Steps To Developing a Commercial Supercritical Carbon Dioxide

Mar 17, 1988 - Commercialization of a supercritical carbon dioxide processed food product requires the successful application of five sequential steps...
0 downloads 0 Views 1MB Size
Chapter 7 Steps To Developing a Commercial Supercritical Carbon Dioxide Processing Plant

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

R. T. Marentis Supercritical Fluid Processing Systems, Pitt-Des Moines, Inc., 35 Airport Road, Morristown, N J 07960 and Neville Island, Pittsburgh, P A 15225 Commercialization of a supercritical carbon dioxide processed food product requires the successful application of five sequential steps: 1) application of high pressure CO phase equilibria and fluid dynamics theory; 2) knowledge of the botanicals structure and chemistry; 3) performance of the "process design protocol"; 4) preliminary process design and economic evaluation; and 5) design, construction and start-up of the commercial-scale plant. Many decisions made during the early steps have large impacts on commercial plant performance capabilities and economic efficiency. The impact on commercial plant performance and economics should be factored into decisions made at every commercialization step. 2

S u p e r c r i t i c a l f l u i d (SCFC0 ) p r o c e s s i n g i s o f i n c r e a s i n g commercial importance t o t h e food i n d u s t r y i n Europe and A m e r i c a . C i t a t i o n s o f SCFC0 e x t r a c t i o n s o f b o t a n i c a l s a r e r e p l e t e i n t h e l i t e r a t u r e . F. M. T a y l o r (1) l i s t s o v e r 100 l i t e r a t u r e c i t a t i o n s on herb and spice a p p l i c a t i o n s alone. I n g e n e r a l , SCFC0 e x t r a c t s have no s o l v e n t r e s i d u e s , no o f f - o d o r s from " s t i l l n o t e s " , h i g h e r concent r a t i o n s o f t h e most v a l u a b l e components (due t o t h e e x t r a o r d i n a r y s e l e c t i v i t y o f t h e SCFC0 s o l v e n t ) when compared w i t h c o n v e n t i o n a l o r g a n i c l i q u i d s o l v e n t e x t r a c t s . Most s o l v e n t e x t r a c t i o n s u s i n g C 0 a r e r u n a t temperatures between 10°C and 50°C, m i l d t e m p e r a t u r e s w h i c h a r e n o t l i k e l y t o degrade o r v o l a t i z e h e a t - s e n s i t i v e aroma compounds. T y p i c a l l y , t h e aroma o f an SCFC0 e x t r a c t more c l o s e l y resembles t h e aroma o f t h e f e e d s t o c k b o t a n i c a l t h a n t h e aroma o f a steam d i s t i l l e d e x t r a c t . Thus, an SCFC0 e x t r a c t has more o f t h e c h a r a c t e r o f an a b s o l u t e than a c o n v e n t i o n a l s o l v e n t e x t r a c t . 2

2

2

2

2

2

2

C0

2

PHASE EQUILIBRIA + FLUID DYNAMICS

C o Phase E q u i l i b r i a Knowledge o f C 0 phase e q u i l i b r i a i s i m p o r t a n t because by u n d e r s t a n d i n g and a p p l y i n g o f C 0 phase e q u i l i b r i a t h e o r y , an e f f i c i e n t e x p e r i m e n t a l p l a n c a n be f o r m u l a t e d w h i c h 2

2

2

0097-6156/88/0366-0127$06.00/0 © 1988 American Chemical Society

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

128

SUPERCRITICAL FLUID EXTRACTION AND CHROMATOGRAPHY

reduces p r o c e s s development R&D expenses, y e t a l s o m i n i m i z e s t h e r i s k of s p e c i f y i n g sub-optimal processing conditions f o r the commercial-scale p l a n t . A t h e o r e t i c a l u n d e r s t a n d i n g o f how p r e s s u r e , t e m p e r a t u r e , and c o s o l v e n t s a f f e c t b o t h t h e s o l v a t i n g power ( i m p o r t a n t f o r r a t e and y i e l d o f commercial p r o c e s s ) and s e l e c t i v i t y ( i m p o r t a n t f o r c o n c e n t r a t i o n l e v e l s o f key components i n commercial p r o d u c t s ) o f t h e C 0 s o l v e n t w i l l g r e a t l y enhance t h e p r o b a b i l i t y t h a t each s u c c e s s i v e experiment y i e l d s p r o c e s s d e s i g n d a t a t h a t can be used t o f u r t h e r o p t i m i z e c o m m e r c i a l - s c a l e p l a n t performance and economics. The c r i t i c a l p r e s s u r e i s t h e e q u i l i b r i u m p r e s s u r e a t t h e c r i t i c a l t e m p e r a t u r e ; b o t h t o g e t h e r a r e r e f e r r e d t o as t h e c r i t i c a l p o i n t . Above t h e c r i t i c a l temperature and p r e s s u r e , C 0 e x i s t s as a s u p e r c r i t i c a l f l u i d (SCF). F i g u r e 1 shows t h e r e l a t i o n s h i p between t h e p h y s i c a l s t a t e o f carbon d i o x i d e and t h e temperature and p r e s s u r e c o n d i t i o n s i n t h e system. S u p e r c r i t i c a l f l u i d s a r e unique because they have some p r o p e r t i e s w h i c h a r e s i m i l a r t o a gas o t h e r s t o a l i q u i d . The d e n s i t y and s o l v a t i n g power can approach t h a t o f a l i q u i d . V i s c o s i t y and d i f f u s i v i t y , however, a r e much c l o s e r t o t h e p r o p e r t i e s o f a g a s . These c h a r a c t e r i s t i c s a r e p r i m a r i l y r e s p o n s i b l e f o r t h e e x t r a o r d i n a r y s o l v e n t p r o p e r t i e s o f SCFC0 and o t h e r s u p e r c r i t i c a l fluids. The s o l u b i l i t y o f a s o l u t e i n g e n e r a l i s p r o p o r t i o n a l t o s o l v e n t density. L i q u i d carbon d i o x i d e i s a n o n - p o l a r ( n o n - i o n i z i n g ) s o l v e n t , i n many ways l i k e hexane. F o r l i q u i d C 0 near c r i t i c a l c o n d i t i o n s , d e n s i t y i n c r e a s e s r a p i d l y w i t h lowering temperature, b e i n g s t r o n g l y temperature dependent. Above t h e c r i t i c a l temperat u r e , d e n s i t y i s b o t h p r e s s u r e and temperature dependent, r i s i n g w i t h i n c r e a s e d p r e s s u r e , though f a l l i n g w i t h r i s i n g temperature. [ F i g u r e 2] The e f f e c t o f temperature on s o l u b i l i t y i s somewhat complex because o f two competing e f f e c t s ; one e f f e c t tends t o i n c r e a s e s o l u b i l i t y w i t h i n c r e a s i n g temperature w h i l e t h e o t h e r tends t o decrease s o l u b i l i t y . As temperature i n c r e a s e s , v a p o r p r e s s u r e o f the s o l u t e i n c r e a s e s w h i c h tends t o i n c r e a s e s o l u b i l i t y , concomit a n t l y C 0 d e n s i t y d e c r e a s e s w h i c h tends t o decrease s o l u b i l i t y . For n a p t h a l e n e i n C 0 [ F i g u r e 3 ] , f o r example, above 120 atm C 0 d e n s i t y i s l e s s s e n s i t i v e t o temperature and t h e r e f o r e v a p o r p r e s s u r e e f f e c t s dominate. A t 120 atm t h e two competing e f f e c t s b a l a n c e each o t h e r , and s o l u b i l i t y remains r e l a t i v e l y c o n s t a n t w i t h i n c r e a s i n g temperature. At p r e s s u r e s below 120 atm, SCFC0 d e n s i t y and t h e r e f o r e s o l u b i l i t y a r e s e n s i t i v e t o s m a l l changes i n t e m p e r a t u r e . The r e g i o n where s o l u b i l i t y d e c r e a s e s w i t h i n c r e a s i n g temperature, i s c a l l e d the "retrograde region". L i q u i d carbon d i o x i d e i s a n o n - p o l a r ( n o n - i o n i z i n g ) s o l v e n t , i n many ways l i k e hexane. However, i n t h e s u p e r c r i t i c a l phase t h e d i e l e c t r i c c o n s t a n t o f C 0 i n c r e a s e s w i t h i n c r e a s i n g p r e s s u r e . ( 3 ) The d i e l e c t r i c c o n s t a n t i s an i n d i c a t o r o f t h e p o l a r i t y o f t h e SCFC0 s o l v e n t [ F i g u r e 4 ] . Thus, by c o n t r o l l i n g p r e s s u r e ( o r t h e a d d i t i o n of a p o l a r c o s o l v e n t ) , t h e s e l e c t i v i t y o f SCF can be ' f i n e t u n e d f o r t h e p r e f e r e n t i a l e x t r a c t i o n o f t h e compounds o f i n t e r e s t based on t h e i r p o l a r i t y .

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

2

2

2

2

2

2

2

2

2

2

1

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

7. M A R E N T I S

Supercritical

Carbon Dioxide

Processing

Plant

120i Supercritical Fluid Region

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

100

u

-80 -60 -40 -20 0 20 Temperature °C

F i g u r e 1.

-40

F i g u r e 2.

40

60

Carbon d i o x i d e phase diagram.

0

40 80 Temp, °C

120

1 60

CO2 d e n s i t y v s . temperature.

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

129

130

SUPERCRITICAL FLUID EXTRACTION AND C H R O M A T O G R A P H Y

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

30.0r

I

I

0

I

LJ

I

I

I

10 20 30 40 50 Temperature, °C

F i g u r e 3. Naphthalene s o l u b i l i t y i n CO2 v s . t e m p e r a t u r e . (Reproduced w i t h p e r m i s s i o n from R e f e r e n c e 11. C o p y r i g h t 1986 B u t t e r w o r t h . ) I

T = 50°C

I

Pressure, bar

F i g u r e 4. CO2 d e n s i t y and d i e l e c t r i c c o n s t a n t v s . p r e s s u r e . (Reproduced w i t h p e r m i s s i o n from R e f e r e n c e 3. C o p y r i g h t 1978 V e r l a g Chemie GmBH.)

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

7.

MARENTIS

Supercritical

Carbon Dioxide

Processing

Plant

131

Knowledge of phase e q u i l i b r i a t h e o r y i s i m p o r t a n t t o i n s u r e t h a t s c r e e n i n g e x p e r i m e n t s are s t r u c t u r e d t o a c q u i r e d a t a on phase e q u i l i b r i a p r o p e r t i e s t h a t can s i g n i f i c a n t l y e f f e c t the commercial p l a n t s performance. For example, i n some cases a c o m m e r c i a l - s c a l e p l a n t ' s performance and economic e f f i c i e n c y w i l l be v e r y s e n s i t i v e to the i n t r o d u c t i o n of a c o s o l v e n t (such as w a t e r and methanol) to the SCFC0 s o l v e n t . Experiments s h o u l d be d e s i g n e d , u t i l i z i n g knowledge of how a d d i t i o n of a c o s o l v e n t a f f e c t s s o l u b i l i t y of a compound of i n t e r e s t to y i e l d d a t a w h i c h can be used t o determine i f the a d d i t i o n of an a p p r o p r i a t e c o s o l v e n t w i l l s i g n i f i c a n t l y i n c r e a s e the commercial p l a n t s performance and economic e f f i c i e n c y . 1

2

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

1

F l u i d Dynamics Knowledge of f l u i d dynamics i s i m p o r t a n t to i n s u r e t h a t s c r e e n i n g e x p e r i m e n t s are s t r u c t u r e d to a c q u i r e d a t a on how f l u i d dynamic p r o p e r t i e s (such as SCFC0 s o l v e n t d i f f u s i v i t y and s u p e r f i c i a l v e l o c i t y ) w i l l a f f e c t the commercial p l a n t ' s performance and economic e f f i c i e n c y . For example, i n many cases a commercial p l a n t ' s performance and economic e f f i c i e n c y are s e n s i t i v e to the s u p e r f i c i a l v e l o c i t y of the SCFC0 s o l v e n t . E x p e r i m e n t s s h o u l d be d e s i g n e d to y i e l d d a t a t h a t can be used to determine how s e n s i t i v e commercial p l a n t performance and economic e f f i c i e n c y i s to s u p e r f i c i a l v e l o c i t y of the SCFC0 . S o l v e n t e x t r a c t i o n from b o t a n i c a l s u b s t a n c e s can be c h a r a c t e r i z e d by f o u r mass t r a n s p o r t s t e p s : 1) D i f f u s i o n of s o l v e n t i n t o the b o t a n i c a l s u b s t r a t e . 2) S o l v a t i o n of s o l u t e . 3) D i f f u s i o n of s o l u t e i n t o the b u l k f l u i d phase. 4) T r a n s p o r t of s o l u t e and the b u l k f l u i d phase from the e x t r a c t i o n zone. S u p e r c r i t i c a l f l u i d e x t r a c t i o n s are t y p i c a l l y run under c o n d i t i o n s of h i g h s o l v e n t / f e e d r a t i o , h i g h s u p e r f i c i a l v e l o c i t y , and low f l u i d v i s c o s i t y . Thus, the c o n t r o l l i n g mass t r a n s f e r parameter i s u s u a l l y the d i f f u s i o n r a t e of the s o l v e n t and s o l u t e t h r o u g h the b o t a n i c a l s u b s t r a t e i n t o the b u l k f l u i d phase. T h e r e f o r e , mass t r a n s f e r r a t e can be i n c r e a s e d by i n c r e a s i n g s o l v e n t d i f f u s i v i t y , r e d u c i n g d i f f u s i o n d i s t a n c e , or e l i m i n a t i o n of diffusion barriers. A f a r too common p r a c t i c e i s t o u t i l i z e C0 phase e q u i l i b r i a and f l u i d dynamics t h e o r y , but to l i m i t e x p e r i m e n t s to the p r e s s u r e , t e m p e r a t u r e , f l o w r a t e , c o s o l v e n t c a p a b i l i t i e s , e t c . o f the l a b o r a t o r y e x p e r i m e n t a l a p p a r a t u s t h a t i s c o n v e n i e n t l y a t hand. Many commercial p l a n t o p e r a t i n g d e s i g n i n e f f i c i e n c i e s c o u l d be e l i m i n a t e d by c o n s i d e r i n g the e f f e c t on commercial p l a n t performance and economic e f f i c i e n c y a t the i n c e p t i o n of the e x p e r i m e n t a l program. Another c a v e a t i s t h a t d r a m a t i c c o s t b r e a k s o c c u r i n key commercial p l a n t component equipment such as v e s s e l s , v a l v e s , heat e x c h a n g e r s , and pumps w h i c h are s t a n d a r d o f f - t h e - s h e l f commercial items a t a g i v e n s e t of p r e s s u r e , temperature and s i z e s p e c i f i c a t i o n s , but become a s p e c i a l o r d e r i t e m a t a m a r g i n a l l y d i f f e r e n t s e t of operating conditions. Choosing e x p e r i m e n t a l c o n d i t i o n s t h a t are c o s t e f f e c t i v e f o r key commercial p l a n t equipment r e q u i r e s the i n p u t of SCFC0 commercial p l a n t d e s i g n e n g i n e e r s a t the e a r l y c o n c e p t u a l and R&D s t a g e s of p r o c e s s development t o h e l p e n s u r e t h a t the 2

2

2

2

2

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

132

SUPERCRITICAL FLUID EXTRACTION AND C H R O M A T O G R A P H Y

e x p e r i m e n t a l program i s t a r g e t e d towards o p t i m i z i n g commercial p l a n t performance and economics.

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

BOTANICAL STRUCTURE AND CHEMISTRY Knowledge o f b o t a n i c a l s t r u c t u r e and c h e m i s t r y i s i m p o r t a n t f o r two reasons: 1) t o determine i f a p r e t r e a t m e n t such as g r i n d i n g , f l a k i n g , o r r o l l i n g f o r p a r t i c l e s i z e r e d u c t i o n and/or c e l l w a l l r u p t u r e w i l l improve e x t r a c t i o n e f f i c i e n c y , and 2) t o determine t h e e x t r a c t i o n c o n d i t i o n s w h i c h maximize e x t r a c t i o n r a t e s , c o n c e n t r a t i o n s , and y i e l d s o f v a l u e - d e t e r m i n i n g components i n the e x t r a c t a s w e l l a s t o m i n i m i z e the e x t r a c t i o n r a t e s , c o n c e n t r a t i o n s and y i e l d s of u n d e s i r a b l e components i n the e x t r a c t p r o d u c t . Botanical Structure Figure 5 i l l u s t r a t e s the e f f e c t of f l a k i n g t h i c k n e s s on o i l y i e l d and r a t e o f r e c o v e r y from soybean f e e d s t o c k . Rate o f e x t r a c t i o n i n c r e a s e s and y i e l d improves a s f l a k e t h i c k n e s s d e c r e a s e s . An o i l y i e l d o f 97.4% was a c h i e v e d from 0.10mm f l a k e s ; however, y i e l d decreased t o 87% and 67% f o r f l a k e t h i c k n e s s e s o f 0.38mm and 0.81mm r e s p e c t i v e l y . (6) F l a k i n g reduces p a r t i c l e s i z e , and hence, d i f f u s i o n d i s t a n c e o f the s o l u t e t h r o u g h t h e meal s u b s t r a t e . More i m p o r t a n t l y , a s t h i c k n e s s d e c r e a s e s p r o p o r t i o n a t e l y more c e l l w a l l s a r e r u p t u r e d e l i m i n a t i n g d i f f u s i o n b a r r i e r s . I f c e l l w a l l s encapsulate the v a l u e d components i n a b o t a n i c a l s u b s t r a t e , p r e t r e a t m e n t t o r u p t u r e the c e l l w a l l s s i g n i f i c a n t l y improves b o t h y i e l d and r a t e o f extraction. B o t a n i c a l Chemistry Most b o t a n i c a l f e e d s t o c k s c o n t a i n a wide spectrum o f compounds t h a t c a n be d i s s o l v e d i n SCFC0 . The c h a r a c t e r o f t h e e x t r a c t o b t a i n e d from a b o t a n i c a l f e e d s t o c k w i l l markedly d i f f e r depending on t h e e x t r a c t i o n and s e p a r a t i o n c o n d i t i o n s chosen f o r the c o m m e r c i a l - s c a l e p l a n t . T y p i c a l l y , a s t h e SCFC0 d e n s i t y i n c r e a s e s w i t h i n c r e a s i n g p r e s s u r e , the s o l u b i l i t y o f l e s s v o l a t i l e components i n the SCFC0 g e n e r a l l y i n c r e a s e s . Hence, by s e l e c t i n g s u i t a b l e c o m b i n a t i o n s o f p r e s s u r e and temperature f o r e x t r a c t i o n and s e p a r a t i o n c o n d i t i o n s , b o t h s e l e c t i v i t y and r a t e c a n be o p t i m i z e d f o r a c o m m e r c i a l - s c a l e p l a n t d e s i g n . F o r example, F i g u r e 6 i s a gas chromatogram o f the c h e m i c a l components found i n a t y p i c a l n a t u r a l p r o d u c t . The d e s i r e d e x t r a c t p r o d u c t c o n s i s t s o f a l l t h e e s s e n t i a l o i l s and o n l y t h e t o p f r a c t i o n o f waxes and r e s i n s ; the e x t r a c t i o n was a c c o m p l i s h e d a t 4350 p s i and 60°C. Upon complete e x t r a c t i o n o f t h e a v a i l a b l e e s s e n t i a l o i l s , o n l y t h e t o p f r a c t i o n s o f t h e r e s i n s and waxes w i l l have been e x t r a c t e d w i t h v i r t u a l l y no pigments. F u r t h e r f r a c t i o n a t i o n was a c c o m p l i s h e d b y a multi-stage separation process: a f i r s t stage t o o b t a i n a f r a c t i o n r i c h i n the top f r a c t i o n s o f waxes and r e s i n s ; a second stage r i c h i n t e r p e n e s , f r e e f a t t y a c i d s and f a t t y o i l s ; and a t h i r d and f i n a l s t a g e t o o b t a i n a f r a c t i o n r i c h i n e s s e n t i a l o i l s and e s t e r s . The p r o d u c t may be s t a n d a r d i z e d by b l e n d i n g t h e f i r s t and t h i r d f r a c t i o n s , i . e . the r e s i n o i d and e s s e n t i a l o i l f r a c t i o n s . Thus, a h i g h q u a l i t y e x t r a c t c o n s i s t i n g o f e s s e n t i a l o i l and s o l u b l e r e s i n s can be o b t a i n e d h a v i n g a remarkable resemblance t o an a b s o l u t e . 2

2

2

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

7.

MARENTIS

Supercritical

Carbon Dioxide

Liters C O x 1 0 2

Processing

Plant

3

F i g u r e 5. Soy f l a k e t h i c k n e s s v s . e x t r a c t i o n e f f i c i e n c y . (Reproduced w i t h p e r m i s s i o n from Reference 6. Copyright 1984 American O i l C h e m i s t s S o c i e t y . ) 1

F i g u r e 6. Gas chromatograms o f a t y p i c a l n a t u r a l p r o d u c t . ( F i g u r e c o u r t e s y o f M i l t o n Roy.)

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

133

134

S U P E R C R I T I C A L F L U I D E X T R A C T I O N AND

CHROMATOGRAPHY

I n g e n e r a l , SCFC0 s e l e c t i v e l y e x t r a c t s e s s e n t i a l o i l s , e s t e r s , a l c o h o l s , a l d e h y d e s , k e t o n e s , and l i g h t e r f r a c t i o n s of waxes and r e s i n s , l e a v i n g the l e s s s o l u b l e h e a v i e r f r a c t i o n s of waxes and r e s i n s , f a t t y a c i d s , t r i g l y c e r i d e s , c h l o r o p h y l l s , pigments and o t h e r high molecular weight species. Compared t o SCFC0 , c o n v e n t i o n a l o r g a n i c s o l v e n t e x t r a c t i o n i s much l e s s s e l e c t i v e . Sugars, many a c i d s , s t a r c h e s , p r o t e i n s and m i n e r a l s a l t s a r e v i r t u a l l y i n s o l u b l e i n carbon d i o x i d e . (2-5-10) In more complex s i t u a t i o n s , c o n s i d e r a t i o n must a l s o be g i v e n t o the way the component i s bound t o the botanical matrix. For example, a l k a l o i d s such as n i c o t i n e and c a f f e i n e a r e sometimes bound as complex s a l t w i t h o t h e r compounds such as c h l o r o g e n i c a c i d , c i t r i c a c i d , e t c . and a r e d i f f i c u l t t o e x t r a c t w i t h o u t i n t r o d u c i n g w a t e r as a c o s o l v e n t t o f a c i l i t a t e the extraction (3). 2

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

2

PROCESS DESIGN PROTOCOL Y i e l d and c o m p o s i t i o n of an e x t r a c t from a c o m m e r c i a l - s c a l e SCFC0 p l a n t a r e determined by t h r e e key p r o c e s s i n g c o n d i t i o n s : 1) P r e p a r a t i o n of f e e d s t o c k 2) E x t r a c t i o n c o n d i t i o n s 3) S e p a r a t i o n c o n d i t i o n s These parameters s h o u l d be o p t i m i z e d f o r each product t o be p r o c e s s e d i n the c o m m e r c i a l - s c a l e p l a n t . However, i n the case of a m u l t i p l e product p l a n t , compromises may be made and some p r o d u c t s w i l l be r u n a t s u b - o p t i m a l c o n d i t i o n s t o reduce c a p i t a l and o p e r a t i n g c o s t of the c o m m e r c i a l - s c a l e p l a n t . The p r o c e s s d e s i g n p r o t o c o l i s a s e r i e s of t h r e e s u c c e s s i v e l e v e l s o f t e s t i n g w h i c h f u r t h e r d e f i n e the t h r e e key p r o c e s s i n g c o n d i t i o n s w i t h i n c r e a s i n g l y b e t t e r r e s o l u t i o n . Screening t e s t s are q u i c k and i n e x p e n s i v e and a r e m a i n l y used t o q u a l i t a t i v e l y d e f i n e the p r o c e s s i n g sequence and determine the o p e r a t i n g c o n d i t i o n s f o r the more a c c u r a t e p r o c e s s development u n i t (PDU) t e s t i n g . I f the s c r e e n i n g u n i t t e s t s show p r o m i s e , then PDU t e s t i n g would be i n i t i a t e d to o p t i m i z e p r o c e s s i n g v a r i a b l e s t o g e n e r a t e d a t a f o r economic e v a l u a t i o n of p r o c e s s a l t e r n a t i v e s t h a t a p p l y to the c o m m e r c i a l - s c a l e p l a n t . N e x t , i f economic e v a l u a t i o n o f the p r o c e s s f a l l s w i t h i n the p r o f i t a b i l i t y g o a l s of the c o m m e r c i a l - s c a l e p l a n t , p i l o t plant t e s t i n g i s i n i t i a t e d to minimize scale-up u n c e r t a i n t y . 2

Screening Unit Testing (Assessing Technical F e a s i b i l i t y ) The p r i m a r y g o a l of s c r e e n i n g u n i t t e s t i n g i s t o a s s e s s t e c h n i c a l feasibility. E x p e r i m e n t a l work b e g i n s u s i n g a s u p e r c r i t i c a l f l u i d " s c r e e n i n g u n i t " such as the M i l t o n Roy system shown i n F i g u r e 7 . The s c r e e n i n g u n i t t y p i c a l l y has one e x t r a c t i o n v e s s e l of 60-300 cc c a p a c i t y and one o r two s e p a r a t o r s . Data from the s c r e e n i n g u n i t i s used t o a s s e s s the p r o c e s s f e a s i b i l i t y and product q u a l i t y , and d e f i n e the f o l l o w i n g p r o c e s s parameters:

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

7. M A R E N T I S

Supercritical

Carbon Dioxide

Processing

P r e p a r a t i o n of F e e d s t o c k E x t r a c t o r C o n d i t i o n s

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

Grating Grinding (cryogrinding) Rolling Rapid d e p r e s s u r i z i n g Wetting Drying

Plant

Separator

135 Conditions

Pressure Pressure Temperature Temperature Solvent/Feed Ratio Superficial Velocity

The e x t r a c t p r o d u c t i s a n a l y z e d t o determine how changes i n t h e s e parameters change e x t r a c t y i e l d and/or c o n c e n t r a t i o n . I f the r e s u l t s of t e c h n i c a l f e a s i b i l i t y s c r e e n i n g a r e e n c o u r a g i n g , p r o c e s s development proceeds t o the next s t e p . P r o c e s s Development U n i t (PDU) Testing (Optimizing Process Performance and Economics) The p r i m a r y g o a l of PDU t e s t i n g i s t o p r o v i d e a d d i t i o n a l d a t a f o r the key o p e r a t i n g and p r o c e s s d e s i g n v a r i a b l e s t o o p t i m i z e p r o c e s s performance and economics. A PDU d i f f e r s from a s c r e e n i n g u n i t i n s e v e r a l s i g n i f i c a n t ways [ F i g u r e 8]. I t has a) a l a r g e r e x t r a c t o r volume by about two o r d e r s of magnitude (10-20 l i t e r s v s . 60-300 c e ) ; b) a C 0 r e c o v e r y system t o study the e f f e c t s of C 0 r e c i r c u l a t i o n ; c) m u l t i p l e s e p a r a t o r v e s s e l s connected i n s e r i e s t o study f r a c t i o n a l s e p a r a t i o n o f components; and d) o p t i o n a l l y , a c o m p u t e r i z e d d a t a a c q u i s i t i o n and c o n t r o l system t o f a c i l i t a t e i t s o p e r a t i o n and c o l l e c t i o n of d a t a . Data from the PDU e x p e r i m e n t s e s t a b l i s h p r o c e s s c o n d i t i o n s f o r preliminary process design. These parameters a r e l i s t e d below: 2

2

Extraction

Separation

Pressure Temperature Solvent/Feed Ratio Superficial Velocity Recycle E f f e c t s E n t r a i n e r s and C o s o l v e n t s E x t r a c t o r S i z e , Shape and C o n f i g u r a t i o n P r o c e s s i n g Modes (e.g. S u b / S u p e r c r i t i c a l C 0 o r Dry/Wet C 0 Extraction) 2

Pressure Temperature F r a c t i o n a l Separation Adsorbent S e p a r a t i o n Column S e p a r a t i o n

2

P i l o t P l a n t T e s t i n g (Scale-up V e r i f i c a t i o n ) The p r i m a r y g o a l of p i l o t p l a n t t e s t i n g [ F i g u r e 9] i s t o m i n i m i z e s c a l e - u p u n c e r t a i n t y . An SCFC0 p i l o t p l a n t i s t y p i c a l l y 50-200 l i t e r s i n e x t r a c t i o n c a p a c i t y . P i l o t p l a n t t e s t s are designed to v e r i f y : 1) Optimum v e s s e l c o n f i g u r a t i o n and s i z e . 2) E f f e c t s of f e e d s t o c k p a r t i c l e s i z e and p r e t r e a t m e n t t e c h n i q u e s . 3) M e c h a n i c a l d e s i g n p r o b l e m s , such as c l o g g i n g o r s a l t i n g - o u t o f e x t r a c t i n p i p i n g , v a l v e s and heat exchangers; m a t e r i a l h a n d l i n g c o n s i d e r a t i o n s and c l e a n i n g r e q u i r e m e n t s . 2

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

136

SUPERCRITICAL FLUID EXTRACTION AND CHROMATOGRAPHY

F i g u r e 7. M i l t o n Roy SCFCO2 s c r e e n i n g u n i t . M i l t o n Roy.)

(Photo

courtesy of

Condenser

1

Extractor C0

Separator | Separator^ Separator"]

2

Receiver

C7 Subcooler Entraîner Supply Pump ljr-fi]

J^Vaporlzer

CO, F i g u r e 8.

PDM

process

development u n i t s c h e m a t i c

diagram.

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

7.

MARENTIS

Supercritical

Carbon Dioxide

Processing

Plant

137

COMMERCIAL PLANT DESIGN CONSIDERATIONS O p t i m a l commercial p l a n t performance and economic e f f i c i e n c y r e q u i r e s i n v e s t i g a t i o n of s e v e r a l d e s i g n a l t e r n a t i v e s t o choose the most s u i t a b l e commercial p l a n t d e s i g n . These commercial p l a n t d e s i g n c o n s i d e r a t i o n s f a l l i n t o two g e n e r a l c a t e g o r i e s - p r o c e s s d e s i g n and m e c h a n i c a l d e s i g n . P r o c e s s D e s i g n and Economic E v a l u a t i o n s A n a l y s i s of p r o c e s s development d a t a - The f o l l o w i n g i l l u s t r a t e s how PDU data can be used to develop a commercial SCFC0 p l a n t ' s p r o c e s s d e s i g n . T h i s d a t a i s p r o v i d e d by Marc Sims on p y r e t h r i n s , a n a t u r a l i n s e c t i c i d e e x t r a c t e d w i t h s u b c r i t i c a l and s u p e r c r i t i c a l carbon d i o x i d e from p y r e t h r u m f l o w e r s (a s p e c i e s of chrysanthemum). F i g u r e 10 shows the e f f e c t of temperature on two p a r a m e t e r s : p y r e t h r i n r e c o v e r y from the b o t a n i c a l s u b s t r a t e and c o n c e n t r a t i o n of the p r y r e t h r i n i n the e x t r a c t p r o d u c t . Pyrethrin y i e l d rises with temperature r e a c h i n g a maximum between 20-30°C but d e c l i n e s near 30°C. S e l e c t i v i t y f o r p y r e t h r i n i s l o w e s t a t 20°C and r i s e s t h r o u g h and beyond the c r i t i c a l p o i n t . D e s i g n e n g i n e e r s must u t i l i z e knowledge of the f i n i s h e d p r o d u c t r e q u i r e m e n t s t o determine the temperature of e x t r a c t i o n . The minimum c o n c e n t r a t i o n of p y r e t h r i n a c c e p t a b l e w i l l determine e x t r a c t i o n t e m p e r a t u r e . I f 20% i s a c c e p t a b l e , the e x t r a c t i o n s h o u l d be r u n a t about 30°C. I f a h i g h e r c o n c e n t r a t i o n i s r e q u i r e d , f r a c t i o n a l s e p a r a t i o n , o r a d i f f e r e n t o p e r a t i n g p r e s s u r e s h o u l d be c o n s i d e r e d t o enhance the c o n c e n t r a t i o n of p y r e t h r i n i n the p r o d u c t . F i g u r e 11 d i s p l a y s e x t r a c t i o n e f f i c i e n c y v s . time on-stream. A f t e r two h o u r s , 88% of the p y r e t h r i n i s r e c o v e r e d . A d d i t i o n a l time m a r g i n a l l y i n c r e a s e s p y r e t h r i n y i e l d , however, t o t a l e x t r a c t y i e l d i n c r e a s e s s i g n i f i c a n t l y d i l u t i n g the p y r e t h r i n . Since the a d d i t i o n a l components add no v a l u e t o the e x t r a c t , a d d i t i o n a l time i s d e t r i m e n t a l [ F i g u r e 12]. An economic e v a l u a t i o n b a l a n c i n g v a r i a b l e s of p y r e t h r i n y i e l d and c o n c e n t r a t i o n a g a i n s t c y c l e t i m e w i l l determine the o p t i m a l time on-stream f o r t h i s a p p l i c a t i o n .

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

2

A l t e r n a t i v e F r a c t i o n a t i o n and S t a n d a r d i z a t i o n Techniques Raw m a t e r i a l q u a l i t y v a r i a t i o n s w i t h r e s p e c t t o e s s e n t i a l o i l s and o t h e r key i n g r e d i e n t s r e q u i r e s p e c i a l i z e d p r o c e s s i n g schemes to produce e x t r a c t s of s t a n d a r d i z e d q u a l i t y . The f o l l o w i n g a r e t h r e e common f r a c t i o n a t i o n and s t a n d a r d i z a t i o n t e c h n i q u e s t h a t a r e i n d i c a t i v e o f the p r o c e s s d e s i g n a l t e r n a t i v e s c u r r e n t l y b e i n g used t o a c h i e v e s i m i l a r end product r e s u l t s . Economic e v a l u a t i o n of each a l t e r n a t i v e d e t e r m i n e s the b e s t p r o c e s s d e s i g n f o r a s p e c i f i c a p p l i c a t i o n . The f i r s t example i s the a p p l i c a t i o n of two-stage f r a c t i o n a l e x t r a c t i o n t o s e l e c t i v e l y remove components from f e n n e l ( 7 ) . The f i r s t e x t r a c t i o n stage o p e r a t e s under s u b c r i t i c a l temperature c o n d i t i o n s f o r e x t r a c t i o n , i . e . 130 BAR and 30° C. A p p r o x i m a t e l y 9% o f the f e e d m a t e r i a l i s removed and the r e s u l t i n g e x t r a c t i s o v e r 50% e s s e n t i a l o i l . The r e s i d u e i n the e x t r a c t o r v e s s e l i s then e x t r a c t e d a second time u s i n g s u p e r c r i t i c a l c o n d i t i o n s , i . e . 300 BAR

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

138

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

SUPERCRITICAL FLUID EXTRACTION AND CHROMATOGRAPHY

Entraîner System

F i g u r e 9.

C0 Recycle System 2

Separator

PDM p i l o t p l a n t u n i t schematic diagram.

Extraction Pressura: 80 bar Extraction Tima: 3 hours 0.8% Pyrethrin Jn Raw Material

100

50

> ο υ Φ DC

Φ

k.



Û»

Source: Marc Sims, P.E. Emeryville, California Unpublished Data

û.

10° 20° 30° Extraction Temperature, °C

40°

F i g u r e 10. E f f i c i e n c y o f C 0 e x t r a c t i o n v s . temperature. w i t h p e r m i s s i o n . C o p y r i g h t 1987 Marc Sims.) 2

(Printed

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

7. M A R E N T I S

Supercritical

Carbon Dioxide

100-

Processing Plant

139

^.—Extract Yield . 1 ^ · — • *—Pyrethrin Yield e

90-

/

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

80-

t

/

m

/ Extraction Pressure: 65 bar

7060-

Extraction Temp.: 22°C 0.9% Pyrethrin in Raw Material

50-

Source: Marc Sims, P.E. Emaryvilla, California Unpublished Data

40 *Hours

F i g u r e 11. E f f i c i e n c y o f C 0 e x t r a c t i o n v s . time on stream. (Printed with permission. C o p y r i g h t 1987 Marc Sims.) 2

Extraction Pressure: 65 bar Extraction Temp.: 22°C 0.9% Pyrethrin in Raw Material

N

60 - * s

1 °- 40Qn _ O

V

I

2010|-

\ A

ν X N

A

Source: Marc S»ma, P.E. Emeryville, CelHomla UnpubHsiMd Data

*

*

A -

-i—i—3—i—i—é

F i g u r e 12. P y r e t h r i n c o n c e n t r a t i o n i n e x t r a c t v s . time on stream. Hours ( P r i n t e d w i t h p e r m i s s i o n . Time C o p yon r i Stream, g h t 1987 Marc Sims.)

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

140

SUPERCRITICAL FLUID E X T R A C T I O N AND

CHROMATOGRAPHY

and 42°C. An a d d i t i o n a l 8.2% of the f e e d i s e x t r a c t e d w i t h v e r y l i t t l e e s s e n t i a l o i l i n the e x t r a c t . The two f r a c t i o n s can then be u t i l i z e d s e p a r a t e l y o r combined, as d e s i r e d . The second example (8) demonstrates two stage e x t r a c t i o n u s i n g d r y C 0 f o l l o w e d by wet C 0 . Cinnamon i s e x t r a c t e d a t 300 BAR and 55°C. T h i s f i r s t s t a g e o c c u r s w i t h dry C 0 t o remove the e s s e n t i a l o i l s r e s p o n s i b l e f o r the aroma and odor of the s p i c e . The second e x t r a c t i o n , u s i n g s u p e r c r i t i c a l C0 saturated w i t h water, e x t r a c t s the f l a v o r components. The f r a c t i o n s can be used s e p a r a t e l y o r recombined t o the d e s i r e d c o m p o s i t i o n . A t h i r d example (9) uses f r a c t i o n a l s e p a r a t i o n by a v a r i a t i o n i n s e p a r a t o r temperature and p r e s s u r e , u s u a l l y w i t h two o r more s e p a r a t i o n v e s s e l s i n s e r i e s and by r e d u c i n g the p r e s s u r e i n s t e p s . This t e c h n i q u e r e s u l t s i n the s e p a r a t i o n of the l e s s v o l a t i l e components from more v o l a t i l e compounds. Caraway seeds a r e e x t r a c t e d and p r e c i p i t a t e d i n three stages, y i e l d i n g three d i s t i n c t f r a c t i o n s . [ F i g u r e 13] The f i r s t s e p a r a t o r f r a c t i o n c o n t a i n s o n l y 1% e s s e n t i a l o i l and c o n s i s t s m a i n l y of f a t t y o i l s . The second s e p a r a t o r f r a c t i o n , w h i c h amounts t o o n l y 9.6% of t h e e x t r a c t , c o n s i s t s o f a m i x t u r e of a p p r o x i m a t e l y one p a r t e s s e n t i a l o i l t o two p a r t s f a t t y oils. The t h i r d s e p a r a t o r f r a c t i o n c o n t a i n s 90% caraway e s s e n t i a l o i l , r e p o r t e d t o have e x c e l l e n t f l a v o r c h a r a c t e r i s t i c s . Each method of f r a c t i o n a t i o n r e q u i r e s d i f f e r e n t o p e r a t i n g t e c h n i q u e s and d i f f e r e n t equipment t y p e s , s i z e s and c o n f i g u r a t i o n s . Two-stage e x t r a c t i o n r e q u i r e s l o n g e r t o t a l e x t r a c t i o n c y c l e s , and p o s s i b l y , p a r a l l e l s e p a r a t o r v e s s e l s t o c o l l e c t each f r a c t i o n i n d i v i d u a l l y , and/or a d d i t i o n o f h u m i d i f i c a t i o n v e s s e l s . M u l t i p l e stage s e p a r a t i o n r e q u i r e s a d d i t i o n a l s e p a r a t o r v e s s e l s w i t h r e q u i r e d h e a t e r s and p r e s s u r e c o n t r o l s . I n a l l t h r e e c a s e s , the p r o d u c t s can be used as s e p a r a t e f r a c t i o n s , or i n v a r i o u s c o m b i n a t i o n s t o s u i t the u s e r needs and m a r k e t p l a c e considerations. Choice of f r a c t i o n a t i o n and s t a n d a r d i z a t i o n methods f o r a c o m m e r c i a l - s c a l e SCFC0 p l a n t i s dependent on r e s u l t s of the economic e v a l u a t i o n of a l l t e c h n i c a l l y f e a s i b l e process design a l t e r n a t i v e s . 2

2

2

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

2

2

M e c h a n i c a l D e s i g n , C o n s t r u c t i o n and

Start-up

Maintenance and R e l i a b i l i t y - The s e l e c t i o n of h i g h p r e s s u r e p a r t s i n r o t a t i n g and/or r e c i p r o c a t i n g s e r v i c e must c o n s i d e r f r i c t i o n , l u b r i c a t i o n , speed and s i m i l a r f a c t o r s t o m i n i m i z e wear, l e a k a g e and premature f a i l u r e . R o u t i n e maintenance t h a t can be performed i n p l a c e w i t h a minimum o f o f f - l i n e time i s advantageous; i f i t becomes n e c e s s a r y t o d i s c o n n e c t the u n i t from the p i p i n g o r motor o r move i t to the maintenance shop f o r r e p a i r , spare u n i t s may be r e q u i r e d . An o v e r s i z e d u n i t o p e r a t i n g a t a s l o w e r speed may extend the p e r i o d between p r e v e n t i v e maintenance work as w e l l as m i n i m i z i n g breakdowns o r f a i l u r e s . High r e l i a b i l i t y i s necessary f o r e c o n o m i c a l o p e r a t i o n s s i n c e a p l a n t f a i l u r e i n the m i d d l e of a c y c l e r e s u l t s i n wasted f e e d m a t e r i a l , p o s s i b l y wasted p r o d u c t s , l o s s o f C0 , etc. 2

C l e a n i n g Between Runs and P r o d u c t s - S a n i t a t i o n w i t h i n the system i s a c o n s t a n t concern so s p e c i a l d e s i g n c o n s i d e r a t i o n s such as p i p i n g

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

7.

MARENTIS

Supercritical

Carbon Dioxide

Extr

Processing

Plant

141

90/20 P(bar)/T(°C)

1 st Step 90/40

2nd Step 74/40

3rd Step 30/0

45.8

9.6

44.6

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

100 h

75h

50

25

Percentage of Extract

BER. BUN. PHYS. CHEM. 88, p905 J

I Fatty OH Essential Oil

F i g u r e 13. Caraway seed f r a c t i o n a l s e p a r a t i o n . (Reproduced w i t h p e r m i s s i o n from Reference 9. C o p y r i g h t 1984 V e r l a g Chemie GmBH.)

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

142

SUPERCRITICAL FLUID EXTRACTION AND CHROMATOGRAPHY

d i s c o n n e c t s a t s u i t a b l e p o i n t s , e l i m i n a t i o n o f dead l e g s where b i o l o g i c a l l y a c t i v e m a t e r i a l s might accumulate, a c c e s s t o v e s s e l s and heat exchangers f o r c l e a n i n g , e t c . I n some c a s e s c l e a n - i n - p l a c e (CIP) t e c h n i q u e s w i l l be s u f f i c i e n t .

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

P r e t r e a t m e n t and P o s t t r e a t m e n t - Some m a t e r i a l s may r e q u i r e p r e treatment p r o c e s s i n g t o p r e p a r e t h e m a t e r i a l f o r e x t r a c t i o n o r post-treatment o f t h e r e s i d u e a f t e r e x t r a c t i o n i s completed. M a t e r i a l h a n d l i n g systems such as conveyors and p r o d u c t s i l o s must be d e s i g n e d w i t h t h e s e c o n s i d e r a t i o n s i n mind. P i p i n g and V a l v e s - Some e x t r a c t s d e v e l o p a v i s c o u s o i l y phase; some e x t r a c t s c o n t a i n i n s o l u b l e s o l i d s ; some waxes o r r e s i n s may p r e c i p i t a t e w i t h i n t h e p i p i n g , v a l v e s , o r heat exchangers. The s o l v e n t C0 i t s e l f can d e p o s i t as a l i q u i d phase o r even ( s o l i d ) d r y i c e i f i n s u f f i c i e n t c a r e i s t a k e n t o determine t h e phase changes w h i c h may o c c u r i n p i p i n g and v a l v i n g . Techniques t o r e l i e v e p l u g g i n g i f i t o c c u r s must be d e s i g n e d i n t o t h e system. 2

S e a l s and G a s k e t s - S e a l s , g a s k e t s , and p a c k i n g s f a c e a p a r t i c u l a r l y h a r s h and u n u s u a l environment w i t h i n t h e s u p e r c r i t i c a l system. E l a s t o m e r s w i t h even low C0 a b s o r p t i o n v a l u e s may be u n s u i t a b l e f o r the s e r v i c e because even a s m a l l volume o f C0 absorbed i n t o t h e e l a s t o m e r a t e x t r a c t i o n p r e s s u r e expands t o many t i m e s i t s volume when p r e s s u r e i s reduced t o a t m o s p h e r i c p r e s s u r e . The r a t e a t w h i c h p r e s s u r e can be reduced w i t h o u t m e c h a n i c a l l y o v e r s t r e s s i n g o r d e s t r o y i n g t h e e l a s t o m e r must be determined. A r e a s where s m a l l q u a n t i t i e s o f C0 can be trapped a t h i g h p r e s s u r e c r e a t e problems when t h e p r e s s u r e i s r e l i e v e d must be i d e n t i f i e d and e l i m i n a t e d . C0 i s n o t a good l u b r i c a t i n g f l u i d , so a l l l u b r i c a t i n g o i l s and g r e a s e s used must be FDA approved f o r food p l a n t u s e . 2

2

2

2

M a t e r i a l s o f C o n s t r u c t i o n - Pure d r y C0 i s n o t p a r t i c u l a r l y c o r r o s i v e b u t i n t h e presence o f w a t e r , o r g a n i c a c i d s , e t c . p o t e n t i a l low c y c l e f a t i g u e / c o r r o s i o n problems e x i s t . Selection of s u i t a b l e m a t e r i a l s o f c o n s t r u c t i o n must be addressed d u r i n g t h e plant design. 2

Q u i c k - o p e n i n g c l o s u r e s - Many o f t h e v e s s e l s and heat exchangers w i t h i n t h e system w i l l o p e r a t e i n b a t c h mode. F r e q u e n t l y i t w i l l be n e c e s s a r y t o remove t h e t o p head o f a v e s s e l f o r i n t r o d u c t i o n o f t h e f e e d m a t e r i a l o r removal o f t h e spent r e s i d u e , o r f o r c l e a n i n g and i n s p e c t i o n of the surfaces i n contact with the b o t a n i c a l . Several q u i c k opening c l o s u r e systems a r e c u r r e n t l y a v a i l a b l e t o a c c o m p l i s h t h i s , b u t c a r e must be t a k e n t o i n s u r e t h a t t h e system chosen i s best f o r the intended use. C o n s t r u c t i o n Schedule and S t a r t - u p - To d a t e , t h e few c o m m e r c i a l s c a l e SCFC0 p l a n t s c o n s t r u c t e d w o r l d w i d e have, f o r t h e most p a r t , e x p e r i e n c e d c o s t o v e r r u n s due t o r e t r o f i t t i n g t o c o r r e c t d e s i g n and c o n s t r u c t i o n f l a w s upon s t a r t - u p , and t h e a s s o c i a t e d c o s t o f start-up delay. A commercial-scale SCFC0 p r o c e s s i n g p l a n t i s h i g h l y c a p i t a l i n t e n s i v e , and t h u s , p r o f i t a b i l i t y i s v e r y s e n s i t i v e 2

2

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

7. M A R E N T I S

Supercritical

Carbon Dioxide

Processing

Plant

143

t o t i m e l y c o n s t r u c t i o n and s t a r t - u p . To b e s t manage t h e problems o f c o n s t r u c t i o n d e l a y , and to e x p e d i t e t h e s o l u t i o n o f d e s i g n and c o n s t r u c t i o n f l a w s t h a t s u r f a c e upon s t a r t - u p , a s i n g l e vendor s h o u l d be h e l d a c c o u n t a b l e f o r t h e r e s p o n s i b i l i t i e s o f e n g i n e e r i n g d e s i g n , c o n s t r u c t i o n and s t a r t - u p . 'Turnkey' construction contracts w i l l g r e a t l y enhance t h e p r o b a b i l i t y t h a t f u t u r e c o m m e r c i a l - s c a l e S C F C 0 p l a n t s w i l l be b u i l t on time and w i t h i n b u d g e t . 2

SUMMARY Developing a commercial s u p e r c r i t i c a l C 0 p r o c e s s i n g p l a n t r e q u i r e s the a p p l i c a t i o n o f f i v e s t e p s : 1) A p p l i c a t i o n o f h i g h p r e s s u r e C 0 phase e q u i l i b r i a and f l u i d dynamics t h e o r y ; 2) A p p l i c a t i o n o f knowledge o f t h e b o t a n i c a l s s t r u c t u r e and chemistry; 3) Performance o f t h e p r o c e s s d e s i g n p r o t o c o l i n c l u d i n g s c r e e n i n g s t u d i e s , PDU s t u d i e s , and p i l o t p l a n t s t u d i e s ; 4) U t i l i z a t i o n o f p r o c e s s development d a t a f o r p r o c e s s d e s i g n and economic e v a l u a t i o n o f a l t e r n a t i v e c o m m e r c i a l p l a n t d e s i g n s ; 5) E n g i n e e r i n g , c o n s t r u c t i o n and s t a r t - u p o f t h e c o m m e r c i a l p l a n t .

Downloaded by PENNSYLVANIA STATE UNIV on May 23, 2012 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch007

2

2

ACKNOWLEDGMENTS The A u t h o r w i s h e s t o g r a t e f u l l y acknowledge M r . Marc Sims P . Ε . , f o r h i s generous c o n t r i b u t i o n o f e x p e r i m e n t a l p r o c e s s development d a t a ; M r . Sam Vance P . E . , S e n i o r P r o c e s s E n g i n e e r - PDM, I n c . f o r h i s many v a l u a b l e c o n t r i b u t i o n s t o b o t h s t r u c t u r e and c o n t e n t ; and P a t Muska o f PDM, I n c . f o r h e r e f f o r t s i n t y p i n g t h i s m a n u s c r i p t . LITERATURE

CITED

1)

Taylor, F.M., Carbon Dioxide - The Solvent for the Food Related Industries, Wolviston Consultancy Services Limited, (Lichfield, England), 1984 pp. 29-31. 2) Moyler, David, Prepared Foods, November 1985, pp 100-101. 3) Hubert P., Vitzthum, O.G. Angew. Che. Int. Ed Engl. 17, p. 711, 1978 4) Hoyer G. G., Chemtech 1985, July, P. 471 5) Shultz, W.G., Schultz, T.H., Carlson, R.A., and Hudson, J.S., Food Technology, June, p. 32, 1974 6) Snyder, J.M., Frederick, J.P., and Christianson, D.D., JAOCS, 61 (12) pp. (1984). 7) U.S. Patent 4, 790,398 8) U.S. Patent 4, 198, 432 9) Stahl, E., Quirin, K.W., Glatz, Α., Girard, D., and Riau, G., Busenges. Phys. Chem., 1984, 88, 900-907. 10) Rizvi, S.S., Daniels, J.Α., Benando, A1.L., Zollweg, J.A., Food Technology, July, p. 59 1986. 11) McHugh, M. A. and Krukonis, V. J., Supercritical Fluid Extraction; Butterworth Publishers: Stoneham, MA 1986 p. 20 RECEIVED

January 29, 1988

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.