Stabilization of Small Platinum Nanoparticles on Pt–CeO2 Thin Film

Aug 1, 2016 - At pH 1 (0.1 M HClO4) the Pt–CeOx dissolves partially during potential ... (DFT) that traces of Pt0 are necessary for the hydrogen dis...
3 downloads 0 Views 8MB Size
Subscriber access provided by Northern Illinois University

Article 2

Stabilization of Small Platinum Nanoparticles on Pt-CeO Thin Film Electrocatalysts During Methanol Oxidation

Olaf Brummel, Fabian Waidhas, Firas Faisal, Roman Fiala, Mykhailo Vorokhta, Ivan Khalakhan, Martin Dubau, Alberto Figueroba, Gabor Kovacs, Hristiyan A. Aleksandrov, Georgi N. Vayssilov, Sergey M. Kozlov, Konstantin M. Neyman, Vladimír Matolín, and Jörg Libuda J. Phys. Chem. C, Just Accepted Manuscript • DOI: 10.1021/acs.jpcc.6b05962 • Publication Date (Web): 01 Aug 2016 Downloaded from http://pubs.acs.org on August 5, 2016

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

The Journal of Physical Chemistry C is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Stabilization of Small Platinum Nanoparticles on Pt-CeO2 Thin Film Electrocatalysts During Methanol Oxidation Olaf Brummela, Fabian Waidhasa, Firas Faisala, Roman Fialab, Mykhailo Vorokhtab, Ivan Khalakhanb, Martin Dubaub, Alberto Figuerobac, Gábor Kovácsc, Hristiyan A. Aleksandrovc,d, Georgi N. Vayssilovd, Sergey M. Kozlovc, Konstantin M. Neymanc,e, Vladimir Matolínb, Jörg Libudaa,f* a

Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3,

91058 Erlangen, Germany b

Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V

Holešovičkách 2, 18000 Prague, Czech Republic c

Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional,

Universitat de Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain d

Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria

e

Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain

f

Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3,

91058 Erlangen, Germany

Abstract Pt-doped CeOx thin films electrocatalysts have recently been shown to exhibit high activity and stability at the anode of proton exchange membrane fuel cells (PEM-FC). To identify the role of the Pt dopant and the origin of the high stability of Pt-CeOx films, we have applied electrochemical in-situ IR spectroscopy on Pt-CeOx model thin film catalysts during methanol (1 M methanol) oxidation. The model catalysts were prepared by magnetron co-sputtering of Pt (9 to 21 atomic %) and CeO2 onto clean and carbon-coated Au supports. All samples were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) before and after reaction. At pH 1 (0.1 M HClO4) the Pt-CeOx dissolves partially during potential cycling, whereas the films are largely stable at pH 6 (0.1 M phosphate buffer). Electrochemical IR spectroscopy of the adsorbed CO shows that metallic Pt is formed on all Pt-CeOx samples during methanol oxidation. In comparison to Pt(111), Pt aggregates on Pt-CeOx show a CO on-top signal, which is red shifted by at least 25 cm-1 and suppression of the bridging CO signals. Whereas the Pt particles on Pt-CeOx films with high Pt concentration (>20 atomic %) undergo rapid sintering during the potential cycling, small metallic Pt aggregates are stable under the same conditions

Corresponding author, phone: +49 9131 85 27308, FAX: ++49 (0)9131/85 28867, email: [email protected]

1 Environment ACS Paragon Plus

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 43

on films with low Pt concentration ( 20 atomic %) we observe the formation of regular Pt crystallites exposing (111) facets and low-coordinated edge and corner sites. For low Pt concentration (< 15 atomic % Pt) we observe the formation of subnano Pt species, which do not expose regular (111) facet sites and show a CO frequencies redshift by > 25 cm-1. DFT calculations show that the on-top CO stretching frequency is closely correlated with the Pt coordination number and, to a lesser extent, with the particle size. Comparison with the experimental data suggests that the subnano Pt species contain around 30 or less Pt atoms and have nominal size below 1 nm. Formation of Pt NPs with regular (111) facet sites is predicted for aggregates containing around 80 and more atoms. At low Pt concentration ( 20 atomic %). This showes that the ceria support efficiently stabilizes even very small Pt particles under the conditions of dynamically changing electrode potentials.

16 Environment ACS Paragon Plus

Page 16 of 43

Page 17 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Acknowledgment The authors acknowledge financial support by the EU (FP7 NMP project ChipCAT Grant No. 310191), by the COST Action CM1104 and by the Deutsche Forschungsgemeinschaft (DFG) within the Excellence Cluster “Engineering of Advanced Materials” in the framework of the excellence initiative. In addition we acknowledge support through cooperation with the Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Forschungszentrum Jülich GmbH. The work has been also supported by the Horizon2020 program of the European Commission (project Materials Networking), by the Spanish MINECO (grants CTQ2012-34969 and CTQ2015-64618-R, co-funded by FEDER), by the Generalitat de Catalunya (grants 2014SGR97 and XRQTC) and by the project LH15277 of the Czech Ministry of Education. Computer resources, technical expertise and assistance were provided by the Red Española de Supercomputación.

Supporting Information Potential dependent in-situ IR spectra during methanol oxidation at pH 1 on different Pt electrocatalysts: (I) Pt(111), (III) Pt(8%)-CeOx/Au, (IV) Pt(15%)-CeOx/C/Au.

17 Environment ACS Paragon Plus

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Literature 1. Steele, B. C. H.; Heinzel, A., Materials for Fuel-Cell Technologies. Nature 2001, 414, 345-352. 2. Edwards, P. P.; Kuznetsov, V. L.; David, W. I. F.; Brandon, N. P., Hydrogen and Fuel Cells: Towards a Sustainable Energy Future. Energy Policy 2008, 36, 4356-4362. 3. Fiala, R.; Vaclavu, M.; Rednyk, A.; Khalakhan, I.; Vorokhta, M.; Lavkova, J.; Potin, V.; Matolinova, I.; Matolin, V., Pt–CeOx Thin Film Catalysts for PEMFC. Catal. Today 2015, 240, Part B, 236-241. 4. Václavů, M.; Matolínová, I.; Mysliveček, J.; Fiala, R.; Matolín, V., Anode Material for Hydrogen Polymer Membrane Fuel Cell: Pt – CeO2 RF-Sputtered Thin Films. J. Electrochem. Soc. 2009, 156, B938-B942. 5. Fiala, R.; Matolinova, I.; Matolin, V.; Sevcikova, K.; Yoshikawa, H.; Tapan, A., Electro-Oxidation Activity of Pt-CeOx Carbon Supported Catalysts. Int. J. Electrochem. Sci. 2013, 8, 10204-10218. 6. Scibioh, M. A.; Kim, S.-K.; Cho, E. A.; Lim, T.-H.; Hong, S.-A.; Ha, H. Y., CeO2/C Anode Catalyst for Direct Methanol Fuel Cells. Appl. Catal. B 2008, 84, 773-782. 7. Zhou, Y.; Gao, Y.; Liu, Y.; Liu, J., High Efficiency Pt-CeO2/Carbon Nanotubes Hybrid Composite as an Anode Electrocatalyst for Direct Methanol Fuel Cells. J. Power Sources 2010, 195, 1605-1609. 8. You, E.; Guzmán-Blas, R.; Nicolau, E.; Scibioh, A. M.; Karanikas, C. F.; Watkins, J. J.; Cabrera, C. R., Co-Deposition of Pt and Ceria Anode Catalyst in Supercritical Carbon Dioxide for Direct Methanol Fuel Cell Applications. Electrochim. Acta 2012, 75, 191-200. 9. Ou, D. R.; Mori, T.; Togasaki, H.; Takahashi, M.; Ye, F.; Drennan, J., Microstructural and Metal−Support Interactions of the Pt−CeO2/C Catalysts for Direct Methanol Fuel Cell Application. Langmuir 2011, 27, 3859-3866. 10. Campos, C. L.; Roldán, C.; Aponte, M.; Ishikawa, Y.; Cabrera, C. R., Preparation and Methanol Oxidation Catalysis of Pt-CeO2 Electrode. J. Electroanal. Chem. 2005, 581, 206215. 11. Takahashi, M.; Mori, T.; Ye, F.; Vinu, A.; Kobayashi, H.; Drennan, J., Design of High-Quality Pt–CeO2 Composite Anodes Supported by Carbon Black for Direct Methanol Fuel Cell Application. J. Am. Ceram. Soc. 2007, 90, 1291-1294. 12. Guo, D.-J.; Jing, Z.-H., A Novel Co-Precipitation Method for Preparation of Pt-CeO2 Composites on Multi-Walled Carbon Nanotubes for Direct Methanol Fuel Cells. J. Power Sources 2010, 195, 3802-3805. 13. Huang, S.-Y.; Chang, C.-M.; Yeh, C.-T., Promotion of Platinum–Ruthenium Catalyst for Electro-Oxidation of Methanol by Ceria. J. Catal. 2006, 241, 400-406. 14. Mori, T.; Fugane, K.; Chauhan, S.; Ito, M.; Masuda, T.; Noguchi, H.; Uosaki, K., Design of Pt-CeOx Hetero-Interface on Electrodes in Polymer Electrolyte Membrane Fuel Cells. IOP Conf. Ser.: Mater. Sci. Eng. 2014, 54, 012010. 15. Zhao, Y.; Wang, F.; Tian, J.; Yang, X.; Zhan, L., Preparation of Pt/CeO2/HCSs Anode Electrocatalysts for Direct Methanol Fuel Cells. Electrochim. Acta 2010, 55, 8998-9003. 16. Corchado-Garcia, J.; Betancourt, L. E.; Velez, C. A.; Senanayake, S. D.; Stacchiola, D.; Sasaki, K.; Guinel, M. J. F.; Zhou, Y.; Cheung, C. L.; Cabrera, C. R., Cerium Oxide as a Promoter for the Electro-Oxidation Reaction of Ethanol: In Situ XAFS Characterization of the Pt Nanoparticles Supported on CeO2 Nanoparticles and Nanorods. Phys. Chem. Chem. Phys. 2015, 17, 32251-32256. 17. Vorokhta, M.; Khalakhan, I.; Matolínová, I.; Kobata, M.; Yoshikawa, H.; Kobayashi, K.; Matolín, V., Nanostructured Pt–CeO2 Thin Film Catalyst Grown on Graphite Foil by Magnetron Sputtering. Appl. Surf. Sci. 2013, 267, 119-123. 18. Matolín V., Matolínová I., Václavů M., Khalakhan I., Vorokhta M., Fiala R., Piš I., 18 Environment ACS Paragon Plus

Page 18 of 43

Page 19 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Sofer Z., Poltierová-Vejpravová J., Mori T., et al., Platinum-Doped CeO2 Thin Film Catalysts Prepared by Magnetron Sputtering. Langmuir 2010, 26, 12824-12831. 19. Vayssilov G.N., Lykhach Y., Migani A., Staudt T., Petrova G.P., Tsud N., Skála T., Bruix A., Illas F., Prince K.C., et al., Support Nanostructure Boosts Oxygen Transfer to Catalytically Active Platinum Nanoparticles. Nat. Mater. 2011, 10, 310-315. 20. Happel, M.; Kylhammar, L.; Carlsson, P.-A.; Libuda, J.; Grönbeck, H.; Skoglundh, M., SOx Storage and Release Kinetics for Ceria-Supported Platinum. Appl. Catal. B. 2009, 91, 679-682. 21. Happel, M.; Mysliveček, J.; Johánek, V.; Dvořák, F.; Stetsovych, O.; Lykhach, Y.; Matolín, V.; Libuda, J., Adsorption Sites, Metal-Support Interactions, and Oxygen Spillover Identified by Vibrational Spectroscopy of Adsorbed CO: A Model Study on Pt/Ceria Catalysts. J. Catal. 2012, 289, 118-126. 22. Bruix A., Lykhach Y., Matolínová I., Neitzel A., Skála T., Tsud N., Vorokhta M., Stetsovych V., Ševčíková K., Mysliveček J., et al., Maximum Noble-Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum. Angew. Chem. Int. Ed. 2014, 53, 10525-10530. 23. Lykhach, Y.; Staudt, T.; Vorokhta, M.; Skála, T.; Johánek, V.; Prince, K. C.; Matolín, V.; Libuda, J., Hydrogen Spillover Monitored by Resonant Photoemission Spectroscopy. J. Catal. 2012, 285, 6-9. 24. Lykhach, Y.; Figueroba, A.; Camellone, M. F.; Neitzel, A.; Skála, T.; Negreiros, F. R.; Vorokhta, M.; Tsud, N.; Prince, K. C.; Fabris, S., Counting Electrons on Supported Nanoparticles. Nat. Mater. 2016, 15, 284-288. 25. Lykhach, Y.; Figueroba, A.; Camellone, M. F.; Neitzel, A.; Skála, T.; Negreiros, F. R.; Vorokhta, M.; Tsud, N.; Prince, K. C.; Fabris, S., Reactivity of Atomically Dispersed Pt2+ Species Towards H2: Model Pt-CeO2 Fuel Cell Catalyst. Phys. Chem. Chem. Phys. 2016 18, 7672-7679. 26. Lykhach, Y.; Staudt, T.; Lorenz, M. P. A.; Streber, R.; Bayer, A.; Steinrück, H. P.; Libuda, J., Microscopic Insights into Methane Activation and Related Processes on Pt/Ceria Model Catalysts. ChemPhysChem 2010, 11, 1496-1504. 27. Lykhach, Y.; Staudt, T.; Tsud, N.; Skála, T.; Prince, K. C.; Matolín, V.; Libuda, J., Enhanced Reactivity of Pt Nanoparticles Supported on Ceria Thin Films During Ethylene Dehydrogenation. Phys. Chem. Chem. Phys. 2011, 13, 253-261. 28. Bruix, A.; Migani, A.; Vayssilov, G. N.; Neyman, K. M.; Libuda, J.; Illas, F., Effects of Deposited Pt Particles on the Reducibility of CeO2(111). Phys. Chem. Chem. Phys. 2011, 13, 11384-11392. 29. Happel, M.; Lykhach, Y.; Tsud, N.; Skála, T.; Johánek, V.; Prince, K. C.; Matolín, V.; Libuda, J., SO2 Decomposition on Pt/CeO2(111) Model Catalysts: On the Reaction Mechanism and the Influence of H2 and CO. J. Phys. Chem. C 2012, 116, 10959-10967. 30. Lykhach, Y.; Johánek, V.; Aleksandrov, H. A.; Kozlov, S. M.; Happel, M.; Skála, T.; Petkov, P. S.; Tsud, N.; Vayssilov, G. N.; Prince, K. C., Water Chemistry on Model Ceria and Pt/Ceria Catalysts. J. Phys. Chem. C 2012, 116, 12103-12113. 31. Lykhach, Y.; Happel, M.; Johánek, V.; Skála, T.; Kollhoff, F.; Tsud, N.; Dvořák, F.; Prince, K. C.; Matolín, V.; Libuda, J., Adsorption and Decomposition of Formic Acid on Model Ceria and Pt/Ceria Catalysts. J. Phys. Chem. C 2013, 117, 12483-12494. 32. Neitzel, A.; Lykhach, Y.; Skála, T.; Tsud, N.; Vorokhta, M.; Mazur, D.; Prince, K. C.; Matolín, V.; Libuda, J., Surface Sites on Pt–CeO2 Mixed Oxide Catalysts Probed by CO Adsorption: A Synchrotron Radiation Photoelectron Spectroscopy Study. Phys. Chem. Chem. Phys. 2014, 16, 24747-24754. 33. Neitzel, A.; Lykhach, Y.; Skala, T.; Tsud, N.; Johanek, V.; Vorokhta, M.; Prince, K. C.; Matolin, V.; Libuda, J., Hydrogen Activation on Pt-Sn Nanoalloys Supported on Mixed Sn-Ce Oxide Films. Phys Chem. Chem. Phys. 2014, 16, 13209-13219. 19 Environment ACS Paragon Plus

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

34. Neitzel, A.; Lykhach, Y.; Johánek, V.; Tsud, N.; Skála, T.; Prince, K. C.; Matolín, V.; Libuda, J., Decomposition of Acetic Acid on Model Pt/CeO2 Catalysts: The Effect of Surface Crowding. J. Phys. Chem C 2015, 119, 13721-13734. 35. Faisal, F.; Toghan, A.; Khalakhan, I.; Vorokhta, M.; Matolin, V.; Libuda, J., Characterization of Thin CeO2 Films Electrochemically Deposited on HOPG. Appl. Surf. Sci. 2015, 350, 142-148. 36. Kaftan, A.; Kollhoff, F.; Nguyen, T.-S.; Piccolo, L.; Laurin, M.; Libuda, J., Sensitivity of CO Oxidation toward Metal Oxidation State in Ceria-Supported Catalysts: An Operando Drifts-MS Study. Catal. Sci. Technol. 2016, 6, 818-828. 37. Fiala, R.; Vaclavu, M.; Vorokhta, M.; Khalakhan, I.; Lavkova, J.; Potin, V.; Matolinova, I.; Matolin, V., Proton Exchange Membrane Fuel Cell Made of Magnetron Sputtered Pt–CeOx and Pt–Co Thin Film Catalysts. J. Power Sources 2015, 273, 105-109. 38. Neitzel, A.; Lykhach, Y.; Skála, T.; Tsud, N.; Johánek, V.; Vorokhta, M.; Prince, K. C.; Matolín, V.; Libuda, J., Hydrogen Activation on Pt–Sn Nanoalloys Supported on Mixed Sn–Ce Oxide Films. Phys. Chem. Chem. Phys. 2014, 16, 13209-13219. 39. Kolb, D. M., Electrochemical Surface Science. Angew. Chem. Int. Ed. 2001, 40, 11621181. 40. Kolb, D., An Atomistic View of Electrochemistry. Surface Science 2002, 500, 722740. 41. Iwasita, T.; Nart, F. C., In Situ Infrared Spectroscopy at Electrochemical Interfaces. Prog. Surf. Sci. 1997, 55, 271-340. 42. Hoffmann, F. M., Infrared Reflection-Absorption Spectroscopy of Adsorbed Molecules. Surf. Sci. Rep. 1983, 3, 107-192. 43. Greenler, R. G.; Burch, K. D.; Kretzschmar, K.; Klauser, R.; Bradshaw, A. M.; Hayden, B. E., Stepped Single-Crystal Surfaces as Models for Small Catalyst Particles. Surface Science 1985, 152–153, Part 1, 338-345. 44. Rice, C.; Tong; Oldfield, E.; Wieckowski, A.; Hahn, F.; Gloaguen, F.; Léger, J.-M.; Lamy, C., In Situ Infrared Study of Carbon Monoxide Adsorbed onto Commercial Fuel-CellGrade Carbon-Supported Platinum Nanoparticles:  Correlation with 13C NMR Results. J. Phys. Chem. B 2000, 104, 5803-5807. 45. Arenz, M.; Mayrhofer, K. J. J.; Stamenkovic, V.; Blizanac, B. B.; Tomoyuki, T.; Ross, P. N.; Markovic, N. M., The Effect of the Particle Size on the Kinetics of CO Electrooxidation on High Surface Area Pt Catalysts. J. Am. Chem. Soc. 2005, 127, 6819-6829. 46. Kresse, G.; Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169-11186. 47. Perdew, J. P.; Wang, Y., Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B 1992, 45, 13244-13249. 48. Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector AugmentedWave Method. Phys. Rev. B 1999, 59, 1758-1775. 49. Methfessel, M.; Paxton, A. T., High-Precision Sampling for Brillouin-Zone Integration in Metals. Phys. Rev. B 1989, 40, 3616-3621. 50. Kozlov, S. M.; Aleksandrov, H. A.; Goniakowski, J.; Neyman, K. M., Effect of MgO(100) Support on Structure and Properties of Pd and Pt Nanoparticles with 49-155 Atoms. J. Chem. Phys. 2013, 139, 084701. 51. Viñes, F.; Illas, F.; Neyman, K. M., On the Mechanism of Formation of Metal Nanowires by Self‐Assembly. Angew. Chem. Int. Ed. 2007, 46, 7094-7097. 52. Loschen, C.; Carrasco, J.; Neyman, K. M.; Illas, F., First-Principles LDA+U and GGA+U Study of Cerium Oxides: Dependence on the Effective U Parameter. Phys. Rev. B 2007, 75, 035115. 53. Kibler, L. A., Preparation and Characterization of Noble Metal Single Crystal Electrode Surfaces. Short Course Held at the 51st and 53rd Annual Mtg of the ISE 2003. 20 Environment ACS Paragon Plus

Page 20 of 43

Page 21 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

54. Kibler, L. A.; Cuesta, A.; Kleinert, M.; Kolb, D. M., In-Situ STM Characterisation of the Surface Morphology of Platinum Single Crystal Electrodes as a Function of Their Preparation. J. Electroanal Chem 2000, 484, 73-82. 55. Carol, K.; Victor, C.; Juan, M. F., Electrochemistry at Platinum Single Crystal Electrodes. In Electroanalytical Chemistry, CRC Press: Boca Rato, 2011; pp 75-170. 56. Moulder, J. F.; Chastain, J., Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Division, Perkin-Elmer Corporation: Eden Prairie, Minnesota, 1992. 57. Skála, T.; Šutara, F.; Škoda, M.; Prince, K. C.; Matolín, V., Palladium Interaction with CeO2 , Sn–Ce–O and Ga–Ce–O Layers. J. Phys.: Condens. Matter 2009, 21, 055005. 58. Skála, T.; Šutara, F.; Cabala, M.; Škoda, M.; Prince, K. C.; Matolín, V., A Photoemission Study of the Interaction of Ga with CeO2(111) Thin Films. Appl. Surf. Sci. 2008, 254, 6860-6864. 59. Libra, J. KolXPD: Spectroscopy Data Measurement and Processing. http://www.kolibrik.net/science/kolxpd/ accessed 13.05.2016, 2016. 2016 60. Eyrich, M.; Diemant, T.; Hartmann, H.; Bansmann, J.; Behm, R., Interaction of CO with Structurally Well-Defined Monolayer PtAu/Pt (111) Surface Alloys. J. Phys. Chem. C 2012, 116, 11154-11165. 61. Dahle, J. T.; Livi, K.; Arai, Y., Effects of pH and Phosphate on CeO2 Nanoparticle Dissolution. Chemosphere 2015, 119, 1365-1371. 62. Xia, X. H.; Iwasita, T.; Ge, F.; Vielstich, W., Structural Effects and Reactivity in Methanol Oxidation on Polycrystalline and Single Crystal Platinum. Electrochim. Acta 1996, 41, 711-718. 63. Lai, S. C. S.; Lebedeva, N. P.; Housmans, T. H. M.; Koper, M. T. M., Mechanisms of Carbon Monoxide and Methanol Oxidation at Single-Crystal Electrodes. Top. Catal. 2007, 46, 320-333. 64. Iwasita, T., Electrocatalysis of Methanol Oxidation. Electrochim. Acta 2002, 47, 36633674. 65. Cuesta, A., At Least Three Contiguous Atoms Are Necessary for CO Formation During Methanol Electrooxidation on Platinum. J. Am. Chem. Soc. 2006, 128, 13332-13333. 66. Koper, M. T., Structure Sensitivity and Nanoscale Effects in Electrocatalysis. Nanoscale 2011, 3, 2054-2073. 67. Neurock, M.; Janik, M.; Wieckowski, A., A First Principles Comparison of the Mechanism and Site Requirements for the Electrocatalytic Oxidation of Methanol and Formic Acid over Pt. Faraday discuss. 2009, 140, 363-378. 68. Batista, E. A.; Malpass, G. R. P.; Motheo, A. J.; Iwasita, T., New Mechanistic Aspects of Methanol Oxidation. J. Electroanal. Chem. 2004, 571, 273-282. 69. Batista, E. A.; Malpass, G. R. P.; Motheo, A. J.; Iwasita, T., New Insight into the Pathways of Methanol Oxidation. Electrochem. Commun. 2003, 5, 843-846. 70. Reichert, R.; Schnaidt, J.; Jusys, Z.; Behm, R. J., The Influence of Reactive Side Products on the Electrooxidation of Methanol - a Combined in Situ Infrared Spectroscopy and Online Mass Spectrometry Study. Phys. Chem. Chem. Phys. 2014, 16, 13780-13799. 71. Leger, J. M.; Coutanceau, C.; Lamy, C., Electrocatalysis for the Direct Alcohol Fuel Cell. In Fuel Cell Catalysis, John Wiley & Sons, Inc.: Hoboken, New Jersey 2008; pp 343373. 72. Brummel, O.; Faisal, F.; Bauer, T.; Pohako-Esko, K.; Wasserscheid, P.; Libuda, J., Ionic-Liquid-Modified Electrocatalysts: The Interaction of [C1C2Im][OTf] with Pt(111) and Its Influence on Methanol Oxidation Studied by Electrochemical IR Spectroscopy. Electrochim. Acta 2016, 825–836.

21 Environment ACS Paragon Plus

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

73. Neitzel, A.; Johánek, V.; Lykhach, Y.; Skála, T.; Tsud, N.; Vorokhta, M.; Matolín, V.; Libuda, J., Reduction of Pt2+ Species in Model Pt‒CeO2 Fuel Cell Catalysts Upon Reaction with Methanol. Appl. Surf. Sci. 2016, 387, 674-681. 74. Eyrich, M.; Diemant, T.; Hartmann, H.; Bansmann, J.; Behm, R. J., Interaction of CO with Structurally Well-Defined Monolayer PtAu/Pt(111) Surface Alloys. J. Phys. Chem. C 2012, 116, 11154-11165. 75. Bazin, P.; Saur, O.; Lavalley, J. C.; Daturi, M.; Blanchard, G., FT-IR Study of CO Adsorption on Pt/CeO2: Characterisation and Structural Rearrangement of Small Pt Particles. Phys. Chem. Chem. Phys. 2005, 7, 187-194. 76. Lambert, D. K., Stark Effect of Adsorbate Vibrations. Solid State Commun. 1984, 51, 297-300. 77. Koper, M. T. M.; van Santen, R. A.; Wasileski, S. A.; Weaver, M. J., Field-Dependent Chemisorption of Carbon Monoxide and Nitric Oxide on Platinum-Group (111) Surfaces: Quantum Chemical Calculations Compared with Infrared Spectroscopy at Electrochemical and Vacuum-Based Interfaces. J. Chem. Phys. 2000, 113, 4392-4407. 78. Scheijen, F. J. E.; Beltramo, G. L.; Hoeppener, S.; Housmans, T. H. M.; Koper, M. T. M., The Electrooxidation of Small Organic Molecules on Platinum Nanoparticles Supported on Gold: Influence of Platinum Deposition Procedure. J. Solid State Electrochem. 2008, 12, 483-495. 79. Couto, A.; Rincón, A.; Pérez, M. C.; Gutiérrez, C., Adsorption and Electrooxidation of Carbon Monoxide on Polycrystalline Platinum at pH 0.3–13. Electrochim. Acta 2001, 46, 1285-1296. 80. Hayden, B. E.; Kretzschmar, K.; Bradshaw, A. M.; Greenler, R. G., An Infrared Study of the Adsorption of CO on a Stepped Platinum Surface. Surface Science 1985, 149, 394-406. 81. Hollins, P., The Influence of Surface Defects on the Infrared Spectra of Adsorbed Species. Surf. Sci. Rep. 1992, 16, 51-94. 82. Campbell, C. T.; Peden, C. H. F., Oxygen Vacancies and Catalysis on Ceria Surfaces. Science 2005, 309, 713-714.

22 Environment ACS Paragon Plus

Page 22 of 43

Page 23 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Sample number

Sample type

c(Pt) [atomic %]

d(CeOx) [nm]

d(C) [nm]

pH

I

Pt(111)

100

-

-

1

II

Pt(111)

100

-

-

6

III

PtCeOx/Au

8

40

-

1

IV

PtCeOx/C/Au

15

50

20

1

V

PtCeOx/C/Au

21

50

20

6

VI

PtCeOx/C/Au

15

50

20

6

VII

PtCeOx/C/Au

9

50

20

6

Table 1. Overview of the samples used in this study with the atomic Pt concentration c(Pt), the film thickness of CeOx d(CeOx), and the film thickness of the carbon layer d(C). The last column shows pH values in the methanol oxidation experiments

23 Environment ACS Paragon Plus

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 24 of 43

Site (a) 1 2 3 4 5

Nsites (b) 2 2 1 2 1

Nc(Pt) (c) 4 3 6 5 2

Eads [eV] (d) -2.79 -2.43 -2.88 -2.56 -1.95

ν(C-O) [cm-1] (e) 2028 2032 2033 2040 2016

Pt34

1 2 3 4 5 6

8 4 4 4 4 4

6 9 6 6 5 7

Pt79

1 2 3 1 2 3 4

24 12 24 24 24 6 24

6 7 9 6 7 9 9

-2.21 -1.97 -2.23 -2.15 -2.14 -2.09 -2.20 -2.10 -1.99 -2.21 -1.97 -1.95 -1.75

2038 2054 2043 2041 2038 2047 2043 2047 2069 2042 2047 2062 2063

Pt140

1 2 3 4

24 24 24 24

6 7 9 9

-2.27 -1.96 -1.64 -1.69

2043 2052 2072 2067

Pt201

1 2 3 4 5 6

24 24 6 12 48 8

6 7 8 7 9 9

-2.05 -1.98 -1.74 -2.04 -1.70 -1.53

2039 2046 2056 2044 2068 2076

Pt8/CeO2(111)

1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1

4 4 3 5 2 5 6 3

-2.30 -2.29 -1.52 -2.12 -1.87 -2.07 -0.88 -1.17

2029 2022 2025 2024 2047 2023 2050 2019

Pt34/CeO2(111)

1 2 3 4 5

4 4 4 8 4

6 6 9 6 5

-2.44 -2.38 -1.76 -2.28 -1.75

2039 2036 2057 2028 2025

System Pt8

Pt116

Table 2. Overview of the CO vibrational frequencies and adsorption energies calculated by DFT method for all on-top sites of supported and unsupported Pt particles: (a) label of site according to Figure 6; (b) number of symmetry equivalent sites on the Pt particle Nsites; (c) coordination number with respect to other Pt atoms Nc(Pt); (d) CO binding energy relative to CO in the gas phase; (e) calculated CO stretching frequency values corrected with respect to the gas phase experimental value ν(C-O) = ω(C-O)+14 cm-1 (see text); solely these corrected

24 Environment ACS Paragon Plus

Page 25 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

frequency values ν(C-O) are discussed in this work. Calculated electronic states of both Pt8/CeO2(111) and Pt34/CeO2(111) models reveal two electrons donated by the Pt particles to the support, as manifested by the presence of two Ce3+ cations in each case. This number is not modified by CO adsorption in most of the Pt sites. Only when CO is adsorbed in sites 4 and 6 of the supported Pt8 particle the number of Ce3+ cations decreases to one, while in site 4 of the Pt34 particle it increases to three. All our attempts to converge the states with two electrons donated to the ceria support failed in these three special cases.

25 Environment ACS Paragon Plus

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 1. Overview of the electrocatalyst samples used in this work: I, II: Pt(111) reordered and cleaned by flame annealing; III to VII: Pt-CeOx thin film samples on Au or C/Au substrates. Schematic representation (left); SEM images of the sample after preparation (middle); SEM images of the samples after the methanol oxidation

26 Environment ACS Paragon Plus

Page 26 of 43

Page 27 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Figure 2. Schematic illustration of the experimental procedure applied for the in-situ IR spectroscopy experiments in this work: (1) Potential cycling in hanging meniscus configuration with working electrode (WE), counter electrode (CE), and reference electrode (RE), (2) in-situ IR spectroscopy measurement in thin layer configuration, and (3) equilibration in retracted position before the next in-situ IR spectroscopy experiment.

27 Environment ACS Paragon Plus

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 3. Comparison of the electrochemical IR spectra taken during methanol oxidation on different Pt electrocatalysts at pH 1 (1 M CH3OH in 0.1 M HClO4): (a) comparison of the IR spectra at an electrode potential of 0.35 VAg/AgCl (reference: -0.2 VAg/AgCl); (b) peak position of the on-top CO band as a function of the electrode potential.

28 Environment ACS Paragon Plus

Page 28 of 43

Page 29 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Figure 4. Potential dependent in-situ IR spectra during methanol oxidation at pH 6 (1 M CH3OH in 0.1 M phosphate buffer) on different Pt electrocatalysts: (II) Pt(111), (V) Pt(21%)CeOx/C/Au, (VI) Pt(15%)-CeOx/C/Au, (VII) Pt(9%)-CeOx/C/Au. All reference spectra were taken at -0.15 VAg/AgCl.

29 Environment ACS Paragon Plus

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 5. Comparison of the electrochemical IR spectra taken during methanol oxidation on Pt-CeOx electrocatalysts with different Pt concentration at pH 6 (1 M CH3OH in 0.1 M HClO4): (a) IR spectra at an electrode potential of 0.4 VAg/AgCl (reference: -0.15 VAg/AgCl); (b) peak position of the on-top CO band as a function of the electrode potential.

30 Environment ACS Paragon Plus

Page 30 of 43

Page 31 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Figure 6. Overview of unsupported and supported model Pt particles used in the DFT studies on CO adsorption. The numbers indicate the symmetrically inequivalent Pt atoms in each particle (see also Table 2). Yellow, brown and red spheres represent Ce4+ cations, Ce3+ cations and O2- anions, respectively. 31 Environment ACS Paragon Plus

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 7. Summary of the stretching frequencies calculated by DFT on different on-top sites of each Pt model particle (black – unsupported particles; red – supported particles): (a) CO stretching frequencies on all on-top sites of each particle and the corresponding tendency visualized by the dashed lines; (b) average on-top stretching frequencies and their standard deviation taking into account weights of all on-top sites in each particle; (c) correlation between the CO stretching frequency and the Pt coordination number with respect to neighboring Pt atoms. 32 Environment ACS Paragon Plus

Page 32 of 43

Page 33 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Figure 8. Stability of the Pt NPs on Pt-CeOx thin film electrocatalysts with different Pt concentration: Electrochemical IR spectra during repeated cycles of methanol oxidation on (a) sample V, Pt(21%)-CeOx/C/Au at 0 VAg/AgCl and at 0.4 VAg/AgCl and (b) on sample VI, Pt(15%)-CeOx/C/Au at 0.4 VAg/AgCl. All reference spectra were taken at a potential of 0.15 VAg/AgCl.

33 Environment ACS Paragon Plus

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

TOC graphic: For Table of Contents Only

34 Environment ACS Paragon Plus

Page 34 of 43

Page 35 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Sample number, pH

Single crystal (reference) Pt(111)

(I) pH 1

(II) pH 6 PtCeOx thin films

(III)

Pt

pH 1

SEM (pre reaction)

SEM (post reaction)

Ce

O 2

Pt(8%)CeOx

200 nm

200 nm

Au

(IV) pH 1

Pt

Ce

O 2

Pt(15%)CeOx C Au

(V)

Pt

pH 6

pH 6

Pt

Pt(9%)CeOx C Au

200 nm

200 nm

200 nm

200 nm

200 nm

2

Ce

O 2

Pt(15%)CeOx C Au

(VII)

200 nm

O

Pt(21%)CeOx C Au Pt

200 nm

Ce

pH 6

(VI)

200 nm

Ce

O 2

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

CE

WE

Page 36 of 43

RE

3

2

1

electrolyte (1-100 m)

Surface cleaning by potential cycling CaF2 hemisphere

IR beam

IR spectroscopy in thin layer configuration ACS Paragon Plus Environment

5 min equilibration in retracted position

Page 37 of 43

0.35 V vs. Ag/AgCl, pH 1

a

(I) Pt(111)

COt

COb

COt

COb

R/R = 0.5%

(III)

2064

3x

Pt(8%)CeOx/Au

COt.lc

(IV)

2024

Pt(15%)CeOx/C/Au 3x

2035 2500

2400

2300

2200

2100

2000

1900

1800

1700

-1

 [cm ]

COt.lc

2070 2060

b

(I) Pt(111)

40 cm-1V-1

2050

 = 29 cm-1 (IV) Pt(15%)CeOx/C/Au

2040 -1

 [cm ]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

2030

-1

 = 40 cm

(III) Pt(8%)CeOx/Au

2020 2010 2000 1990 -0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E vs. Ag/AgCl [V]

ACS Paragon Plus Environment

0.8

The Journal of Physical Chemistry

(II) Pt(111), pH 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

(V) Pt(21%)CeOx, pH 6 -0.15 V vs. Ag/AgCl

-0.15 V vs. Ag/AgCl 2047

-0.1 V

-0.1 V

1823

-0.0 V

-0.0 V

0.1 V

0.1 V

0.2 V

0.2 V

0.3 V

0.3 V

0.4 V

0.4 V

0.5 V

0.5 V

0.6 V

0.6 V 1839

0.7 V 12

CO2

2343

2500

2400

13

CO2

2278

2300

2200

Page 38 of 43

2000

1900

1800

1700

2500

2400

2300

2200

2100

2000

1900

1800

1700

-1

 [cm ]

 [cm ]

(VII) Pt(9%)CeOx, pH 6

(VI) Pt(15%)CeOx, pH 6 -0.15 V vs. Ag/AgCl

-0.15 V vs. Ag/AgCl

-0.1 V

-0.1 V 2022

-0.0 V

-0.0 V

0.1 V

0.1 V

0.2 V

2029

0.2 V

0.3 V

0.3 V

0.4 V

0.4 V

0.5 V R/R= 0.05%

0.6 V 0.7 V

0.5 V R/R= 0.05%

0.6 V 0.7 V

2039

2400

R/R = 0.1 %

2048

-1

2500

2022

0.7 V

R/R = 0.1 %

2059

2100

2042

2300

2200

2100 -1

 [cm ]

2035

2000

2500 2400 1900 ACS 1800 1700 Plus Environment Paragon

2300

2200

2100 -1

 [cm ]

2000

1900

1800

1700

Page 39 of 43

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 0.4 V vs. Ag/AgCl, pH 6 10 11 COb COt 12 13 14 15 (II) Pt(111) 16 17 2040 18 19 2017 2057 20 21 -0.1 V x3 22 vs. Ag/AgCl (V) Pt(21%)CeOx 23 24 (VI) Pt(15%)CeOx 2048 x3 25 26 x3 27 (VII) Pt(09%)CeOx 2033 28 29 30 2500 2400 2300 2200 2100 2000 1900 1800 1700 31 -1 32  [cm ] 33 34 2060 35 36 (II) Pt(111) 2055 37 38 39 2050 40 41 2045 (V) Pt(21%)CeOx 42 ( ) 43 -1 2040  = 26 cm 44 45 2035 46 (VI) Pt(15%)CeOx 47 48 2030 49 50 2025 51 52 2020 53 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 54 E vs. Ag/AgCl [V] 55 56 57 58 59 60

a

 [cm-1]

b

ACS Paragon Plus Environment

COt

COb

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(i) Pt8

(ii) Pt34

(iii) Pt79

(iv) Pt114

(v) Pt140

(vii) Pt8/CeO2(111)

(vi) Pt201

(viii) Pt34/CeO2(111)

ACS Paragon Plus Environment

Page 40 of 43

Page 41 of 43

a

Individual CO stretching frequencies for on-top sites 2080

Pt8/CeO2(111) Pt34/CeO2(111)

(C-O) [cm-1]

2070 2060 2050 2040 2030

Pt79

Pt116

Pt201

Pt140

Pt34

2020

Pt8 0

b 2080

50

100 150 Pt atoms per nanoparticle

(C-O) [cm-1]

200

250

Average CO stretching frequencies for on-top sites

2070

Pt79

Pt116

Pt201

Pt140

2060

Pt34

2050

Pt8 2040 2030

Pt34/CeO2(111) Pt8/CeO2(111)

2020

0

c 2080

50

100 150 Pt atoms per nanoparticle

200

250

Individual CO stretching frequencies for on-top sites

2070 (C-O) [cm-1]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

2060 2050 2040 2030 2020

1

2

3

4 5 6 7 Pt coordination number

ACS Paragon Plus Environment

8

9

10

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

a

b

(V) Pt(21%)CeOx/C/Au, pH 6 0.4 V vs. Ag/AgCl

0 V vs. Ag/AgCl

Page 42 of 43

(VI) Pt(15%)CeOx/C/Au, pH 6 0.4 V vs. Ag/AgCl 2025

1. cycle

Pt(111)

Pt(111)

2. cycle

4. cycle

= 0.05 %

2049

3. cycle

R/R = 0.1 %

R/R 2057

1. cycle 5. cycle

2. cycle 1. cycle

potential cycling 3. cycle

2. cycle 3. cycle

6. cycle 7. cycle

4. cycle

8. cycle

4. cycle 5. cycle

9. cycle

5. cycle

2042

2100

2009

2000  [cm-1]

2047

1900 2100

2019

2000

R/R = 0.05 %

2031

1900

2100

 [cm-1]

ACS Paragon Plus Environment

2000  [cm-1]

1900

Page 43 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

TOC Graphic: For Table of Contents Only 75x43mm (300 x 300 DPI)

ACS Paragon Plus Environment