Standard chemical thermodynamic properties of monochloroalkanes

and Cohen. Thermodynamic properties for representative primary, secondary, and tertiary chloroalkanes determined using the group additivity scheme are...
0 downloads 0 Views 436KB Size
Ind. Eng. Chem. Res. 1993,32, 3184-3188

3184

Standard Chemical Thermodynamic Properties of Monochloroalkanes David K. Wong,+Douglas A. Kretkowski,t and Joseph W. Bozzelli' Department of Chemical Engineering and Chemistry, New Jersey Institute of Technology, Newark, New Jersey 07102

Improved Benson group values for thermodynamic properties of monochloroalkanes in the ideal gas state have been determined using literature data of Pedley et al., Stull, and the Texas A&M Thermodynamics Research Center with hydrocarbon group values of Benson, Domalski and Hearing, and Cohen. Thermodynamic properties for representative primary, secondary, and tertiary chloroalkanes determined using the group additivity scheme are compared with the above literature data. In a recent article,Alberty and Changl used chlorocarbon group values derived at NIIT to calculate thermodynamic property data for monochloroalkanes in the ideal gas state between 298 and 1500 K. Upon seeing slight but definite trends in variations between their calculations and published experimental data, it was clear that some improvement could still be made in those initial chlorocarbongroup values. We would like to communicate these improvementa in the monochlorocarbongroup values and compare the data with the literature values where available. We present our current values for these chlorocarbon groups in this paper along with a comparison of thermodynamic properties for select monochloroalkanes with the published literature data. The chlorocarbon groups can be used with the hydrocarbon groups for AfH"and Sorecommended by Benson,2 Cohen? or Domalski and Hearing.4 The two sets of chlorocarbon groups we developed for use with the

Table I. Monochloroalkane GrouDkP

GOUP

AfHo

So

a

-1

~

1

i

2

i 3

i 4

i 5

i

6

7

6

9

10

11 12 13 14 15 16

17

CHLOROCARBONS

Figure 1. Deviations between values calculated by using Benson chlorocarbon groups and literature values for AHP.Key for Figures 1-4 (1) 1-Cl-ethane, (2) 1-C1-propane, (3) 1-C1-butane, (4) 1-C1pentane, (5) 1-C1-hexane, (6) l-C1-2-Me-propane, (7) 1-Cl-3-Mebutane, (8) 2-Cl-propane, (9) a-cl-butane, (10) 2-Cl-pentane, (11) 3-Cl-pentane, (12) 2-Cl-&Me-butane, (13) 2-C1-2-Me-pentane, (14) I-C1-3-Me-pentane, (15) 2-C1-2,3-Me-propane, (16) 2-Cl-2-Me-propane, and (17) 2-C1-2-Me-butane. + New Jersey Partners in Science Program summer participants.

0888-5885/93/2632-3184$04.00/0

K

lo00 1500

K

K

Table 11. Hydrocarbon G r o u p P CAT) r , I

C/C/H3 C/C2/H2 C/C3/H c/c4 gauche (Cohen)

-0.6

800

K

Units: AfHO, kcal/mol; So and C, cal/(mol-K).

0.6

0

600

Heat Capacities of Beneon for AU Cases; Data by Alberty and Chang C/C/Cl/H2 -16.80 37.86 C/CB/Cl/H -14.47 16.75 C/Cl/C3 -14.41 -6.65

C/C/H3 C/C2/H2 C/C3/H c/c4 gauche

1

K

Based on Cohen Hydrocarbon Groups C/C/Cl/H2 -16.80 38.17 8.74 10.54 12.08 13.31 15.15 16.47 18.46 C/CZ/Cl/H -14.47 17.33 8.47 10.20 11.68 12.76 14.29 15.38 16.21 C/Cl/C3 -14.03 -6.45 8.09 10.15 11.69 12.65 13.47 13.53 13.32

group

DEVIATIONS

500

Based on Benson Hydrocarbon Groups C/C/Cl/H2 -16.80 38.03 8.74 10.54 12.08 13.31 15.15 16.47 18.46 C/CB/Cl/H -14.30 16.96 8.47 10.20 11.68 12.76 14.29 15.38 16.21 C/Cl/C3 -13.53 -6.08 8.09 10.15 11.69 12.65 13.47 13.53 13.32

ENTHALPY KCAL/MOL-K 298 K

300 400 K K

a

AfH0

So

300 400 500

K

K

K

600

K

Benson Hydrocarbon Groups 30.41 6.19 7.84 9.40 10.79 9.42 5.50 6.95 8.25 9.35 -12.07 4.54 6.00 7.17 8.05 -35.10 4.37 6.13 7.36 8.12 0.00 0.00 0.00 0.00 0.00

Cohen Hydrocarbon Groups -10.00 30.30 6.19 7.84 9.40 10.79 -5.00 9.40 5.50 6.95 8.25 9.35 -2.14 -12.30 4.54 6.00 7.17 8.05 -0.10 -35.00 4.37 6.13 7.36 8.12 0.80 0.00 0.00 0.00 0.00 0.00

-10.20 -4.93 -1.90 0.50 0.80

800

lo00 1500

K

K

13.02 11.07 9.31 8.77 0.00

14.77 12.34 10.05 8.76 0.00

17.58 14.20 11.18 8.12 0.00

13.02 11.07 9.31 8.77 0.00

14.77 12.34 10.05 8.76 0.00

17.58 14.20 11.18 8.12 0.00

K

Units: A B " , kcal/mol; So and C, cal/(mol-K).

respective Benson or Cohen3Jjhydrocarbon groups (HC) are listed in Table I. While these two seta of HC group values are very similar, the definite differences warrant development and use of separate chlorocarbon groups with the correspondinghydrocarbon (HC) group data base. We also include in Table I the C1C group data for AfHoand Soused by Alberty and Chang. Here, one can see a nearly 1-kcaldifference between the AfH"of C/C/C13and a small difference of 0.5 from 0.57 to 0.17 in the entropy groups. The hydrocarbon (HC) group values of Benson and Cohen are listed in Table 11. While the data in Table I are presented to two significant decimal places, they are not accurate to this degree. They are meant only for inclusion 0 1993 American Chemical Society

Ind. Eng. Chem. Res., Vol. 32, No. 12, 1993 3185 Table 111. Comparison of Enthalpy of Formation and Entropy at 298 IC Incorporating Improved Cohen Chlorocarbon Group Values. group compd Stull' Texas2 Pedleg group calc Enthalpies of Formation at 298 K 1-Cl-ethane [31 -26.70 -26.83 -31.83 1-Cl-propane 131 -31.10 1-Cl-butane [31 -35.20 -36.83 1-Cl-pentane [31 -41.80 -41.83 1-C1-hexane 131 -46.83 1-C1-2-Me-propane191 -38.10 -38.60 1-C1-3-Me-butane [91 -43.10 -42.80 -35.00 -34.60 2-C1-propane [91 -38.60 -39.60 2-Cl-butane* [91 -44.60 2-Cl-pentane. 191 3-Cl-pentane* [9] -44.60 -45.57 2-C1-3-Me-butane*(1)[271 -53.36 2-C1-2-Me-pentane (1)[271 -52.56 3-C1-3-Me-pentane (1)[271 2-C1-2,3-diMe-butane(3) [811 -54.33 -44.16 2-C1-2-Me-propane [271 -48.36 2-Cl-2-Me-butane(1)1271

C/C/CVH2

C/C2/CVH

C/C3/Cl

1-C1-ethane 1-Cl-propane 1-C1-butane 1-C1-pentane 1-C1-hexane 1-C1-2-Me-propane 1-C1-3-Me-butane 2-C1-propane 2-C1-butane 2-C1-pentane 3-C1-pentane 2-C1-3-Me-butane 2-C1-2-Me-pentane 3-Cl-3-Me-pentane 2-C1-2,3-diMe-butane 2-C1-2-Me-propane 2-Cl-2-Me-butane

CICICVH2

CICBICVH

c/c3/c1

Entropies of Formation at 298 K 65.93 76.27 85.58 94.89 84.56 95.56 72.70 83.75

77.00 88.06

-26.79 -31.52 -36.95 -41.83 -38.10 -42.83 -34.63 -38.53 -44.24

65.91 75.40 84.89 94.37 103.86 82.15 91.64 73.12 83.98 93.47 92.09 90.74 97.05 97.05 94.32 75.89 87.56

-26.80 -31.80 -36.80 -41.80 -46.80 -38.94 -43.23 -34.47 -39.47 -44.47 -44.47 -45.81 -53.23 -53.23 -53.77 -44.03 -48.23 66.29 75.63 85.09 94.49 103.89 82.10 91.83 73.56 84.34 93.74 93.73 90.76 96.70 96.70 95.10 77.90 87.30

0 Cohen hydrocarbon groups and corresponding chloroalkane groups: ( ), numbera of gauche interactions; [ I, symmetry; +,optical isomer. Unita: AfHO, kcallmol; So, cal/(mol-K).

ENTHALPY KCAL/MOL-K

ENTROPY CAL/MOL-K

298 K

298 K

DEVIATIONS

DEVIATIONS

0.6

0 -0.6

i

- 2l 1

2

3

4

6

6

7

8

9

10

11 12 13 14 16 16 17

CHLOROCARBONS

1

2

3

4

6

6

7

0

9 10 11 12 13 14 16 16 17

CHLOROCARBONS

Figure 2. Deviations between values calculated by using improved chlorocarbongroups, this work, and literature values for AHP.See key Figure 1.

Figure 3. Deviations between values calculated by using Benson

in developing computer codessg for use in calculating molecule and radical thermodynamic properties and other applications where rounding off can be effected a t the end of the summation. The main differences in these values and those reported earlier are in the AfHoand So data at 298 K. Tables I11 and IV show a comparison of the literature data of Stu&;1° Pedley, Naylor, and Kirby;" and Rodgers;12 with the newly derived Cohen and Benson groups using

group additivity AfH"and So,respectively, for 17relevant chlorocarbons. Table V lists the same comparisons with the original Benson group values. Values are calculated as described in ref 1 with the exception of gauche interactions, where an additional gauche interaction term is incorporated (see Table 11)as recommended by Cohen.3 The counting scheme is interpreted as the total number of gauche interactions for a given methyl group minus 1, where the total includes the chain carbons. This is a

chlorocarbon groups and literature values for entropy at 298 K. See key Figure 1.

3186 Ind. Eng. Chem. Res., Vol. 32, No. 12, 1993 Table IV. Comparison of Enthalpy of Formation and Entropy at 298 K Incorporating Improved Benson Chlorocarbon Group Values. compd

group CIClCUH2

ClC21CVH

ClC3lC1

CICIClIH2

CIC2IClIH

c1c31c1

Stull’

Texas2

Enthalpies of Formation at 298 K 1-Cl-ethane [31 -26.70 -26.83 1-C1-propane [3] -31.10 -31.83 1-C1-butane [31 -35.20 -36.83 1-C1-pentane [31 -41.80 -41.83 1-C1-hexane [31 -46.83 1-C1-2-Me-propane191 -38.10 -38.60 1-C1-3-Me-butane [91 -43.10 -42.80 2-C1-propane [91 -35.00 -34.60 2-Cl-butane* [91 -38.60 -39.60 2-Cl-pentanel [9] -44.60 3-Cl-pentane* [91 -44.60 -45.57 2-C1-3-Me-butane*(1)[27] 2-C1-2-Me-pentane (1)[271 -53.36 3-C1-3-Me-pentane (1)1271 -52.56 2-C1-2,3-diMe-butane (3) [81] -54.33 2-C1-2-Me-propane 1271 -44.16 -48.36 2-Cl-2-Me-butane(1) [271 1-C1-ethane 1-C1-propane 1-Cl-butane 1-C1-pentane 1-C1-hexane 1-C1-2-Me-propane 1-C1-3-Me-butane 2-C1-propane 2-C1-butane 2-C1-pentane 3-C1-pentane 2-C1-3-Me-butane 2-C1-2-Me-pentane 3-Cl-3-Me-pentane 2-C1-2,3-diMe-butane 2-C1-2-Me-propane 2-Cl-2-Me-butane

Entropies of Formation at 298 K 65.93 76.27 85.58 94.89 84.56 95.56 72.70 83.75

77.00 88.06

65.91 75.40 84.89 94.37 103.86 82.15 91.64 73.12 83.98 93.47 92.09 90.74 97.05 97.05 94.32 75.89 87.56

Pedley3

group calc

-26.79 -31.52 -36.95 -41.83

-27.00 -31.93 -36.86 -41.79 -46.72 -39.10 -43.23 -34.70 -39.63 -44.56 -44.56 -46.00 -53.19 -53.19 -53.83 -44.13 -48.26

-38.10 -42.83 -34.63 -38.53 -44.24

66.26 75.68 85.10 94.52 103.94 82.41 91.83 73.41 84.21 93.63 93.62 90.95 97.44 97.44 96.14 78.60 88.02

0 Benson hydrocarbon groups and corresponding chloroalkane groups: ( ), number of gauche interactions; [ I, symmetry; *, optical isomer. Unite: AfHO, kcallmol; So, call(mo1-K).

Table VI compares the heat capacity values from group additivity for the monochloroalkanes with the data from Texas A&M for the temperatures at 300, 400, 500, 600, 800, 1000, and 1500 K. Comparison of the data in Table 111-VI indicates that the group additivity scheme provides remarkably good agreement with the literature values considering the deviations in the literature data.

ENTROPY CAL/MOL-K 298 K DEVIATIONS

-1

-1

I

simpler, more straightforward counting scheme and lends itself better to most group additivity users. An optical isomer group is also incorporated when a molecule contains an optical isomer. We considered incorporating values for gauche interactions, AfHo only, of C1 atom with methyl groups but found no advantage in accuracy by includingthis. We found only a disadvantage of added complexity.

We note that enthalpies, entropies, heat capacities, and Gibbs free energy of formation for any species can be easily determined to any temperature using THERM.*l7b THERM uses an improved method of heat capacity extrapolation to Cpinf~tY.THERM determines a reduced vibrational frequency set of a molecule for the lowtemperature (300-1000 K) group additivity heat capacity data. It then uses these frequencies, the number of atoms, and the number of rotors in the molecule to calculate higher temperature heat capacities. Figures 1 and 3 illustrate the differences in AfHo and So, respectively, of the 17 chlorocarbon species for the uncorrected or “original Benson groups”. Figures 2 and 4 do the same for the improved Benson groups. In the improved Benson figures, all deviations (group additivity value - Texas A&M value) in enthalpy are less than 1 kcal/mol, and deviations in entropy are less than 2 cal/ (mol-K). In conclusion, an optimized set of Benson-type groups has been derived for use in group additivity calculations of monochloroalkanes.

Ind. Eng. Chem. Res., Vol. 32,No.12,1993 3187 Table V. Cornparison of Enthalpy of Formation and Entropy at 298 IC Incorporating Original Benson Chlorocarbon Group Values. PUP C/C/CVH2

C/C2/CVH

C/C3/Cl

C/C/CVH2

CICBICVH

c/c3/c1

Stull' Texas2 Enthalpies of Formation at 298 K 1-Cl-ethane 131 -26.70 -26.83 1-C1-propane 131 -31.10 -31.83 1-C1-butane 131 -35.20 -36.83 1-Cl-pentane 131 -41.80 -41.83 1-C1-hexane [3] -46.83 1-C1-2-Me-propane191 -38.10 -38.60 1-C1-3-Me-butane 191 -43.10 -42.80 2-C1-propane [91 -35.00 -34.60 2-Cl-butane* 191 -38.60 -39.60 2-Cl-pentane* 191 -44.60 3-Cl-pentane* 191 -44.60 -45.57 2-Cl-3-Me-butane (1)1271 -53.36 2-C1-2-Me-pentane (1) 1271 3-Cl-3-Me-pentane (1) 1271 -52.56 -54.33 2-C1-2,3-diMe-butane (3) [811 2-C1-2-Me-propane[271 -44.16 2-Cl-2-Me-butane (1)[271 -48.36 compd

1-C1-ethane 1-C1-propane 1-Cl-butane 1-C1-pentane 1-C1-hexane 1-C1-2-Me-propane 1-C1-3-Me-butane 2-C1-propane 2-C1-butane 2-C1-pentane 3-C1-pentane 2-Cl-3-Me-butane 2-Cl-2-Me-pentane 3-Cl-3-Me-pentane 2-C1-2,3-diMe-butane 2-C1-2-Me-propane 2-C1-2-Me-butane

Entropies of Formation at 298 K 65.93 76.27 85.58 94.89 84.56 95.56 72.70 83.75

77.00 88.06

Pedlep

group calc

-26.79 -31.52 -36.95 -41.83

-26.70 -31.63 -36.56 -41.49 -46.42 -38.80 -43.73 -35.20 -40.13 -45.06 -45.06 -46.50 -52.47 -52.47 -53.11 -43.41 -47.54

-38.10 -42.83 -34.63 -38.53 -44.24

65.91 75.40 84.89 94.37 103.86 82.15 91.64 73.12 83.98 93.47 92.09 90.74 97.05 97.05 94.32 75.89 87.56

66.03 75.45 84.87 94.29 103.71 82.18 91.60 74.04 84.85 94.27 94.26 91.59 98.12 98.12 96.82 79.28 88.70

a Bemon hydrocarbon groups and corresponding chloroalkane groups: ( ), number of gauche interactions; 1 I, symmetry; *, optical isomer. Units AfHO, kcal/mol; So, cal/(mol-K).

Table VI. Heat Capacity Comparison of Texas A&M Recommended Heat Capacities to Group Data. group

compd

300 K

CICICVH2

1-C1-ethane 1-C1-propane 1-C1-butane 1-C1-penhe 1-C1-hexane 2-C1-propane 2-C1-butane 2-C1-pentane 3-C1-pentane 2-Cl-3-Me-butane 2-C1-2-Me-pentane 3-Cl-3-Me-pentane 2-C1-2,3-diMe-butane 2-C1-2-Me-propane 2-Cl-2-Me-butane

15.04 20.47 25.91 31.34 36.78 21.02 26.46 31.89 31.89 31.58 37.76 37.76 37.45 26.89 32.32

C/CP/Cl/H

C/C3/Cl

C/C/Cl/H2

1-C1-ethane 1-C1-propane 1-C1-butane 1-C1-pentane 1-C1-hexane C/C2/Cl/H 2-C1-propane 2-C1-butane 2-C1-pentane 3-C1-pentane 2-Cl-3-Me-butane c/c3/c1 2-C1-2-Me-pentane 3-Cl-3-Me-pentane 2-C1-2,3-diMe-butane 2-C1-2-Me-propane 2-C1-2-Me-butane 0 Unita: C,, cal/(mol-K); temperature, K.

400 K 500 K Texaa A&M Data 18.54 21.66 25.48 29.98 32.42 38.30 39.36 46.42 46.30 54.94 25.90 30.19 38.51 32.84 39.78 46.83 39.78 46.83 39.87 47.05 47.60 56.32 56.32 47.60 47.68 56.53 33.72 39.67 40.66 47.99

Group Additivity Values, This Work 14.95 18.52 21.74 20.45 25.47 29.94 25.91 32.42 38.24 31.41 39.35 46.49 36.91 54.73 46.28 20.85 25.88 30.28 26.35 32.83 38.53 31.85 39.78 46.78 31.85 39.78 46.78 31.58 39.72 47.05 37.79 47.57 56.26 37.79 47.57 56.26 37.52 47.51 56.46 26.99 33.67 39.76 32.35 48.01 40.62

600 K

800 K

lo00 K

1500 K

24.28 33.74 43.20 52.65 62.11 33.80 43.26 52.72 52.72 53.14 63.49 63.49 63.92 44.58 54.03

28.38 39.61 50.84 62.06 73.29 39.50 50.72 61.95 61.95 62.66 74.43 74.43 75.14 51.98 63.21

31.43 43.86 56.28 68.71 81.13 43.73 56.18 68.60 68.60 69.74 82.14 82.14 83.27 57.29 69.72

36.17 50.54 64.91 79.28 93.65 50.40 64.74 79.14 79.14 80.13 94.13 94.13 95.12 65.38 79.76

24.68 33.85 42.20 52.55 61.90 33.94 43.29 52.64 52.64 53.18 63.51 63.51 63.86 44.77 54.12

28.59 39.66 50.73 61.80 72.40 39.69 50.76 61.83 61.83 62.66 74.31 74.31 74.92 52.17 63.24

31.33 43.87 55.21 68.55 81.25 43.85 57.19 68.53 68.53 69.74 82.08 82.08 82.10 57.40 69.74

36.42 50.62 64.82 79.02 93.69 50.60 64.80 79.28 79.28 80.13 94.98 94.98 95.27 65.51 79.81

3188 Ind. Eng. Chem. Res.,Vol. 32, No. 12, 1993

Acknowledgment The authors acknowledge the Hazardous Substance Management Research Center (Grant NJ 91~240050-01) and the U.S.EPA (Grant R815734) for partial funding of acknowledge this work. Two of us, D.A.K. and D.K.W., the New Jersey Partners In Science Program for partial support.

Nomenclature

C, = standard heat capacity at constant pressure, cal/(molK) ApH" = enthalpy of formation at 298 K, kcal/mol So = entropy of formation at 298 K, cal/(mol-K)

Literature Cited (1) Alberty, R. A.; Chang, M. B. J. Phys. Chem. Ref. Data 1990, 19, pp 347. (2) Benson, S. W. Thermochemical Kinetics; John Wiley and Sons: New York, 1976. (3) Cohen, N. Aerospace Report No. ATR-88(7073)-2;Aerospace Corp. (4) Domalski, E. S.; Hearing, E. D. J. Phys. Chem. Ref. Data 1988, 17, 4. (5) (a) Cohen, N. A. Thermochemistry of Alkyl Free Radicals. J. of Phys. Chem. 1992,96,9052-9058. (b) Cohen, N.; Benson, S. W. The Thermochemistry of Alkanes and Cycloalkanes.Zn The Chem-

istry of Alkanes and Cycloalkanes; Patai, S., Rapport, Z., Eds.; John Wiley and Sons: New York, 1992; Chapter 6. (6) Ritter, E. R. J. Chem. Znf. Comput. Sci. 1991, 31, 400-498. (7) Ritter, E. R. THERM Thermodynamic Property Estimation for Gas Phase Radicals and Molecules (33);Ph.D. Dissertation. NJIT, 1989. (8) Ritter, E. R.; Bozzelli, J. W. Combwtion Fundamentals and Applications; Combustion Institute, 1989; CS. No. 24. (9) Ritter, E. R.; Bozzelli, J. W . Znt. J. Chem. Kinet. 1991,23, 767-778. (10) Freedman, E.; Seaton, W. H. USA Ballistic Research Laboratories Memorandum Report No. 2320; Aberdeen Proving Ground, MA, 1973. (11) Frurip, D. J.; Freedman, E.; Hertel, G.R. Proceedings of the Znt. Symp. on Runaway Reactions; Cambridge, MA, 1989. (12) Stull, D. R.; Westrum, E. F.; Sinke, G. C. The Chemical Thermodynamics of Organic Compounds; Robert E. Krieger Publishing: Malibar, FL, 1987; Chapter 14. (13) Rodgers, A. S. Selected Values for Properties of Chemical Compounds; Thermodynamic Research Center, Texas ABEM University: College Station, TX, 1982. (14) Pedley, J. B.; Naylor, R. 0.; Kirby, S. P. Thermodynamic Data of Organic Compounds; Chapman and Hall: New York, 1986; Table 1.1.

Received for review July 26, 1993 Accepted August 26, 1993. 0 Abstract published in Advance ACS Abstracts, October 15, 1993.