17 Stereochemistry of One-Carbon Transfer Reactions
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017
HEINZ G. FLOSS Purdue University, Department of Medicinal Chemistry and Pharmacognosy, School of Pharmacy and Pharmacal Sciences, West Lafayette, IN 47907
The steric course of a number of biological one-carbon transfer reactions has been studied by means of stereo specifically isotope-labeled substrates. These reactions in clude the transfer of the methylene group of serine to tetra hydrofolate catalyzed by serine transhydroxymethylase, the fur ther utilization of the methylene group of methylene-tetrahydro folate for the generation of the methyl group of thymidylic acid catalyzed by thymidylate synthetase, the transfer of the S-meth yl group of S-adenosylmethionine to various acceptors catalyzed by a number of different methyl transferases, and the transfer of a methyl group from dimethylnitrosamine to DNA or model nucleo philes, a process thought to initiate carcinogenic cell trans formation. As part of a broader interest in stereochemical aspects of biological processes, our laboratory has recently carried out a variety of studies on the stereochemistry of biological one -carbon transfer reactions. Since biologically important single carbon units, like methyl groups, are not per se chiral, this work has required the use of one-carbon centers made chiral by virtue of isotopic substitution; for example, methyl groups which are chiral by virtue of the presence of normal hydrogen, deuterium and tritium. The synthesis of such species is not particularly difficult; it can be accomplished essentially by an extension of methods used widely to generate stereospecifically labeled prochiral centers. However, the configurational analy sis, i.e., the determination whether an unknown sample represents a methyl group of R- or S- configuration presented a conceptually new problem. This was solved by the pioneering work carried out in the laboratories of Cornforth (1) and Arigoni (2). These au thors developed a method which involves conversion of the methyl group in the form of acetic acid into acetyl-CoA followed by con densation with glyoxylate, catalyzed by malate synthase, to give malate, and equilibration with fumarase. Based on an isotope ef fect in the malate synthase reaction, the percentage tritium re tention in the fumarase reaction, called the F value, indicates 0097-6156/82/0185-0229$05.00/0 © 1982 American Chemical Society
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017
230
ASYMMETRIC
REACTIONS A N D
PROCESSES IN
CHEMISTRY
t h e c o n f i g u r a t i o n a n d d e g r e e o f p u r i t y o f t h e a c e t a t e methyl g r o u p . An F v a l u e o f 79 c o r r e s p o n d s t o an o p t i c a l l y pure R_methy l g r o u p , a n F v a l u e o f 21 i s shown b y a c h i r a l l y pure methyl g r o u p ( 3 ) . T h i s a n a l y t i c a l m e t h o d o l o g y was e m p l o y e d i n most o f the s t u d i e s t o be r e p o r t e d here. Our f i r s t s t u d y o f a n e n z y m a t i c o n e - c a r b o n t r a n s f e r r e a c t i o n a c t u a l l y i n v o l v e d n o t t h e t r a n s f e r o f a methyl g r o u p b u t r a t h e r o f a m e t h y l e n e g r o u p a n d was c a r r i e d o u t i n c o l l a b o r a t i o n w i t h t h e l a b o r a t o r y o f B e n k o v i c ( 4 ) . T h e p y r i d o x a l p h o s p h a t e enzyme serine transhydroxymethylase catalyzes the conversion o f serine and t e t r a h y d r o f o l a t e i n t o g l y c i n e and m e t h y l e n e - t e t r a h y d r o f o l a t e as shown i n Scheme I . M e c h a n i s t i c c o n s i d e r a t i o n s s u g g e s t e d t h a t f r e e o r enzyme-bound f o r m a l d e h y d e must b e a r e a c t i o n i n t e r m e d i a t e . T o p r o b e t h i s q u e s t i o n , we c a r r i e d o u t t h e r e a c t i o n w i t h s e r i n e s t e r e o s p e c i f i c a l l y t r i t i a t e d i n t h e 3 p o s i t i o n and t r a p p e d t h e m e t h y l e n e - t e t r a h y d r o f o l a t e g e n e r a t e d i m m e d i a t e l y by f u r t h e r dehydrogenation t o m e t h e n y l - t e t r a h y d r o f o l a t e c a t a l y z e d by methylene t e t r a h y d r o f o l a t e dehydrogenase. The s t e r e o s p e c i f i c removal o f one h y d r o g e n f r o m t h e m e t h y l e n e g r o u p b y t h i s enzyme simultaneously served t o determine the t r i t i u m d i s t r i b u t i o n between t h e two m e t h y l e n e h y d r o g e n s o f m e t h y l e n e - t e t r a h y d r o f o l a t e . S t a r t i n g f r o m s e r i n e c a r r y i n g 100% o f i t s t r i t i u m i n o n e d i a s t e r e o t o p i c h y d r o g e n we o b t a i n e d , u n d e r s i n g l e t u r n o v e r c o n d i t i o n s , m e t h y l e n e - t e t r a h y d r o f o l a t e c o n t a i n i n g 76% o f i t s t r i t i u m i n one m e t h y l e n e h y d r o g e n a n d 2 4 % i n t h e o t h e r . I f t h e l a b e l i n s e r i n e was i n t h e o t h e r d i a s t e r e o t o p i c h y d r o g e n , t h e m i r r o r image t r i t i u m d i s t r i b u t i o n i n m e t h y l e n e - t e t r a h y d r o f o l a t e was g e n e r a t e d . I f t h e r e a c t i o n was a l l o w e d t o go b a c k and f o r t h s e v e r a l t i m e s , t h e m e t h y l e n e g r o u p was r a n d o m l y l a b e l e d . T h i s c h a r a c t e r i s t i c r e a c t i o n - d e p e n d e n t s c r a m b l i n g c a n be e x p l a i n e d i n e i t h e r o f two ways. F o r m a l d e h y d e may be a r e a c t i o n i n t e r m e d i a t e w h i c h r e m a i n s enzyme bound d u r i n g i t s t r a n s i e n t e x i s t e n c e e x c e p t f o r a few m o l e c u l e s w h i c h d i s s o c i a t e f r o m t h e enzyme a n d r e b i n d b e f o r e r e a c t i n g w i t h t e t r a h y d r o f o l a t e . A l t e r n a t i v e l y , t h e enzyme may b i n d s e r i n e i n two c o n f o r m a t i o n s a r o u n d t h e a,3 bond w i t h each c o n f o r m a t i o n r e a c t i n g s t e r e o s p e c i f i c a l l y a s i l l u s t r a t e d i n Scheme I I . I t i s n o t p o s s i b l e a t t h e moment t o d i s t i n g u i s h between t h e s e two a l t e r n a t i v e s , a l t h o u g h c i r c u m s t a n c i a l e v i d e n c e f a v o r s the second p o s s i b i l i t y . The a b s o l u t e s t e r i c course o f the r e a c t i o n was n o t a p p a r e n t a t t h e t i m e b u t c a n now b e w r i t t e n a s shown i n Scheme I I I b a s e d on t h e r e c e n t d e t e r m i n a t i o n o f t h e a b s o l u t e c o n f i g u r a t i o n o f t e t r a h y d r o f o l a t e and a d d i t i o n a l s t u d i e s in the l a b o r a t o r y o f Benkovic. Scheme I I I shows t h e e x p e r i m e n t a l a r r a n g e m e n t t o s t u d y t h e s e c o n d o n e - c a r b o n t r a n s f e r r e a c t i o n we i n v e s t i g a t e d , t h e f o r m a t i o n o f t h y m i d y l i c a c i d from u r i d y l i c a c i d c a t a l y z e d by thymidyl a t e s y n t h e t a s e . I n t h i s r e a c t i o n , t h e methyl g r o u p o f t h y m i d y l a t e i s d e r i v e d f r o m t h e c a r b o n and t h e two h y d r o g e n s o f t h e m e t h y l e n e b r i d g e p l u s H-6 o f m e t h y l e n e - t e t r a h y d r o f o l a t e . T o s t u d y t h e s t e r e o c h e m i s t r y o f t h i s r e a c t i o n , we ( 5 ) s y n t h e s i z e d s e r i n e s t e r e o s p e c i f i c a l l y l a b e l e d w i t h t r i t i u m and d e u t e r i u m a t
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017
17.
FLOSS
Scheme I.
One-Carbon
Serine
Transfer
231
Reactions
transhydroxymethylase mechanism stereochemical analysis.
and experimental
setup
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
for
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017
232
A S Y M M E T R I C REACTIONS A N D PROCESSES IN CHEMISTRY
S
\ / E
=
N
\
/ -
c
(?)
\
±
L-serine
/ E = N
\
^ S
H
L-serine
F ^ J ^ F ^ Ï fllllllllllllllllllllir
ΤΤΤΤΤΤΤΤΤΤΤΠΤΤΤΤΤΤΤΤΓ
H - folate
^
4
Η S
^ C - H - folate 4
Η R
^C-H -folate 4
5,10-methylenetetra- 5,10-methylenetetrahydrofolate hydrofolate Scheme II.
Stereochemical
mechanism of serine
transhydroxymethylase.
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017
FLOSS
Scheme
One-Carbon
111. Stereochemistry
Transfer
of
Reactions
serine transhydroxymethylase synthetase.
233
and
thymidylate
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017
234
ASYMMETRIC
REACTIONS
A N D PROCESSES IN
CHEMISTRY
C-3 a n d c o n v e r t e d i t i n a c o u p l e d r e a c t i o n s e q u e n c e i n t o t h y m i d y l i c a c i d w h i c h was t h e n d e g r a d e d t o r e c o v e r t h e m e t h y l g r o u p a s a c e t i c a c i d . C h i r a l i t y a n a l y s i s o f t h e a c e t i c a c i d showed t h a t i t was i n d e e d c h i r a l a n d had t h e c o n f i g u r a t i o n shown i n Scheme I I I . G e n e r a t i o n o f t h e m e t h y l g r o u p o f t h y m i d y l a t e f r o m methyl e n e - t e t r a h y d r o f o l a t e i n v o l v e s f o u r s e q u e n t i a l bond b r e a k i n g and forming steps a t the s t e r e o s p e c i f i c a l l y l a b e l e d one-carbon u n i t ; t h e r e s u l t s show t h a t e a c h o f t h e s e s t e p s o c c u r s i n a h i g h l y s t e r e o s p e c i f i c manner. However, b e c a u s e o f t h e m u l t i t u d e o f s t e p s i n v o l v e d , t h e r e s u l t does n o t y e t a l l o w us t o d e s c r i b e t h e s t e r i c course o f each i n d i v i d u a l s t e p . The mode o f f o r m a t i o n o f a m e t h y l g r o u p s e e n i n t h y m i d y l a t e i s e x c e p t i o n a l ; most m e t h y l g r o u p s i n b i o l o g i c a l m o l e c u l e s a r i s e f r o m t h e S-methyl g r o u p o f m e t h i o n i n e . O u r n e x t g o a l was t o d e termine the s t e r i c c o u r s e o f the t r a n s f e r o f a methyl group from m e t h i o n i n e o r S - a d e n o s y l m e t h i o n i n e (AdoMet) t o v a r i o u s C-, N-, o r 0-atoms i n b i o l o g i c a l m o l e c u l e s c a t a l y z e d by m e t h y l t r a n s f e r a s e enzymes. P u r s u i t o f t h i s g o a l i n v o l v e d t h e f o l l o w i n g t a s k s : 1) S y n t h e s i s o f m e t h i o n i n e and AdoMet c a r r y i n g a c h i r a l m e t h y l g r o u p o f known c o n f i g u r a t i o n . 2) E n z y m a t i c t r a n s f e r o f t h e m e t h y l g r o u p t o t h e s u b s t r a t e . 3) D e g r a d a t i o n o f t h e p r o d u c t t o c a r v e o u t t h e c h i r a l methy l g r o u p and c o n v e r t i t i n t o a compound s u i t a b l e f o r c o n f i g u r a t i o n a l a n a l y s i s , u s i n g o n l y s t e r e o s p e c i f i c r e a c t i o n s o f known steric course. 4) C o n f i g u r a t i o n a l a n a l y s i s o f the methyl group. The s y n t h e s i s o f m e t h i o n i n e and AdoMet c a r r y i n g a c h i r a l m e t h y l g r o u p s t a r t e d f r o m c h i r a l a c e t a t e , w h i c h had been p r e p a r e d as shown i n Scheme IV ( 6 ) . T h e c o n v e r s i o n i n t o m e t h i o n i n e (Scheme V) i n v o l v e d a S c h m i d t r e a c t i o n , known t o p r o c e e d w i t h r e t e n t i o n o f c o n f i g u r a t i o n , t o g i v e methylamine, which, i n the f o r m o f i t s d i t o s y l i m i d e , was t h e n u s e d t o a l k y l a t e t h e S - a n i o n o f h o m o c y s t e i n e ( 6 ) . T h e l a t t e r r e a c t i o n was e x p e c t e d t o p r o c e e d w i t h i n v e r s i o n o f c o n f i g u r a t i o n o f the methyl group; the o n l y p l a u s i b l e a l t e r n a t i v e , r a c e m i z a t i o n due t o a n S*.l mechanism, i s r u l e d o u t b y t h e s u b s e q u e n t f i n d i n g t h a t t h e m e t h y l g r o u p was i n deed s t i l l c h i r a l . E n z y m a t i c a c t i v a t i o n o f t h e two samples o f m e t h i o n i n e ( 7 ) t h e n gave AdoMet. The f i r s t t r a n s m e t h y l a t i o n s t u d i e d was t h a t c a t a l y z e d b y c a t e c h o l - 0 - m e t h y l t r a n s f e r a s e (COMT) u s i n g e i t h e r e p i n e p h r i n e ( l a ) or 3,4-dihydroxybenzoic a c i d ( l b ) as s u b s t r a t e . The products,~~ m e t a n e p h r i n e ( 2 a ) a n d 4 - h y d r o x y - 3 - m e t h o x y b e n z o i c a c i d (2fe)> were d e g r a d e d b y t h e ~ s t e r e o s p e c i f i c r e a c t i o n s e q u e n c e shown i n Scheme VI t o g i v e a c e t i c a c i d c a r r y i n g t h e c h i r a l m e t h y l g r o u p . I t w i l l be n o t e d t h a t t h e d e g r a d a t i o n s e q u e n c e i n v o l v e s o n e i n v e r s i o n o f the c o n f i g u r a t i o n o f the methyl group i n the c y a n i d e d i s p l a c e m e n t step ( 8 ) . C o n f i g u r a t i o n a l a n a l y s i s o f t h e v a r i o u s a c e t i c a c i d samples showed t h a t AdoMet s y n t h e s i z e d f r o m a c e t a t e o f F=28 gave 2a and 2b w h i c h , upon d e g r a d a t i o n , p r o d u c e d a c e t a t e o f F=68 and 5 7 , r e s p e c t i v e l y . I n t h e o t h e r e n a n t i o m e r i c s e r i e s , t h e v a l u e s were
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
•
Λ
xX
Scheme IV.
1
M
E
R
E
2
2
© h
COOH
acetate.
2
Τ
3 |
COOH H(D)
.„ (H)D3
D(H)
\ HQI γ_|ΟΗ OH
N
C*
sN
Cr0 pyruvate (H)D kinose,excess 'OH H ® dehydro- H(D) Ilactate I U \ # I U I C uciiyuiw-
Q
,
Jgenose,H 0(D20)
Γ\/Ι_Ι\ D(H,
O
U
; —• phosphofructokinase, D 0(H 0)
S
U
Synthesis of chiral
X
COOH
(OH V T O H HO\_/ (DH
2
CH 0 ®
COOH phosphogly- ® 0 aldolase, \P*^ cerate mutaseJ triose phosphate (H)D enolose isomerase, glyceraldehyde Η 3- phosphate 0® dehydrogenase, orsenate
( O H VT.OH ΗΟγ_γ OH
UA
2
CH 0H
®0
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017
A S Y M M E T R I C REACTIONS A N D PROCESSES IN CHEMISTRY
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017
236
D
H,J
*"C
N0N3
R
COONo
H S0 2
Hj •
4
d)-S-CH CH CHC00H, I NH 2
\
NaOH
NH,
y \
NH-Ts
2
H
2
N
2+ ATP, Mg;
Νο,ΗΜΡΑ INVERSION
H N. 9
H Scheme
V.
COOH
Synthesis of chiral
H
(S)-adenosylmethionine
COOH from
chiral
acetate.
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Ts
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017
17.
FLOSS
One-Carbon
Transfer
237
Reactions
°«Js "Γ
OH
S-Ad
OH
OH
COMT
H N2
H
COOH
I ^a:X=
-C0 H 2
Ce(NH ) (N0 )
= - CH O H - C H 2 N H C H 3
NaH /
(J
4
a
3
6
S-CI > 5 . OH
KCN/HMPA
1. HoOo/OH^ CN
Scheme VI.
2
H2O
— • 2. NaN0fc/H S0 2
4
Degradation of the products from the COMT chiral methyl group as acetic acid.
D///JS /^C0 H ?
reaction
to recover the
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
ASYMMETRIC
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017
238
REACTIONS
AND
PROCESSES IN
CHEMISTRY
F=68 f o r t h e s t a r t i n g a c e t a t e , a n d F=39 and 44 f o r t h e a c e t a t e s a m p l e s f r o m t h e d e g r a d a t i o n o f £ a and £ b , r e s p e c t i v e l y . T h u s , t h e r e i s a n odd number o f i n v e r s i o n s i n g o i n g f r o m t h e s t a r t i n g a c e t a t e (Scheme V , u p p e r l e f t ) t o t h e f i n a l p r o d u c t (Scheme V , l o w e r r i g h t ) . S i n c e b o t h t h e s y n t h e s i s and t h e d e g r a d a t i o n e a c h i n v o l v e one i n v e r s i o n , i t f o l l o w s t h a t the enzymatic t r a n s f e r o f t h e m e t h y l g r o u p c a t a l y z e d b y COMT must have o c c u r r e d w i t h i n v e r sion o f configuration (8). The same s t e r e o c h e m i c a l c o u r s e was a l s o o b s e r v e d f o r a n o t h e r methyl t r a n s f e r t o oxygen, the m e t h y l a t i o n o f the p o l y g a l a c t u r o n i c a c i d c a r b o x y l g r o u p s o f p e c t i n c a t a l y z e d b y a n enzyme p r e p a r a t i o n f r o m mung bean s h o o t s . The m e t h y l g r o u p i n t h i s c a s e was r e c o v e r e d by d i r e c t c y a n o l y s i s o f t h e p e c t i n t o g i v e a c e t o n i t r i l e ( w i t h i n v e r s i o n ) , w h i c h was t h e n c o n v e r t e d t o a c e t a t e f o r a n a l y s i s . A g a i n , t h e s t a r t i n g and t h e f i n a l a c e t a t e s a m p l e s had o p p o s i t e c o n f i g u r a t i o n s (F=28 + F=62; F=68 -> F=32) ( 9 ) . In a m i c r o b i a l s y s t e m , S t r e p t o m y c e s g r i s e u s , we s t u d i e d s i m u l t a n e o u s l y two m e t h y l t r a n s f e r s , o n e t o c a r b o n and one t o n i t r o g e n , which are i n v o l v e d i n the b i o s y n t h e s i s o f the a n t i b i o t i c i n d o l m y c i n ( 1 0 ) . I n t h i s c a s e , c h i r a l m e t h i o n i n e was added d i r e c t l y t o t h e c u l t u r e s and t h e r e s u l t i n g i n d o l m y c i n and i n d o l m y c e n i c a c i d were d e g r a d e d a s shown i n Scheme V I I . T h e r e s u l t s again i n d i c a t e d enzymatic t r a n s f e r o f the methyl group, both t o c a r b o n and t o n i t r o g e n , w i t h i n v e r s i o n o f c o n f i g u r a t i o n ( 6 ) . E a r l i e r work f r o m o u r l a b o r a t o r y had shown t h a t , i n t h e C-methyl a t i o n r e a c t i o n l e a d i n g t o i n d o l m y c i n , a h y d r o g e n a t C-3 o f i n d o l e - p v r u v a t e i s r e p l a c e d by the methyl group i n a r e t e n t i o n mode ( 1 1 ) . Thus t h e s t e r e o c h e m i s t r y o f i n d o l m y c i n b i o s y n t h e s i s i n S t r e p t o m y c e s g r i s e u s can be summarized a s shown i n Scheme V I I I . In c o n c l u s i o n , a l l e n z y m a t i c m e t h y l t r a n s f e r r e a c t i o n s s t u d i e d s o f a r proceed with net i n v e r s i o n o f c o n f i g u r a t i o n o f the m e t h y l g r o u p . A l l t h e s e m e t h y l t r a n s f e r a s e s t h e r e f o r e i n v o l v e an uneven number o f t r a n s f e r s o f t h e m e t h y l g r o u p , most l i k e l y a s i n g l e , d i r e c t t r a n s f e r f r o m t h e s u l f u r o f AdoMet t o t h e a c c e p t o r atom i n a n S 2 - t y p e r e a c t i o n . P i n g - p o n g mechanisms i n w h i c h a g r o u p i n t h e enzyme a c t i v e s i t e i s t r a n s i e n t l y m e t h y l a t e d can be e x c l u d e d . T h e two s u b s t r a t e s must be o r i e n t e d i n t h e enzyme a c t i v e s i t e such t h a t i n the t r a n s i t i o n s t a t e the s u l f u r , the m e t h y l c a r b o n and t h e a c c e p t o r atom f o r m a l i n e a r a r r a y . Methyl t r a n s f e r a s e s are not o n l y important i n v a r i o u s metab o l i c p r o c e s s e s , b u t a l s o i n t h e p r o c e s s i n g o f i n f o r m a t i o n a l macr o m o l e c u l e s ; f o r e x a m p l e , DNA b y r e s t r i c t i o n m e t h y l a s e s . Aberrat i o n s i n t h i s p r o c e s s i n g , a s o c c u r i n t h e m e t h y l a t i o n by c a r c i n o gens l i k e d i m e t h y l n i t r o s a m i n e , a r e p r o b a b l y i n v o l v e d i n t h e t r a n s f o r m a t i o n o f t h e c e l l i n t o a tumor c e l l . T h i s p r o c e s s i n v o l v e s m e t a b o l i c a c t i v a t i o n o f d i m e t h y l n i t r o s a m i n e , i n t h e manner shown i n Scheme IX, t o g e n e r a t e t h e u l t i m a t e c a r c i n o g e n , a methyldiazoniurn i o n which then t r a n s f e r s i t s methyl group t o v a r i o u s n u c l e o p h i l i c s i t e s on DNA. T h i s l a t t e r p r o c e s s i s p r e sumably n o t e n z y m e - c o n t r o l l e d and s h o u l d t h e r e f o r e f o l l o w t h e same r u l e s a s t h e same p r o c e s s i n a n a b i o l o g i c a l s y s t e m . K e e p i n g N
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017
17.
FLOSS
One-Carbon
Transfer
D NaOH
239
Reactions
D l)NoOH/TsCl%
H
""'c
w
*
\ 1
2)NaH/TsCI V MU.
c
\
I
/
ν
d
T
s
N
Ts
KCN/HMPA
Η
"r
\OOH
D
% D Scheme
VIL
ι
C=N
>
NaN0 ,
/NaOH
2
COOH
Z
*
Degradation of indolmycin and indolmycenic chiral methyl groups as acetic acid.
D
CONH
5
acid to recover
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
the
ASYMMETRIC
REACTIONS
AND
PROCESSES IN
CHEMISTRY
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017
240
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017
17.
FLOSS
One-Carbon
Transfer
241
Reactions
a l l o t h e r f a c t o r s c o n s t a n t , t h e s t e r e o c h e m i s t r y o f t h i s methyl t r a n s f e r should be s e n s i t i v e t o the p o l a r i t y o f the r e a c t i o n environment. T h e r e f o r e , a c o m p a r i s o n o f t h e i n v i t r o and t h e i n v i v o process s h o u l d enable us t o probe whether the r e a c t i o n i n the i n t a c t c e l l takes p l a c e i n a hydrophobic environment, l i k e t h e n u c l e a r membrane, o r i n an aqueous s u r r o u n d i n g . T o l a y t h e groundwork f o r e x p e r i m e n t s p r o b i n g t h i s q u e s t i o n , we s y n t h e s i z e d d i m e t h y l n i t r o s a m i n e c a r r y i n g a c h i r a l methyl group by the r e a c t i o n sequence shown i n Scheme X. Methods f o r t h e a l k y l a t i o n o f DNA and f o r t h e r e c o v e r y o f t h e methyl g r o u p f r o m t h e most p r o m i n e n t m o d i f i e d b a s e , 7 - m e t h y l g u a n i n e , have been worked o u t , b u t r e s u l t s f r o m t h e s t e r e o c h e m i c a l a n a l y s i s o f t h e s e samples a r e n o t y e t a v a i l a b l e . We h a v e , however, c o m p l e t e d t h e s t e r e o c h e m i c a l a n a l y s i s o f t h e a l k y l a t i o n o f a model n u c l e o p h i l e , 3,4d i c h l o r o t h i o p h e n o l , by d i m e t h y l n i t r o s a m i n e a c t i v a t e d w i t h r a t l i v e r m i c r o s o m e s ( 1 2 ) . The r e a c t i o n sequence i s shown i n Scheme X I . Based on t h e s t r u c t u r e o f t h e a l k y l group i n t h i s r e a c t i o n and t h e n a t u r e o f t h e n u c l e o p h i l e , we e x p e c t e d t o s s e t r a n s f e r o f t h e methyl g r o u p w i t h a h i g h d e g r e e o f i n v e r s i o n o f c o n f i g u r a t i o n . However, t h e f i r s t s e t o f a n a l y s e s o f t h e a c e t a t e samples f r o m t h e d e g r a d a t i o n o f t h e a l k y l a t e d m a t e r i a l shown i n T a b l e I s u g g e s t s t r a n s f e r o f t h e methyl g r o u p w i t h c o m p l e t e r e t e n t i o n o f c o n f i g u r a t i o n . T h i s s u r p r i s i n g r e s u l t may i n d i c a t e t h a t even i n t h i s i n v i t r o s y s t e m , t h e r e a c t i o n t a k e s p l a c e e n t i r e l y /in t h e l i p o p h i l i c m i c r o s o m e s and t h e r e f o r e p r o c e e d s e x c l u s i v e l y b y an i o n p a i r mechanism w i t h i n t e r n a l r e t u r n . A l t e r n a t i v e l y , t h e mechanism o f d i m e t h y l n i t r o s a m i n e a c t i v a t i o n and a l k y l t r a n s f e r may be more complex than i s c u r r e n t l y e n v i s i o n e d and may, f o r example, i n v o l v e a double displacement p r o c e s s . F u r t h e r e x p e r i ments a r e under way t o v e r i f y t h e i n i t i a l r e s u l t and t o s t u d y t h i s problem f u r t h e r . Table I.
S t e r e o c h e m i c a l a n a l y s i s o f t h e a l k y l a t i o n o f 3,4dichlorothiophenol by m e t a b o l i c a l l y a c t i v a t e d dimethylnitrosamine. F-VALUE
STARTING ACETATE
28
CONFIGURATION S
F-VALUE 68
CONFIGURATION R
DIMETHYLNITROSAMINE
S
R
3,4-DICHLOROTHIOPHENOL METHYL ETHER
S
R
ACETATE FROM DEGRADATION
R
33
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
A S Y M M E T R I C REACTIONS A N D PROCESSES IN CHEMISTRY
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017
242
NaN /H S0 3
CHDT-COONa
2
4
• CHDT-NH
TsCI ^ CH I ^ » CHDT-NH-Ts 2.5 Ν Ν 2.5NNaOH Steam 3
2
g
ά
CHDT \ . N
T
s
CHDT V
3 I % H Ç ^
/
CHDT \
/
CH3
HOAc
CH3
Scheme X.
Synthesis
CN® HMPA Q Scheme XL
D
»
H
Alkylation
of dimethylnitrosamine
\
7
Ι)Η 0 /0Η 2
C
-
C
N
carrying
Θ
2
of 3 4-dichlorothiophenol f
D
2
2)HN0
CH3
»
H
a chiral
M
.
M
-
0
/
methyl
group.
\
7 /
C
"
C
by chiral
0
0
H
dimethylnitrosamine.
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
17.
FLOSS
One-Carbon
Transfer
Reactions
243
Acknowledgements T h i s work was s u p p o r t e d b y t h e N a t i o n a l I n s t i t u t e s o f H e a l t h I wish t o acknowledge w i t h g r a t i t u d e the e n t h u s i a s t i c c o n t r i b u t i o n s o f numerous c o w o r k e r s and c o l l a b o r a t o r s whose names a p p e a r on t h e p u b l i c a t i o n s l i s t e d .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017
Literature Cited 1 Cornforth, J.W.; Redmond, J.W.; Eggerer, H.; Buckel, W.; Gutschow, C. Eur. J. Biochem., 1970, 14, 1. 2 Lüthy, J.; Rétey, J.; Arigoni, D. Nature (Lond.), 1969, 221, 1213. 3 For a review see: Floss, H.G.,; Tsai, M.D. Adv. Enzymol., 1979, 50, 243. 4 Tatum, C.M.; Benkovic, P.Α.; Benkovic, S.J.; Potts, R.; Schleicher, E.; Floss, H.G. Biochemistry, 1977, 16, 1093. 5 Tatum, C.; Vederas, J.; Schleicher, E.; Benkovic, S.J.; Floss, H.G. J. Chem. Soc. Chem. Commun., 1977, 218. 6 Woodard, R.W.; Mascaro, L . ; Hörhammer, R.; Ei,senstein, S.; Floss, H.G. J. Amer. Chem. Soc., 1980, 102, 6314. 7 Cantoni, G.L. Biochem. Prep., 1957, 5, 58. 8 Woodard, R.W.; Tsai, M.D.; Floss, H.G.; Crooks, P.Α.; Coward, J.K. J. Biol. Chem., 1980, 255, 9124. 9 Woodard, R.W.; Weaver, J.; Floss, H.G. Arch. Biochem. Biophys., 1981, 207, 51. 10 Hornemann, U.; Hurley, L.H.; Speedie, M.K.; Floss, H.G. J. Amer. Chem. Soc., 1971, 93, 3029. 11 Zee, L . ; Hornemann, U.; Floss, H.G. Biochem. Physiol. Pflanzen (Jena), 1975, 168, 19. 12 Shen, S.J.; Tsai, M.D.; Floss, H.G., unpublished results. RECEIVEDDecember 14, 1981.
Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.