Solute Preferential Sorption in Reverse Osmosis - ACS Publications

28. 3. 38. 2. 38. 5. 44. 0. 47. 0. 29. 3. Solut e Separation. , %. 98. 8. 98. 1. 97. 0. 93. ... d concentratio n 1. 0. 00. 0 pp m. NaCl. ; temperatur ...
0 downloads 0 Views 2MB Size
18 Solute Preferential Sorption in Reverse Osmosis J. M . D I C K S O N

1

and D O U G L A S R.

1

LLOYD

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Since the e a r l y days of research in reverse osmosis (RO), it has been recognized t h a t , in comparison to the s e p a r a t i o n of salt s o l u t i o n s , c e r t a i n s o l u t e s e x h i b i t anomalous performance behavior. A typical example is the negative s e p a r a t i o n observed f o r aqueous phenol s o l u t i o n s when u s i n g c e l l u l o s e acetate membranes; i . e . , the permeate stream is more concentrated in phenol than is the feed stream. This anomalous behavior can be accounted f o r by p o s t u l a t i n g that s o l u t e s such as phenol are preferentially a t t r a c t e d t o or preferentially sorbed by the c e l l u l o s e acetate membrane m a t e r i a l . I t is t o t h i s t o p i c of s o l u t e preferential s o r p t i o n in reverse osmosis that t h i s paper is dedicated. Specifically, this discussion will i n v o l v e a d e s c r i p t i o n of s o l u t e preferential s o r p t i o n , an overview of the literature i n the area, and finally a p r e s e n t a t i o n of some recent work on the removal of aromatic hydrocarbons from water. The s i g n i f i c a n c e of t h i s work is a t l e a s t two-fold. From a practical p o i n t of view the c l a s s e s of s o l u t e s which demonstrate preferential attraction to the membrane m a t e r i a l tend to be organic compounds and the removal and recovery of these s o l u t e s from water is environmentally and economically important. From a t h e o r e t i c a l p o i n t of view an understanding of the phenomena i n v o l v e d is e s s e n t i a l t o the achievement of a fundamental d e s c r i p t i o n of the RO process. Although t h i s paper deals s o l e l y w i t h aqueous s o l u t i o n s and c e l l u l o s e acetate membranes, it is important t o recognize that the concepts discussed can be extended to i n c l u d e other membrane m a t e r i a l s and non-aqueous systems. Solute P r e f e r e n t i a l S o r p t i o n At t h i s p o i n t , i t i s important t o d e s c r i b e e x a c t l y what i s meant by s o l u t e p r e f e r e n t i a l s o r p t i o n and the consequences that r e s u l t from t h i s s i t u a t i o n . Consider f i r s t the c l a s s i c a l case of the s e p a r a t i o n of aqueous NaCl s o l u t i o n s by c e l l u l o s e acetate membranes. I n t h i s instance the membrane m a t e r i a l has a stronger a f f i n i t y f o r the s o l v e n t than i t has f o r the s o l u t e . The r e s u l t 1

TX

Current address: Department of Chemical Engineering, University of Texas, Austin, 78712. 0097-6156/81/0154-0293$05.50/0 © 1981 American Chemical Society

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

294

SYNTHETIC

MEMBRANES:

HF

AND

UF

USES

i s the e x i s t e n c e of e s s e n t i a l l y pure water on the surface of and w i t h i n the membrane. This water i s subsequently transported through the membrane i n the RO process. While t h i s d e s c r i p t i o n holds t r u e f o r a number of s o l u t e s ( i n p a r t i c u l a r i o n i z e d s o l u t e s ) , there are c e r t a i n s o l u t e s which e x h i b i t anomalous behavior. I n such cases the membrane m a t e r i a l has a stronger a f f i n i t y f o r the s o l u t e than f o r the s o l v e n t . The r e s u l t may be p i c t u r e d as the establishment of a sorbed l a y e r of s o l u t e which may subsequently be transported through the membrane. The consequence of the s o l u t e being p r e f e r e n t i a l l y sorbed i s that the observed performance behavior i s d i f f e r e n t than i n the case of water p r e f e r e n t i a l s o r p t i o n . The main d i f f e r e n c e s i n performance can be summarized as f o l l o w s : For the case of water p r e f e r e n t i a l s o r p t i o n i ) i n c r e a s i n g the operating pressure u s u a l l y increases separation i i ) the decrease i n permeate f l u x w i t h i n c r e a s i n g c o n c e n t r a t i o n i s due to the osmotic pressure of the s o l u t i o n i i i ) s e p a r a t i o n i s always p o s i t i v e i v ) s e p a r a t i o n increases w i t h decreasing pore s i z e on the membrane s u r f a c e . However, f o r the case of s o l u t e p r e f e r e n t i a l s o r p t i o n i ) i n c r e a s i n g the operating pressure u s u a l l y decreases separation i i ) the permeate f l u x i s l e s s than the pure water f l u x , even when the osmotic pressure e f f e c t s are n e g l i g i b l e i i i ) s e p a r a t i o n may be p o s i t i v e , zero, or negative depending on the s o l u t e and the s p e c i f i c operating c o n d i t i o n s i v ) s e p a r a t i o n may e x h i b i t a maximum, a minimum, or both w i t h decreasing pore s i z e on the membrane s u r f a c e . The l i s t of s o l u t e s that are known to be p r e f e r e n t i a l l y sorbed by c e l l u l o s e acetate membranes i n c l u d e s many a l c o h o l s , phenols, un-ionized c a r b o x y l i c a c i d s and hydrocarbons ( 1 ) . Although s o l u t e p r e f e r e n t i a l s o r p t i o n i s a common occurrence w i t h a number of important aqueous organic systems l i t t l e experimental or q u a n t i t a t i v e work has appeared i n the l i t e r a t u r e . The purpose of the current work i s to r e c t i f y t h i s s i t u a t i o n . L i t e r a t u r e Review A number of models have been developed over the years to d e s c r i b e reverse osmosis. These models i n c l u d e the s o l u t i o n d i f f u s i o n model, the f i n e l y porous model, and the p r e f e r e n t i a l s o r p t i o n - c a p i l l a r y flow model. I n each case, the model was o r i g i n a l l y developed based on the s e p a r a t i o n of aqueous,salt s o l u t i o n s . The a p p l i c a t i o n of each of these models to systems which e x h i b i t anomalous behavior w i l l be discussed i n t h i s s e c t i o n . S o l u t i o n - D i f f u s i o n Model (2). I n t h i s model, the s o l u t e and solvent are transported through the membrane by f i r s t d i s s o l v i n g

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

18.

DICKSON

AND LLOYD

Solute Preferential Sorption

295

i n the homogeneous s k i n l a y e r and then d i f f u s i n g through i t . Thus, p e r m e a b i l i t y i s the product of the s o l u b i l i t y and the d i f f u s i v i t y of the compound i n the membrane m a t e r i a l . The o r i g i n a l attempts to apply t h i s model to the phenol-water system were made by Lonsdale et a l . ( 3 ) . Phenol was found t o be r e a d i l y s o l u b l e i n the c e l l u l o s e a c e t a t e membrane and the d i f f u s i v i t y of phenol i n c e l l u l o s e a c e t a t e was approximately the same as that of water. The r e s u l t was negative s e p a r a t i o n i n RO a p p l i c a t i o n . The s o l u t i o n - d i f f u s i o n model i n i t s e x i s t i n g form proved to be i n s u f f i c i e n t to q u a n t i t a t i v e l y d e s c r i b e the negative s e p a r a t i o n . Therefore, the authors suggested the development of a coupled f l o w model ( i . e . the s o l u t e f l u x i s coupled to the water f l u x ) . Subsequent attempts to develop such a model met w i t h o n l y moderate success (*\_). Anderson e t a l . (5) conducted s t u d i e s that p a r a l l e l e d the work of Lonsdale. The emphasis was placed on s e p a r a t e l y measuring e q u i l i b r i u m s o r p t i o n and d i f f u s i o n c o e f f i c i e n t s f o r the s o l u t e i n the membrane m a t e r i a l . They a t t r i b u t e d the negative s e p a r a t i o n to the s t r o n g i n t e r a c t i o n between the phenol and the c e l l u l o s e a c e t a t e membrane m a t e r i a l . Pusch e t a l . (6) a l s o studied the s e p a r a t i o n of phenol and water. D i a l y s i s and s o r p t i o n experiments were performed, and the r e s u l t s were c o n s i s t e n t w i t h the n e g a t i v e s e p a r a t i o n observed i n RO. The decrease i n water f l u x i n the presence of phenol was a t t r i b u t e d to the decrease i n membrane water content under these c o n d i t i o n s . F i n e l y Porous Model. I n t h i s model, s o l u t e and s o l v e n t permeate the membrane v i a pores which connect the h i g h pressure and low pressure faces of the membrane. The f i n e l y porous model, which combines a v i s c o u s f l o w model and a f r i c t i o n model (7,8), has been developed i n d e t a i l and a p p l i e d to RO data by Jonsson (9-12). The most recent work of Jonsson (12) t r e a t e d s e v e r a l organic s o l u t e s i n c l u d i n g phenol and o c t a n o l , both of which e x h i b i t s o l u t e p r e f e r e n t i a l s o r p t i o n . I n h i s paper, Jonsson compared s e v e r a l models i n c l u d i n g that developed by S p i e g l e r and Kedem (13) (which i s e s s e n t i a l l y an i r r e v e r s i b l e thermodynamics treatment), the f i n e l y porous model, the s o l u t i o n - d i f f u s i o n i m p e r f e c t i o n model (14), and a model developed by Pusch (15). Jonsson i l l u s t r a t e d that the f i n e l y porous model i s s i m i l a r i n form to the Spiegler-Kedem r e l a t i o n s h i p . Both models f i t the data e q u a l l y w e l l , although not w i t h t o t a l accuracy. The Pusch model has a s i m i l a r form and proves to be l e s s a c c u r a t e , w h i l e the s o l u t i o n - d i f f u s i o n i m p e r f e c t i o n model i s even l e s s a c c u r a t e . In a l l models, the l a r g e s t discrepancy between the p r e d i c t e d performance and the experimental data occurred when negative s e p a r a t i o n was observed. Jonsson concluded that the f i n e l y porous model i s p r e f e r r e d over the a l t e r n a t i v e s , although the Pusch r e l a t i o n s h i p i s e a s i e r to use and y i e l d s reasonable r e s u l t s i n most cases. P r e f e r e n t i a l S o r p t i o n - C a p i l l a r y Flow Model. An a l t e r n a t i v e approach to those mentioned above has been presented by

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

296

SYNTHETIC

MEMBRANES: HF

AND

UF

USES

S o u r i r a j a n (16) and i s i l l u s t r a t e d s c h e m a t i c a l l y i n Figure 1. I n t h i s approach the c e l l u l o s e acetate membranes are considered t o be porous. Separation i s j o i n t l y governed by the p r e f e r e n t i a l s o r p t i o n of one of the c o n s t i t u e n t s of the s o l u t i o n a t the membrane-solution i n t e r f a c e , and the number, s i z e , and s i z e d i s t r i b u t i o n of the pores on the membrane s u r f a c e . I n the case of s a l t s o l u t i o n s , water i s p r e f e r e n t i a l l y sorbed. This means that a sharp c o n c e n t r a t i o n gradient e x i s t s i n the v i c i n i t y of the membrane m a t e r i a l , l e a d i n g to a l a y e r of almost pure water on the surface of the membrane. Applying pressure allows t h i s pure water to be c o n t i n u o u s l y withdrawn through the membrane pores. Smaller pore s i z e leads t o higher s e p a r a t i o n . This s i t u a t i o n of water p r e f e r e n t i a l s o r p t i o n i s a p p l i c a b l e t o most s a l t s o l u t i o n s and many organic s o l u t e s . The t r a n s p o r t of these s o l u t i o n s i s q u a n t i t a t i v e l y described by the Kimura-Sourirajan a n a l y s i s (16,17). With t h i s model, i t i s p o s s i b l e to p r e d i c t s o l u t e s e p a r a t i o n and f l u x f o r many systems which e x h i b i t water p r e f e r e n t i a l s o r p t i o n (17,18). However, some s o l u t e s e x h i b i t a strong a t t r a c t i o n t o the membrane m a t e r i a l and are t h e r e f o r e p r e f e r e n t i a l l y sorbed compared to the s o l v e n t water. This can lead t o p o s i t i v e , zero, or negative s e p a r a t i o n depending on both the magnitude of the a t t r a c t i v e f o r c e s and the m o b i l i t y of the s o l u t e a t the solution-membrane i n t e r f a c e ( r e l a t i v e to the m o b i l i t y of water i n t h i s r e g i o n ) . Both the p o l a r and nonpolar character of the s o l u t e may be important i n the s e p a r a t i o n process. Consider the case of a p o l a r s o l u t e . Since the c e l l u l o s e acetate membrane m a t e r i a l has a net proton acceptor nature ( 1 ) , any p o l a r compound i s a t t r a c t e d t o the membrane s u r f a c e . The more p o l a r the compound the stronger the a t t r a c t i o n . When the s o l u t e i s more p o l a r than the s o l v e n t , as i s the case i n phenol-water systems, the s o l u t e i s p r e f e r e n t i a l l y sorbed by the membrane. [Note: the p o l a r nature of a compound can be c o n v e n i e n t l y and q u a n t i t a t i v e l y expressed by the T a f t number (1,19).] Since the s o l u t e and the s o l v e n t are both p o l a r , a strong i n t e r a c t i o n e x i s t s between the two s o l u t i o n components. This i n t e r a c t i o n allows the s o l u t e t o be r e l a t i v e l y mobile i n the v i c i n i t y of the pore, and thus i t can be c a r r i e d through the pore w i t h the water, r e s u l t i n g i n negative s e p a r a t i o n . On the other hand, f o r a hydrocarbon s o l u t e such as benzene, the nonpolar f o r c e s predominate. The c e l l u l o s e acetate membrane m a t e r i a l has a nonpolar character due t o i t s carbon backbone. This nonpolar character r e s u l t s i n the a t t r a c t i o n of nonpolar s o l u t e s . Since the s o l u t e has l i t t l e p o l a r c h a r a c t e r , i t i s more s t r o n g l y immobilized on the membrane s u r f a c e than i s water. Thus, the s o l v e n t passes through the membrane r e l a t i v e l y f a s t and p o s i t i v e s e p a r a t i o n i s observed. The s t r e n g t h of t h i s nonpolar a t t r a c t i o n , q u a n t i t a t i v e l y represented by the modified Small's number CI,20), w i l l , i n p a r t , determine the extent of s e p a r a t i o n . The presence of p r e f e r e n t i a l l y sorbed s o l u t e on the membrane surface w i l l block or impede the flow of the s o l v e n t water. This

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

18.

DICKSON

Solute Preferential Sorption

A N D LLOYD

297

pore b l o c k i n g e f f e c t r e s u l t s i n the permeate f l u x f o r feed s o l u t i o n s , even d i l u t e s o l u t i o n s of n e g l i g i b l e osmotic p r e s s u r e , being l e s s than the f l u x observed f o r a pure water feed under s i m i l a r o p e r a t i n g c o n d i t i o n s ; i . e . , permeate f l u x (PF) i s l e s s than pure water f l u x (PWF) . The advantage of the p r e f e r e n t i a l s o r p t i o n - c a p i l l a r y flow approach to r e v e r s e osmosis l i e s i n i t s emphasis on the mechanism of s e p a r a t i o n at a molecular l e v e l . This knowledge i s u s e f u l when i t becomes necessary to p r e d i c t membrane performance f o r unknown systems. A l s o , the approach i s not r e s t r i c t e d to the s o - c a l l e d " p e r f e c t " , d e f e c t - f r e e membranes, but encompasses the whole range of membrane pore s i z e . U n t i l r e c e n t l y , the a p p l i c a t i o n of a q u a n t i t a t i v e model to the case of s o l u t e p r e f e r e n t i a l s o r p t i o n has been m i s s i n g . Attempts to change t h i s s i t u a t i o n have been made by Matsuura and S o u r i r a j a n (21) by using a m o d i f i e d f i n e l y porous model. In a d d i t i o n to the u s u a l f e a t u r e s of t h i s model (9-12), a Lennard-Jones type of p o t e n t i a l f u n c t i o n i s i n c o r p o r a t e d to d e s c r i b e the membrane-solute i n t e r a c t i o n . This model i s discussed elsewhere i n t h i s book. Separation of Aromatic Hydrocarbons In t h i s paper, the removal of two aromatic hydrocarbons, benzene and toluene, from water i s i n v e s t i g a t e d . Toluene can be shown to be more nonpolar than benzene by comparing the m o d i f i e d Small's numbers (1,), which are 549 and 425 ( c a l cm )^/mol for toluene and benzene, r e s p e c t i v e l y . The greater nonpolar character of toluene ( i n d i c a t e d by the l a r g e r m o d i f i e d Small's number) suggests t h a t , i n comparison to benzene, toluene w i l l be more s t r o n g l y a t t r a c t e d to the membrane, and t h e r e f o r e w i l l e x h i b i t lower m o b i l i t y . The r e s u l t i s that under i d e n t i c a l o p e r a t i n g c o n d i t i o n s the s e p a r a t i o n of toluene from water should be greater than the s e p a r a t i o n of benzene from water. The v a l i d i t y of t h i s assumption i s checked i n the present study. I n a p r e v i o u s study of these s o l u t e s , data was reported f o r a s i n g l e feed c o n c e n t r a t i o n (22). The e f f e c t of feed c o n c e n t r a t i o n on membrane performance i s examined i n t h i s work. The q u a n t i t a t i v e treatment of the data generated i n the present study w i l l i n i t i a l l y be based on a set of equations r e c e n t l y reported (23). These equations, which have proven to be adequate for d i l u t e p-chlorophenol-water systems, are as f o l l o w s : (1)

PWF N

X

A

A2

= K

=

X

X

2

A3

+

P

A 2

X

< A1

_

(2)

X

A3>

e x

pF

k

P ( / P>

(3)

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

SYNTHETIC

298

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

ref

AB

AB,ref

MEMBRANES:

HF

AND

UF

USES

(4)

The nomenclature i s d e f i n e d i n the Legend of Symbols s e c t i o n a t the c o n c l u s i o n of t h i s paper and i s i l l u s t r a t e d i n F i g u r e 1. Equation 1 i s an e m p i r i c a l r e l a t i o n which d e s c r i b e s the extent of pore b l o c k i n g , expressed by the pore b l o c k i n g f a c t o r 1-(PF/PWF). In the case of the RO s e p a r a t i o n of a d i l u t e s o l u t e - c o n t a i n i n g feed stream i n which there i s no pore b l o c k i n g by the s o l u t e , the f l u x of the permeating stream i s equal to the f l u x obtained f o r a s i m i l a r experiment i n which the feed stream i s pure water ( i . e . , permeate f l u x (PF) equals pure water f l u x (PWF)). In t h i s case, the f l u x r a t i o PF/PWF i s u n i t y and the pore b l o c k i n g f a c t o r 1-(PF/PWF) i s zero. Conversely, when the pores are completely blocked PF i s zero, and thus, the pore b l o c k i n g f a c t o r i s u n i t y . Equation 1 i n d i c a t e s t h a t the pore b l o c k i n g f a c t o r i s p r o p o r t i o n a l to the c o n c e n t r a t i o n of the boundary l a y e r (XA2) r a i s e d to a power of n^ This r e l a t i o n s h i p w i l l be d i s c u s s e d below. Equation 2 i s an e m p i r i c a l r e l a t i o n which r e l a t e s s o l u t e f l u x (NA) to both X^2 (again r a i s e d to a power of n j ) and the o p e r a t i n g pressure ( r a i s e d to a power of n2). The exponents rii and n2,as w e l l as the proportionality factors and K 2 , are f u n c t i o n s of pore s i z e and the nature of the s o l u t e . Equation 3, which a l l o w s the c a l c u l a t i o n of X ^ from experimental data, i s based on a simple " f i l m " theory f o r mass t r a n s f e r and i s d e r i v e d elsewhere (17,23). Equation 4 a l l o w s the mass t r a n s f e r c o e f f i c i e n t on the feed s i d e , k, to be c a l c u l a t e d f o r any s o l u t e based on the value obtained f o r a r e f e r e n c e s o l u t e ( u s u a l l y sodium c h l o r i d e ) i n the same t e s t c e l l . The p o s s i b i l i t y of u s i n g equations of t h i s form f o r aromatic hydrocarbon s o l u t i o n s w i l l be examined i n t h i s paper. Experimental The c e l l u l o s e a c e t a t e membranes used were batch 316(0/25) type membranes (24) made by the general Loeb-Sourirajan technique (25). The s i x f l a t c a s t membranes were shrunk at d i f f e r e n t temperatures (from 68 to 85°C) p r i o r to l o a d i n g the membranes i n t o the r e v e r s e osmosis t e s t c e l l s . This treatment a d j u s t s the average surface pore s i z e of each membrane so t h a t a range of p o r o s i t i e s could be s t u d i e d . A p r e p r e s s u r i z a t i o n at a pressure of 11 720 kPa f o r 2 hours was used to s t a b i l i z e the membranes f o r subsequent use a t pressures of 6900 kPa or lower. ( A l l pressures l i s t e d are gauge pressure.) The general experimental procedure was s i m i l a r to that r e p o r t e d i n the l i t e r a t u r e (25). The s i x flow type reverse osmosis c e l l s were connected i n s e r i e s and were c o n s t r u c t e d i n a design s i m i l a r to that r e p o r t e d by S o u r i r a j a n (25). The c e l l s were placed i n a constant temperature box and the system was c o n t r o l l e d to 25 ± 1°C. The feed f l o w r a t e was maintained constant at 400

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

18.

DICKSON

A N D LLOYD

Solute Preferential Sorption

299

ml/min. For each experiment, the pure water f l u x (PWF) and the permeate f l u x (PF) were measured. I n a d d i t i o n , the s o l u t e c o n c e n t r a t i o n was determined i n the feed and permeate s o l u t i o n s and the s e p a r a t i o n , f , was c a l c u l a t e d as m

f =T " 3 (5) l where m^ and 1113 are the feed and permeate m o l a l i t i e s r e s p e c t i v e l y . For d i l u t e s o l u t i o n s t h i s can be approximated as m

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

m

^ _ ppml - ppm3 ppml

(6)

where ppml and ppm3 are the feed and permeate c o n c e n t r a t i o n s expressed i n p a r t s per m i l l i o n . The s o l u t e c o n c e n t r a t i o n s f o r benzene and toluene samples were analyzed u s i n g an Oceanography I n t e r n a t i o n a l C o r p o r a t i o n T o t a l Carbon A n a l y z e r . The sodium c h l o r i d e s o l u t i o n s were analyzed w i t h e i t h e r a Laboratory Data C o n t r o l D i f f e r e n t i a l Refractometer o r a YSI Model 31 C o n d u c t i v i t y Meter. The water used was d e i o n i z e d and d i s t i l l e d and a l l other chemicals were a n a l y t i c a l reagent grade. R e s u l t s and D i s c u s s i o n s Membrane C h a r a c t e r i z a t i o n . The s i x c e l l u l o s e a c e t a t e membranes were c h a r a c t e r i z e d according t o the sodium c h l o r i d e performance data. These data are presented i n Table I . A c t u a l experiments were repeated a t r e g u l a r i n t e r v a l s i n order t o monitor the membrane change^and the i l l u s t r a t e d data represent the average of nine t e s t s . Since the s o l u t e t r a n s p o r t parameter D^M/KS f o r sodium c h l o r i d e , and hence l n C*N Cl> remained e s s e n t i a l l y constant over the experimental time p e r i o d i t can be assumed that the membrane pore s i z e remained constant. The q u a n t i t y l n C* -^ i s r e p r e s e n t a t i v e of the average pore s i z e on the membrane s u r f a c e and i s independent of the s o l u t e under c o n s i d e r a t i o n (26). B r i e f l y , a decrease i n the v a l u e o f l n C*NaCl i n d i c a t e s a decrease i n the average pore s i z e . The v a l u e s of l n C * N c i f o r the membranes t e s t e d cover a wide range of s u r f a c e pore s i z e , thereby maximizing experimental design. The pure water p e r m e a b i l i t y constant A tended t o decrease over the p e r i o d of s e v e r a l experiments; t h i s decrease was a t t r i b u t e d to membrane compaction. This change i n A v a r i e d from a 10% decrease f o r the membranes of l a r g e s t pore s i z e t o a 5% decrease f o r the membranes of s m a l l e s t pore s i z e . The r a t e o f compaction f o r these hydrocarbon s t u d i e s was s l i g h t l y h i g h e r than would normally be observed f o r s a l t s o l u t i o n experiments. This a c c e l e r a t e d decrease i n A may be the r e s u l t of the d e t r i m e n t a l e f f e c t that h i g h i n t e r f a c i a l c o n c e n t r a t i o n of organics have on the c e l l u l o s e a c e t a t e . The average s e p a r a t i o n and the permeate f l u x f o r aqueous NaCl s o l u t i o n s measured under the i n d i c a t e d c o n d i t i o n s are a l s o l i s t e d i n Table I . a

NaC

a

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

2

?

k,

1.342 -12.59

0.6914 -13.25

3

2

— ^ — , 2 m s

xlO

3

13.27

97.0

61.7 25.80

82.8 24.41

93.5 19.38

-8.69

66.15

2.487

6

29.3

-9.49

29.69

2.331

5

47.0

44.0

-10.73

-11.84

38.5

8.653

1.868

4

2.846

1.268

3

a) F i l m area, 1.443 x l O m ; o p e r a t i n g pressure 6900 kPa; feed c o n c e n t r a t i o n 10 000 ppm NaCl; temperature 25°C; feed f l o w r a t e 400 ml/min.

Permeate f l u x ,

9.05

0

7.43

l

98.1

X

98.8

>

Solute Separation, %

m / s

0.8547

38.2

6

>NaCl>

*NaCl

/K6

0.7051

28.3

C

AM

4

2

Mass t r a n s f e r c o e f f i c i e n t , m/s, x l O

l n

(D

S o l u t e t r a n s p o r t parameter,

2

Pure water p e r m e a b i l i t y constant, A, (mol H 0)/(m s k P a ) , x l O

1

a

F i l m Number

C h a r a c t e r i z a t i o n and Performance of the C e l l u l o s e Acetate Membranes

TABLE I

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

18.

DICKSON

AND LLOYD

Solute Preferential Sorption

Benzene - Water Reverse Osmosis Data. The e x p e r i m e n t a l l y determined performance f o r the s e p a r a t i o n of benzene and water a t four d i f f e r e n t pressures i s i l l u s t r a t e d i n Figures 2 through 5. The s e p a r a t i o n and pore b l o c k i n g f a c t o r observed f o r s e v e r a l d i f f e r e n t feed concentrations are p l o t t e d as a f u n c t i o n of the membrane pore s i z e , l n C * N c i . Although there i s s c a t t e r i n the data, i t i s p o s s i b l e t o observe trends that apply c o n s i s t e n t l y i n Figures 2 through 5. As the pore s i z e decreases the s e p a r a t i o n i n c r e a s e s . As the feed c o n c e n t r a t i o n i n c r e a s e s , the s e p a r a t i o n i n c r e a s e s . The extent of t h i s c o n c e n t r a t i o n e f f e c t i s s m a l l f o r the membranes of l a r g e pore s i z e , and increases w i t h decreasing pore s i z e u n t i l the greatest i n f l u e n c e i s observed f o r the membrane of s m a l l e s t pore s i z e . I n a l l cases, the extent of pore b l o c k i n g increases l i n e a r l y w i t h decreasing pore s i z e . I n a d d i t i o n , i n c r e a s i n g the feed c o n c e n t r a t i o n increases the extent of pore blocking. The e f f e c t of s o l u t e c o n c e n t r a t i o n on s e p a r a t i o n i s i l l u s t r a t e d by e x t r a c t i n g the data f o r any given membrane from the curves i n Figures 2 through 5, and r e p l o t t i n g the data i n the form of s e p a r a t i o n as a f u n c t i o n of s o l u t e c o n c e n t r a t i o n i n the feed stream. T y p i c a l r e s u l t s are shown i n Figure 6. This r e l a t i o n s h i p c l e a r l y i l l u s t r a t e s that s e p a r a t i o n increases w i t h i n c r e a s i n g c o n c e n t r a t i o n , e v e n t u a l l y l e v e l i n g o f f a t a constant v a l u e . This p l o t a l s o a l l o w s the comparison of s e p a r a t i o n a t d i f f e r e n t pressures. For the range of pressures 690 to 3450 kPa, the s e p a r a t i o n increases w i t h decreasing pressure, which i s c o n s i s t e n t w i t h the general behavior of p r e f e r e n t i a l l y sorbed s o l u t e systems as discussed above and w i t h the data p r e v i o u s l y obtained (1). However, the data f o r 6900 kPa does not f o l l o w t h i s trend and i n d i c a t e s that s e p a r a t i o n passes through a minimum w i t h i n c r e a s i n g pressure. This behavior w i l l be i n v e s t i g a t e d i n more d e t a i l i n the f u t u r e . The trends i n Figures 2 to 6 a r e c o n s i s t e n t w i t h the q u a l i t a t i v e f e a t u r e s of s o l u t e p r e f e r e n t i a l s o r p t i o n discussed e a r l i e r i n t h i s paper. The permeate f l u x i s lower than the pure water f l u x due to pore b l o c k i n g . This e f f e c t i s enhanced by e i t h e r decreasing the pore s i z e or i n c r e a s i n g the feed c o n c e n t r a t i o n . Both of these f a c t o r s l e a d to a r e l a t i v e increase i n the s o l u t e content of the pore and thus, to r e s t r i c t e d water t r a n s p o r t through the pore. Since the s o l u t e i s r e l a t i v e l y immobile a t the membrane s u r f a c e , p o s i t i v e s e p a r a t i o n i s observed. Both i n c r e a s i n g the feed c o n c e n t r a t i o n and decreasing the pore s i z e l e a d to higher s e p a r a t i o n . The a d d i t i o n a l s o l u t e r e t a i n e d on the h i g h pressure s i d e must a l s o be r e l a t i v e l y immobile. I t i s hypothesized that benzene can be sorbed i n m u l t i p l e l a y e r s which are bound to the membrane. The l a y e r s i n the immediate v i c i n i t y of the membrane m a t e r i a l / p o r e w a l l are s t r o n g l y bound to the membrane. The s t r e n g t h of the a t t r a c t i o n f o r c e decreases as the d i s t a n c e between each subsequent l a y e r and the membrane surface i n c r e a s e s . a

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

301

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

302

SYNTHETIC

MEMBRANES:

HF

AND

UF

USES

BULK FEED SOLUTION UNDER "OPERATING GAUGE PRESSURE P -CONCENTRATED

^A2

BOUNDARY

-PREFERENTIALLY -DENSE

SOLUTION

SORBED INTERFACIAL

LESS DENSE MICROPOROUS "MEMBRANE LAYER

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

FLUID

MICROPOROUS MEMBRANE SURFACE

-SPONGY

POROUS

TRANSITION

MEMBRANE

P R O D U C T S O L U T I O N AT ATMOSPHERIC PRESSURE

^A3

NRCC Publications

Figure 1.

Schematic of RO transport under steady-state conditions (16)

0.4 —

J

I

I

I

I

-13

-12

I -II

l n

C

-L

I

-10

L_

-9

NaCI

Figure 2. Effect of feed concentration on the RO performance for the benzenewater system. Operating conditions: membrane material = CA; membrane area = 1.443 X IO' m , In C* obtained at 6900 kPa; feedflowrate = 400 mL/min; T = 25°C; operating pressure = 690 kPa. Curve a (O) 20.6 ppm; Curve b (%) 31.7 ppm; Curve c O 54.0 ppm; Curve d (^) 96.0 ppm. 3

2

Nam

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

DICKSON

AND

LLOYD

Solute Preferential Sorption

303

Figure 3. Effect of feed concentration on the RO performance for the benzenewater system. The operating conditions are identical to those of Figure 2 except that the operating pressure = 1725 kPa. Curve a (O) 18.0 ppm; Curve b (%) 29.8 ppm; Curve c O 49.0 ppm; Curve d (U) 98.8 ppm.

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

304

SYNTHETIC

MEMBRANES:

HF

AND

UF

USES

Figure 4. Effect of feed concentration on the RO performance for the benzenewater system. The operating conditions are identical to those of Figure 2 except that the operating pressure = 3450 kPa. Curve a (O) 20.9 ppm; Curve b (%) 31.0 ppm; Curve c (Q) 44.8 ppm; Curve d (^) 54.5 ppm; Curve e (A) 92.6 ppm.

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

A N D LLOYD

Solute Preferential Sorption

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

DICKSON

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

305

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

306

SYNTHETIC

80

MEMBRANES: HF

AND

UF

USES

-

0

20

40

60

80

FEED CONCENTRATION (ppm BENZENE)

Figure 6. Effect of feed concentration and operating pressure on separation for the benzene-water system. Data illustrated for the CA membrane with In C* i = -13.25. Curve a (O) 690 kPa; Curve b (%) 1725 kPa; Curve c O 3450 kPa; Curve d ( | ) 6900 kPa. NaC

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

18.

DICKSON

A N D LLOYD

Solute Preferential Sorption

307

The r e s u l t s observed f o r the benzene-water system can be compared to those observed f o r the p-chlorophenol-water system. I n the l a t t e r case, higher feed concentrations and s m a l l e r pore s i z e l e a d to lower s e p a r a t i o n ( 2 3 ) . As discussed e a r l i e r i n t h i s r e p o r t , t h i s d i f f e r e n c e i n behavior i s c o n s i s t e n t w i t h the d i f f e r e n c e s i n m o b i l i t y of the two s o l u t e s . With both benzene and p-chlorophenol, i n c r e a s i n g the c o n c e n t r a t i o n i n c r e a s e s the amount of s o l u t e bound t o the membrane pore w a l l . Since the p-chlorophenol i s more h i g h l y hydrated i t can move through the pore w i t h the water, which decreases the s e p a r a t i o n . For benzene, the s o l u t e i s r e l a t i v e l y immobilized, and w i t h i n c r e a s i n g c o n c e n t r a t i o n more and more of the pore i s occupied w i t h immobilized s o l u t e . The r e s u l t i s higher s e p a r a t i o n . Thus, i t appears that the s e p a r a t i o n and pore b l o c k i n g f a c t o r a r e both c o n t r o l l e d by the r e l a t i v e amount of immobilized s o l u t e i n the pore. This r e l a t i v e q u a n t i t y of s o l u t e can be increased by i n c r e a s i n g the feed c o n c e n t r a t i o n a t a f i x e d pore s i z e o r by decreasing the pore s i z e a t a f i x e d feed c o n c e n t r a t i o n . As c o n c e n t r a t i o n i s i n c r e a s e d , the a d d i t i o n a l s o l u t e assumes a p o s i t i o n i n sorbed l a y e r s which are i n c r e a s i n g l y f a r from the membrane s u r f a c e . Thus, the a t t r a c t i o n f o r c e s exerted by the membrane m a t e r i a l on the s o l u t e are p r o g r e s s i v e l y l e s s , and the a d d i t i o n a l s o l u t e i s not so t i g h t l y bound. The r e s u l t i s the permeation of a p o r t i o n of the concentrated boundary l a y e r . Therefore, there i s a l e v e l i n g o f f i n s e p a r a t i o n w i t h i n c r e a s i n g concentration. C o r r e l a t i o n of X A 2 w i t h Pore B l o c k i n g f o r Benzene-Water Data. The b l o c k i n g of the pores on the membrane surface by the p r e f e r e n t i a l l y sorbed s o l u t e , which was discussed q u a l i t a t i v e l y i n the preceding s e c t i o n , i s now t r e a t e d more q u a n t i t a t i v e l y . Equation 4 was used to estimate the a p p r o p r i a t e k value f o r each c e l l . The d i f f u s i v i t y of the s o l u t e i n water was estimated by the method of Wilke and Chang ( 2 7 ) , and the d i f f u s i v i t y of sodium c h l o r i d e i n water used was 1 . 6 0 x 10~" cm /s ( 2 6 ) . Then X A 2 was c a l c u l a t e d f o r each run from Equation 3 . F i g u r e 7 i l l u s t r a t e s the r e l a t i o n s h i p between 1 -(PF/PWF) and X A 2 - W i t h i n the s c a t t e r of t h i s data, i t i s reasonable to use a s t r a i g h t l i n e through the o r i g i n f o r a l l s i x membranes. This data corresponds to an n i value of 1 . 0 i n Equation 1 . The K j v a l u e s , obtained by l e a s t squares a n a l y s i s of the data i n F i g u r e 7 , a r e p l o t t e d i n Figure 8 as a f u n c t i o n of l n C * N C l * This r e l a t i o n s h i p can be described by the equation 5

2

a

Ki =

-2189

l n C*

N a C 1

-

12840

(7)

For the membranes used i n t h i s study, ¥L\ v a r i e d from 6 x 1 0 t o 1 6 x 1 0 . I t should be noted that F i g u r e s 7 and 8 i n c l u d e d data from a l l pressures t e s t e d and t h e r e f o r e Equation 7 w i l l p r e d i c t K i f o r a l l pressures and c o n c e n t r a t i o n s w i t h i n the range s t u d i e d . The i n v e r s e dependence of on l n C*NaCl r e f l e c t s the increased 3

3

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

o

LO 00

18.

DICKSON

A N D LLOYD

Solute Preferential Sorption

309

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

importance of s o l u t e pore b l o c k i n g f o r the membranes of s m a l l e r pore s i z e , E q u a t i o n 7, t h e r e f o r e , can be used to estimate the extent of pore b l o c k i n g that w i l l be caused by p r e f e r e n t i a l l y sorbed benzene. This e s t i m a t i o n can be performed by simply conducting experiments w i t h NaCl-water systems to determine the l n C*NaCl value f o r the membrane i n use. The a p p l i c a t i o n of Equation 7 to aqueous systems c o n t a i n i n g benzene p l u s a s o l u t e such as NaCl w i l l be explored i n f u t u r e s t u d i e s . Toluene-Water Reverse Osmosis Data. Data f o r the reverse osmosis s e p a r a t i o n of aqueous toluene s o l u t i o n s a t 3450 kPa and three d i f f e r e n t c o n c e n t r a t i o n s , u s i n g the same s i x membranes as above, a r e i l l u s t r a t e d i n Figure 9. These r e s u l t s are q u a l i t a t i v e l y s i m i l a r t o those f o r the benzene s t u d i e s . That i s , s e p a r a t i o n and extent of pore b l o c k i n g i n c r e a s e w i t h both i n c r e a s i n g c o n c e n t r a t i o n and decreasing pore s i z e . Further s t u d i e s t o i n v e s t i g a t e the e f f e c t s of pressure are c u r r e n t l y underway. C o r r e l a t i o n of XA2 w i t h Pore B l o c k i n g f o r Toluene-Water Data. An a n a l y s i s s i m i l a r t o that used f o r the benzene data was a p p l i e d to the toluene data to i n v e s t i g a t e pore b l o c k i n g as a f u n c t i o n of c o n c e n t r a t i o n . Figure 10 i l l u s t r a t e s t h i s r e l a t i o n s h i p f o r a l l s i x membranes. The data f o r membranes 5 and 6 can be approximated by a s t r a i g h t l i n e ; t h e r e f o r e , n\ was s e t to 1.0 i n Equation 1. For the other f i l m s , a l e a s t squares parameter e s t i m a t i o n was a p p l i e d and the n\ and K j values generated. The r e s u l t s are i l l u s t r a t e d i n F i g u r e 11, where K j ( p l o t t e d as l n K^ f o r convenience) and ni are shown as f u n c t i o n s of l n C*NaCl» r e g i o n of l n C * N d l e s s than -10.5 both n^ and K^ i n c r e a s e w i t h l n C*NaCl« Above t h i s value n i and K j l e v e l o f f a t 1.0 and 40 x 1 0 ( i . e . , l n K i = 10.6), r e s p e c t i v e l y . This r e s u l t i s s i m i l a r to that obtained p r e v i o u s l y i n p-chlorophenol s t u d i e s (23) , where n i was found to l e v e l o f f a t l n C*^ n^ values greater than -12.0. In general, the s e p a r a t i o n and pore b l o c k i n g data f o r the toluene-water system are c o n s i s t e n t w i t h those obtained f o r the benzene-water system. P o s i t i v e s e p a r a t i o n occurs, and the general trends of i n c r e a s i n g s e p a r a t i o n and pore b l o c k i n g w i t h i n c r e a s i n g c o n c e n t r a t i o n and decreasing pore s i z e are observed. This i s not s u r p r i s i n g s i n c e toluene and benzene are s i m i l a r i n s t r u c t u r e . However, based on the modified Small's number f o r these s o l u t e s , as discussed e a r l i e r i n t h i s paper, i t would be expected that toluene would be more s t r o n g l y sorbed by the membrane than i s the benzene. I f t h i s i s t r u e , then a t otherwise i d e n t i c a l c o n d i t i o n s toluene should demonstrate greater pore b l o c k i n g and higher s e p a r a t i o n than benzene. Curve c_ i n Figure 9 f o r toluene and curve a i n Figure 4 f o r benzene a r e a t the same pressure and approximately the same molar c o n c e n t r a t i o n . I n a l l cases, the expected r e s u l t i s found. For example, f o r membrane 2, the separations are 41% and 9% and the pore b l o c k i n g f a c t o r s are 0.30 and 0.08 f o r toluene and benzene, r e s p e c t i v e l y . Thus, the modified Small's F

o

r t

n

e

a

3

a(

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

310

SYNTHETIC

MEMBRANES:

HF AND U F

USES

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

K.xlO"

Figure 8. Correlation ofK of Equation 1 with membrane pore size (In C* ci) for separation of the benzene-water system t

Na

6

In C .

8 0

i< OC 6 0

& W UJ Z W

40

1-

a

20

_J O 0 -12

-II l n

c

NaCI

Figure 9. Effect of feed concentration on the RO performance for the toluenewater system. The operating conditions are identical to those of Figure 2 except that the operating pressure = 3450 kPa. Curve a (O) 8.7 ppm; Curve b (%) 12.4 ppm; Curve c (Q) 20.8 ppm.

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

DICKSON A N D

LLOYD

Solute Preferential Sorption

311

Figure 10. Correlation of the pore-blocking factor, 1-(PF/PWF), and the boundary layer concentration of toluene, X . The operating conditions are the same as in Figure 9 with Membranes 1 (*), 2 (Q), 3 (A), 4 (A), 5 (O), and 6 (M) as designated in Table I. A2

Figure 11. Correlation of In K j and n of Equation 1 with membrane pore size (In C* ci) for separation of the toluenewater system t

Na

NaCl

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

312

SYNTHETIC

MEMBRANES:

HF

AND

UF

USES

number i s a u s e f u l t o o l f o r q u a l i t a t i v e l y p r e d i c t i n g d i f f e r e n c e s i n the reverse osmosis performance f o r toluene-water and benzene-water systems.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

Conclusions In c o n c l u s i o n , s e v e r a l important p o i n t s of t h i s work should be r e i t e r a t e d . An understanding and q u a n t i t a t i v e d e s c r i p t i o n of s o l u t e p r e f e r e n t i a l s o r p t i o n i s imperative to the advancement of a fundamental knowledge of the s e p a r a t i o n mechanism and to the a p p l i c a t i o n of reverse osmosis. For the systems s t u d i e d , i n c r e a s i n g the feed c o n c e n t r a t i o n was found to i n c r e a s e s e p a r a t i o n and decrease permeate f l u x . This behavior can be contrasted to the case of water p r e f e r e n t i a l s o r p t i o n where both s e p a r a t i o n and permeate f l u x would remain constant f o r these d i l u t e c o n c e n t r a t i o n s . The r e s u l t s f o r the benzene s t u d i e s and the toluene s t u d i e s were s i m i l a r i n that s e p a r a t i o n increased and f l u x decreased w i t h i n c r e a s i n g feed c o n c e n t r a t i o n or decreasing pore s i z e . The benzene s t u d i e s showed a minimum i n s e p a r a t i o n w i t h i n c r e a s i n g pressure. At s i m i l a r experimental c o n d i t i o n s the toluene system showed higher s e p a r a t i o n and lower f l u x than the benzene system. This observation i s c o n s i s t e n t w i t h the d i f f e r e n c e i n the nonpolar character of the s o l u t e s as expressed by the Small's number. Further work i s needed i n order to improve the q u a n t i t a t i v e understanding of systems which e x h i b i t solute p r e f e r e n t i a l sorption. Legend of Symbols A

= pure water p e r m e a b i l i t y constant, mol (m s kPa)

H2O/

2

D^g D

= d i f f u s i v i t y of A i n B, K(

=

AM/ 5

2

m /s

s o l u t e t r a n s p o r t parameter,

f

= separation

k

= mass t r a n s f e r c o e f f i c i e n t ,

Ki,K

m/s

m/s

= p r o p o r t i o n a l i t y f a c t o r s defined i n Equations 1 and 2, r e s p e c t i v e l y

2

ln C*N d

= r e l a t i v e measure of the membrane pore s i z e

mi

= concentration, m o l a l i t y

a

ni,n

2

= exponents defined i n Equations respectively 2

NA

= s o l u t e f l u x , mol/(m

P

= operating pressure, kPa gauge

PF

= permeate f l u x , kg/(m s ) '

1 and

2,

s)

2

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

18.

DICKSON

A N D LLOYD

Solute Preferential Sorption

ppm

= c o n c e n t r a t i o n , p a r t s per m i l l i o n

PWF

= pure water f l u x , kg/(m s)

X

= c o n c e n t r a t i o n , mole f r a c t i o n

p

= s o l u t i o n d e n s i t y , kg/m

313

2

3

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

Subscripts 1

= feed s o l u t i o n

2

= boundary l a y e r s o l u t i o n

3

= permeate s o l u t i o n

M

= membrane phase

A

= solute

B

= solvent

ref

= reference s o l u t e

Acknowledgements The authors wish t o thank The Engineering Foundation f o r t h e i r support of t h i s research and the N a t u r a l Sciences and Engineering Research C o u n c i l of Canada f o r the s c h o l a r s h i p support of one of the authors (JMD). Literature Cited 1.

S o u r i r a j a n , S.; Matsuura, T. in "Reverse Osmosis and S y n t h e t i c Membranes"; S o u r i r a j a n , S., Ed.; N a t i o n a l Research C o u n c i l of Canada: Ottawa, 1977; Chapter 2.

2.

Lonsdale, H.K.; Merten, U.; R i l e y , R.L. J. Appl. Polymer Sci. 1965, 9, 1341-1362.

3.

Lonsdale, H.K.; Merten, U.; Tagami, M. J. Appl. Polymer Sci. 1967, 11, 1807-1820.

4.

Merten, U.; Lonsdale, H.K.; R i l e y , R.L.; Tagami, M. presented at NATO Advanced Study Institute on S y n t h e t i c Polymer Membranes, R a v e l l o , Sept. 1966.

5.

Anderson, J.E.; Hoffman, S.J.; P e t e r s , C.R. J. Phys. Chem. 1972, 76, 4006-4011.

6.

Pusch, W.; Burghoff, H.G.; Staude, E. 5 t h I n t e r n . Symp. on Fresh Water from the Sea 1976, 4, 143-156.

7.

Merten, U., Ed. " D e s a l i n a t i o n by Reverse Osmosis"; M.I.T. Press: Cambridge, Mass., 1966; p. 15-54.

8.

S p i e g l e r , K.S. Trans. Faraday Soc. 1958, 54, 1408-1428.

9.

Jonsson, G.; Boesen, C.E. D e s a l i n a t i o n 1975, 17, 145-165.

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch018

314

SYNTHETIC

MEMBRANES*.

HF

AND

UF

USES

10.

Boesen, C.E.; Jonsson, G. 5 t h I n t e r n . Symp. on Fresh Water from the Sea 1976, 4, 259-266.

11.

Boesen, C.E.; Jonsson, G. 6 t h I n t e r n . Symp. on Fresh Water from the Sea 1978, 3, 157-164.

12.

Jonsson, G. D e s a l i n a t i o n 1978, 24, 19-37.

13.

S p i e g l e r , K.S.; Kedem, O. D e s a l i n a t i o n 1966, 1, 311-326.

14.

Sherwood, T.K.; B r i a n , P.L.T.; F i s h e r , R.E. Ind. Eng. Chem. Fundamentals 1967, 6 ( 1 ) , 2-12.

15.

Pusch, W. Ber. Bunsenges. Physik. Chem. 1977, 81, 269-276.

16.

S o u r i r a j a n , S.; Matsuura, T. in "Reverse Osmosis and S y n t h e t i c Membranes"; S o u r i r a j a n , S., Ed.; N a t i o n a l Research C o u n c i l of Canada: Ottawa, 1977; Chapter 3.

17.

S o u r i r a j a n , S. "Reverse Osmosis"; Academic P r e s s : New York, 1970; Chapter 3.

18.

Matsuura, T.; Dickson, J.M.; S o u r i r a j a n , S. Ind. Eng. Chem. Process Des. Dev. 1976, 15(1), 149-161.

19.

T a f t , R.W., J r . in " S t e r i c E f f e c t s in Organic Chemistry" Newman, M.S., Ed.; Wiley: New York, 1956; p. 556-675.

20.

Small, P.A. J . A p p l . Chem. 1953, 3, 71-80.

21.

Matsuura, T.; S o u r i r a j a n , S. Ind. Eng. Chem. Process Des. Dev. in press.

22.

Matsuura, T.; S o u r i r a j a n , S. J. A p p l . Polymer Sci. 1973, 17, 3683-3708.

23.

Dickson, J.M.; Matsuura, T.; S o u r i r a j a n , S. Ind. Eng. Chem. Process Des. Dev. 1979, 18(4), 641-647.

24.

Pageau, L.; S o u r i r a j a n , S. J. A p p l . Polymer Sci. 1972, 16, 3185-3206.

25.

S o u r i r a j a n , S. "Reverse Osmosis"; Academic Press: New York, 1970; Chapter 2.

26.

Matsuura, T.; Pageau, L.; S o u r i r a j a n , S. J. A p p l . Polymer S c i . 1975, 19, 179-198.

27.

W i l k e , C.R.; Chang, P. AIChE J . 1955, 1, 264-270.

RECEIVED

December 4, 1980.

In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.