Solubility Determination, Modeling, and Thermodynamic Dissolution

Jul 16, 2019 - Benzenesulfonamide (BSA) is known as an important chemical material and intermediate in chemical industry. Information concerning ...
2 downloads 0 Views 1019KB Size
Article Cite This: J. Chem. Eng. Data XXXX, XXX, XXX−XXX

pubs.acs.org/jced

Solubility Determination, Modeling, and Thermodynamic Dissolution Properties of Benzenesulfonamide in 16 Neat Solvents from 273.15 to 324.45 K Yajun Li,† Kui Wu,*,‡ and Lei Liang*,†

Downloaded via UNIV OF SOUTHERN INDIANA on July 17, 2019 at 05:46:11 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.



Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Key Laboratory of Sugarcane Improvement and Biorefinery, Guangzhou Key Laboratory of Biomass Comprehensive Utilization, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou 510316, China ‡ School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China S Supporting Information *

ABSTRACT: Benzenesulfonamide (BSA) is known as an important chemical material and intermediate in chemical industry. Information concerning solid−liquid equilibrium of BSA in different solvents is essential for the development of its separation and reaction process. In this work, the equilibrium solubility of BSA in 16 neat solvents, namely, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-pentanol, isopentanol, acetone, ethyl acetate, acetonitrile, cyclohexanone, cyclopentanone, methyl acetate, ethyl formate, and dichloromethane was determined by a static gravimetric method within the temperature range of 273.15−324.45 K under atmospheric pressure. The solubility of BSA increases with the rising temperature in all selected solvents. The obtained solubility was mathematically represented by using the Apelblat model, λh equation, nonrandom two-liquid (NRTL) equation, and the Wilson equation in order to correlate the experimental data with the adjustable parameters. The dissolution properties of BSA, including Gibbs energy (ΔdisG), molar enthalpy (ΔdisH), and molar entropy (ΔdisS) were determined according to the Wilson model and the solubility data. Positive values of the dissolution enthalpy and entropy illustrated that the dissolution processes of BSA in these solvents are endothermic and entropy-driven.

1. INTRODUCTION Benzenesulfonamide (BSA, C6H7NO2S, CAS registry no.: 9810-2, molar mass 157.19 g·mol−1, the structure is presented in Figure 1) usually occurs as monoclinic acicular or lamellar

BSA in different solvents. Previous work only covered the solubility of BSA in supercritical CO2 with the temperature ranging from 308.15 to 328.15 K over a pressure range of 11.0−21.0 MPa.4 The accurate solubility of BSA in pure solvents under atmospheric pressure was nowhere to be found. In this work, a static gravimetric method was employed to measure the solubility of BSA in 16 neat solvents, including methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-pentanol, isopentanol, acetone, ethyl acetate, acetonitrile, cyclohexanone, cyclopentanone, methyl acetate, ethyl formate, and dichloromethane with the temperature ranging from 273.15 to 324.45 K under atmospheric pressure. Then, four thermodynamic models, that is, modified Apelblat equation, Buchowski−Ksiazczak λh equation, nonrandom twoliquid (NRTL) activity coefficient model, and the Wilson

Figure 1. Chemical structure of BSA.

crystalline powder and is an important chemical and intermediate for the synthesis of pharmaceuticals, plasticizer, fluorescent resin, and dyes.1,2 Dissolution of BSA in various solvents is needed in the organic target compound preparations, and solubility is a fundamental physicochemical property for purification via crystallization or crystal morphology optimization.3 To the best of our knowledge, limited work has been reported in the literature regarding the solubility of © XXXX American Chemical Society

Received: April 24, 2019 Accepted: July 3, 2019

A

DOI: 10.1021/acs.jced.9b00360 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

calorimetry (DSC 214, NETZSCH, Germany) under a nitrogen atmosphere. The temperature and heat flow of the instrument were precalibrated with indium as the reference. The melting properties of BSA were measured within the temperature range of 293.15−473.15 K at a heating rate of 10 K/min. The measurement was repeated three times. 2.4. Solubility Measurements. The solubility of BSA in selected solvents was measured with a gravimetric analysis method. The experimental method and apparatus had been validated in our previous research.5 Excess BSA was added to a 250 mL jacketed glass crystallizer which contains almost 100 mL solvent, and the temperature was controlled by a thermostatic water bath (FP 51, JULABO, Germany) with an accuracy of ±0.01 K. The true temperature of solution was displayed by a mercury glass thermometer with a standard uncertainty of 0.01 K. The suspension was constantly stirred by a magnetic stirrer (78-1, Changzhou Aohua Instrument Co., Ltd., China) for at least 10 h at certain fixed temperature to ensure that the solid−liquid equilibrium had been reached. Then, the stirring was stopped, and the solution was kept static for another 10 h. Afterward, approximately 5 mL of the supernatant was pipetted out and placed in a weighing beaker using a preheated syringe equipped with a 0.22 μm filter. The empty beaker and the beakers containing saturated solution were both weighed by an electronic balance with an accuracy of ±0.1 mg (Mettler Toledo AL204), followed by drying in an oven at 50 °C for at least 48 h until the total weight remained unchanged. The weighing bottle was weighed after drying. The residual bottom solids were filtered, dried, and analyzed by XRPD to confirm that no polymorphic transformation occurred during experiments. In order to obtain accurate results, every experiment was carried out at least three times, and the mean value was adopted as the final value. The mole fraction solubility (x1) of BSA was calculated with the following equation

equation were used to correlate the solubility data. Furthermore, the dissolution Gibbs energy, molar enthalpy, and molar entropy were calculated based on the experimental data and the Wilson model.

2. EXPERIMENTAL SECTION 2.1. Materials. BSA with a mass fraction of 0.98 was provided by Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). All solvents besides isopropanol were analytical reagents and used without any treatment. Isopropanol was high-performance liquid chromatography grade. The details of BSA and selected solvents are tabulated in Table 1. Table 1. Detailed Information of BSA and Selected Solventsa CAS no.

source

BSA

chemicals

98-10-2

methanol

67-56-1

ethanol

64-17-5

n-propanol

71-23-8

isopropanol

67-63-0

n-butanol

71-36-3

isobutanol

78-83-1

n-pentanol

71-41-0

isopentanol

123-51-3

acetone

67-64-1

ethyl acetate

141-78-6

dichloromethane

75-09-2

acetonitrile

75-05-8

cyclopentanone

120-92-3

cyclohexanone

108-94-1

methyl acetate

79-20-9

ethyl formate

109-94-4

Shanghai Aladdin Biochemical Technology Co., Ltd. Tianjin Damao Chemical Reagent Factory Guangdong Guanghua SciTech Co., Ltd Tianjin Damao Chemical Reagent Factory Tianjin Kemiou Chemical Reagent Co., Ltd. Shanghai Aladdin Biochemical Technology Co., Ltd. Tianjin Damao Chemical Reagent Factory Tianjin Damao Chemical Reagent Factory Tianjin Damao Chemical Reagent Factory Guangzhou Chemical Reagent Factory Tianjin Damao Chemical Reagent Factory Guangzhou Chemical Reagent Factory Tianjin Fuyu Fine Chemicals Co., Ltd. Tianjin Kemiou Chemical Reagent Co., Ltd. Shanghai Aladdin Biochemical Technology Co., Ltd. Tianjin Damao Chemical Reagent Factory Tianjin Damao Chemical Reagent Factory

mass fraction purity ≥0.980 ≥0.995 ≥0.997 ≥0.995 ≥0.999 ≥0.990 ≥0.995 ≥0.995 ≥0.985

x1 =

≥0.995 ≥0.995

mA /MA mA /MA + mB /MB

(1)

where mA is the mass of the solute, and mB is the mass of selected solvent. MA and MB represent the molecular weights of the solute and solvent, respectively.

≥0.995 ≥0.995

3. THEORETICAL BASIS 3.1. Modified Apelblat Equation. The relationship between the experimental mole fraction solubility of solute and temperature T in selected solvents is generally modeled with modified Apelblat equation6,7 B ln x1 = A + + C ln(T /K) (2) T /K

≥0.990 ≥0.990 ≥0.980 ≥0.970

where x1 is the mole fraction solubility of BSA; T represents the absolute temperature; A, B, and C are empirical constants, which were obtained by nonlinear multivariate regression analysis. 3.2. λh Equation. The λh equation is a semiempirical model that was developed by Buchowski et al.,8 and can be used to correlate the molar solubility in many solvents.9,10 ÄÅ ÉÑ ÅÅ i1 1 − x1 ÑÑÑ 1 yzz Å ÑÑ = λhjjjj − lnÅÅÅ1 + λ z Ñ j ÅÅÇ x1 ÑÑÖ Tm zz{ (3) kT where Tm is the melting point of BSA determined by DSC; λ and h are two model parameters.

a

All purity of samples was stated by the corresponding supplier.

2.2. Solid Phase Characterization. The solid forms of the raw material and recovered equilibrated samples of BSA in all selected solvents were evaluated by X-ray powder diffraction (XRPD). The diffractometer (Rigaku D/Max 2000 VPC, Japan) used in this work adopted a Cu Kα radiation with a step size of 0.02° over the range 5°−60°. 2.3. Differential Scanning Calorimetry. In order to correlate the solubility values of BSA in different solvents with thermodynamic models, the melting point and melting molar enthalpy were determined by using differential scanning B

DOI: 10.1021/acs.jced.9b00360 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

3.5. Dissolution Thermodynamics. The dissolution process of real solution can be described as four stages: heating process, fusion process, cooling process, and mixing process,16,17 and the entire dissolution thermodynamics can be expressed as

3.3. NRTL Model. The simplified equation for the liquid− solid equilibrium is written as ln x1 =

ΔHfus ijj 1 1 yz − zzz − ln γ1 jjj R k Tm T z{

(4)

where Tm and ΔHfus are the melting point and fusion enthalpy of BSA, respectively. For a binary system, the activity coefficient of the solute in the liquid phase described by the NRTL model is5,11 ÅÄÅ ÑÉÑ Å τ21G212 ÑÑ τ12G12 ÑÑ ln γ1 = x 2 2ÅÅÅÅ + 2Ñ ÅÅÇ (x1 + x 2G21)2 (x 2 + x1G12) ÑÑÖ (5) Gji = exp( −αjiτji)

(6)

αij = αji = α

(7)

τij =

gij − gjj RT

=

ΔdisM = x(Δheat M + ΔfusM + Δcool M ) + Δmix M

where M can be regarded as Gibbs energy (G), enthalpy (H), and entropy (S). x is the mole fraction of BSA in various solvents. Because the values of heating and cooling process (ΔheatM, ΔcoolM) are lower than that of the fusion procedure, the two terms can be ignored.15,17 Excess properties are used to evaluate the differences of the mixing thermodynamic properties between real solution and the ideal solution, that is, as follows

Δgij RT

(8)

where x1 and x2 = 1 − x1 are the mole fraction of the BSA and selected solvent, respectively. γi is the activity coefficient of component i. αij is a measure of the nonrandomness of the solution and the variable α generally varies from 0.2 to 0.47. Δgij stands for the equation parameter and represents the cross-interaction energy. Gij could be obtained from τij and αij. 3.4. Wilson Model. The Wilson model is an expression of the activity coefficient and widely used to correlate solid− liquid equilibrium. The model in the pure solvent system is given by eqs 9−1212,13

V=

M ρ

(9)

Δmix H = HE + Δmix H id

(17)

Δmix S = S E + Δmix S id

(18)

E

E

Δmix Gid = RT (x1 ln x1 + x 2 ln x 2)

(19)

Δmix H id = 0

(20)

Δmix S id = −R(x1 ln x1 + x 2 ln x 2)

(21)

On the basis of the Wilson model, the excess mixing properties can be expressed as following equations20,21

(10)

GE = −RT (x1 ln(x1 + x 2 Λ12) + x 2 ln(x 2 + x1Λ 21)) ÄÅ É Å ∂(GE /T ) ÑÑÑ E 2Å Å ÑÑ Å H = −T ÅÅ Ñ ÅÅÇ ∂T ÑÑÑÖ ij b Λ b21Λ 21 yzz = Rx1x 2jjj 12 12 + z jx + Λ x x 2 + Λ 21x1 zz{ 12 2 k 1

(11)

(12)

SE =

HE − GE T

(22)

(23)

(24)

The relative deviation (RD) between the experimental solubility and the calculated value was computed by eq 25 x1 − x1,calc RD = x1 (25) To evaluate the four thermodynamic models used in this study, relative average deviation (RAD) was employed

bij

T/K Ä É bij zyÑÑÑÑ Vj ÅÅÅÅ ji j z Å zzÑÑÑ Λij = expÅÅ−jjaij + zÑÑ ÅÅ j T /K Vi {ÑÖ ÇÅ k

(16)

where G , H , and S are the excess Gibbs energy, enthalpy, and entropy, respectively, and ΔmixGid, ΔmixHid, and ΔmixSid represent the mixing Gibbs energy, enthalpy, and entropy of the ideal solution, respectively. The mixing thermodynamic properties of the ideal solution can be described as follows18,19

where γ1 and γ2 are the activity coefficients of the solute and the solvent, respectively; V1 and V2 represent the molar volume of the BSA and the solvent, respectively, and are calculated by eq 12 with the mole mass (M) and density (ρ). Δλ refers to energy parameters regarding cross interactions between the solute and solvent. Supposing that the binary cross-interaction parameters in the NRTL model and Wilson model are a linear relationship with the temperature,14,15 τij and Λij can be expressed as eqs 13 and 14, respectively. τij = aij +

Δmix G = GE + Δmix Gid

E

ij yz Λ 21 Λ12 zz ln γ1 = −ln(x1 + Λ12x 2) + x 2jjj − jx + Λ x x 2 + Λ 21x1 zz{ 12 2 k 1

Ä É É Ä V2 ÅÅÅÅ λ12 − λ11 ÑÑÑÑ V2 ÅÅÅÅ Δλ12 ÑÑÑÑ Λ12 = expÅÅ− Ñ Ñ = expÅÅ− V1 ÅÅÇ RT ÑÑÑÖ V1 ÅÅÇ RT ÑÑÑÖ ÄÅ ÉÑ É ÄÅ ÅÅ λ − λ 22 ÑÑÑ Ñ Å V ÑÑ = V1 expÅÅÅ− Δλ 21 ÑÑÑ Λ 21 = 1 expÅÅÅ− 21 Ñ Å V2 ÅÅÇ RT ÑÑÖ V2 ÅÅÇ RT ÑÑÑÖ

(15)

(13)

RAD = (14)

n x −x 1 ∑ 1 1,calc N i x1

(26)

where N is the number of experimental data points; x1 and x1,calc represent the experimental and calculated solubility values, respectively.

where, aij and bij are model parameters, which are independent of temperature and composition. C

DOI: 10.1021/acs.jced.9b00360 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

4. RESULTS AND DISCUSSION 4.1. X-ray Powder Diffraction Analysis. It is clearly identified that the XRPD patterns of remain solids are in

Figure 3. DSC curve of BSA.

difference in equipment, measuring conditions, determination method, purity of the raw material, and so forth. Then, the fusion entropy ΔfusS can be computed with eq 27 and the ΔfusS value of BSA is 60.23 J·mol−1·K−1. ΔfusS =

ΔfusH Tm

(27)

4.3. Solubility Data and Correlation. The experimental molar solubility of BSA in methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-pentanol, isopentanol, acetone, ethyl acetate, acetonitrile, cyclohexanone, cyclopentanone, methyl acetate, ethyl formate, and dichloromethane with the temperature ranging from 273.15 to 324.45 K is listed in Table 2 and displayed graphically in Figures 4 and 5. The two figures were plotted in terms of solvent categories, that is, alcohols and other types of solvents. Obviously, the solubility of BSA increases with the increase of temperature in all selected solvents. Besides, the solubility behaviors are diverse in various solvents. At the same temperature, the solubility of BSA in cyclopentanone, acetone, and cyclohexanone is much greater than that in other thirteen solvents. In alcohols, the solubility level ranks in the following order: methanol > ethanol > n-propanol ≈ isopropanol > n-butanol > n-pentanol > isopentanol ≈ isobutanol. In other eight solvents, the solubility is ordered as cyclopentanone > acetone > cyclohexanone > (methyl acetate, acetonitrile) > ethyl acetate > ethyl formate > dichloromethane. In order to elucidate the differences of BSA solubility in selected solvents, some physicochemical properties of the solvents including polarity index [ET(30)], dipole moment in the unit of debye (μ), dielectric constant (ε), and Hildebrand solubility parameters (δH) were collected from literature24−26 and displayed in Table 3. The sequence of polarity of selected alcohols is methanol (55.4) > ethanol (51.9) > n-propanol (50.7) > n-butanol (49.7) > n-pentanol (49.1) > isopentanol (49.0) > isobutanol (48.6) > isopropanol (48.4). Therfore, the sequence of solubility in alcohols is in accordance with the polarity besides isopropanol, which fits the “like dissolves like” rule. Polarity should be an important factor influencing the solubility behavior in alcohols due to the strong polarity of BSA. Besides, the solubility increases with the increasing dielectric constant and Hildebrand solubility parameter for the alcohols with the n-alkyl chain. For example, the solubility level as well as the aforementioned two parameters can be ranked as

Figure 2. XRPD of residual solids in sixteen solid−liquid equilibrium systems: (a) methanol, ethanol, acetone, ethyl acetate, acetonitrile, methyl acetate, ethyl formate, dichloromethane, and n-propanol; (b) isopropanol, n-butanol, isobutanol, cyclohexanone, cyclopentanone, npentanol, isopentanol, and raw material.

accordance with the raw material as shown in Figure 2a,b; thus, no polymorphic transformation occurs during the whole experiments. The characteristic diffraction peaks of BSA are located at 11.437°, 19.679°, 20.579°, 21.680°, 22.920°, and 34.658°. 4.2. Melting Point and Fusion Properties of BSA. The melting point and fusion enthalpy of BSA were characterized by DSC, as shown in Figure 3. The onset temperature of the endothermic peak in this curve was defined as the melting temperature of BSA. The melting temperature Tm of BSA is 425.35 K (the standard uncertainty is u (Tm) = 0.5 K), and fusion enthalpy ΔfusH is 25.62 kJ/mol (the relative standard uncertainty ur (ΔfusH) = 0.03). The melting temperature determined in this work shows great consistency with the literature.22 However, it is slightly lower than the value reported in ref 23. The fusion enthalpy measured in this work is a little bigger than that in ref 22. This may be caused by the D

DOI: 10.1021/acs.jced.9b00360 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. Experimental and Calculated Solubility of BSA in Pure Solvents (P = 0.1 MPa) T/K

104xexp 1

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 313.15 317.65 323.15

295.0 325.3 356.5 409.5 460.1 535.8 609.8 698.7 808.4 922.6 1066

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 313.15 317.65 323.15

159.0 182.1 198.9 230.9 260.9 307.3 354.8 409.7 479.9 546.8 635.3

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

80.58 90.66 102.8 121.9 143.2 175.5 208.4 253.6 293.3 359.8 422.6

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

75.98 83.45 96.37 119.1 140.9 171.9 212.8 261.0 305.1 370.9 444.1

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

57.81 67.89 79.79 94.58 110.3 135.1 160.4 195.2 226.0 275.6 323.0

104xApelblat 1

104xλh 1

Methanol 283.8 281.2 326.4 331.3 362.3 371.3 415.9 428.0 464.8 477.0 539.5 547.6 606.5 607.3 697.0 683.4 803.2 767.2 914.6 850.0 1075 961.3 Ethanol 153.3 153.3 179.7 182.9 201.9 206.8 235.1 241.1 265.3 271.0 311.4 314.4 352.8 351.6 408.6 399.5 474.1 452.8 542.6 506.1 640.9 578.5 n-Propanol 73.47 76.07 89.82 93.46 105.3 109.3 126.1 129.7 147.6 149.8 177.6 176.8 208.2 202.9 251.0 237.7 290.4 268.1 355.2 315.8 427.2 365.8 Isopropanol 66.38 70.68 83.60 88.18 100.0 104.3 122.3 125.2 145.4 146.2 177.8 174.5 210.9 202.0 257.2 239.1 299.8 271.7 369.9 323.1 447.4 377.3 n-Butanol 54.32 55.86 67.46 69.48 79.83 81.98 96.39 98.25 113.4 114.5 137.0 136.4 160.8 157.7 193.8 186.3 223.8 211.6 272.6 251.4 325.9 293.4

104xNRTL 1

104xWilson 1

T/K

104xexp 1

294.6 326.1 356.9 409.1 459.5 535.6 609.4 699.6 809.0 921.6 1067

295.2 324.9 356.6 409.1 459.4 537.6 607.9 701.7 809.0 917.9 1068

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

38.73 45.00 53.74 66.60 80.81 99.55 119.6 148.4 176.1 214.2 255.0

159.3 181.9 198.7 230.6 260.8 307.8 354.7 410.4 479.3 546.1 635.9

160.3 178.9 198.7 231.2 262.2 310.3 353.5 411.0 477.1 544.5 637.7

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

47.42 53.79 61.58 72.71 89.40 111.0 130.8 164.3 188.3 232.2 277.9

76.44 91.10 105.4 125.3 146.2 176.2 207.1 250.4 290.2 356.5 427.7

81.11 89.16 102.3 122.6 144.8 176.5 208.6 252.9 292.8 356.8 425.0

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

41.93 48.80 55.71 68.32 80.44 99.94 119.4 148.1 171.9 209.9 249.0

75.95 83.69 96.23 119.0 140.8 172.1 212.9 261.0 304.9 371.0 444.0

73.22 86.04 100.2 121.3 142.8 173.8 209.0 256.0 299.9 370.4 449.8

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 313.15 317.65 323.15

57.83 67.99 79.80 94.48 110.2 135.1 160.5 195.3 226.0 275.3 323.1

58.18 67.36 78.51 94.74 112.0 136.4 160.9 194.6 224.9 273.4 325.0

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 313.15 317.65 323.15

E

1166 1234 1295 1383 1451 1559 1648 1759 1883 2007 2171 325.0 360.2 389.2 429.0 467.3 517.1 562.9 615.3 681.9 736.2 820.4

a

104xApelblat 1

104xλh 1

Isobutanol 34.83 36.98 45.05 47.09 54.84 56.56 68.12 69.10 81.90 81.80 101.2 99.19 120.8 116.4 148.0 139.8 172.7 160.7 213.0 194.0 257.0 229.6 n-Pentanol 42.50 44.71 53.13 55.70 63.27 65.79 77.00 78.96 91.27 92.12 111.4 109.9 131.9 127.2 160.6 150.5 187.2 171.1 231.1 203.6 279.8 238.0 Isopentanol 38.02 39.96 47.90 50.01 57.29 59.27 69.97 71.40 83.08 83.54 101.4 100.0 120.0 116.1 145.9 137.8 169.6 157.0 208.4 187.4 251.0 219.7 Acetone 1164 1148 1237 1237 1296 1304 1380 1395 1453 1470 1558 1574 1646 1658 1759 1762 1884 1873 2006 1978 2171 2116 Ethyl Acetate 323.7 321.4 360.4 360.9 389.6 391.6 430.9 434.1 466.6 470.0 517.8 520.6 561.3 562.8 616.7 615.8 678.0 673.4 738.6 729.7 820.3 804.9

104xNRTL 1

104xWilson 1

38.90 45.01 53.63 66.49 80.78 99.61 119.8 148.5 175.8 214.1 255.2

38.77 44.70 53.79 67.05 81.06 100.7 120.6 148.1 173.2 213.4 256.8

47.38 54.06 61.70 72.60 89.44 111.1 131.0 164.2 188.6 232.3 278.1

44.49 54.08 63.48 76.33 90.65 110.7 130.8 160.6 186.7 231.3 280.5

41.90 48.92 55.67 68.25 80.35 100.0 119.6 148.1 171.9 209.8 249.1

42.20 47.68 55.96 68.47 81.86 100.8 120.0 146.6 170.5 209.1 250.5

1164 1238 1296 1380 1452 1557 1646 1760 1885 2007 2170 325.9 359.8 388.4 428.8 466.7 517.6 562.7 616.9 680.3 738.0 819.4

1163 1238 1297 1380 1453 1557 1646 1760 1885 2007 2170 324.8 360.3 389.1 430.3 466.1 517.8 561.6 617.3 678.6 738.9 819.7

DOI: 10.1021/acs.jced.9b00360 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. continued T/K

104xexp 1

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 313.15 317.65 323.15

348.5 396.3 445.7 506.6 568.5 649.1 722.7 816.8 927.8 1038 1180

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

1137 1201 1264 1339 1420 1512 1605 1713 1810 1951 2096

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

1395 1458 1517 1595 1674 1769 1869 2006 2102 2284 2448

104xApelblat 1

104xλh 1

Acetonitrile 344.9 342.1 399.8 401.6 444.6 449.0 509.3 515.8 566.4 573.4 650.4 655.9 723.3 725.5 818.3 813.8 925.5 910.8 1034 1006 1183 1134 Cyclohexanone 1132 1121 1204 1203 1266 1272 1344 1354 1417 1430 1512 1523 1600 1608 1713 1714 1809 1802 1952 1930 2097 2057 Cyclopentanone 1393 1366 1458 1456 1518 1530 1595 1618 1672 1699 1773 1800 1870 1890 1998 2003 2108 2096 2277 2232 2451 2366

104xNRTL 1

104xWilson 1

T/K

104xexp 1

348.8 397.4 444.9 506.6 567.0 649.2 723.1 818.2 927.7 1037 1181

347.6 399.8 443.3 507.6 564.9 649.9 723.7 819.7 927.2 1035 1182

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 313.15 317.65 323.15

422.5 467.0 503.0 556.4 606.2 676.6 743.5 822.6 914.7 1013 1134

1137 1202 1263 1341 1416 1513 1602 1716 1811 1953 2094

1136 1203 1264 1342 1415 1512 1601 1716 1811 1954 2094

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 313.15 317.65 323.15

180.4 204.1 227.6 259.9 288.7 327.4 367.1 416.1 469.7 525.6 595.9

1397 1458 1516 1592 1669 1772 1872 2002 2113 2279 2447

1394 1459 1518 1595 1670 1773 1871 1997 2112 2278 2450

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 312.15

13.36 17.48 21.42 27.82 33.49 42.35 49.53 60.23 69.10

104xApelblat 1

104xλh 1

Methyl Acetate 420.2 413.2 466.4 467.6 504.1 510.0 558.9 568.7 607.3 618.4 678.9 688.5 741.1 746.8 822.4 820.0 914.5 899.5 1008 977.0 1137 1080 Ethyl Formate 178.1 177.0 205.4 206.5 227.8 230.0 260.0 263.1 288.6 291.7 330.6 332.9 367.1 367.7 414.7 412.2 468.5 461.3 523.0 509.9 598.2 575.7 Dichloromethane 13.06 13.32 17.66 17.70 21.67 21.55 27.80 27.51 33.47 33.10 42.11 41.83 49.81 49.81 60.02 60.72 69.23 70.88

104xNRTL 1

104xWilson 1

422.8 466.7 502.9 556.6 605.9 677.4 742.4 823.3 915.8 1011 1135

423.3 465.9 502.5 556.9 605.8 678.5 741.6 824.0 916.5 1009 1135

181.0 204.1 227.0 259.2 288.1 328.5 367.4 416.2 469.9 524.6 596.4

180.2 205.2 226.7 258.8 287.6 330.3 367.5 415.7 469.7 523.7 597.1

13.38 17.43 21.40 27.86 33.51 42.35 49.51 60.20 69.13

13.63 17.99 21.81 27.69 33.18 41.70 49.43 59.97 69.69

a exp x1

is the experimental solubility of BSA in pure solvents; the standard uncertainty of temperature is u(T) = 0.05 K; the relative uncertainty of pressure is ur(P) = 0.05. The relative standard uncertainty of solubility is ur(x1) = 0.026.

Figure 4. Solubility of BSA in eight alcohols: red dot, methanol; blue square, ethanol; pink triangle (top), n-propanol; black diamond, isopropanol; cyan triangle (left), n-butanol; red triangle (right), isobutanol; pink star, n-pentanol; and green cross, isopentanol.

Figure 5. Solubility of BSA in other eight solvents: red dot, acetone; blue square, ethyl acetate; pink triangle (top), acetonitrile; black diamond, cyclohexanone; cyan triangle (left), cyclopentanone; red triangle (right), methyl acetate; brown star, ethyl formate; and green cross, dichloromethane. F

DOI: 10.1021/acs.jced.9b00360 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. Physical Properties for Selected Solvents

Table 5. 100 RAD of Four Models in 16 Solvents

solvent

ET(30)a

μb

εc

δHd

solvent

Apelblat

λh

NRTL

Wilson

methanol ethanol n-propanol n-butanol n-pentanol isopentanol isobutanol isopropanol acetonitrile acetone ethyl formate dichloromethane methyl acetate ethyl acetate cyclopentanone cyclohexanone

55.4 51.9 50.7 49.7 49.1 49 48.6 48.4 45.6 42.2 40.9 40.7 38.9 38.1 21.5 20.3

1.7 1.7 1.7 1.66 1.7 1.8 1.7 1.66 3.2 2.9

32.6 22.4 20.1 18.2 13.9 15.2 17.7 18.3 37.5 20.6

1.8 1.7 1.7

9.1 6.7 6.02 13.67 18.2

29.7 26 24.3 23.3 22.3 22.7 21.9 23.4 24.3 20.5 19.2 19.8 19.6 18.6 39.4 39.8

methanol ethanol n-propanol isopropanol n-butanol isobutanol n-pentanol isopentanol acetone ethyl acetate acetonitrile cyclohexanone cyclopentanone methyl acetate ethyl formate dichloromethane average

1.11 1.36 2.22 2.82 1.53 2.01 2.50 2.36 0.10 0.25 0.40 0.17 0.16 0.27 0.41 0.70 1.15

4.22 4.00 6.36 7.60 4.33 5.12 6.88 5.71 0.99 0.77 1.57 0.76 1.36 1.86 1.58 1.07 3.39

0.11 0.12 1.68 0.08 0.06 0.13 0.14 0.08 0.12 0.16 0.11 0.12 0.18 0.09 0.17 0.10 0.22

0.21 0.58 0.64 1.98 0.75 0.62 1.90 0.87 0.14 0.21 0.33 0.14 0.19 0.19 0.32 1.24 0.64

3.1

a

Dimroth and Reichardt’s polarity parameter, taken from ref 26. b Dipole moment, μ/D. Taken from ref 24. cDielectric constant at T = 293.15 K. Taken from ref 24. dHildebrand solubility parameter, the unit is MPa1/2. Taken from ref 25.

methanol (ε = 32.6, δH = 29.7) > ethanol (ε = 22.4, δH = 26) > n-propanol (ε = 20.1, δH = 24.3) > n-butanol (ε = 18.2, δH =

Table 4. Parameters of Thermodynamic Models for BSA in Different Solvents modified Apelblat equation solvent methanol ethanol n-propanol isopropanol n-butanol isobutanol n-pentanol isopentanol acetone ethyl acetate acetonitrile cyclohexanone cyclopentanone methyl acetate ethyl formate dichloromethane

A

Wilson model

B

−181.6979 5925.0455 −159.8526 4783.3395 −147.7969 3795.4325 −108.3747 1827.2616 −102.1655 1711.1797 −50.8478 −885.9499 −125.6646 2608.8895 −96.0939 1287.0529 −103.0351 3548.4273 −87.1878 2336.6507 −92.3369 2119.5707 −88.2262 2927.7951 −124.5395 4623.0945 −137.6183 4485.4416 −100.6621 2489.9904 85.2260 −7076.6073 λh equation

C

a12

27.8866 24.6279 22.9925 17.2317 16.1649 8.6330 19.7241 15.2958 15.6672 13.4051 14.4759 13.4276 18.8312 21.0387 15.6003 −11.7574

−2.1884 −0.9701 −1.3449 −3.6700 −0.6360 −1.0442 −2.4526 −0.5677 7.3680 1.7396 −1.6580 1.7129 7.9266 −0.8429 0.8934 −0.5723

b12 6.0193 −94.8039 255.6472 1858.4298 181.5135 395.0967 1477.8742 302.6503 −2888.2395 −792.6497 −24.1814 −1080.6962 −3066.1970 −59.4855 −559.9519 406.5129 NRTL model

a21

b21

19.2568 23.9662 39.3430 2.2701 37.9808 77.4534 2.3042 51.5330 −5.6905 6.1799 7.3030 5.9366 −7.2026 5.8354 14.2727 23.9997

−4754.3259 −6043.2065 −10285.6724 −820.0138 −9863.3448 −20585.5044 −848.2982 −13630.9877 2010.1483 −1528.2124 −1705.8197 −1572.1552 2446.5744 −1550.3822 −3447.7531 3.2731

solvent

λ

h

α

a12

b12

a21

b21

methanol ethanol n-propanol isopropanol n-butanol isobutanol n-pentanol isopentanol acetone ethyl acetate acetonitrile cyclohexanone cyclopentanone methyl acetate ethyl formate dichloromethane

0.3553 0.2375 0.2039 0.2529 0.1873 0.1903 0.1534 0.1488 0.1274 0.1241 0.4106 0.0975 0.0745 0.2085 0.1705 0.1443

5556.8815 8962.1189 12421.1959 10860.6412 14412.9936 15871.1301 17714.7191 18672.9254 4101.2443 9567.7997 4709.1324 4482.0614 3954.9346 6459.1680 10512.2211 24828.8296

0.2 0.2 0.47 0.4225 0.2 0.2 0.3580 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

1.5238 3.1754 2.3547 2.1996 7.8929 12.9454 2.1141 10.4912 1.9389 6.3219 2.1248 4.6135 1.9918 3.3317 5.2888 10.9781

−659.6212 −969.2389 −981.8105 1425.8195 2339.7338 −31.0459 808.2416 710.1534 −1112.1681 −2023.6422 −855.5905 −1891.2204 −1275.4375 −1207.2942 −1582.4583 −1611.2253

−19.5709 −12.4521 −3.4675 −14.1813 −22.6432 −24.4962 −14.6275 −22.9038 −5.4119 17.8754 −12.7038 19.3117 −0.8528 −4.4474 3.3118 −20.8267

12669.2435 11664.2821 1826.2710 7977.3786 15952.8123 17017.1446 9349.6629 16535.8043 6728.2567 2039.4464 10586.7267 −546.7663 4461.4829 8262.3690 7129.0298 17296.5054

G

DOI: 10.1021/acs.jced.9b00360 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article a ,b

Table 6. Dissolution Properties of BSA in 16 Pure Solvents T/K

ΔdisH (J/mol)

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 313.15 317.65 323.15

206.9 416.1 560.1 754.3 918.8 1150 1360 1611 1910 2217 2601

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 313.15 317.65 323.15

128.8 262.5 344.7 457.9 552.0 686.5 814.9 962.5 1145 1318 1545

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

13.65 146.2 220.2 298.2 370.2 469.0 565.1 694.1 805.9 991.6 1166

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

116.8 141.2 172.2 223.2 273.7 346.4 438.0 551.4 656.1 816.1 994.5

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

58.52 131.0 181.6 234.6 284.2 356.2 427.6 524.0 608.4 743.7 872.5

ΔdisS (J/(mol·K)) Methanol 1.001 1.758 2.269 2.946 3.509 4.286 4.982 5.798 6.753 7.715 8.902 Ethanol 0.6036 1.088 1.379 1.774 2.097 2.550 2.976 3.457 4.042 4.587 5.290 n-Propanol 0.1168 0.5970 0.8599 1.132 1.379 1.712 2.030 2.450 2.808 3.393 3.934 Isopropanol 0.4772 0.5654 0.6758 0.8540 1.027 1.273 1.576 1.944 2.279 2.783 3.336 n-Butanol 0.2622 0.5246 0.7042 0.8892 1.059 1.302 1.539 1.853 2.123 2.550 2.949

ΔdisG (J/mol)

T/K

ΔdisH (J/mol)

−66.52 −74.65 −83.05 −96.95 −110.2 −130.9 −150.3 −175.7 −204.7 −233.7 −275.7

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

2.337 104.7 146.3 189.3 232.1 286.8 344.7 427.6 507.4 616.9 733.8

−36.07 −41.22 −46.18 −54.70 −62.95 −75.57 −87.27 −102.8 −120.8 −139.1 −164.5

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

89.70 107.9 128.4 157.3 198.4 252.9 304.0 389.2 452.6 567.1 687.6

−18.25 −20.45 −23.88 −29.12 −34.88 −43.14 −51.51 −63.32 −73.99 −91.28 −110.4

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

12.58 95.24 135.3 181.2 219.9 277.5 333.5 414.6 481.8 588.4 698.0

−13.55 −16.63 −19.63 −23.73 −27.98 −34.42 −40.71 −49.59 −58.02 −72.09 −87.87

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 313.15 317.65 323.15

804.1 959.8 1096 1302 1481 1761 2008 2333 2707 3092 3622

−13.10 −15.44 −18.29 −22.51 −26.88 −33.29 −39.87 −48.85 −56.84 −70.13 −84.30

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 313.15 317.65 323.15

338.0 410.8 468.2 546.8 618.9 714.8 800.6 901.2 1025 1130 1290

H

ΔdisS (J/(mol·K)) Isobutanol 0.04054 0.4121 0.5596 0.7099 0.8564 1.041 1.233 1.503 1.759 2.104 2.467 n-Pentanol 0.3622 0.4280 0.5008 0.6020 0.7431 0.9269 1.096 1.374 1.576 1.938 2.311 Isopentanol 0.08085 0.3804 0.5226 0.6827 0.8158 1.010 1.196 1.460 1.675 2.012 2.351 Acetone 3.908 4.465 4.942 5.649 6.254 7.187 7.992 9.035 10.22 11.41 13.03 Ethyl Acetate 1.506 1.768 1.972 2.245 2.491 2.813 3.096 3.422 3.818 4.148 4.639

ΔdisG (J/mol) −8.737 −10.34 −12.54 −15.97 −19.47 −24.62 −29.82 −37.05 −43.78 −54.59 −66.62 −9.235 −11.58 −13.75 −16.77 −19.89 −24.38 −28.91 −35.57 −41.24 −51.41 −62.20 −9.504 −10.95 −13.04 −16.20 −19.74 −24.64 −29.79 −36.76 −43.06 −53.73 −64.78 −263.4 −286.6 −304.8 −330.3 −353.0 −386.8 −414.8 −451.1 −493.4 −532.4 −588.6 −73.36 −82.74 −90.76 −101.9 −111.6 −125.9 −138.0 −153.3 −170.6 −187.6 −209.1

DOI: 10.1021/acs.jced.9b00360 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 6. continued T/K

ΔdisH (J/mol)

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 313.15 317.65 323.15

493.1 616.9 733.1 882.7 1029 1224 1400 1627 1892 2157 2501

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

598.3 787.5 941.8 1118 1287 1482 1665 1881 2067 2336 2608

273.15 279.15 283.85 289.15 293.75 299.15 303.75 309.15 313.35 319.15 324.45

704.9 884.2 1055 1286 1525 1847 2178 2639 3022 3675 4328

ΔdisS (J/(mol·K))

Acetonitrile 2.093 2.540 2.951 3.472 3.970 4.626 5.207 5.941 6.786 7.616 8.675 Cyclohexanone 3.170 3.848 4.389 4.996 5.565 6.207 6.801 7.488 8.068 8.893 9.709 Cyclopentanone 3.735 4.375 4.973 5.768 6.575 7.643 8.725 10.20 11.41 13.43 15.42

ΔdisG (J/mol)

T/K

ΔdisH (J/mol)

−78.60 −92.14 −103.4 −120.5 −135.2 −158.5 −178.5 −203.7 −233.0 −262.2 −302.3

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 313.15 317.65 323.15

381.1 507.1 604.0 740.6 861.8 1032 1188 1375 1591 1817 2102

−267.6 −286.7 −304.0 −326.6 −347.7 −374.8 −400.8 −433.9 −461.1 −502.2 −542.1

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 313.15 317.65 323.15

227.5 298.1 357.5 437.0 505.2 596.4 684.9 794.0 912.4 1035 1189

−315.3 −337.1 −356.6 −381.8 −406.4 −439.4 −472.2 −514.3 −553.3 −611.2 −675.0

273.15 279.15 283.45 288.95 293.25 298.85 303.15 308.15 312.15

38.71 50.64 62.05 80.57 96.96 122.6 143.3 174.2 199.8

ΔdisS (J/(mol·K))

Methyl Acetate 1.751 2.206 2.549 3.024 3.437 4.009 4.522 5.130 5.817 6.524 7.402 Ethyl Formate 0.9814 1.237 1.448 1.725 1.958 2.265 2.558 2.913 3.293 3.679 4.157 Dichloromethane 0.1530 0.1962 0.2369 0.3016 0.3578 0.4442 0.5130 0.6139 0.6964

ΔdisG (J/mol) −97.19 −108.7 −118.5 −133.2 −146.1 −166.1 −182.8 −205.8 −230.6 −255.3 −290.0 −40.57 −47.21 −52.94 −61.44 −68.98 −80.50 −90.56 −103.6 −118.8 −133.6 −154.3 −3.082 −4.129 −5.099 −6.577 −7.965 −10.15 −12.22 −14.97 −17.58

The value of ΔdisG, ΔdisH, and ΔdisS are calculated with eqs 15−24. The expanded uncertainties are U(ΔdisG) = 0.050ΔdisG, U(ΔdisH) = 0.060ΔdisH, U(ΔdisS) = 0.050ΔdisS (0.95 level of confidence).

a

b

23.3) > n-pentanol (ε = 13.9, δH = 22.3). However, the rule based on the dielectric constant is not suitable for the i-alkyl alcohols. For other types of solvents, the solubility behavior is strongly deviated from the “like dissolves like” rule. Thus, polarity of the solvents is not the only factor determining the solubility of BSA. Meanwhile, the sequence of solubility is not in accordance with the sequence of any physical properties tabulated in Table 3. As shown in Figure 1, the solute molecule contains a hydrogen acceptor group sulfonamido (−SO2NH2); then, hydrogen bonds can be formed between the solute and solvent molecules. In fact, the mutual competition of the interaction between the solute−solvent and solvent−solvent finally determines the solubility. In this case, both van de Waals interaction (represented by polarity) and hydrogen bonding (included hydrogen bond donor and acceptor propensity) contribute to the solute−solvent interaction.27 In addition, the degree of solvent−solvent association represented by the cohesive energy density may also influence the solubility behavior.28 The solubility does not follow the order of any single solvent property in Table 3, which is a normal result of a combination of multiple influential factors.

Four thermodynamic models, including the modified Apelblat equation, λh equation, NRTL equation, and the Wilson equation were used to correlate the experimental data in this work. The model parameters are listed in Table 4. The RD between the computed solubility of BSA with four models and the experimental data are presented in Table S1. Table 5 tabulated the RAD values of the four models. On the whole, the values of RAD with NRTL equation are smaller than with other three equations. So, the NRTL model offers the best correlation results among the four models. 4.4. Calculation of Dissolution Thermodynamics. Three dissolution thermodynamic properties, that is, Gibbs energy (ΔdisG), enthalpy (ΔdisH), and entropy (ΔdisS) were calculated according to eqs 15−24 and the experimental solubility. The results are shown in Table 6. It is clear that the values of dissolution Gibbs energy of BSA in 16 solvents are all negative and decreases with the rising temperature. The dissolution enthalpy of BSA in 16 solvents are all positive, indicating that the dissolution process of BSA in the selected solvents are endothermic. This explains why the solubility of BSA in tested solvents increases with the rising temperature. Furthermore, the values of the entropy, which represents the I

DOI: 10.1021/acs.jced.9b00360 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

(2) Zha, X.; Wu, L.; Xu, S.; Zou, F.; Xi, J.; Ma, T.; Liu, R.; Liu, Y.-C.; Deng, D.; Gu, Y.; Zhou, J.; Lan, F. Design, synthesis and biological activity of N-(3-substituted-phenyl)benzenesulfonamides as selective and reversible LSD1 inhibitors. Med. Chem. Res. 2016, 25, 2822− 2831. (3) Li, Y. J.; Wu, K.; Li, Y.; Zhang, Y.; Liu, J. J.; Wang, X. Z. Solubility in different solvents, crystal polymorph and morphology, and optimization of crystallization process of AIBN. J. Chem. Eng. Data 2018, 63, 27−38. (4) Jin, J.-s.; Wang, Y.-b.; Zhang, Z.-t.; Liu, H.-t. Solubilities of benzene sulfonamide in supercritical CO2 in the absence and presence of cosolvent. Thermochim. Acta 2012, 527, 165−171. (5) Wu, K.; Li, Y. J. Solid−liquid equilibrium of azacyclotridecan-2one in 15 pure solvents from T = 273.15 to 323.15 K: Experimental determination and thermodynamic modeling. J. Chem. Eng. Data 2019, 64, 1640−1649. (6) Apelblat, A.; Manzurola, E. Solubilities of L-aspartic, DL-aspartic, DL-glutamic, p-hydroxybenzoic, o-anistic, p-anisic, and itaconic acids in water from T = 278 K to T = 345 K. J. Chem. Thermodyn. 1997, 29, 1527−1533. (7) Manzurola, E.; Apelblat, A. Solubilities of L-glutamic acid, 3nitrobenzoic acid, p-toluic acid, calcium-L-lactate, calcium gluconate, magnesium-DL-aspartate, and magnesium-L-lactate in water. J. Chem. Thermodyn. 2002, 34, 1127−1136. (8) Buchowski, H.; Ksiazczak, A.; Pietrzyk, S. Solvent activity along a saturation line and solubility of hydrogen-bonding solids. J. Phys. Chem. 1980, 84, 975−979. (9) Wang, L.; Sun, J.; Zhang, H.; Shen, Z.; Xu, L.; Liu, G. Solubility and thermodynamic analysis of methyleneaminoacetonitrile in binary solvents from T = (278.15 to 323.15) K. J. Mol. Liq. 2019, 283, 462− 471. (10) Ma, Y.; Cao, Y.; Yang, Y.; Li, W.; Shi, P.; Wang, S.; Tang, W. Thermodynamic analysis and molecular dynamic simulation of the solubility of vortioxetine hydrobromide in three binary solvent mixtures. J. Mol. Liq. 2018, 272, 676−688. (11) Renon, H.; Prausnitz, J. M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968, 14, 135−144. (12) Wilson, G. M. Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. J. Am. Chem. Soc. 1964, 86, 127−130. (13) Xu, R.; Wang, J.; Du, C.; Han, S.; Meng, L.; Zhao, H. Solubility determination and thermodynamic dissolution functions of 1,3diphenylguanidine in nine organic solvents at evaluated temperatures. J. Chem. Thermodyn. 2016, 99, 86−95. (14) Chen, X.; Zhou, Z.; Chen, J.; Chu, C.; Zheng, J.; Wang, S.; Jia, W.; Zhao, J.; Li, R.; Han, D. Solubility Determination and Thermodynamic Modeling of Buprofezin in Different Solvents and Mixing Properties of Solutions. J. Chem. Eng. Data 2019, 64, 1177− 1186. (15) Chen, G.; Liang, J.; Han, J.; Zhao, H. Solubility Modeling, Solute-Solvent Interactions, and Thermodynamic Dissolution Properties of p-Nitrophenylacetonitrile in Sixteen Monosolvents at Temperatures Ranging from 278.15 to 333.15 K. J. Chem. Eng. Data 2019, 64, 315−323. (16) Delgado, D. R.; Romdhani, A.; Martínez, F. Solubility of sulfamethizole in some propylene glycol+water mixtures at several temperatures. Fluid Phase Equilib. 2012, 322−323, 113−119. (17) Wang, Y.; Liu, Y.; Xu, S.; Liu, Y.; Yang, P.; Du, S.; Yu, B.; Gong, J. Determination and modelling of troxerutin solubility in eleven mono-solvents and (1,4-dioxane + 2-propanol) binary solvents at temperatures from 288.15 K to 323.15 K. J. Chem. Thermodyn. 2017, 104, 138−149. (18) Xu, R.; Xu, A.; Du, C.; Cong, Y.; Wang, J. Solubility determination and thermodynamic modeling of 2,4-dinitroaniline in nine organic solvents from T = (278.15 to 318.15) K and mixing properties of solutions. J. Chem. Thermodyn. 2016, 102, 178−187.

degree of confusion are positive, so the dissolution process is entropy-driven.

5. CONCLUSIONS The solid−liquid phase equilibrium for the systems of (BSA + neat solvent) was measured with the static gravimetric method over the temperature range of 273.15−324.45 K under atmosphere pressure. The solubility of BSA in all the solvents monotonously increases with the rising temperature. At the same temperature, the solubility of BSA in cyclopentanone, acetone, and cyclohexanone is greater than that in other thirteen solvents. In alcohols, the solubility values rank in the following order: methanol > ethanol > n-propanol ≈ isopropanol > n-butanol > n-pentanol > isopentanol ≈ isobutanol. In other eight solvents, the solubility value is ordered as cyclopentanone > acetone > cyclohexanone > (methyl acetate, acetonitrile) > ethyl acetate > ethyl formate > dichloromethane. The modified Apelblat equation, λh equation, NRTL equation, and the Wilson equation were used to correlate the experimental data. Good agreement was found between experimental data and above models fitted values, and the NRTL model provided the best results on the whole. Finally, the dissolution thermodynamic parameters, including Gibbs energy, molar enthalpy, and molar entropy were calculated based on the experimental data and the Wilson model. The positive values of enthalpy and entropy claims that the dissolution process is endothermic and entropy-driven.



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jced.9b00360. RD between the computed solubility of BSA with four models and the experimental data (PDF)



AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected] (K.W.). *E-mail: [email protected] (L.L.). ORCID

Yajun Li: 0000-0002-5098-7101 Kui Wu: 0000-0002-0562-0204 Lei Liang: 0000-0001-9930-4028 Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS The work was supported by the Program of GDAS’s Project of Science and Technology Development (project reference: 2019GDASYL-0103038), the National Natural Science Foundation of China (NSFC) (project references: 21808247; 51678174), Science and Technology Program of Guangdong (2015A010107008; 2017B030314123), and the Program of Guangdong Academy of Sciences (2019GDASYL-0302005; 2016GDASPT-0108; 2017GDASCX-0105).



REFERENCES

(1) Alexiou, P.; Demopoulos, V. J. A diverse series of substituted benzenesulfonamides as aldose reductase inhibitors with antioxidant activity: design, synthesis, and in vitro activity. J. Med. Chem. 2010, 53, 7756−7766. J

DOI: 10.1021/acs.jced.9b00360 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

(19) da Silva, M. A. V. R.; Ferreira, A. I. M. C. L.; Lima, L. M. S. S.; Sousa, S. M. M. Thermochemistry of phenylacetic and monochlorophenylacetic acids. J. Chem. Thermodyn. 2008, 40, 137−145. (20) Orye, R. V.; Prausnitz, J. M. Multicomponent Equilibria-the Wilson Equation. Ind. Eng. Chem. Res. 1965, 57, 18−26. (21) Li, Y. J.; Liang, L.; Wu, K. Solid-liquid equilibrium and thermodynamic properties of N,2,3-trimethyl-2-isopropylbutamide in seventeen mono solvents from T = (273.15 to 319.15) K. J. Mol. Liq. 2019, 283, 596−605. (22) Flores, H.; Adriana Camarillo, E.; Amador, P. Enthalpies of combustion and formation of benzenesulfonamide and some of its derivatives. J. Chem. Thermodyn. 2012, 47, 408−411. (23) Kumler, W. D.; Halverstadt, I. F. The Dipole Moment of Sulfanilamide and Related Compounds1,2. J. Am. Chem. Soc. 1941, 63, 2182−2187. (24) Smallwood, I. M. Handbook of Organic Solvent Properties; Wiley: New York, 1996. (25) Barton, A. F. M. Handbook of Solubility Parameters and Other Cohesion Parameters; CRC Press: Boca Raton, 1991. (26) Marcus, Y. The Properties of Solvents; John Wiley & Sons Ltd: Chichester, 1998. (27) Gu, C.-H.; Young, V.; Grant, D. J. W. Polymorph screening: Influence of solvents on the rate of solvent-mediated polymorphic transformation. J. Pharm. Sci. 2001, 90, 1878−1890. (28) Gu, C.-H.; Li, H.; Gandhi, R. B.; Raghavan, K. Grouping solvents by statistical analysis of solvent property parameters: implication to polymorph screening. Int. J. Pharm. 2004, 283, 117− 125.

K

DOI: 10.1021/acs.jced.9b00360 J. Chem. Eng. Data XXXX, XXX, XXX−XXX