 186, 52−55. (19) Wang, S. L.; Du, C. B.; Zhao, H. K. Solubility, solution thermodynamics and preferential solvation for 4-bromopyrazole in mixed solvents of (methanol/ethanol + water) from T = (283.15 to 318.15) K. J. Chem. Thermodyn. 2017, 112, 146−154. (20) Cong, Y.; Du, C.; Wang, J.; Zhao, H. Determination and thermodynamic modelling for 2-methyl-6-nitroaniline solubility in binary solvent mixtures of ethyl acetate + (methanol, ethanol, npropanol and isopropanol). J. Chem. Thermodyn. 2017, 105, 404−413. (21) Xie, Y.; Shi, H.; Du, C.; Cong, Y.; Wang, J.; Zhao, H. Thermodynamic models for determination of 3-chloro-n-phenylphthalimide solubility in binary solvent mixtures of (acetone, ethyl
Figure 7. Experimental mole fraction solubility (x) of 2-chloro-3(trifluoromethyl)pyridine with mole fraction in binary (DMF(ω1) + ethanol(1 − ω1)) mixtures at different temperatures: ■, ω1 = 0; ●, ω1 = 0.2857; ★, ω1 = 0.4445; ☆, ω1 = 0.6406; □, ω1 = 0.8261; ○, ω1 = 1.0000. ―, calculated values from modified Apelblat equation.
of RMSD indicate that the Sun model gave the best correlation of the solubility data in the binary ethyl acetate + n-butanol and DMF + n-butanol solvents; the Apelblat model gave the best correlation of the solubility data in the binary DMF + ethanol solvent. In addition, the obtained parameters could provide a prediction of the solubility data at any point under the experimental conditions.
■
AUTHOR INFORMATION
Corresponding Author
*E-mail:
[email protected]. ORCID
Li Xu: 0000-0001-9083-4858 Notes
The authors declare no competing financial interest.
■ ■
ACKNOWLEDGMENTS We would like to acknowledge the editors and reviewers. Thank you for your valuable advice. REFERENCES
(1) Dunn, A. D. Nucleophilic displacement in 2-chloro(trifluoromethyl)pyridines with amines and ammonia. J. Fluorine Chem. 1999, 93, 153−157. (2) Liu, Y.; Zhang, J.; Guan, H.; Zhao, Y.; Yang, J. H.; Zhang, B. Polydopamine-coated halloysite nanotubes supported AgPd nanoalloy: An efficient catalyst for hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2018, 43, 2754−2762. (3) Liu, Y.; Zhang, J.; Guan, H.; Zhao, Y.; Yang, J. H.; Zhang, B. Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane. Appl. Surf. Sci. 2018, 427, 106−113. (4) Wang, L.; Xing, C. Z.; Zhao, L. Q.; Xu, L.; Liu, G. J. Measurement and correlation of solubility of 2-chloro-3-(trifluoromethyl)pyridine in pure solvents and ethanol + n-propanol mixtures. J. Mol. Liq. 2017, 238, 470−477. (5) Rodríguez, G. A.; Delgado, D. R.; Martínez, F.; Jouyban, A.; Acree, W. E., Jr Solubility of naproxen in ethyl acetate + ethanol mixtures at I
DOI: 10.1021/acs.jced.8b00989 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
acetate or 1,4-dioxane + methanol). J. Chem. Thermodyn. 2016, 100, 22−28. (22) Du, C.; Xu, R.; Han, S.; Xu, J.; Meng, L.; Wang, J.; Zhao, H. Solubility determination and correlation for 1,8-dinitronaphthalene in (acetone + methanol), (toluene + methanol) and (acetonitrile + methanol) mixed solvents. J. Chem. Thermodyn. 2016, 94, 24−30. (23) Qin, Y.; Wang, H.; Yang, P.; Du, S.; Huang, C.; Du, Y.; Wu, S.; Gong, J.; Yin, Q. Measurement and correlation of solubility and dissolution properties of flunixin meglumine in pure and binary solvents. Fluid Phase Equilib. 2015, 403, 145−152. (24) Wang, L.; Xing, C. Z.; Zhao, L. Q.; Xu, L.; Liu, G. J. Solubility of 2-Chloro-3-(trifluoromethyl)pyridine and Correlation with the Polarity in Organic Solvents at 273−303 K. Rus. J. Phys. Chem. A 2018, 92, 2204−2209. (25) Wang, L.; Zhang, H.; Shen, Z.; Xu, L.; Liu, G. J. Measurement and correlation of solubility of methyleneaminoacetonitrile in pure and binary solvents and thermodynamic properties of solution. J. Chem. Thermodyn. 2019, Accepted.
J
DOI: 10.1021/acs.jced.8b00989 J. Chem. Eng. Data XXXX, XXX, XXX−XXX