Chapter 19
Sorption and Diffusion of Monocyclic Aromatic Compounds Through Polyurethane Membranes 1
1
2
U. Shanthamurthy Aithal , Tejraj M.Aminabhavi ,and PatrickE.Cassidy 1
Department of Chemistry, Karnatak University, Dharwad, 580003, India Department of Chemistry, Southwest Texas State University, San Marcos, TX 78666
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
2
Sorption and transport of a number of monocyclic aromatics through a polyurethane membrane have been investigated at 25, 44 and 60°C based on an immersion/weight gain method. Activation parameters for the process of diffusion, permeation and sorption are found to follow the conventional wisdom that larger molecules exhibit lower diffusivities and higher activation energies. From a temperature dependence of the sorption constant, the standard enthalpy and entropy have been determined. The molar mass between c r o s s l i n k s has been determined by using the Flory-Rehner theory. Furthermore, results have been discussed in terms of the thermodynamic interactions between the polymer and penetrants. P o l y u r e t h a n e e l a s t o m e r s a r e known t o e x h i b i t unique mechanical p r o p e r t i e s , p r i m a r i l y as a r e s u l t of two p h a s e m o r p h o l o g y (_1 ). These m a t e r i a l s a r e alternating b l o c k copolymers made of h a r d segments of a r o m a t i c groups from t h e d i i s o c y a n a t e / c h a i n e x t e n d e r and soft segments of a l i p h a t i c c h a i n s from t h e d i o l ( e t h e r o r e s t e r ) . The h a r d and soft segments a r e c h e m i c a l l y i n c o m p a t i b l e and m i c r o p h a s e s e p a r a t i o n of t h e h a r d segments into domains d i s p e r s e d i n a m a t r i x of soft segments c a n occur i n v a r y i n g d e g r e e s . In v i e w of the i m p o r t a n c e of p o l y u r e t h a n e as a b a r r i e r m a t e r i a l i n s e v e r a l e n g i n e e r i n g areas (_2»_3), i t i s i m p o r t a n t t o know i t s t r a n s p o r t characteristics w i t h r e s p e c t to common o r g a n i c s o l v e n t s . Thus, k n o w l e d g e of t h e t r a n s p o r t mechanisms as m a n i f e s t e d b y s o r p t i o n , diffusion and permeation of o r g a n i c liquids (penetrants) i n a polyurethane matrix i s helpful f o r establishing the relationships between structures and p r o p e r t i e s under severe application c o n d i t i o n s . A l t h o u g h some p r e v i o u s s t u d i e s (4 -10) have been made on s o l v e n t t r a n s p o r t t h r o u g h p o l y u r e t h a n e , more e x p e r i m e n t a l data a r e s t i l l needed f o r a b e t t e r u n d e r s t a n d i n g of t h e t h e r m o d y n a m i c interactions between t h e polymer and solvents. The p r i n c i p a l o b j e c t i v e of t h i s paper i s to f o l l o w t h e t r a n s p o r t p r o p e r t i e s of
0097-6156/90/0423-0351$07.50/0 © 1990 American Chemical Society
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
352
BARRIER POLYMERS AND STRUCTURES
monocyclic aromatic liquids through a commercially available p o l y u r e t h a n e membrane. I t i s e x p e c t e d t h a t a s y s t e m a t i c change i n s o l v e n t power would l e a d to r e s u l t s w h i c h c o u l d be i n t e r p r e t e d by c o n s i d e r i n g t h e p o s s i b l e i n t e r a c t i o n s w i t h soft and h a r d segments of the polymer. Transport properties v i z . , diffusivity, D, permeability, P, and s o r p t i o n , S, have been s t u d i e d o v e r an i n t e r v a l of t e m p e r a t u r e from 25 to 60°C, to p r e d i c t t h e A r r h e n i u s p a r a m e t e r s f o r each of t h e t r a n s p o r t p r o c e s s e s i n v o l v e d . F u r t h e r more, t h e r e s u l t s have been d i s c u s s e d i n terms of t h e r m o d y n a m i c i n t e r a c t i o n s between p o l y u r e t h a n e and t h e l i q u i d p e n e t r a n t s . Molar mass, M^, between c r o s s l i n k s have been e s t i m a t e d b y u s i n g t h e F l o r y - R e h n e r model (11,12).
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
EXPERIMENTAL REAGENTS AND MATERIALS. P o l y u r e t h a n e ( P U ) used was o b t a i n e d from PSI, A u s t i n , T e x a s i n s h e e t s of 0.250 cm t h i c k n e s s . T h e base p o l y m e r i s a V i b r a t h a n e B600 ( U n i r o y a l ) w h i c h was o b t a i n e d from the r e a c t i o n of p o l y p r o p y l e n e o x i d e and 2,6-toluene d i i s o c y n a t e (TDI). T h e base p o l y m e r was c u r e d w i t h 4, 4 ' - m e t h y l e n e - b i s ( o - c h l o r o a n i l i n e ) i . e . , MOCA, to g i v e t h e p o l y u r e t h a n e . T h u s , t h e t w o - p h a s e m o r p h o l o g y of PU c o n s i s t e d of p o l y e t h e r d i o l as t h e soft segment and t h e a r o m a t i c d i i s o c y n a t e a c t i n g as t h e h a r d segment. The d r i v i n g f o r c e f o r t h e phase s e p a r a t i o n i s t h e i n c o m p a t i b i l i t y of t h e h a r d and soft segments. A s c h e m a t i c a l d e s c r i p t i o n of t h e m o l e c u l a r s t r u c t u r e of t h e p o l y u r e t h a n e used i s g i v e n below : V^A/W-
AC — A B A B A B A B A B A — ι
J—ι
soft where,
1
CA — i
hard
_
soft
A : +-CM- C H 4 j 4 2
i
BABABAB-vvwvw, ι
ι
hard Β : —f- O — f C H 4 y 4 2
Some r e p r e s e n t a t i v e e n g i n e e r i n g p r o p e r t i e s of PU a r e t e n s i l e s t r e n g t h , 387 k g / s q . cm ( 5500 p s i ) ; maximum p e r c e n t elongat i o n , 430; modulus f o r 300% e l o n g a t i o n , 155 k g / s q . cm ( 2200 p s i ) ; tear s t r e n g t h , 5 kg/sq.cm(70 p s i ) (ASTM D- 470) and s p e c i f i c g r a v i t y 1.101. T h e Τ of t h e p o l y m e r was found to be -43.27°C w i t h a heat f l o w of - 1.420 Watts/g as d e t e r m i n e d by differential scanning c a l o r i m e t r y , duPont model 951. The s o l v e n t s g i v e n i n T a b l e I a r e of reagent grade and d o u b l e d i s t i l l e d b e f o r e u s e . DIFFUSION E X P E R I M E N T S : P o l y u r e t h a n e e l a s t o m e r s were cut into u n i f o r m s i z e c i r c u l a r p i e c e s ( d i a m e t e r = 1.9 cm) u s i n g a s p e c i a l l y designed, sharp-edged, s t e e l d i e and d r i e d o v e r n i g h t i n a d e s i c c a t o r b e f o r e use. T h e t h i c k n e s s of t h e sample was measured at s e v e r a l points using a micrometer ( p r e c i s i o n ± 0.001 cm) and t h e mean v a l u e was taken as 0.250 cm. D r y w e i g h t s of t h e cut s a m p l e s were taken b e f o r e i m m e r s i o n into t h e a i r t i g h t , m e t a l - c a p p e d test b o t t l e s c o n t a i n i n g t h e l i q u i d . A f t e r i m m e r s i o n into t h e r e s p e c t i v e l i q u i d s , t h e b o t t l e s were p l a c e d i n a t h e r m o s t a t i c a l l y c o n t r o l l e d oven (± 0.5°C).
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
19.
AITHAL ET AL.
Sorption and Diffusion Through Polyurethane Membranes 353
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
At p e r i o d i c i n t e r v a l s , the samples were r e m o v e d from the b o t t l e s , the wet s u r f a c e s were d r i e d between f i l t e r paper w r a p s and w e i g h e d i m m e d i a t e l y to the nearest 0.05 mg by p l a c i n g i t on a c o v e r e d w a t c h g l a s s w i t h i n the chamber of the balance. The samples w e r e p l a c e d back into test b o t t l e s and were t r a n s f e r r e d to the oven. The e x p e r i m e n t s were p e r f o r m e d at 25, 44 and 60°C. A p o s s i b l e source of e r r o r i n t h i s method i s t h a t the sample has to be removed from the l i q u i d to a l l o w w e i g h i n g ; i f t h i s i s done q u i c k l y (say w i t h i n 30-50 sees) c o m p a r e d to the time a sample spent i n the l i q u i d i n between c o n s e c u t i v e w e i g h i n g s , the sample r e m o v a l e x e r t s a n e g l i g i b l e e f f e c t . F o r those l i q u i d s whose d e n s i t y i s g r e a t e r than the p o l y m e r i t s e l f , the sample was k e p t submerged i n the l i q u i d by a g l a s s - p l u n g e r a t t a c h e d to the s c r e w cap. RESULTS AND SORPTION
DISCUSSION
KINETICS.
Room
temperature
sorption curves
expressed 1
as p e r c e n t penetrant u p t a k e , Q ( t ) , v e r s u s s q u a r e root of t i m e , t are d i s p l a y e d i n F i g u r e s 1 and 2. A p e r u s a l of the s o r p t i o n c u r v e s g i v e n i n F i g u r e 1 suggests a s y s t e m a t i c t r e n d i n the s o r p t i o n behavior of methyl substituted benzenes. For instance, the s o r p t i o n of benzene i s h i g h e r than o t h e r homologues; a l s o , benzene reaches sorption equilibrium more quicker than toluene, px y l e n e and m e s i t y l e n e . T h i s may be due to the presence of more b u l k i e r -CH^ groups r e n d e r i n g a s l u g g i s h movement of the s o l v e n t w i t h i n the p o l y m e r m a t r i x . The s o r p t i o n c u r v e s of o t h e r a r o m a t i c s , namely, bromobenzene, o-dichlorobenzene, nitrobenzene, chlorobenzene and a n i s o l e are p r e s e n t e d i n F i g u r e 2. Here, bromobenzene e x h i b i t s a maximum Q(t) of about 147% (the maximum of a l l the p e n e t r a n t s ) w h e r e a s a n i s o l e has o n l y about 80%. T h u s , i t i s c l e a r that c h l o r o , bromo, n i t r o and methoxy s u b s t i t u t i o n s on the benzene moiety tend to i n c r e a s e the extent of s o r p t i o n w i t h the p o l y u r e t h a n e membrane. The maximum s o r p t i o n of a l l the penetrants follow the sequence : Bromobenzene > o - d i c h l o r o b e n z e n e > c h l o r o b e n z e n e κ n i t r o b e n z e n e > a n i s o l e > benzene > toluene > p - x y l e n e > m e s i t y l e n e . S o r p t i o n data a l s o s e r v e as a guide to s t u d y the e f f e c t of t e m p e r a t u r e on the o b s e r v e d transport behavior. Temperature v a r i a t i o n of s o r p t i o n c u r v e s f o r some r e p r e s e n t a t i v e penetrants namely, benzene, m e s i t y l e n e , a n i s o l e , bromobenzene and o - d i c h l o r o benzene a r e i n c l u d e d i n F i g u r e s 3-7. In almost a l l c a s e s , the s h a p e s of s o r p t i o n c u r v e s at 25°C a r e s i m i l a r to those at the two h i g h e r t e m p e r a t u r e s , a l t h o u g h the change i n s l o p e i s more pronoun ced between 25 and 44°C than between 44 and 60°C. F o r a l l the penetrants except benzene and bromobenzene, the maximum s o r p t i o n v a l u e s at 44 and 60°C seem to be more or l e s s i d e n t i c a l . 2
F o r a F i c k i a n b e h a v i o r , the p l o t s of Q(t) v e r s u s t should increase linearly up to about 50% sorption. Deviations from the F i c k i a n s o r p t i o n a r e a s s o c i a t e d w i t h the time t a k e n by the p o l y m e r segments to r e s p o n d to a s w e l l i n g s t r e s s and r e a r r a n g e
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
354
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
BARRIER P O L Y M E R S AND STRUCTURES
]
Figure 1 Percentage mass uptake Q(t) of the polymer versus square root of time t for polyurethane (PU) + solvent pairs at 25 C. β
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
AITHAL ET AL.
0
Sorption and Diffusion Through Polyurethane Membranes 355
15
30
45 v 1 (min) 7
60
75
90
•
Figure 2 Percentage mass uptake Q(t) of the polymer versus square root of time t for polyurethane (PU) + solvent pairs at 25 C. β
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
1/2
356
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
BARRIER POLYMERS AND STRUCTURES
0
15
30
45
60
J t (min) Figure 3 Temperature dependence of percentage mass uptake Q(t) of the polymer versus t for polyurethane + Benzene system. 1/2
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Sorption and Diffusion Through Polyurethane Membranes 357
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
AITHAL E T
Figure 4 Temperature dependence of percentage mass uptake Q(t) versus t polyurethane + Mesitylene system.
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
1/2
for
BARRIER POLYMERS AND STRUCTURES
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
358
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Sorption and Diffusion Through Polyurethane Membranes 359
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
AITHAL ET AL.
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
BARRIER POLYMERS AND STRUCTURES
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
360
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
19.
AITHAL ET AL.
Sorption andDiffusion Through Polyurethane Membranes 361
themselves to accommodate the solvent molecules. This usually r e s u l t s i n t h e s i g m o i d a l s h a p e s f o r t h e s o r p t i o n c u r v e s : T h u s , nonFickian diffusion involves the tension between swollen (soft segments) and the u n s w o l l e n ( h a r d segments) p a r t s of polyurethane as the l a t t e r tend to r e s i s t f u r t h e r s w e l l i n g . However, during early stages of s o r p t i o n , the s a m p l e s may not r e a c h the t r u e e q u i l i b r i u m c o n c e n t r a t i o n of the penetrant and t h u s , t h e r a t e of s o r p t i o n b u i l d s up s l o w l y to p r o d u c e s l i g h t c u r v a t u r e s as shown i n F i g u r e s 1-7. T h i s i s i n d i c a t i v e of the d e p a r t u r e from the F i c k i a n mode and i s further confirmed from an a n a l y s i s of s o r p t i o n data by u s i n g the f o l l o w i n g e q u a t i o n (JJ^.J^) :
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
log
(M
/M ) œ
= log k + η log t
(1)
Here, the constant k d e p e n d s on the structural characteristics of the p o l y m e r i n a d d i t i o n to i t s i n t e r a c t i o n w i t h the s o l v e n t ; and a r e r e s p e c t i v e l y , the mass u p t a k e at time t and at e q u i l i b r i u m , t . The magnitude of η d e c i d e s t h e t r a n s p o r t mode; f o r i n s t a n c e , a v a l u e of η = 0.5 suggests the F i c k i a n mode and f o r η = 1, a n o n - F i c k i a n d i f f u s i o n mode i s p r e d i c t e d . H o w e v e r , the intermediate values ranging from η = 0.5 to u n i t y suggest the p r e s e n c e of anomalous t r a n s p o r t mechanism. F r o m a l e a s t - s q u a r e s a n a l y s i s , t h e v a l u e s of η and k have been e s t i m a t e d and these are included in Table I, and F i g u r e 8 r e p r e s e n t s a t y p i c a l p l o t f o r benzene and toluene. The a v e r a g e u n c e r t a i n t y i n the e s t i m a t i o n of η i s around ±0.007. The v a l u e of η do not i n d i c a t e any s y s t e m a t i c v a r i a t i o n w i t h t e m p e r a t u r e H o w e v e r , a general v a r i a t i o n of η from a minimum v a l u e of 0.53 to a maximum of 0.74 i n d i c a t e s t h a t the anomalous t y p e t r a n s p o r t mechanism is operative and the diffusion is slightly deviated from the F i c k i a n t r e n d . T h i s f a c t can be further substantiated 3
from the c u r v a t u r e d e p e n d e n c i e s of Q(t) v s . t p l o t s shown i n Figures 1-7. Such o b s e r v a t i o n s a r e a l s o e v i d e n t from the work of N i c o l a i s et a l . (_15) f o r n-hexane t r a n s p o r t i n g l a s s y p o l y s t y r e n e A t e m p e r a t u r e dependence of k suggests t h a t i t i n c r e a s e s w i t h a r i s e i n t e m p e r a t u r e f o r a l l the p e n e t r a n t s e x c e p t j D - x y l e n e and bromobenzene. F u r t h e r m o r e , k a p p e a r s to d e p e n d on s t r u c t u r a l characteristics of the penetrant molecules i.e., it decreases successively from benzene to mesitylene; this decrease in k parallels the decrease i n the values of sorption equilibrium. S i m i l a r l y , f o r c h l o r o b e n z e n e to n i t r o b e n z e n e via o-dichlorobenzene k d e c r e a s e s s u c c e s s i v e l y . T h u s , i t a p p e a r s t h a t k not o n l y depends on the structural characteristics of the p o l y m e r and penetrant molecules, but a l s o on s o l v e n t i n t e r a c t i o n s w i t h the polyurethane c h a i n s . At any r a t e , the g r e a t e r tendency f o r n o n - F i c k i a n c o e f f i cients in Equation (1) seen f o r 60°C, may r e f l e c t some a s p e c t of s w e l l i n g of i n t e r p h a s e r e g i o n s between the h a r d and soft domains.
—
TRANSPORT
COEFFICIENTS:
portion
the
of
sorption
From curves
the
slope
i . e . , Q(t)
j
initial
t ,
the
θ , of the vs.
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
linear
diffusion
362
BARRIER POLYMERS AND STRUCTURES
Table
I
Analysis o f Penetrant Transport at Various
Molecular
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
Penetrant
Volume χ 1 0
Temperatures
Exponent 2 3
(g/g-hr)102 Q(t) (Eq 1) (X o f d r y sample wt)
Temp
η
(cm3/molecule)
(°C)
(Eq 1)
Benzene
14.85
25 44 60
0.554 0.593 0.599
2.809 3.295 3.975
71.01 72.15 74.14
Toluene
17.75
25 44 60
0.567 0.600 0.599
2.602 3.207 3.874
60.17 59.09 60.08
£-xylene
20.48
25 44 60
0.561 0.557 0.595
2.295 3.334 3.021
49.68 49.95 49.31
Mesitylene
23.19
25 44 60
0.532 0.571 0.602
1.261 2.203 2.444
40.15 41.52 41.99
Anisole
18.16
25 44 60
0.566 0.585 0.581
2.166 2.765 3.227
80.25 83.89 82.80
Nitrobenzene
17.14
25 44 60
0.602 0.584 0.618
1.134 1.797 1.839
106.32 107.17 114.81
Chlorobenzene
16.98
25 44 60
0.588 0.569 0.584
2.371 3.597 3.739
105.52 109.08 108.84
o-Dichlorobenzene
18.78
25 44 60
0.583 0.565 0.589
1.658 2.441 2.625
131.36 131.17 131.52
Bromobenzene
17.53
25 44 60
0.575 0.586 0.736
2.300 2.790 1.600
147.50 150.06 151.58
m a x
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
AITHAL E T A L .
Sorption and Diffusion Through Polyurethane Membranes 363
Γ
1
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
τ
J 1.2
I
I
L
1.5
1.8
2.1
log t Figure 8 Log
•
versus log t for polyurethane + Benzene and polyurethane +
Toluene systems.
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
364
BARRIER POLYMERS AND STRUCTURES
c o e f f i c i e n t s D, h a v e been c a l c u l a t e d
b y using (16,17)
D = π(ηθ/4Μ
)
2
(2)
00 Here, M has t h e same meaning as b e f o r e and h i s t h e i n i t i a l sample t h i c k n e s s ; t h e s l o p e Q , i s u s u a l l y o b t a i n e d b e f o r e 50% completion of s o r p t i o n . The values of D d e t e r m i n e d in this manner can be r e g a r d e d as independent of c o n c e n t r a t i o n , and a r e t h u s , a p p l i c a b l e f o r t h e F i c k i a n mode of t r a n s p o r t . A t r i p l i c a t e evaluation of D from sorption curves gave us D v a l u e s with an e r r o r of ±0.003 u n i t s at 25°C and ±0.005 u n i t s at 60°C f o r a l l polymer-penetrant systems. These uncertainty estimates regarding diffusion coefficients suggest that the half times were very r e p r o d u c i b l e ( t o w i t h i n a f e w tens of s e c o n d s ) . T h e v a l u e s of D are compiled i n T a b l e II f o r each p o l y u r e t h a n e - s o l vent pair. I n c l u d e d i n t h e same t a b l e a r e t h e v a l u e s of s o r p t i o n c o e f f i c i e n t s , S, as computed from t h e p l a t e a u r e g i o n s of t h e s o r p t i o n c u r v e s and permeability coefficient, Ρ as c a l c u l a t e d from the simple relation U 8 ) : Ρ = D.S (3)
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
œ
In a l l c a s e s , both p e r m e a b i l i t y and d i f f u s i v i t y of m e t h y l - s u b s t i t u t e d benzenes v a r y i n an i n v e r s e manner w i t h t h e i r m o l e c u l a r volumes (as c a l c u l a t e d b y d i v i d i n g t h e m o l e c u l a r w e i g h t by d e n s i t y and A v o g a d r o number to y i e l d t h e volume p e r m o l e c u l e ) . For o t h e r p e n e t r a n t s , namely, a n i s o l e , n i t r o b e n z e n e , c h l o r o b e n z e n e , o-dichlorobenzene and bromobenzene, t h e volume p e r molecule v a r i e s i n t h e range 17-19. However, t h e i r d i f f u s i o n t r e n d s a r e q u i t e d i f f e r e n t . F o r i n s t a n c e , though n i t r o b e n z e n e and c h l o r o b e n z e n e 2 3
3
h a v i n g almost t h e same m o l e c u l a r volume ( ~ 1 7 x l 0 ~ cm /molecule), y i e l d w i d e l y d i f f e r e n t d i f f u s i v i t y and p e r m e a b i l i t y ; h o w e v e r , t h e maximum S v a l u e s of both t h e penetrants a r e almost identical. Similarly, f o r bromobenzene, the diffusive trends are higher whereas, jo-dichlorobenzene exhibits somewhat intermediatory transport behavior between c h l o r o - and bromobenzene. However, a n i s o l e e x h i b i t s d i f f u s i v e t r e n d s that a r e i n between m e s i t y l e n e and _p-xylene. When our r e s u l t s a r e compared with the literature data, a good agreement c o u l d be seen. F o r e x a m p l e , i n a s t u d y by S c h n e i d e r and c o w o r k e r s (10) f o r t h e t r a n s p o r t of o - d i c h l o r o benzene in a segmented polyurethane elastomer at 25°C, a -7 2 v a l u e of D = 0.95 χ 10 cm /s agrees w i t h our data at 25°C -7 2 ( i . e . , 2.01 χ 10 cm fs). S i m i l a r l y , f o r benzene, toluene, and chlorobenzene at 30°C i n a p o l y u r e t h a n e , Hung (_5) found t h e -7 -7 -7 2 v a l u e s of D as 1.29 χ 10 , 1.43 χ 10 and 1.37 χ 10 cm /s respectively, which agree somewhat w i t h our v a l u e s , 2.90, 2.60 -7 2 and 3.42 χ 10 cm /s r e s p e c t i v e l y , at 25°C.
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
19.
AITHAL ET AL.
Sorption and Diffusion Through Polyurethane Membranes 365
Table
II.
S o r p t i o n and T r a n s p o r t Data of P o l y u r e t h a n e - P e n e t r a n t Systems 7
Temp
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
Penetrant
/
χ ( C) β
Λ
S , , * (g/g)
*
7
DxlO
v
PxlO
s
,
/ ( mmol/g)
2. . (cm /s) E q . (2)
,
2, . (cm /s) E q . (3)
Benzene
25 44 60
0. 710 0. 721 0. 741
9. 09 9. 24 9. 49
2. 90 5. 23 8. 09
2. 06 3. 73 6. 00
Toluene
25 44 60
0. 602 0. 591 0. 601
6. 53 6. 41 6. 52
2. 60 5. 71 7. 52
1. 56 3. 37 4. 52
p-Xylene
25 44 60
0. 497 0. 500 0. 493
4.,68 4.,71 4.,64
2. 34 4. 33 7. 02
1. 16 2.,16 3.,46
Mesitylene
25 44 60
0. 402 0. 415 0. 420
3.,34 3.,45 3.,49
0. 86 2. 24 3. 76
0.,34 0.,93 1.,58
Anisole
25 44 60
0. 803 0. 839 0. 828
7.,42 7,.76 7,.66
1. 66 3. 57 4.82
1.,33 2,,99 3..99
Nitrobenzene
25 44 60
1. 063 1. 071 1. 148
8,.64 8,.71 9..23
0. 87 1. 57 2.,47
0,.92 1..68 2,.83
Chlorobenzene
25 44 60
1. 055 1. 091 1. 088
9,.38 9,.69 9,.67
3.,42 5.,41 6.,90
3,.61 5,.90 7,.50
o-Dichlorobenzene
25 44 60
1.,314 1.,312 1.,315
8,.94 8,.92 8,.95
2.,01 2.,87 4.,39
2,.64 3,.77 5,.77
Bromobenzene
25 44 60
1,,475 1.,501 1.,516
9 .39 9 .56 9 .65
2.,81 4..56 7,.19
4,.14 6 .85 10 .90
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
366
BARRIER POLYMERS AND STRUCTURES
The d i f f u s i o n c o e f f i c i e n t s as c a l c u l a t e d from E q u a t i o n 2 have been used i n E q u a t i o n 4 to generate t h e t h e o r e t i c a l s o r p t i o n c u r v e s (19-22) :
oo
= 1 - (Α) π
M /M
η
Σ "
— 5 - exp [ - D ( 2 n + l ) (2η+1)
υ
2
2 ï ï
2
t/h l
(4)
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
Equation 4 d e s c r i b e s t h e F i c k i a n d i f f u s i o n mode. The s i m u l a t e d sorption curves are compared i n Figures 9 and 10 w i t h t h e experimental profiles f o r some r e p r e s e n t a t i v e penetrants. The o v e r a l l agreement i s o n l y f a i r . During e a r l y stages of s o r p t i o n the agreement i s not so good and t h e e x p e r i m e n t a l curves show s l i g h t c u r v a t u r e s ; t h i s suggests that t h e t r a n s p o r t i s not s t r i c t l y of F i c k i a n t y p e . TEMPERATURE E
D
and E
p
EFFECTS.
The A r r h e n i u s
f o r the processes
activation
parameters v i z . ,
of d i f f u s i o n and permeation
computed from a c o n s i d e r a t i o n of t h e t e m p e r a t u r e D and Ρ r e s p e c t i v e l y , b y u s i n g t h e r e l a t i o n : log
X = log X
- ( E / 2 . 3 0 3 RT)
X
refers
to D
or Ρ
been of
(5)
v
O
where
have
variation
A
and X
q
i s a constant
representing
D
Q
and P ; E ^ denotes t h e a c t i v a t i o n energy f o r t h e p r o c e s s under c o n s i d e r a t i o n and RT has t h e c o n v e n t i o n a l meaning. The e s t i m a t e d parameters Ε and E a r e g i v e n i n T a b l e I I I . The A r r h e n i u s p l o t s q
β
p
are g i v e n i n F i g u r e 11. The E and E D
for
t h e penetrants
under
p
values
vary
study.
As
from regards
about 16 to 35 k J / m o l the effect
s u b s t i t u t i o n on t h e benzene molecule ( i . e . , on going from to m e s i t y l e n e ) t h e r e i s a s y s t e m a t i c i n c r e a s e i n E ^ and E
of CH^-
p
benzene values.
These r e s u l t s c o u l d be e x p l a i n e d on t h e b a s i s of E y r i n g ' s h o l e t h e o r y (_23), a c c o r d i n g to w h i c h , t h e energy r e q u i r e d to "open a h o l e " i n t h e p o l y m e r m a t r i x to accommodate a d i f f u s i n g molecule bears a d i r e c t r e l a t i o n s h i p w i t h E^. Thus, t h e l a r g e r molecules in
a
related
series
will
have
larger
E^
and
smaller
diffusion
coefficients. This i s i n conformity with the experimental obser vations r e p o r t e d here. A t t e m p t s have a l s o been made to c a l c u l a t e t h e e q u i l i b r i u m s o r p t i o n c o n s t a n t s , K^, from c o n s i d e r a t i o n s on t h e e q u i l i b r i u m process occurring i n the l i q u i d pressure (5). Thus,
phase
at constant
number of moles of penetrant
temperature
sorbed
unit mass of t h e p o l y m e r
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
and
AITHALETAK
Sorption and Diffusion Through Polyurethane Membranes 367
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
19.
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
368
BARRIER POLYMERS AND STRUCTURES
0
10
20
30
40
50
60
I
1
1
1
1
1
Γ
7 t (min )
•
Figure 10 Comparison between experimental and simulated sorption curves for polyurethane + solvent systems.
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
19.
Table III.
369
Sorption and Diffusion Through
AITHALETAL.
A c t i v a t i o n P a r a m e t e r s and T h e r m o d y n a m i c F u n c t i o n s f o r P o l y u r e t h a n e - P e n e t r a n t Systems E
D
E
p
AS
0
ΔΗ°
Penetrant
Benzene Toluene p-Xylene Mesitylene Bromobenzene Anisole Chlorobenzene o-Dichlorobenzene Nitrobenzene
kJ/mol
kJ/mol
J/mol.K
24. 17 25.43 25.83 34.95 22.04 25.42 16.64 18.20 24. 54
25.,13 25..40 25..72 35.,90 22..67 26.,24 17.,40 18..23 26,.21
21.6 15.3 12.3 13.7 20.8 19.4 21.2 18.3 23.7
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
kJ/mol 0.99 - 0.08 -0.17 1.08 0.64 0.79 0.76 0.02 1.74
370
BARRIER POLYMERS AND STRUCTURES
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
π
1
1 Ο
Benzene
Δ
Toluene
Ο
Mesitylene
•
Bromobenzene
•
o-Dichlorobenzene
φ
Nitrobenzene
3
Anisole
•
Chlorobenzene
•
p-Xylene
3.0
3.1
3.2 3
3.3
3.4
1
±χ10 (Κ" ) τ Figure 11 Arrhenius plots for diffusivity.
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
19.
Sorption and Diffusion Through Polyurethane Membranes 371
AITHALETAK
_
m moles of penetrant g membrane
S Figure
12
weights
shows
at
25,
the
44
dependence
and
60°C;
of
a
Kg
on
systematic
penetrant decrease
molecular
in
Kg with
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
molecular weight can be seen for benzene to mesitylene an inverse dependence of Kg on molecular weight of the
suggesting penetrant.
This may be more logical because larger molecules tend to occupy more free volume in the amorphous regions of PU chains than smaller molecules. On the other hand, anisole, nitrobenzene, bromobenzene, chloro- and o-dichlorobenzene show positive devia tions ( i . e . , higher solubility) from linearity. This could be a t t r i buted to the structural and polarity similarities of the solvents. Another factor might be the affinity of these solvents towards polyurethane. Following the generalization "like absorbs like", this explanation is consistent with our experimental results. Using the data of Kg we have estimated change in standard enthalpy ( i . e . , heat of sorption) Δ Η ° , and standard entropy of by using van't Hoff relationship (24) :
log Κ
=
ς
s
The
plots
within the of
of
log
Kg versus
AS°
estimated error in about ±1 J / m o l / K . For vely
decreases
(1)
2 . 303R
temperature
ΔΗ° and
-J*l 2. 303 R
1/T as
interval of
are
also
Δ Η ° is
benzene,
shown
AS° is
in
±4 J/mol about
(7)
13,
are linear
The estimated
Table
III.
whereas
The
for
AS° is
about
values average
A S ° , it
22 J/mol. Κ and it
for which
AS°,
Τ
in Figure
25 to 6 0 ° C .
included
about
up to p-xylene
sorption
is
progressi 12
J/mol.K;
A S ° for mesitylene is slightly higher than j?-xylene. However, for the remaining penetrants we could not observe any systematic trend in A S ° values because cal sizes and interact This further confirms not involve polymeric essentially from the movement within the
these penetrants possess more or less identi differently with the polyurethane segments. that the diffusive portion of absorption does cooperation to a greater extent, but results positioning of penetrant molecules during pre-existing available sites of the polymer
matrix (21). The ΔΗ° values are small and positive excepting toluene and p-xylene for which negative values are observed. THERMODYNAMIC
ANALYSIS.
For
a
comprehensive
understanding
of the structure-property relationships of the elastomeric materials in the presence of a solvent, it is necessary to know the magnitude of polymer-solvent interaction parameter χ , and hence the molar mass between crosslinks, M^. The criterion for swelling equilibrium
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
372
BARRIER POLYMERS AND STRUCTURES
1
1
1
1
C H Br6
5
cx
9 H
C
X6 6
H
N0
6 5 2 ©
C H Cl 6
C
Ό
\ 6 5 3 H
6
4
2
C,H OCH, c
CH
Κ
6
(0)-25*C
Ν. C H (CH ) ^\ 6
4
3
2
(Δ) - 60"C C H (CH )3^ 6
3
.. . 1
3
1 110
90
Mol.Wt.
1 130
1
150
>
Figure 12 Dependence of sorption constant (K ) on molecular weight of the solvents at (O) 25 * C; (•) 44 C; and ( Δ ) 60 C. β
β
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
19.
Sorption and Diffusion Through Polyurethane Membranes 373
AITHAL ET A K
was f i r s t r e c o g n i z e d by F r e n k e l (25) and was l a t e r d e v e l o p e d by F l o r y and Rehner (11,12) i n t o a general t h e o r y . F o r a s u c c e s s f u l c a l c u l a t i o n of M by t h i s t h e o r y we must have i n hand r e l i a b l e data c
of χ f o r t h e s o l v e n t - p o l y m e r p a i r . A number of methods of d e t e r mining χ h a v e been suggested i n t h e l i t e r a t u r e and these h a v e been r e c e n t l y r e v i e w e d by T a k a h a s h i ( 2 6 ) . A l l t h e s e methods a r e e m p i r i c a l and r e q u i r e t h e use of s o l u b i l i t y parameter of t h e s o l v e n t . I n s t e a d , we suggest an a l t e r n a t i v e phenomenological treatment f o r the c a l c u l a t i o n of χ. T h i s a p p r o a c h i s based on e x p r e s s i n g t h e F l o r y - R e h n e r e q u a t i o n into a d e r i v a t i v e of volume f r a c t i o n of the polymer, φ , i n the c o m p l e t e l y s w o l l e n state w i t h r e s p e c t to temperature. Thus,
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
(
di, d
χφ
=
T
2ΧΦ -
-^-r
-
(-ί Ν = —
where
(
so t h a t
χ =
W/dT)
( 8 )
(1-φ)
- -
+
Φ + Χ Φ
3 Ν
(9)
1 / 3
-
Φ
fi)
(άφ/άΊ)
2
-
2
)
[{ φ / ( 1 - φ ) } + Ν In (1-φ)
[2φ
The
Un
2 / τ
φ Ν
-
+ Νφ
]
( 1 Q )
2
φ /Τ]
volume f r a c t i o n of t h e s w o l l e n p o l y m e r i s c a l c u l a t e d as :
φ = [1
Here,
and
are
after
p
M
=
(
(11)
i ) - —^- ]
respectively,
the
mass
of
polymer
before
i s s o l v e n t d e n s i t y and ρ i s d e n s i t y of b ρ polyurethane. Computation of the c o e f f i c i e n t of volume fraction (ά(\>/άΊ) can be done from a l e a s t - s q u a r e s f i t of t h e φ data v e r s u s t e m p e r a t u r e , T. The molar mass between c r o s s l i n k s can then be o b t a i n e d from a m o d i f i c a t i o n of F l o r y - R e h n e r r e l a t i o n as :
and
swelling,
+ — Β
C
P v p
(φ)
1 / 3
(12) [In (1-φ)
+ φ+
Χ
2
φ ]
w h e r e V i s molar volume of s o l v e n t and t h e parameter χ t o be used here has been o b t a i n e d from Equation 10. The estimated q u a n t i t i e s a r e c o m p i l e d i n T a b l e IV. Wide d i s p a r i t y i n χ and
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
374
BARRIER POLYMERS AND STRUCTURES
1
1-0
1
1
I
C^Cl
Γ P C
H
6 5
N 0
=
I
& C H Br 6
5
= ·— *-
2*
o—
C H OCH 6
5
—A
C
H
6 6
3
—m C
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
•
H
6 5
C H
3
C
W
Δ
H
}
3 2
/\
0-6 C H (CH ) 6
0
3
3
3
—Λ
1
1
3-0
3.1
Ο 1
3.2 3
1
1X10 (K' )
1
1
3.3
3.4
•
τ
Figure 13 van't HofFs plots for polyurethane + solvent systems. Symbols:
(I)
Chloro- and Bromobenzene;
(0)
Benzene; (•)
(Δ)
^-xylene; and (o) Mesitylene;
Table IV.
Anisole; (•)
Toluene; (A)
Nitrobenzene.
Results of Flory-Rehner Theory
Penetrant Benzene Toluene p-Xylene Mesitylene Bromobenzene Anisole Chlorobenzene o-Dichlorobenzene Nitrobenzene
X 0.47 0.29 0.23 0.37 0.36 0.41 0.39 0.24 0.58
M c 860 551 469 517 1018 886 1017 848 1793
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
19. AITHAL ET AL. Sorption and Diffusion Through Polyurethane Membranes 375 values are observed w h i c h depend on t h e nature of t h e s o l v e n t s u s e d . F o r toluene, p - x y l e n e and o - d i c h l o r o b e n z e n e , both χ and respectively,
vary
from
:χ =
0.23 to 0.29 and M
c
= 470 to 850.
T h i s suggests that t h e r e i s a c o n s i d e r a b l e s o l v e n t i n t e r a c t i o n w i t h the p o l y u r e t h a n e segments. F o r benzene χ = 0.47 and M = 860, c
whereas
nitrobenzene
e x h i b i t s χ = 0.58 and M
c
= 1793, t h e h i g h e s t
among t h e l i q u i d s c o n s i d e r e d . On t h e o t h e r hand, m e s i t y l e n e , a n i s o l e , c h l o r o - and bromobenzene e x h i b i t almost i d e n t i c a l v a l u e s of χ i . e . , 0.36 to 0.41; among t h e s e , the latter two e x h i b i t higher (
~
1020) than
Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
respectively,
either
mesitylene
517 and 886. Such
or
anisole
variations
in
for which data
are
indicate the
s e r i o u s l i m i t a t i o n s of t h e F l o r y - R e h n e r t h e o r y to s t u d y polymer swelling. However, the complexity of s o l v e n t interactions may p r o b a b l y a f f e c t i n v a r i o u s degrees, t h e h a r d and t h e soft segments of PU. T h i s will alter the overall swelling behavior thereby contributing to t h e v a r i a b i l i t y of M^ r e s u l t s . T h i s i s further i n d i c a t i v e of t h e s u b t l e the s o l v e n t - p o l y u r e t h a n e
n o n - F i c k i a n e f f e c t s as o b s e r v e d pairs.
f o r most of
ACKNOWLEDGMENTS The a u t h o r s a p p r e c i a t e t h e f i n a n c i a l s u p p o r t from t h e Robert A. Welch Foundation (Grant AI-0524); TMA and USA thank t h e U n i v e r s i t y Grants C o m m i s s i o n , New D e l h i , I n d i a f o r t h e a w a r d of a t e a c h e r f e l l o w s h i p to Mr. A i t h a l to s t u d y at Karnatak U n i v e r s i t y .
LITERATURE CITED 1. Cooper, S. L . ; Tobolsky, Α. V. J. Appl. Polym. Sci. 1966, 10, 1837. 2. Gibson, P. E. Properties in Polyurethane Block Copolymers in Developments in Block Copolymers; Goodman, I., Ed.; Elsevier : London, 1982. 3. Trapps, G. In Advances in Polyurethane Technology; Buist, J. M . ; Gudgeon, H . , Eds.; Interscience : New York, 1968 ; p 63. 4. Hung, G. W. C.; Autian, J. J. Pharm. Sci. 1972, 61, 1094. 5. Hung, G. W. C. Microchem. J. 1974, 19, 130. 6. Hopfenberg, Η. B . ; Schneider, N. S.; Votta, F. J. Macromol. Sci.-Phys. 1969, B3(4), 751. 7. Nierzwicki, W.; Majewska, Z. J. Appl. Polym. Sci. 1979, 24, 1089. 8. Sefton, M. V . ; Mann, J. L. J. Appl. Polym. Sci. 1980, 25, 829.
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
376 BARRIER POLYMERS AND STRUCTURES
Yokoyama, T.; Furukawa, M. In International Progress in Urethanes; Ashida, K.; Frisch, K. C., Eds.; Technomic Publishing Co., Inc., 1985; Vol. 4, Chapter 1. 10 Schnieder, N. S.; Illinger, J. L . ; Cleaves, M. A. Polym. Eng. Sci. 1986, 26, 1547. 11. Flory, P. J . ; Rehner, Jr, J. J. Chem. Phys. 1943, 11, 521. 12. Flory, P. J. J. Chem. Phys. 1950, 18, 108. 13. Lucht, L. M.; Peppas, N. A. J. Appl. Polym. Sci. 1987, 33, 1557. 14. Chiou, J. S.; Paul, D. R. Polym. Eng. Sci. 1986, 26, 1218. 15. Nicolais, L . ; Drioli, E . ; Hopfenberg, Η. B.; Apicella, A. Polymer 1979, 20, 459. 16. Britton, L. N.; Ashman, R. B.; Aminabhavi, T. M.; Cassidy, P. E. J. Chem. Educ. 1988, 65, 368. 17. Aminabhavi, T. M.; Cassidy, P. E. Polym. Commun. 1986, 27, 254. 18. Cassidy, P. E . ; Aminabhavi, T. M.; Thompson, C. M. Rubb. Chem. Technol., Rubb. Revs. 1983, 56, 594. Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch019
9.
19.
24.
Crank, J. The Mathematics of Diffusion; 2nd Ed; Clarendon Press : Oxford, 1975. Gent, A. N.; Tobias, R. H. J. Polym. Sci. Polym. Phys. Ed. 1982, 20, 2317. Enscore, D. J . ; Hopfenberg, H. B.; Stannett, V. T. Polym. Eng. Sci. 1980, 20, 102. Garrido, L . ; Mark, J. E . ; Clarson, S. J . ; Semlyen, J. A. Polym. Commun. 1984, 25, 218. Zwolinski, B. J . ; Eyring, H.; Reese, C. E. J. Phys. Colloid Chem. 1949, 53, 1426. Golden, D. M. J. Chem. Educ. 1971, 48, 235.
25. 26.
Frenkel, J. Rubb. Chem. Technol. 1940, 13, 264. Takahashi, S. J. Appl. Polym. Sci. 1983, 28, 2847.
20. 21. 22. 23.
RECEIVED
December 5, 1989
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.