Stepwise Incorporation of Alkynes into a Coordinatively Unsaturated

Feb 2, 1994 - Hongo, Tokyo 113, Japan, and Department of Chemistry, Faculty of Science, Toho University,. Funabashi, Chiba 274, Japan. Received ...
0 downloads 0 Views 1MB Size
Organometallics 1994, 13, 4214-4226

4214

Stepwise Incorporation of Alkynes into a Coordinatively Unsaturated Diruthenium Center Bridged by Thiolate Ligands Masayuki Nishio,? Hiroyuki Matsuzaka,? Yasushi Mizobe,' Tomoaki Tanase,* and Masanobu Hidai*$t Department of Chemistry and Biotechnology, Faculty of Engineering, The University of Tokyo, Hongo, Tokyo 113, Japan, and Department of Chemistry, Faculty of Science, Toho University, Funabashi, Chiba 274, Japan Received February 2, 1994@

The coordinativelyunsaturated complex Cp*Ru(pz-SPr')zRuCp*(1;Cp* = q5-C5Me5)readily reacts with an equimolar amount of HCECCOZR(R = Me, Et, But) at the diruthenium center to give dinuclear complexes with a ruthenathiacyclobutene core, Cp*Ru(pz-SPr')[qz:qz-p~C(COzR)=CHSPr']RuCp* (Sa, R = Me; 5b, R = Et; 5c, R = But). Subsequent treatment of 5a with the series of alkynes HCECR ( R = CO2Me, Tol, SiMe3; To1 = 4-MeC6H.d results in the incorporation of another alkyne molecule into the diruthenium site in Sa, affording either dinuclear ruthenacyclopentenyl complexes C~*RU(~Z-SP~')[~~:~~-~Z-C(R)CHC(CO~M~)CHSPri]RuCp* (6a, R = C02Me; 6b, R = Tol) or the bridging alkyne complex Cp*Ru(p~SPri)(p~-H)[q2:qz-p~-RC~CC(CO~Me)=CHSPri]RuCp* (7; R' = SiMe3). From 6, two types of dinuclear ruthenacyclopentadiene complexes are obtained by the reactions with MeI: the ( 8 )from 6 a and neutral diiodo complex Cp*IzRu[q2:~4-p~-C(C0~Me)CHC(CO~Me)CHlRuCp* C O ~ from M~)CH}R~C~*II the cationic complex [ C ~ * R ~ ( ~ Z - S P ~ ~ ) { ~ ~ : ~ ~ - ~ Z - C ( T ~ ~ ) C H C ( (loa) 6b. A dimethyl analogue of 8, Cp*MezRu[q2:q4-p2-C(CO~Me)CHC(CO~Me)CH1RuCp* (91, is further derived from 8 upon treatment with LiCuMez. On the other hand, oxidation of the alkyne complex 7 with Iz results in the release of the coordinated alkyne Me3SiC=CC(COzMe)=CHSPri (11). Structures of 5c, 6a, 7,9, and 10b (PF6- salt of the cation in loa) have been unambiguously established by X-ray diffraction studies. Crystal data: 5c, triclinic, Pi,a = 11.2375(9) b = 17.876(4) c = 9.079(2) a = 94.70(3)", 105.54(1)", y = 92.01(1)",2 = 2, 5596 reflections, R = 0.051, R, = 0.058; 6a, triclinic, P1, a = 10.999(3) b = 19.155(4) c = 9.139(2) A, a = 102.22(1)",,6 = 107.96(2)",y = 78.28(2)", 2 = 2, 5448 reflections R = 0.045, R, = 0.057; 7, triclinic, Pi,a = 11.323(3) b = 17.356(3) c = 10.627(2) a = 101.80(1)",p = 109.79(2)",y = 80.78(2)",2 = 2,2352 reflections, R = 0.079, R, = 0.051; 9, orthorhombic, P212121, a = 16.412(5) A, b = 16.650(6) c = 10.594(3) 2 = 4, 1956 reflections, R = 0.049, R, = 0.036; 10bClCHzCH2C1, triclinic, Pi,a = 12.537(2) b = 18.442(2) c = 9.2737(9) a = 95.105(9)",p = 96.545(9)", y = 94.81(1)", 2 = 2, 5103 reflections, R = 0.068, R, = 0.088.

A,

A,

A,

A,

A,

A, A,

A,

Introduction Multicentered activation of organic substrates by polynuclear transition-metal complexes is an attractive approach to the new types of chemical transformations which are inaccessible on mononuclear metal centert3.l In this context, transition-metal-sulfur cluster compounds can serve as suitable templates, since the strong bridging behavior of sulfur ligands can inhibit the fragmentation of the polynuclear structure even under forcing reaction conditions. However, although transition-metal-sulfur compounds have been studied intensively because of their relevance to biological and industrial catalytic processes, including electron transfer and desulfurization,2organic syntheses at the poly+ The

e=

A, A,

A,

A,

A,

University of Tokyo.

* Toho University.

* Abstract published in Advance ACS Abstracts, September 1,1994.

(1)Recent reviews: (a) The Chemistry of Metal Cluster Complexes; Shriver, D. F., Kaesz, H. D., Adams, R. D., Eds.; VCH Weinheim, Germany, 1990. (b) Braunstein, P.; Rase, J. In Chemical Bonds-Better Ways to Make Them and Break Them; Bernal, I., Ed.; Elsevier: Amsterdam, 1989. (e) Adams, R. D.; Horvath, I. T. Prog. Znorg. Chem. 1985,33, 127.

metallic site in metal-sulfur aggregates have still been poorly inve~tigated.~ We have recently established general synthetic routes to a series of dinuclear Cp*Ru complexes (Cp* = v5-C5Mes) with bridging thiolate ligand^.^-^ Our current interest has been focused on developing novel modes of activation and transformation of organic substrates on these well-defined thiolate-bridged diruthenium centers. Among the diruthenium complexes isolated to date, Cp*RuCu2-SPri)2RuCp* (l)4c,7 appears to be the most (2)(a)Adu. Znorg. Chem. 1992,38. (b) Berg, J. M.; Holm, R. H. In Metal Zons in Biology; Spiro, T. G., Ed.; Wiley: New York, 1982;Vol. 4,pp 1-66. (c)Rauchfuss, T.B. Prog. Znorg. Chem. 1991,39,259. (d) Angelici, R. J. ACC.Chem. Res. 1988,21,387. (e) Rakowski DuBois, M. Chem. Rev. 1989,89,1. (3) For pertinent examples, see: (a) Seyferth, D.; Anderson, L. L.; Villafaiie, F.;Cowie, M.; Hilts, R. W. Organometallics 1992,11,3262. (b) Claver, C.; Fis, J.; Kalck, P.; Jaud, J. Znorg. Chem. 1987,26,3479. (c) El Amane, M.; Maisonnat, A.; Dahan, F.; Pince, R.; Poilblanc, R. Organometallics 1985,4,173. (d) Adams, R. D.; Babin, J. E.; Tasi, M.; Wang, J.-G. Organometallics 1988,7,755. (4)(a) Dev, S.;Imagawa, K.; Mizobe, Y.; Cheng, G.; Wakatsuki, Y.; Yamazaki, H.; Hidai, M. Organometallics 1989,8, 1232. (b)Dev, S.; Mizobe, Y.; Hidai, M. Znorg. Chem. 1990,29,4797.(c) Takahashi, A.; Mizobe, Y.; Matsuzaka, H.; Dev, S.; Hidai, M. J. Organomet. Chem. 1993,456,243.(d) Hidai, M.; Mizobe,Y.; Matsuzaka, H. J. Organomet. Chem. 1994,473,1.

0276-733319412313-4214$04.50/00 1994 American Chemical Society

Incorporation of Alkynes into an Ruz Center

Organometallics, Vol. 13,No. 11, 1994 4215

Scheme 1" Prl

Me3Si'

SPrl

3

4 a

Reagents: (i) HC=CSiMe3; (ii) HCICTol; (iii) HC=C&CH(CH2)3bHz.

promising template, since the adjacent 16-electron Ru(11) centers in 1 are expected to provide the unique bimetallic reaction site. Indeed, 1 has proved to incorporate readily a variety of substrates such as alkynes, CO, ButNC, Hz, and organic halides into the dinuclear site.k,8*9Particularly interesting is its unique reactivity with terminal alkynes, which is surprisingly sensitive to the alkyne substituent. As shown in Scheme 1, the reaction of 1 with HCzCSiMe3 leads to unusual oxidative trimerization of the alkyne to afford the bridging alkyne complex Cp*Ru@z-SPri)@z-H)[q2:qz-p2-Me3( 5 ) Recent examples of ruthenium-sulfur compounds: (a) Houser, E. J.; Amarasekera, J.; Rauchfuss, T. B.; Wilson, S. R. J.Am. Chem. SOC.1991,113,7440. (b) Rauchfuss, T.B.; Rodgers, D. P. S.; Wilson, S. R. J.Am. Chem. SOC.1986,108,3114. (c) Shaver, A.;Plouffe, P.Y.; Liles, D. C.; Singleton, E. Inorg. Chem. 1992,31,997.(d) Kawano, M.; Uemura, H.; Watanabe, T.; Matsumoto, K. J.Am. Chem. SOC.1993, 115,2068. (e) Schacht, H. T.; Haltiwanger, R. C.; Rakowski DuBois, M. Inorg. Chem. 1992, 31, 1728. (0 Mashima, K.; Mikami, A.; Nakamura, A. Chem. Lett. 1992,1473. (g) Brunner, H.; Janietz, N.; Wachter, J.;Nuber, B.; Ziegler, M. L. J. Organomet. Chem. 1988,356, 85. (h) Koch, S.A.; Millar, M. J. Am. Chem. SOC.1983,105,3362. (6)Some dinuclear ruthenium complex with Cp or Cp* ligands have recently been reported: (a) Kuhlman, R.; Streib, K.; Caulton, K. G. J. Am. Chem. SOC.1993,115,5813.(b) Lin, W.; Wilson, S. R.; Girolami, G. S. J.Chem. SOC.,Chem. Commun. 1993,284.( c ) Suzuki, H.; Takao, T.; Tanaka, M.; Moro-Oka, Y. J. Chem. Soc., Chem. Commun. 1992, 476. (d) Kolle, U.;Kang, B.-S.;Thewalt, U.Organometallics 1992,11, 2893. (e) Hubbard, J. L.; Morneau, A,; Burns, R. M.; Zolch, C. R. J. Am. Chem. SOC.1991,113,9176. (0 Knox, S. A. R. J. Orgunomet. Chem. 1990,400,255 and references cited therein. (9) Loren, S. D.; Campion, B. K.; Heyn, R. H.; Tilley, T. D.; Bursten, B. E.; Luth, K. W. J.Am. Chem. SOC.1989,111,4712.(h) Chang, J. C.; Bergman, R. G. J. Am. Chem. SOC.1987,109,4298. (7)Recently Kolle and co-workers iFdependently reported the synthesis and crystal structure of CpRuhz-SEt)zRuCp^ (Cp^ = v5-C5Me$t): Kolle, U.;Rietmann, C.; Englert, U. J . Organomet. Chem. 1992,423,C20. (8)(a) Matsuzaka, H.; Mizobe, Y.; Nishio, M.; Hidai, M. J. Chem. SOC.,Chem. Commun. 1991, 1101. (b) Nishio, M.; Matsuzaka, H.; Mizobe, Y.; Hidai, M. J. Chem. SOC.,Chem. Commun. 1993,375. (9)Hoernie, A.:Rietmann, C.: Endert. - U.: Wamer, T.: Kolle. U. Chem. Ber. 1393,126,2609. I

SiC=CC(C=CSiMe3)=CHSiMe3)lRuCp* (2),8awhereas reactions with H C W R (R = Tol, C=CH(CH2)3CH2) result in the formal insertion of three (for R = Toll or

two (for R = ~ = C H ( C H Z ) ~ Calkyne H ~ ) molecules into the Ru-S bond in 1 accompanied by ring closure, forming the dinuclear ruthenacyclopentenyl complexes Cp*Ruf&2-SPri)[q2:q3-p~-CH(R)C{C(R)=CHSPri}CHC(R)lRuCp* (3;R = Tol) and Cp*Ru@z-SPri)[q2:q3-

pz-C{C(R)=CHSPri)CHC{(CH2)3CH2}CHlRuCp*(4; R = C=CH(CHZ)&HZ),~~J~ respectively. However, we could not elucidate the mechanisms of these reactions, since no intermediates were isolated or detected even from the reactions of 1 with a limited amount of these alkynes at low temperatures. Now we have found that the extension of the alkyne to HC=CC02Me in the reaction with 1 results in the isolation of a new type of dinuclear ruthenacyclopentenyl complex, Cp*Ru@2-SPri)[q2:q3-p2-C(C02Me)CHC(C02Me)CHSWIRuCp*(6a).Furthermore, the reaction of 1 with an equimolar amount of this alkyne afforded the dinuclear complex Cp*Ru@2-SPri)[q2:q2-p2-C(CO2Me)=CHSPrilRuCp* Gal,which has been confirmed to be the intermediate for the formation of 6a from 1. We wish t o report herein the details of 5 and a series of diruthenium complexes derived from Sa, including (10)Transformations of alkynes with a series of dinuclear Cp*Ruthiolate complexes have been investigated in detail in this laboratory. Interestingly, these reactions are surprisingly sensitive to the nature of the diruthenium site and the alkyne substituents. See: (a) Matsuzaka, H.; Hirayama, Y.; Nishio, M.; Mizobe, Y.; Hidai, M. Oganometallics 1993,12,36. (b) Matsuzaka, H.; Koizumi, H.; Takagi, Y.; Nishio, M.; Hidai, M. J. Am. Chem. SOC. 1993, 115, 10396. (c) Matsuzaka, H.; Takagi, Y.; Hidai, M. OrganometaZZics 1994,13,13.

Nishio et al.

4216 Organometallics, Vol. 13, No. 11, 1994

Scheme Za

6a: R' = C02Me (75 '10) (75 "10) 6b: R' = To1

1

5a: R = Me (44 YO) 5b: R = Et (39"10) 5c: R = B U ~ (27 010)

r.t.

7 (62 "/o) a

Reagents: (i) HC=CCOzR; (ii) HCsCR; (iii)HCeCSiMe3.

dinuclear ruthenacyclopentenyl, ruthenacyclopentadiene, and bridging alkyne complexes 6, 8, 10,and 7.

Results and Discussion Reactions of Cp*Ru@2-$Pr92RuCp*(1) with HCmCCOzR (R = Me, Et, But) To Form Dinuclear Complexes 5 with a Ruthenathiacyclobutene Core. A dark blue toluene solution of 1 immediately turned to dark brown upon addition of HCWCOzR (1equiv) a t room temperature. Subsequent workup resulted in the isolation of dinuclear complexes possessing a fourmembered RuC2S ring, Cp*Ru01z-SPri)[r2:r2-~z-C(C0zR)=CHSPri1RuCp* (5a,R = Me; 5b,R = Et; 5c, R = But) (Scheme 2) as green crystalline solids. The structure of 5c has been characterized by X-ray crystallography (Figure 1). The IH NMR spectrum of 5c is consistent with this structure, showing characteristic Cp* (6 1.95,1.79) and olefinic (64.60) proton resonances together with those due to But and two inequivalent SPri groups. The 13C{lH} NMR spectrum of 5c exhibits a resonance at 6 126.32 attributable to the olefinic carbon having a C02But substituent, as well as the other (11)(a) Seyferth, D.; Hoke, J. B.; Womack, G. B. Organometallics 1990, 9, 2662. (b) Seyferth, D.; Hoke, J. B.; Wheeler, D. R. J. Organomet. Chem. 1988,341,421.( c ) Seyferth, D.; Hoke, J. B.; Dewan, J. C. Organometallics 1987,6,895. (12)Davidson, J. L.; Harrison, W.; Sharp, D. W. A.; Sim, G. A. J. Organomet. Chem. 1972,46,C47. (13)Devillers, J.; Bonnet, J.J.;de Montauzon, D.; Galy, J.;Poilblanc, R. Inorg. Chem. 1980,19,154. (14)(a) Agh-Atabay, N.M.; Davidson, J. L. J. Chem. SOC.,Dalton Trans. 1992,3531. (b) Carlton, L.;Agh-Atabay, N. M.; Davidson, J. L. J. Organomet. Chem. 1991,413,205. (c) Carlton, L.;Bakar, W. A. W. A.; Davidson, J. L. J. Organomet. Chem. 1990,394,177.(d) Bakar, W.A. W. A.; Carlton, L.; Davidson, J. L.; ManojloviC-Muir, Lj.;Muir, K. W. J. Organomet. Chem. 1988,352,C54. (e) Petillon, F. Y.; Le Froch-Perennou, F.; Guerchais, J. E.; Sharp, D. W. A. J. Organomet. Chem. 1979,173,89. (0Guerchais, J. E.; Le Froch-Perennou, F.; Petillon, F. Y.; Keith, a. N.; ManojloviC-Muir, Lj.; Muir, K. W.; Sharp, D. W. A. J. Chem. SOC.,Chem. Commun. 1979,410. (g) Davidson; J. L.; Sharp, D. W. A. J. Chem. SOC.,Dalton Trans. 1975,2283.

02

cl

B32

Figure 1. Molecular structure of SC, showing the atomlabeling scheme. The thermal ellipsoids are drawn at the 50% probability level. olefinic, Cp*, SPr', and C02But resonances. The NMR spectral features of 5a and 5b are essentially similar to those of 5c (see Experimental Section). Although interactions of alkynes with transitionmetal-thiolate complexes have been reported by several g r o ~ p s , ~this ~ - lis, ~ to our knowledge, the first example of the formation of dinuclear complexes having a metallathiacyclobutene f r a m e ~ 0 r k . lAnalogous ~ insertion of CF~CECCF~ into the M-S bond was previously observed for the dimanganese complex (OC)4Mn@z-SCs(15)Complexes containing a bridging four-membered metallathiacyclic structure such as 5 are still rare. Diiron complexes having the related MCzS ring are known, which have been prepared by routes quite different from that for S."j

Organometallics, Vol.13,No.11, 1994 4217

Incorporation of Alkynes into an Ruz Center

Table 1. X-ray Cwstallographic Data for 5c, 6a, 7 , 9 , and 10bCICH2CH2CI 5c

formula mol wt space group cryst syst crystal color a, A b, 8, c,

A

a, deg

kk deg Y deg cell vol, A3 I

Z Dmeasd.‘ g cm-3 Dcdcd, g ~ 1 1 3 ~ ~

F(OOO), e p(Mo Ka), cm-l cryst dimens, mm diffractometer monochromator radiation (1,A) temp 2&,, deg scan method scan speed, deg min-’ rflns mead no. of unique rflns abs cor transmissn factors no. of observns no. of variables R R W

max resid density, e A-3

C33HdMzR~z 749.05 P1 triclinic green 11.2375(9) 17.876(4) 9.079(2) 94.70(3) 105.54(1) 92.01(1) 1748.1(6) 2 ndb 1.423 776 9.87 0.28 x 0.10 x 0.72

6a

7

(A) Crystal Data Cd-hO4SzR~z C35Hs8OzSiSzRu2 721.05 805.19 P1 P1 triclinic triclinic yellow-green dark red 10.999(3) 11.323(3) 19.155(4) 17.356(3) 9.139(2) 10.627(2) 102.22(1) 101.80(1) 107.96(2) 109.79(2) 78.28(2) 80.78(2) 1770.3(6) 1914.1(7) 2 2 1.48 ndb 1.484 1.397 816 836 9.83 9.36 0.35 x 0.15 x 0.68 0.20 x 0.15 x 0.20

+h,fk,fl 8017 +scan method 0.76-1.00

(B) Data Collection MAC MXC-18 Rigaku AFC7R graphite Mo K a (0.7107) room temp 50 50 0-28 16 +h,fk,fl +h,fk,fl 6317 6752 Gaussian integration @can method 0.94-1.00

5596 ( I > 3a(Z)) 352 0.051 0.058 0.75

(C) Solution and Refinement 2352 (I > 3a(n) 5448 (F,, > 3 d F d 380 204 0.079 0.045 0.051 0.057 0.99 0.67

Rigaku AFC7R

55

9

10bCICH2CH2CI

2895(2) 4 1.54 1.539 1376 10.54 0.38 x 0.20 x 0.16

C~~H~~~ZSRU~PF~C~Z 921.91 P1 triclinic dark red 12.537(2) 18.442(2) 9.2737(9) 95.105(9) 96.545(9) 94.8 1(1) 21 12.0(4) 2 1.56 1.560 1008 9.87 0.24 x 0.31 x 0.62

Rigaku AFCSS

Rigaku AFC7R

55

55

+h,+k,+l 3750 W-scan method 0.91-1.00

+h,fk,fl 9690 W-scan method 0.75-1.00

1956 ( I > 3u(Z)) 327 0.049 0.036 0.61

5103 ( I > 3u(Z)) 478 0.068 0.088 0.93

c30b+o&UZ

670.82 m2121 orthorhombic orange 16.412(5) 16.650(6) 10.594(3)

*

Flotation. nd = not determined.

F&Mn(C0)4, but this afforded the monomeric metallathiacyclobutene complex(OC)4Mn[C(CF3)=C(CF3)SCs-

Fs].14g X-ray Crystal Structure of 5c. The molecular structure of 5c is shown in Figure 1, and relevant crystallographic parameters are given in Tables 1-3. Figure 1 clearly indicates the dinuclear metallacyclic structure of 5c formed by the insertion of HCzCC02But into one of the Ru-S bonds in 1 accompanied by ring closure. The Ru-Ru single bond (2.747(1) A) is bridged by both one SPr’ group and the vinyl ligand, the latter being a-bonded t o Ru(1) (Ru(l)-C(l) = 2.149(8)A) and n-bonded to Ru(2) (Ru(2)-C(l) = 2.033(8) A, Ru(2)-C(2) = 2.143(8)A). The sulfur atom in the SPr’ group attached to the B-carbon of the vinyl ligand coordinates to Ru(1) (Ru(l)-S(l) = 2.429(2)A), forming the four-membered metallacycle. The SPr’ and C02But substituents on the vinyl ligand, having a relatively long C=C distance (C(l)-C(2) = 1.45(1) A), adopt a “bent back” conformation with a dihedral angle of 124.2(8)’ between the S(lFC(2)-C(l) and C(2FC(l)-C(3) planes. These structural features are in good accordance with (16)(a) Seyferth, D.; Anderson, L. L.; Davis, W. B.; Cowie, M. Organometallics 1992,11,3736.(b)Rumin, R.; Petillon, F.; ManojloviCMuir, Lj.; Muir, K. W. Organometallics 1990,9, 944. (c) F a d e r , Th.; Huttner, G. J. Organomet. Chem. 1990,381, 391. (d) Schrauzer, G. N.; Rabinowitz, H. N.; Frank, J. A. K.; Paul, I. C. J.Am. Chem. Soc. 1970,92,212.

those observed for the related dinuclear complexes having a four-membered MC2P ring.17 Reactions of Sa with HCzCR ( R = CONe, Tol) To Form Dinuclear Ruthenacyclopentenyl Complexes 6. In contrast to the formation of Sa from the reaction of 1 with 1 equiv of HCICCOZMe, treatment of 1 with HC=CC02Me (5 equiv) at room temperature afforded the diruthenium complex Cp*Ru@2-SPri)[v2: ~3-p2-C(C02Me)CHC(CO~Me)CHSPrilRuCp* (6a),containing a new type of ruthenacyclopentenyl core derived from the coupling of two alkyne molecules and concurrent ring closure. Complex 6a has also been obtained in moderate yield upon treatment of the isolated Sa with HCWC02Me (2.6 equiv) a t 50 “C, demonstrating that 5a represents the intermediate for the formation of the dinuclear ruthenacyclopentenyl complex 6a from 1 (Scheme 2). An X-ray analysis has been carried out to clarifjr the detailed structure of 6a, the result of which is depicted in Figure 2. The IR spectrum shows two Y (C=O) bands at 1686 and 1715 cm-l, indicating the presence of two COzMe groups, while the lH NMR spectrum exhibits two doublets at 6 2.99 and 5.51 ~ Hz, assignable to the mutually coupled with 4 J= 1.2 two methine protons attached t o C(7) and C(11) in the ruthenacyclopentenyl moiety. Other spectroscopic data for 6a are also consistent with this structure. It has (17)(a) Martin, A.; Mays, M. J.;Raithby, P. R.; Solan, G. A. J. Chem. SOC.,Dalton Trans. 1993,1431. (b) Conole, G.; Hill, IC A.; McPartlin, M.; Mays, M. J.; Moms, M. J. J. Chem. SOC.,Chem. Commun. 1989, 688.

4218 Organometallics, Vol. 13, No. 11, 1994

Nishio et al.

Table 2. Atomic Coordinates for Sc" Ru(1)

X

Y

Z

0.33763(7) 0.12097i6j 0.4112(2) 0.2431(2) 0.1612(6) 0.2313(6) 0.2340(7) 0.2599(7) 0.2038(8) 0.219(1) 0.305(1) 0.262(1) 0.084( 1) 0.5 159(8) 0.6484(9) 0.4889(10) 0.3413(9) 0.361(1) 0.276(1) 0.337(1) 0.2985(9) 0.400(1) 0.498(1) 0.462(1) 0.266( 1) 0.1782(10) 0.411(1) 0.632(1) 0.552(1) -0.0496(8) -0.0392(7) -0.0470(8) -0.06 18(8) -0.0619(8) -0.055(1) -0.0383( 10) -0.0554( 10) -0.092( 1) -0.080( 1)

-0.22395(5) -0.20608(5 j -0.2405( 1) -0.1 112(1) -0.4103(4) -0.4062(4) -0.2932(5) -0.2499(5) -0.3748(5) -0.4903(6) -0.5264(6) -0.4972(7) -0.5199(6) -0.2792(5) -0.242 l(7) -0.3013(7) -0.0413(5) 0.0280(6) -0.0246(7) -0.1994(7) -0.2777(7) -0.3 157(7) -0.261 l(9) -0.1865(8) -0.1397(8) -0.3158(7) -0.3984(7) -0.281(1) -0.1159(8) -0.1345(7) -0.1765(6) -0.2571(6) -0.2653(6) -0.191 8(9) -0.0504(6) -0.1426(7) -0.3 194(7) -0.3354(7) -0.1680(9)

0.17020(9) 0.251n ( 9 j 0.4484(3) 0.2019(3) 0.1297(8) 0.3847(8) 0.281(1) 0.4285(10) 0.252(1) 0.390(2) 0.300(2) 0.561(2) 0.318(2) 0.528( 1) 0.563(1) 0.674(1) 0.357(1) 0.276(2) 0.483( 1) -0.063 1) -0.069( 1) 0.022(1) 0.084(1) 0.032(1) -0.158( 1) -0.169(1) 0.032(2) 0.713(2) 0.062(2) 0.206(1) 0.342(1) 0.286(1) 0.127(1) 0.075( 1) 0.202(2) 0.501(1) 0.388(2) 0.015(2) -0.090( 1)

Be,,

A2

2.38(2) 2.26i2j 2.55(5) 2.94(6) 4.5(2) 3.9(2) 2.2(2) 2.2(2) 2.8(2) 5.3(4) 6.9(4) 7.3(4) 5.9(4) 3.1(2) 5.3(3) 5.3(3) 3.8(3) 7.4(4) 6.5(4) 4.4(3) 3.9(3) 4.2(3) 5.9(4) 5.2(4) 7.4(4) 5.9(3) 6.9(4) 10.3(5) 9.6(5) 4.3(3) 3.7(3) 3.6(3) 4.0(3) 5.2(3) 7.0(4) 6.0(3) 6.4(4) 7.3(4) 8.4(5)

Numbers in parentheses are estimated standard deviations.

Table 3. Selected Bond Distances and Angles for SP Ru(l)-Ru(2) Ru(1)--S(2) Ru(1)-C(14) Ru(l)-C(16) Ru(1)-C(18) Ru(2)-C( 1) Ru(2)-C(24) Ru(2)-C(26) Ru(2)-C(28) S(1)-C(8) C(l)-C(2) Ru(2)-Ru( 1)-S(2) Ru( l)-Ru(2)-S(2) Ru( 1)-S( 1)-C(2) Ru(1)-C( 1)-Ru(2) Ru( 1)-C( 1)-C(3) Ru(2)-C( 1)-C(3) Ru(2)-C(2)-S( 1) S( l)-C(2)-C( 1) a

Distances (A) 2.747(1) Ru( 1)-S( 1) 2.343(3) Ru(1)-C(l) 2.212(10) Ru(l)-C(15) 2.28(1) Ru(1)-C(17) 2.23(1) Ru(2)--S(2) 2.033(8) Ru(2)-C(2) 2.306(9) Ru(2)-C(25) 2.178(9) Ru(2)-C(27) 2.277(10) S(l)-C(2) 1.871(9) S(2)-C( 11) 1.45(1)

2.429(2) 2.149(8) 2.227(10) 2.25(1) 2.291(3) 2.143(8) 2.234(9) 2.240(9) 1.816(8) 1.882(9)

Angles (deg) 52.79(6) S( 1)-Ru(l )-C( 1) 67.7(2) 54.53i7j ~ i l ) - ~ ~ i i ) - ~ i i ) 40.43j 80.4(3) Ru(l)-S(2)-Ru(2) 72.68(8) 82.0(3) Ru(l)-C(l)-C(2) 99.4(6) 128.6(6) Ru(2)-C(l)-C(2) 73.8(5) 130.1(6) C(2)-C(l)-C(3) 125.3(8) 111.2(4) Ru(2)-C(2)-C(l) 65.7(5) 102.8(6)

Numbers in parentheses are estimated standard deviations.

also been found that HCWTol reacts with Sa analogously to HC=CC02Me, affording the corresponding dinuclear ruthenacyclopentenyl complex Cp*Ru@zSPri)[q2:~3-p2-C(To1)CHC(C02Me)CHSPrilRuCp* (6b), whose spectral data are diagnostic of the structure shown in Scheme 2. X-ray Crystal Structure of 6a. The molecular structure of 6a is shown in Figure 2, and relevant

)c35

)