Solubility Diagrams for Ternary and Quaternary L quid Systems v
JULIAN C. SMITH Cornell C'nicersity, Ithucrt, N. I'. s i x tables, prepared after thorough checking of the literature, give information o n ternary and quaternary liquid systems. The limiting solubility curve and a t least t w o tie lines are available for each system listed.
I
N THE design of equipment for liquid-liquid extraction, a fairly complete knowledge of the equilibrium relations between
the components is desirable. Methods have been proposed for estimating the relations in ternary liquid systems from the properties of the pairs of liquids (102,161 ), but the calculations involved are tedious and the results are not always accurate. For most systems, on the other hand, complete experimental d a t a are not needed; by a n y one of several methods ( I S , 14, 22, SO, 40, 58, 102, 168)the distribution can be predicted from the limiting solubility curve or curves and from two or three accurately known tie lines. In the past, seveial fairly extensive lists of ternary liquid systems have been published (21, 7'1, 126, 126, 1 3 6 ) . Recent nork, however, has greatly added to the number of s y s t e m t h a t have been studied, and the earlier lists were all somewhat incomplete and contained more than a few errors. The following lists of systems were prepared by thorough checking of the literature, as far as possible from original sources, to ensure completeness and elimination of errors. Where the data are also given in the International Critical Tables (7f)or by Seidell ( 1 2 5 , 126) these references have been indicated. The information available on each system listed includes the limiting solubility curve or curves and at least two tie lines. Table I deals with systems containing water and two organic compounds; Table I1 contains references to aqueous systems containing one inorganic compound and one organic liquid. At the top of each column is t h e second component in the system, and below are the various third components. Where both t h e second and third components are fairly common, the system has been listed under each of them-for example, water-acetone-chloroform, and water-chloroform-acetone; in other cases t h e system is listed under the more common of the last two components-for example, water-acetone-trichloroethane. The systems listed in Table I1 would apply to processes in which a n inorganic acid is removed from an organic liquid by extraction with water, or where an organic liquid is "salted out" of water by the addition of an inorganic compound. il few systems involving water and two inorganic compounds form two liquid layers; these are listed in Table 111. Table IV is a list of systems which do not include water as one component. Almost all t h e systems indicated in Tables I, 11, and IT' were studied at atmospheric pressure; some of t h e systems in Table I11 were studied under pressure, and Table V contains references t o nonaqueous systems involving liquid propane under pressures u p to 42 atmospheres. Four-component systems have received some attention, but almost no quaternary liquid system has been studied exhaustively. Table V I is a list of systems on which some distribution data are available. The system acetone-acetic acid-chloroform-water a t 28" C., however, is the only one that has been studied in detail (24). From the results of t h a t study, Hunter (68) proposed a
method of calculating the tie lines in the four-component system from those in the two ternary systems. Complete diatribut,ion data for this system were so calculated by Smith (1S7'), who described a method of representing equilibria in quaternary systems by means of plane graphs. Wiegand ( 1 6 9 ) also described a. method of representing four-component systems and of calculating the tie lines without the use of three-dimensional models or projections of them. When t h e niixt,ure to be extracted contains a large number of compounds, as in petroleum refining, i t is often possible to treat, the system as if it involved only three components. In the method devised by Hunter and Kash (?a),the systems arc considered to consist of the solvent and two hypothet,ical oils of different physical properties. The pure solvent is represented by one apes of the usual t,riangular diagram, and the property of the oil is plotted along t h e opposite side. The resulting solubility diagrams are similar to those for three-component systems. D a t a for many petroleum fractions and many different solvents are given by Thompson (150) and others (23, 44, 7 0 ) . This method of representation was recently applied to the extraction of soybean oil with furfural, using the iodine number as the variable physical property (117).
TABLEI. TERNARY SYSTEMS
COI\.TSINISG WATER ORGANIC COMPOUNDS
Components Acetaldehyde n-Amyl aloohol Benzene Furfural Toluene Vinyl acetate Acetic acid Isoamyl acetate Aniline Benzene Benzene Benzene Benzene Caproic acid Chloroform Chloroform Chloroform
Temp.,
C.
.4ND
TWO
Citation
23-4 20
Fenchone Gasoline (straight run) Hexalin acetate Isophorone Jlethvl cyclohexanone Methyl isobutyl ketone Xethyl isobutyl ketone Octyl acetate Propylene Isopropyl ether Isopropyl ether Toluene m-Toluidine Vinyl acetate Acetone Aniline Benzene Broinobenaene C hloro benz ene Chloroform
(Continued o n p a g e 2933)
2932
December 1949
INDUSTRIAL AND ENGINEERING CHEMISTRY
2933
TABLEI (Continued) Components
8
4
Acetone Chloroferm Chloroform Chloroform Chlorofarm Di-n-butyl ether Furfural Methyl isobutyl ketone Phenol Tetrachloroethane 1,1,2-Trichloroethane Vinyl acetate Vinyl acetate Xylene Acetonitrile Trichloroethylene Allyl alcohol Diallyl ether Isoamyl aloohol Ethanol Ethanol Methanol n-Propyl alcohol Aniline Acetic acid Acetone Aniline hydrochloride Butyric acid Ethanol Formic acid Lactic acid Nitrobenzene Phenol Propionic acid Toluene Benzene Acetaldehyde Acetic acid Acetic acid Acetic acid Acetic acid Acetone Isobutyl alcohol n-Butyl alcohol tert-Butyl alcohol Dioxane Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Methanol Phenol Isopropyl alcohol n-Propyl alcohol Pyridine Pyridine Isobutyl alcohol Benzene Ethanol Ethyl acetate 1,1,2,2-TetrachIoroethane n-Butyl alcohol Benzene 2,3-Butylene glycol Ethanol Ethyl acetate Methanol Toluene tert-Butyl alcohol Benzene Ethyl acetate 2,3-Butylene glycol n-Butyl alcohol n-Butyl acetate 2,3-Butylene glycol diacetate Methyl vinyl carbinol acetate Carbon tetrachloride Ethanol Methanol n-Propyl alcohol n-Propyl alcohol Chloroform Acetone Acetone Acetone Acetone Acetone Acetic acid Acetic acid Acetic acid Ethanol Ethanol Methanol n-Propyl alcohol
Temp.,
C.
0 25 25 25 25-6 25 25-6 56.5 25-6 25 20 25 25-6
20 and b.p. 22 0 15.5, 28 28 25
18 25 20 25 25, 35 15, 30, 45 25 25, 35 25 25 25 25, 00 25, 50 20, 25 0, 20, 40 25 25 25 25 25 25 20 25 25 25 0 0, 20 25 25, 35 26, 50
20 0, 20 0, 15, 30, 45, GO, 75, 90 30
25 0, 20 26, 26, 26, 26, 50,
50
50
75 75
0 0 0
20
25 0 25 25 25 25 25 18, 25 0 26 0 0
Components Cyclohexane Ethanol Ethanol Methanol Isopropyl alcohol n-Propyl alcohol Cyclohexene Ethanol Methanol Iaopropyl alcohol Ethanol Isoamyl alcohol Isoamyl alcohol n-Amyl alcohol Isoamyl bromide Isoamyl ether Aniline Benzaldehyde Benzene Benzene Benzene Benzene Benaene Benzene Benzene Benzene Benzyl acetate Benzyl alcohol Benzyl ethyl ether Bromobenzene Bromotoluene Isobutyl slcohol n-Butyl alcohol Isobutyl bromide Carbon tetrachloride Chloroform Chloroform Cottonseed oil Cyclohexane Cyclohexane Cyclohexene Di-n-butyl ether Di-n-propyl ketone Ethyl acetate Ethyl acetate Ethyl acetate Ethyl bromide Ethyl butyrate Ethylene chloride Ethyl ether Ethyl ether Ethyl ether Ethyl ether Ethyl ether Ethyl ether Ethyl ether Ethylidene chloride Ethyl propionate Hexane Hexane Mesitylene Methyl aniline Nitrobenzene p-Nitrotoluene Plienetol Pinene Propyl bromide Toluene Toluene Vinylidene chloride m-Xylene m-Xylene o-Xylene p-Xylene
Temp.,
Citation
25 25 25 25 25, 35 25 25 15, 25, 35 0 15.5, 28 25-6 0 0 a, 25
55 25, 25, 20, 0, 20, 25 25 25
60
50 25 40
0 0 0 0 0
20 0 0 0 25 30 25 25 25 25-6 25-6 0 , 20 0 25 0 n 0 0 0
25 25 - 15 15 25 n 0
0 25 0 0 15 0
n
0 0 0, 20, 40 25 20 0, 10 0. 50
n
0
Ethyl acetate Isobutyl alcohol n-Butyl alcohol ssc-Butyl alcohol tert-Butyl alcohol Ethanol Ethanol Ethanol Furfural Furfural Methanol Isopropyl alcohol n-Progyl alcohol Ethyl ether Acetic acid Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Malonic acid Succinic acid Triethylamine
C.
0, 20 0, 20 0, 20 0, 20 0, 20 0 25 25 25 0, 20 0, 20 0. 20
25
n
0 25 25 15 15 25 15 15, 20, 25 0, 12.4, 30.5 (Continued on page Zg3.4)
-
INDUSTRIAL AND ENGINEERING CHEMISTRY
2934
Vol. 41, No. 12
TABLE I (Continued) Components Ethylene glycol n-Amyl alcohol n-Hexyl alcohol Furfural Acetaldehyde Acetone Isoamyl acetate n-Butane Ethyl acetate Ethyl acetate Toluene Methanol Isoamyl alcoho Benzene Broinobenzene n-Butyl alcohol Carbon tetrachloride Chloroform Cyclohexane Cyclohexene Ethyl acetate Ethyl bromide Styrene Toluene Methyl ethyl ketone Gasoline (aviation) 2,2,4-Trimethylpentane Nitrobenzene Aniline Ethanol Phenol Acetone Aniline Benzene Pentenes Triethylamine Isopropyl alcohol Benzene Cottonseed oil Cyclohexane Cyclohexene Diisopropyl ether Ethyl acetate n-Hexane
TABLE 11.
Temp.,
C.
Citation
20 20 16 25 25
3S, 52, 6 6 , 80, 93 25 25 25
28 25 0 0, 1.5, 30, 45, GO, 79, 90 0 0
25 26 0, 20 0
I5 25 25
25
25 15
yg]
56.5
(120)
a,b
8.6, 25,4,48,G6.3,96.7 25 26
-2
7, 10, 57, 75
*
(28) ( 6 7 )a
s:i!
b
LY",
25 30 25
(98) (60) (163)
':%!
16, 2 5 , 36 20
2;( 4$57 )
0, 20
25
. 4 Q U E O C S SYSTEMS C O N T A I N I N G ONE ORGANIC
Components Acetone CaCh KzCOa KCl KF KOH LizSOa NHiCl (NHa)zS04 NaCl h-a C1 NaNOa NaOH NrnS01 Isoamyl alcohol HBr HCl HI NaCl Isobutyl alcohol HBr HC1 HI NaCl NaOH tert-Butyl alcoho KBr KC1 KzCOa KF KI &-Hac1 (NH4)2804 NaC1 NazCOs NasSOi Isobutyric acid NaCl Potassium isobutyrate Dioxane CaClz HC1 KzC03 NaNOa
Temp.,
C.
Citation
Componente Isopropyl alcohol ( c o n t d . ) Propylene Tetrachloroethylene Toluene n-Propyl alcohol Isoamyl alcohol Benzene Bromohenaene Bromotoliiene Carbon tetrachloride Carbon tetrachloride Chloroform Cyclohexane Ethyl acetate Propionic acid Aniline m-Toluidine o-Toluidine Toluene Acetaldehyde Acetic acid Bniline n-Butyl alcohol Ethanol Ethanol Furfural Methanol Isopropyl alcohol m-Toluidine Acetic acid Butyric acid Propionic acid o-Toluidine Butyric acid Lactic acid Propionic arid Tetrachloroethane Acetone Isobutyl alcohol Trichloroethylene Acetonitrile a
LIQUIDA N D
0 0 0 20 0 25, 35 0, 20
30 20 20 17 25 25
3n
0, 26, 40 25 25 25 25 20
20 20 20 30 20 25-6 26 20 and h.p.
Teiiip.,
C.
30, 80 25, 40, 60 17, 35 23-6 25, 50, 75 23-6 50, 75 50 25 30 9, 15, 33 50 30 29.7, 40 25, 36, 45 65
20 0 28 25 30 20 25 43.5 0 35 25 25 25 28
Ethyl acetate NaCl Sodium oleate
25 26 25 25 25
25 25
Citation (62) (83) (36j 'I (49) (07)
',
(49) " I
(87)
*
(146) (33)
; ')
(1a8
(36) (Ida) (188) (72) (3.5)%,h
(37) (236) (1S6)
Ethyl ether &SO4
KI
MgBr Phenol Ba(OH)$ Ca(0Hh HCl KOH NaOH Sr(OH)z
30 30 30 30 30 30 30 30 30 30
25 25 25
25 20
OTE I N O R G S N I C O R ~ ~ E E T A I . - ( ~ R G A N . C I CO N P O U r i D
Components
20
25
C.
25 25 25
Data given byFBeidel1 (1%). Data given by'Internationa1 Zritical 'rahles ( 7 7 \ .
20 40
25 25
Temp.,
25 25 25 25 (27) (87)
25
(66) (66) (66) (66) (66) '58) (65) ( 6 6 )b (66) (66)
;
25 25 25 25 25 (Continued on page 89.76)
INDUSTRIAL AND ENGINEERING CHEMISTRY
December 1949
2935
TABLE I1 (Continued) Components
Temp.,
O
Pyridine HaSOa (NHd)zS04 AgC104 Benzene Toluene
25 25
CaClz Acetone Dioxane Methyl ethyl ketone
20 25 24-6
HC1 Isoamyl alcohol Isobutyl alcohol Cyclohexanone Dioxane Phenol
25 25 25 25 12
&SO4 Ethyl ether Nitrobenzene Pyridine
0 22 20
C.
Citation
Components KOH Acetone Phenol NHiOH Butylene (NHdzSOr Acetone tert-Butyl alcohol Ethanol Ethanol Ethanol Isopropyl alcohol Pyridine NazCOs tert-Butyl alcohol Ethanol Isopropyl alcohol NaCl Acetone Acetone
20 25
&Cos Acetone tert-Butyl alcohol Dioxane Ethanol Ethanol Ethanol Ethanol Methanol Isopropyl alcohol Potassium ethyl dipropyl malonate
20 30 25 25, 40, 60 17, 35 23-6 25, 50, 75 17, 35 25 25
~
~
40 30 25
Acetone tert-Butyl alcohol Isopropyl alcohol I< F
Acetone tert-Butyl alcohol Ethanol Isopropyl alcohol
20 30 23-6 25
TABLE IV.
Pressure, Atm.
Citation
1 11 15 19 1
(0)
(18)
1
(60)
1
(108)
KONAQUEOUS TERNARY SYSTEMS
Components Acetone-ethylene glycol Benzene Bromobensene Chlorobenzene Nitrobenzene Toluene Xylene Aniline Cetane-benzene Cetane-n-heptane Cetane-cyclohexane Cyclohexane-n-he tane C yclopentane-neo%exane Me thylcyclo hexane-n- hep tane Methylcyclopentane-n-hexane Benzene Acetone-ethylene glycol Aniline-cetane E t hanol-glycerol Formic acid-bromoform n-Heptane-methyl sulfate n-Heptane-methyl sulfate
Temp.,
Cita6ion
0 25
(64) (08)
'
25
30 30 9, 15, 33 50
30 25 25
30 28.7, 25 40 20 25 28 25 30 25 25 25 25 70, 80 90 23, 40, 55.5, 72
*
TABLE 111. AQUEOUSSYSTEMSCONTAININQ T w o INORGANIC COMPOUNDS Temp ., C. Components Ammonia KaCOa 0, 18, 25 NaOH 40 NaOH 50 NaO H 60 ZnSOa 18 Bromine KBr 0 Hydrazine NaOH 80, 70, 90, 100 IL Data given by Seidell (1%).
C.
Isobutyric acid Ethyl acetate Is0 ropy1 alcohol Soaium laurate Sodium palmitate Succinonitrile NaOH Acetone 0 Isobutyl alcohol 25 Ethylenediamine 26 Phenol 25 NazSOd Acetone 35 tert-Butyl aloohol 30 25, 36, 45 Ethanol a D a t a given by International Critical Tables (71). D a t a given by Geidell (126).
KC1 ~~
Temp.,
O
C.
Citation
TABLE IV (Continued) Components Benzene (contd.)
Temp.,
Toluene-n-heptane-methyl sulfate
Methanol-polystyrene Propylene glycollaodium oleate Ethanol Benzene-glycerol Carbon tetrachloride-glycerol Oleio acid-olive oil Furfural Docosane-diphenylhexane Naphtha-butadiene Naphtha-isobutene Methanol Benzene-polystyrene Oleic acid-olive oil Isopropyl acetate Petroleum ether-HzSO4 n-Heptane Benzene-methyl sulfate Benzene-methyl sulfate Toluene-methyl sulfate
C
Citation
17 27 20
Ka
45, 80. 115 -6.7 -6.7
(26) (133) (183)
(104)
27 25 25
(47)
25 17 17
(47) (106) (106)
Data given by Seidell (126).
TABLE V. NONAQUEOUS TERNARY SYSTEMS CONTAINING LIQUID PROPANE Components Propane (liquid) Oleic acid-abietic acid Oleic acid-abietic acid Oleic acid-abietic acid Oleic acid-cottonseed oil Oleic atid-cottonseed oil Oleic acid-triolein Palmitic acid-stearic acid Palmitic acid-stearic acid Propylene-SOz
Tyz.,
Pressure, Atm.
81 91 96.7 85 98.5 85 95 98 -.78
31 37 41.5 34 42.5 34 40 42 1
Citation
2936
I N D U S T R I A L A N D E N (Z I N E E R I N G C H E M I S T R Y TABLE VI.
FOUR-COMPONENT SYSTEMS
Components Aniline-cetane-cyclohexane Benzene n-Heptane Butadiene-isobutene-furfural-naphtha Ethylene glycol-methanol-Skellysoive B-toluene Water Acetone-acetaldehyde-vinyl acetate Acetone-acetic acid-chloroform Acetone-acetic acid-chloroforma Acetic acid-ethanol-ethyl ether Plaetic acid-n-heptane-toluene Isoamyl alcohol-ethanol-YaCI Ethanol-oleic acid-olive oil Ethanol-NaCI-NazCOa Ethyl acetate-sodium oleate-SaCl Ethyl ether-HgIz-XI n-Pentane-pentenes-phenol a
*
Temp.,
C.
25 25 -6.7 15.5, 29.4
20 25 25 25 23 28 25 30 25 20 25
Citation (26) ($6)
(133) (fS4) (11s) (24) (137) (87) (101)
(45)
(1IS) (71) (1S5)
(42) (47)
Calculated distribution data. Data given by International Critical Tables ( 7 1 )
(36) Denzlez, C. G., J . Phus. Chem., 49, 358 (1945). (37) Donk, A . D., Chem. Weekblad, 5, 529 (1908). (38) Diem, D. A., and Hixson, A . Ii.,Trans. Am. Inst. C h m . Engrs., 40, 675 (1944). (39) Drouillon, F., J . chim. phys., 22, 149 (1925). (40) Dryden, C. E., ISD.ESG. CHEM.,35, 492 (1943). (41) Dunningham, A. C., J . Chem. SOC.(London), 105, 368 (1914). (421 Ibid.. DD. 724. 2623. Fairb;;n, A. W.. Cheney, H . A., and Cherniavsky, A. J., Chem. Eng. Progress, 43, 280 (1947). Fer&, S. W., Biikhimer, E. R., and Henderson, L. M., IXD. CXG.CHEM.,23, 753 (1931). Fontein, F., 2.physik. Chem.. 73, 212 (1910). Forbes, G. S., and Coolidge, A . S., J . Am. Chem. Soc., 41, 150 (1919). Francis, A. W., “Physical Chemistry of Hydrocarbons,” ed. by A. Farkas, Chap. VII, New York, Academic Press, 1949. Frankforter, G. B., and Cohen, L., J . Am. Chem. Soc., 36, 1103 (1914). Frankforter, G . B., and Frary, F . C., J . Phys. Chem., 17, 402 (1913). (50) Fritzche, R. H., and Stockton, D. L., IXD. ENG.CHEM.,38, 737 (1946) (51) Fuoss. R. M., J . Am. Chem. Soc., 65, 78 (1943). (52) Gee, E. A., I b i d . , 67, 179 (1945). (53) Gibby, C,. W., J . Chem. SOC.(London), 1932, 1540. (54) I h i d . , 1934, 9. (55) Ginnings, P. M . , and Chen. Z. T., J . Am. Chem. Soc., 53, 3765 (1931). (56) Ginnings, P . M., and Robhins, D., I b i d . , 52, 2282 (1930). (57) Griswold, J., Klecka, M .E., and West, R. V., Jr., Chem. Eng. Progress, 44, 839 (1948). (58) Hand, D. B., J . Phgs. Chem., 34, 1961 (1930). (59) Harris, I. IT.H., J . Chem. SOC.(London), 1932, 582, 1694. (60) Harris, W.D., Bishop, F. F., Lyman, C. M., and Helpert, R., J . Am. Oil Chemists’ SOC.,24, 370 (1947). (61) Hill, A . E., J . Am. Chem. Soc., 44, 1163 (1922). (62) Hill, A. E., and Miller, F. W., Jr., Ibid., 47, 2702 (1925). (63) Hixson, A. I%‘., and Bockelmann, J. B., Trans. Am. Inst. Chem. Engrs., 38, 891 (1942). (64) Hixson, A. W., and Hixson, A . N., Ibid., 37, 927 (1941). (65) Holt, A., and Bell, N. M . , J . Chem. SOC.(London), 105, 633 (1914). (66) Horiba, S., M e m . Coll. Eng. K y o t o I m p . Univ., 3, 63 (1911). (67) Horiba, S., Mem. CoZZ. Sei. Eng. (Kyoto), (N.S.), 1, 49 (1914). (68) Hunter, T. G., IXD. ENG.C N E X . ,34,963 (1942). (69) Hunter, T. G., and Brown, T . ,I b i d . , 39, 1343 (1947). (70) Hunter., T . G., and Xash, A. W., Ibid.. 27, 836 (1935). (71) International Critical Tables, 5’01. 111, p. 395; Vol. IV, pp. 400-13, 424, K e w York, hlcGraw-Hill Book Co., 1928. (72) Ketner, C. H.. 2 . phusik. Chem., 39, 641 (1901). (73) Xlobbie, E. A . , Ibid., 24, 623 (1597). (74) Knight, 0. S., Trans. Am. Inst. Chem. Engrs., 39, 439 (1943). (78) Kobe, K. X., and Stong, J. P., J . Phys. Chem.. 44, 629 (1940). (76) Kono, -M., J . Chem. Soc. J a p a n , 44, 406 (1923). (77) Krupatkin, I. L., and Bodin, M .A , , J . Gen. Chem. (U.S.S.R.), 17, 1993 (1947). ( 7 8 ) Laddha, G. S., and Smith, J. hl., IND.EXG.CHEM.,40, 494 (1948). (79) Lalande, A , J . chim. phys., 31, 583 (1934). (50) Leone, P., and Benelli, M., Gam. chim. ital., 52, 11, 75 (1922). (81) Lloyd: B. A., Thompson, S. 0.. and Ferguson, J. B., Can. J . Research, 15B, 98 (1937). (82) McBain, J. W., and Burnett, A. J.. J . Chem. Soc. (London), 121, 1320 (1922). (83) McBain, J. W., and Langdon, G. M , , I b i d . , 127, 852 (1925). (54) -V’David, J. W., Proc. Roy. SOC.Edinburgh, 30, 440 (1910). 1853 McDonald. 11. J.. J . Am. Chem. Soc.. 62. 3153 (1940). i86) McDonald. H. J., Kluendei, A. F., and Lanc, R. W., J . P h w . Chem., 46, 946 (1942). (87) hfajor, C J., and Swenson, 0. J., ISD.ESG. CHEM.,38, 834 (1946). (5s) lhrqueyrol, M., and Goutal, E., M e m . poudres, 19, 368 (1922). (89) Mason, L. S., and Washburn, E. R., J . Am. Ciiem. SOC.,59, 2076 (1937). (90) Meorburg, P. A., Z . physik. Chem., 40, 641 (1902). (91) Meissner, H. P., and Stokes, C. A., IND.ENG.CHEM.,36, 816 (1944). (92) Meurs, G. J. van, 2. physik. Chem., 91, 313 (1916). (93) Miller, W.L., and McPherson, X. H., J . P h y s . Chem., 12, 706 (1908). (94) lfoohalov, K. I., BUZZ.inst. Pecherches biol. Perm, 11, 25 (1937). (95) Moulton, R. W..and Walkey, J. E., Trans. Am. Inst. Chem. Engrs., 40, 695 (1944). (96) Muellei-, A. J., Pugsley, L. I., and Ferguson, J. B., J . P h y s . Chem., 35, 1314 (1931). I
ACKNOWLEDGMENT
The author is indebted t o iz. SV. Francis, Socony-Vacuum Oil Company. for his criticisms and assistance. LITERATURE CITED
R.,J . Phys. Chem., 49, 4 (1945). (2) Angelescu, E., BUZZ.sac. chim. Romania, 7, 72 (1925). (3) Zbid., 9, 19 (1927). (4) a d . , IO, 160, 183 (1929). (5) Angelescu, E., and Cristodulo, L., Bul. Chim. Soc. Chim. Rom&nia (2), 2, 114, 123 (1940). (6) Angelescu, E., and Cristodulo, L., S O C .Chim. Romdnia, Sect. Soc. romaqae Stiinte, Bul. Chim. pura apl. (2), 3, A32 (194142). (7) Angelescu, E., and Xlotzoc, D., Bull. soc. chim. Romania, 7, 11 (1925). ( 8 ) Anon., Trans. Bm. Inst. Chem. Engrs., 36, 594 (1940). (9) Appelby, &I. P., and Leishman, M. d., J . Chem. SOC.(London), 1932, 1603. (10) Appelby, hl. P., and M7indridge, M.E . D., Ibid., 1932, 1608. (11) Avenarius, A. >I., and Tarasenkov, D. N., J . Gen. Chem. (U.S.S.R.), 16, 1777 (1946). (12) Ayres, F. D., J . Phys. Chem., 49, 366 (1945). ENG.CHEM..ANAL.ED.,12, 38 (1940). (13) Bachman, I., IND. (14) Bancroft, IT. D., and Hubard, S.S., J . A m . Chem. Sac., 64, 347 (1942). (15) Barbaudy, J., Compt, rend., 182, 1279 (1926). (16) Barbaudy, J., Rec. trav. chim., 45, 207 (1926). (17) Beech, D. G., and Glasstone, S., J . Chern. SOC.(London), 1938, 67. (18) Bergelin, O., Lockhart. F. J., and Brown, G. G., Trans. Am. Inst. Chem. Engrs., 39, 173 (1943). (19) Berndt, R. J.. and Lynch, C. C., J . Am. Chem. Soc., 66, 282 (1944). (20) Bogardus, H. F., and Lynch, C. C., J . P h y s . Chem., 47, 650 (1) Albert?, R. A., and Tashburn, E.
(1943).
(21) Bonner, W.D., Ibid.. 14, 738 (1910). (22) Brancker, A. V., Hunter, T. G., and Nash. A. TV.. IND.ENG. CHEM.,ANAL.ED., 12, 35 (1940). IND.EXG. (23) Brancker, A. V., Hunter, T. G.. and Nash, A. W., CHEM.,33, 880 (1941). Hunter, T. G., and Nash, A. IT., J . Phys. (241 Brancker, A. IT., Chem., 44, 653 (1940). ( 2 5 ) Briggs, S. TV.,and Comings, E . IT7., IXD.ESG. CHEx., 35, 411 (1943). (26) Brown. T. F., Ibid., 40, 103 (194s). (27) Bury, C. R., and blends, J. R.,J . Chem. Soc. (London), 1939, 742. (28) Campbell, A. X., J . A m . Chem. Soc., 67, 981 (1945). (29) Campbell, .4.N., and Brown. E. M.,Trans. Faraday Soc., 29, 535 (1933). (30) Campbell, J. x., I N D . E S G . CHEM., 36, 1155 (1944). (31) Corliss, H . P., J . Phys. Chem., 18, 6Sl (1914). (32) Coull, J., and Hope, H. B., I b i d . . 39, 967 (1935). (33) Cuno, E., A n n . P h y s i k , 25, 346 (1908). (34) Darwent. B. de B.. and Winklcr, C. A . , J . Phys. Chem., 47, 442 (1943). (35) De Bruyn, B. K., 2 . physiic. C‘hem., 32, 63 (1900).
Vol. 41, No. 12
December 1949
I N D U S T R I A L A N D E N G I N E E R I N G CHEMISTRY
Nikolskaya, A. V., J . Phys. Chem. (U.S.S.R.),20, 421 (1946). Olsen, A. L., and Washburn, E. R., J . Am. Chem. Soe., 57, 303 (1935). Othmer, D. F., Bergen, W. S., Shlechter, N., and Bruins, D. F., IND. ENG.CHEM.,37, 890 (1945). Othmer, D. F., and Serrano, J., Jr., Ibid., 41, 1030 (1949). Othmer, D. F., and Tobias,.P. E., Ibid., 34, 690 (1942). Ibid., pp. 693, 696. Othmer, D. F., White, R. E . , and Trueger, E., Ibid., 33, 1240 (1941). Palit, S.R., and McBain, J. W., Ibid., 38, 741 (1946). Pascal, P., and Quinet, M . L., Ann. ehim. anal., 23, 5 (1941) Peakin, F. H., J . SOC.Chem. I n d . ( L o n d o n ) ,59, 56 (1940). Ibid., p. 81. Penneman, R. A , , and Audrieth, L.F., J . Am. Chem. SOC.,71, 1644 (1949). Poffenberger, N., Horsley, L. H., Nutting, H. S.,and Britton, E. C., Trans. Am. Inst. Chem. E n g r s , 42, 815 (1946). Pound, J. R., and Wilson, A . M., J . Phys. Chem., 39, 709 (1935). Pratt, H. R. C., I n d . Chemist, 23, 658 (1947). Pratt, H. R. C , and Glover, S.T., Trans. Inst. Chem. Engrs. (London), 24, 54 (1946). Reburn, W. T., and Shearer, W. N., J . Am. Chem. SOC.,55, 1774 (1933). Robinson, R. A., and Selkirk, R. C., J . Chem. SOC.(London), 1948, 1460. Rowley, H. H., and Barta, M. H., Proc. Iowa Acad. Sci., 48, 276 (1941). Ruis, A., and Moreno, J. M. M., Analesfas. y quam. ( M a d r i d ) , 42, 123 (1947). Ruthruff, R. F., and Wilcock, D. F., Trans. Am. I n s t Chem. Engrs., 37, 649 (1941). Sasaki, T., Bull. Chem. SOC.J a p a n , 14, 3 (1939). Schreinemakers, F. A. H., 2.physik. Chem., 23, 417 (1897). Ibid., 39, 485 (1902). Schreinemakers, F. A. H., and Bos, J. L. M. van der H. van den, Ibid., 79, 551 (1912). Schreinemakers, F. A. H., and DeBaat, W. C., Ibid., 59, 647 (1907). Schreinemakers, F. A. H., and Deuss, J. J. B., Ibid., 79, 554 (1912). Schulz, G. V., and Jirgensons, B., Ibid., B46, 105 (1940). Seidell, A., “Solubilities of Inorganic and Metal-Organic Compounds,’’ 3rd ed., New York, D. Van Nostrand Co., 1940. Seidell, A., “Solubilities of Organic Compounds,” 3rd ed., New York, D. Van Nostrand Co., 1941. Selikson, B., and Ricci, J. E., J . Am. Chem. SOC.,64, 2474 (1942). Serijan, K. T., Spurr, R. A., and Gibbons, L. C., Ibid., 68, 1763 (1946). Sherwood, T. K . , Evans, J. E., and Longcor, J. V. A., IND. ENG. CHEM.,31, 1144 (1939); Trans. Am. Inst. Chem. Engrs., 35, 597 (1939). Sidgwick, N. V., Pickford, P., and Wilsdon, B. H., J . Chem. SOC.(London), 99, 1122 (1911). Simonsen, D. R., and Washburn, E. R., J . Am. C h a . SOC.,68, 235 (1946). Skripach, T. K., and Temkin, M. I., J . Phys. Chem. (U.S.S.R.), 20, 583 (1946). Smith, A. S., and Braun, T . B., IND.ENG.Cmnr., 37, 1047 (1945). Smith, A. S., and Funk, J. E., Trans. Am. Inst. Chem. Engrs., 40, 211 (1944). Smith, E. L., J . Phys. Chem., 36, 2455 (1932). Smith, J. C., IND. ENG.CHEM.,34, 234 (1942). Ibid., 36, 68 (1944). Smith, J. C., J . Phys. Chem., 45, 1301 (1941). Ibid., 46, 229 (1942). Ibid., p. 376. Smith, J. C., and Drexel, R. E., IND.ENG.CHEM.,37, 601 (1945). Smith, J. C., Foecking, N. J., and Barber, W. P., Ibid., 41, 2289 (1949). Snell, J. F., J . Phys. Chem., 2, 457 (1898). Tarasenkov, D. N., and Avenarius, A . M., J . Gen. Chem. (U.8.S.R.), 16, 1577 (1946). Tarasenkov, D. N., and Kats, K., Ibid., 7, 2243 (1937). Tarasenkov, D. N., and Paulsen, I. A., Ibid., 7, 2143 (1937). Ibid., 8 , 76 (1938). Tarasenkov, D. N.,and Polozhintzeva, E. N., Ibid., 2, 84 (1932), Taylor, S.F., J . Phys. Chem., 1, 461 (1896-97). Thompson, F. E. A., in “Science of Petroleum,” ed. by A. E. Dunstan, Vol. 3, p. 1829, London, Oxford University Press, 1938.
2937
(151) Treybal, R. E., IND.ENG.CHEM.,36, 875 (1944). (152) Treybal, R. E., Weber, L. D., and Daley, J. F., Ibid., 38, 817 (1946). (153) Trimble, F., and Dunlop, A . P., IXD.ENG.CHEM.,ANAL.ED., 12, 721 (1940). (154) Trimble, H. M.,and Brazer, G. E., IND. ENG.CHEIM., 21, 1063 (1929). (155) Troyan, J. E., Rubber A g e , 63, 585 (1948). (156) Ust-Kachkintsev, V. F., and Khlebnikov, P. A , , J . Gen. Chem. (U.S.S.R.). 9. 1742 (1939). (157) Varteressian, K. A., and Fenske, M.R., IND.ENG.CHEM.,28, 928 (1936). (158) Ibid., 29, 270 (1937). (159) Vold, R. D., and Washburn, E. R., J . Am. Chem. SOC.,54,4217 (1932). (160) Waddell, J., J . Phys. Chem., 2, 236 (1898). (161) Washburn, E. R., and Beguin, A . E., J . Am. Chem. SOC.,6 2 , 579 (1940). (162) Washburn, E. R., Beguin, A. E., and Beckord, 0. C., Ibid., 61, 1694 (1939). (163) Washburn, E. R., Brockway, C. E., Graham, C. L., and Deming, P., Ibid., 64, 1886 (1942). (164) Washburn, E. R., Graham, C. L., Arnold, G. B., and Transue, L. F., Ibid., 62, 1454 (1940). (165) Washburn, E. R., Hnizda, V., and Void, R. D., Ibid., 53, 3237 (1931). (166) Washburn, E. R., and Spencer, H. C., Ibid., 56, 361 (1934). (167) Washburn, E. R., and Strandskov, C. V., J . Phys. Chem.. 48, 241 (1944). (168) Wibaut. J. P., Chem. Weekblad., 6, 401 (1909). (169) Wiegand, J. H., IND.ENG.CHEM..ANAL.ED.,15, 380 (1943). (170) Wilson, A. L., IND. ENG.CHEM.,27, 867 (1935). (171) Woodman, R. M., J . Phys. Chem., 30, 1283 (1926). (172) Woodman, R. M., and Corbet, A . S., J . Chem. SOC.( L o n d o n ) , 127, 2461 (1925). (173) Wright, C. R. A., Thompson, C., and Leon, J. T., Proc. Roy. Soc. (London), 49, 174 (1891) : 50, 375 (1892). ~~
RECEIVED February 16, 1949.
CORRESPONDENCE Combustion of Sulfur in a Venturi Spray Burner SIR: For their paper “The Combustion of Sulfur in a Venturi Spray Burner” [IND.ENG.CHEW,41, 2741 (1949)j Conroy and Johnstone have earned by their painstaking study t h e thanks of all concerned with the combustion of sulfur. T h e rates of heat release they have reported for their design of burner are most interesting, being far in excess of anything hitherto practicable in furnaces burning this material. Because of this feature of their burner, it seems worth while t o consider briefly the refractory problems that will be involved. It is evident t h a t in commercial installations combustion chamber temperatures will be high, probably on the order of 1600” C. and over, unless water-cooled walls are resorted to. This is in spite of t h e fact t h a t with t h e small test unit the maximum gas temperature attained was 1182” C. T h e ratio of cooling surface there t o weight of sulfur burned per hour was far greater than can exist under manufacturing conditions. Consequently, the experimental temperatures do not approximate what are t o be anticipated a t the high rates t h e burner permits. Aside from excessive temperatures, the furnace atmosphere near t h e burner will carry unburned sulfur gas largely as Sz, which m a y dissociate appreciably t o S before it has time t o react with the oxygen of the air. I n the monatomic form it is strongly reactive, so much so t h a t it may attack silica,(forming silicon sulfides and sulfur oxides) or silicon carbide (forming silicon