Stereochemistry of One-Carbon Transfer Reactions - ACS Publications

The steric course of a number of biological one-carbon transfer reactions has been studied by means of stereo specifically isotope-labeled substrates...
0 downloads 0 Views 830KB Size
17 Stereochemistry of One-Carbon Transfer Reactions

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017

HEINZ G. FLOSS Purdue University, Department of Medicinal Chemistry and Pharmacognosy, School of Pharmacy and Pharmacal Sciences, West Lafayette, IN 47907

The steric course of a number of biological one-carbon transfer reactions has been studied by means of stereo­ specifically isotope-labeled substrates. These reactions in­ clude the transfer of the methylene group of serine to tetra­ hydrofolate catalyzed by serine transhydroxymethylase, the fur­ ther utilization of the methylene group of methylene-tetrahydro­ folate for the generation of the methyl group of thymidylic acid catalyzed by thymidylate synthetase, the transfer of the S-meth­ yl group of S-adenosylmethionine to various acceptors catalyzed by a number of different methyl transferases, and the transfer of a methyl group from dimethylnitrosamine to DNA or model nucleo­ philes, a process thought to initiate carcinogenic cell trans­ formation. As part of a broader interest in stereochemical aspects of biological processes, our laboratory has recently carried out a variety of studies on the stereochemistry of biological one­ -carbon transfer reactions. Since biologically important single carbon units, like methyl groups, are not per se chiral, this work has required the use of one-carbon centers made chiral by virtue of isotopic substitution; for example, methyl groups which are chiral by virtue of the presence of normal hydrogen, deuterium and tritium. The synthesis of such species is not particularly difficult; it can be accomplished essentially by an extension of methods used widely to generate stereospecifically labeled prochiral centers. However, the configurational analy­ sis, i.e., the determination whether an unknown sample represents a methyl group of R- or S- configuration presented a conceptually new problem. This was solved by the pioneering work carried out in the laboratories of Cornforth (1) and Arigoni (2). These au­ thors developed a method which involves conversion of the methyl group in the form of acetic acid into acetyl-CoA followed by con­ densation with glyoxylate, catalyzed by malate synthase, to give malate, and equilibration with fumarase. Based on an isotope ef­ fect in the malate synthase reaction, the percentage tritium re­ tention in the fumarase reaction, called the F value, indicates 0097-6156/82/0185-0229$05.00/0 © 1982 American Chemical Society

Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017

230

ASYMMETRIC

REACTIONS A N D

PROCESSES IN

CHEMISTRY

t h e c o n f i g u r a t i o n a n d d e g r e e o f p u r i t y o f t h e a c e t a t e methyl g r o u p . An F v a l u e o f 79 c o r r e s p o n d s t o an o p t i c a l l y pure R_methy l g r o u p , a n F v a l u e o f 21 i s shown b y a c h i r a l l y pure methyl g r o u p ( 3 ) . T h i s a n a l y t i c a l m e t h o d o l o g y was e m p l o y e d i n most o f the s t u d i e s t o be r e p o r t e d here. Our f i r s t s t u d y o f a n e n z y m a t i c o n e - c a r b o n t r a n s f e r r e a c t i o n a c t u a l l y i n v o l v e d n o t t h e t r a n s f e r o f a methyl g r o u p b u t r a t h e r o f a m e t h y l e n e g r o u p a n d was c a r r i e d o u t i n c o l l a b o r a t i o n w i t h t h e l a b o r a t o r y o f B e n k o v i c ( 4 ) . T h e p y r i d o x a l p h o s p h a t e enzyme serine transhydroxymethylase catalyzes the conversion o f serine and t e t r a h y d r o f o l a t e i n t o g l y c i n e and m e t h y l e n e - t e t r a h y d r o f o l a t e as shown i n Scheme I . M e c h a n i s t i c c o n s i d e r a t i o n s s u g g e s t e d t h a t f r e e o r enzyme-bound f o r m a l d e h y d e must b e a r e a c t i o n i n t e r m e d i a t e . T o p r o b e t h i s q u e s t i o n , we c a r r i e d o u t t h e r e a c t i o n w i t h s e r i n e s t e r e o s p e c i f i c a l l y t r i t i a t e d i n t h e 3 p o s i t i o n and t r a p p e d t h e m e t h y l e n e - t e t r a h y d r o f o l a t e g e n e r a t e d i m m e d i a t e l y by f u r t h e r dehydrogenation t o m e t h e n y l - t e t r a h y d r o f o l a t e c a t a l y z e d by methylene t e t r a h y d r o f o l a t e dehydrogenase. The s t e r e o s p e c i f i c removal o f one h y d r o g e n f r o m t h e m e t h y l e n e g r o u p b y t h i s enzyme simultaneously served t o determine the t r i t i u m d i s t r i b u t i o n between t h e two m e t h y l e n e h y d r o g e n s o f m e t h y l e n e - t e t r a h y d r o f o l a t e . S t a r t i n g f r o m s e r i n e c a r r y i n g 100% o f i t s t r i t i u m i n o n e d i a s t e r e o t o p i c h y d r o g e n we o b t a i n e d , u n d e r s i n g l e t u r n o v e r c o n d i t i o n s , m e t h y l e n e - t e t r a h y d r o f o l a t e c o n t a i n i n g 76% o f i t s t r i t i u m i n one m e t h y l e n e h y d r o g e n a n d 2 4 % i n t h e o t h e r . I f t h e l a b e l i n s e r i n e was i n t h e o t h e r d i a s t e r e o t o p i c h y d r o g e n , t h e m i r r o r image t r i t i u m d i s t r i b u t i o n i n m e t h y l e n e - t e t r a h y d r o f o l a t e was g e n e r a t e d . I f t h e r e a c t i o n was a l l o w e d t o go b a c k and f o r t h s e v e r a l t i m e s , t h e m e t h y l e n e g r o u p was r a n d o m l y l a b e l e d . T h i s c h a r a c t e r i s t i c r e a c t i o n - d e p e n d e n t s c r a m b l i n g c a n be e x p l a i n e d i n e i t h e r o f two ways. F o r m a l d e h y d e may be a r e a c t i o n i n t e r m e d i a t e w h i c h r e m a i n s enzyme bound d u r i n g i t s t r a n s i e n t e x i s t e n c e e x c e p t f o r a few m o l e c u l e s w h i c h d i s s o c i a t e f r o m t h e enzyme a n d r e b i n d b e f o r e r e a c t i n g w i t h t e t r a h y d r o f o l a t e . A l t e r n a t i v e l y , t h e enzyme may b i n d s e r i n e i n two c o n f o r m a t i o n s a r o u n d t h e a,3 bond w i t h each c o n f o r m a t i o n r e a c t i n g s t e r e o s p e c i f i c a l l y a s i l l u s t r a t e d i n Scheme I I . I t i s n o t p o s s i b l e a t t h e moment t o d i s t i n g u i s h between t h e s e two a l t e r n a t i v e s , a l t h o u g h c i r c u m s t a n c i a l e v i d e n c e f a v o r s the second p o s s i b i l i t y . The a b s o l u t e s t e r i c course o f the r e a c t i o n was n o t a p p a r e n t a t t h e t i m e b u t c a n now b e w r i t t e n a s shown i n Scheme I I I b a s e d on t h e r e c e n t d e t e r m i n a t i o n o f t h e a b s o l u t e c o n f i g u r a t i o n o f t e t r a h y d r o f o l a t e and a d d i t i o n a l s t u d i e s in the l a b o r a t o r y o f Benkovic. Scheme I I I shows t h e e x p e r i m e n t a l a r r a n g e m e n t t o s t u d y t h e s e c o n d o n e - c a r b o n t r a n s f e r r e a c t i o n we i n v e s t i g a t e d , t h e f o r m a t i o n o f t h y m i d y l i c a c i d from u r i d y l i c a c i d c a t a l y z e d by thymidyl a t e s y n t h e t a s e . I n t h i s r e a c t i o n , t h e methyl g r o u p o f t h y m i d y l a t e i s d e r i v e d f r o m t h e c a r b o n and t h e two h y d r o g e n s o f t h e m e t h y l e n e b r i d g e p l u s H-6 o f m e t h y l e n e - t e t r a h y d r o f o l a t e . T o s t u d y t h e s t e r e o c h e m i s t r y o f t h i s r e a c t i o n , we ( 5 ) s y n t h e s i z e d s e r i n e s t e r e o s p e c i f i c a l l y l a b e l e d w i t h t r i t i u m and d e u t e r i u m a t

Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017

17.

FLOSS

Scheme I.

One-Carbon

Serine

Transfer

231

Reactions

transhydroxymethylase mechanism stereochemical analysis.

and experimental

setup

Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

for

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017

232

A S Y M M E T R I C REACTIONS A N D PROCESSES IN CHEMISTRY

S

\ / E

=

N

\

/ -

c

(?)

\

±

L-serine

/ E = N

\

^ S

H

L-serine

F ^ J ^ F ^ Ï fllllllllllllllllllllir

ΤΤΤΤΤΤΤΤΤΤΤΠΤΤΤΤΤΤΤΤΓ

H - folate

^

4

Η S

^ C - H - folate 4

Η R

^C-H -folate 4

5,10-methylenetetra- 5,10-methylenetetrahydrofolate hydrofolate Scheme II.

Stereochemical

mechanism of serine

transhydroxymethylase.

Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017

FLOSS

Scheme

One-Carbon

111. Stereochemistry

Transfer

of

Reactions

serine transhydroxymethylase synthetase.

233

and

thymidylate

Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017

234

ASYMMETRIC

REACTIONS

A N D PROCESSES IN

CHEMISTRY

C-3 a n d c o n v e r t e d i t i n a c o u p l e d r e a c t i o n s e q u e n c e i n t o t h y m i d y l i c a c i d w h i c h was t h e n d e g r a d e d t o r e c o v e r t h e m e t h y l g r o u p a s a c e t i c a c i d . C h i r a l i t y a n a l y s i s o f t h e a c e t i c a c i d showed t h a t i t was i n d e e d c h i r a l a n d had t h e c o n f i g u r a t i o n shown i n Scheme I I I . G e n e r a t i o n o f t h e m e t h y l g r o u p o f t h y m i d y l a t e f r o m methyl e n e - t e t r a h y d r o f o l a t e i n v o l v e s f o u r s e q u e n t i a l bond b r e a k i n g and forming steps a t the s t e r e o s p e c i f i c a l l y l a b e l e d one-carbon u n i t ; t h e r e s u l t s show t h a t e a c h o f t h e s e s t e p s o c c u r s i n a h i g h l y s t e r e o s p e c i f i c manner. However, b e c a u s e o f t h e m u l t i t u d e o f s t e p s i n v o l v e d , t h e r e s u l t does n o t y e t a l l o w us t o d e s c r i b e t h e s t e r i c course o f each i n d i v i d u a l s t e p . The mode o f f o r m a t i o n o f a m e t h y l g r o u p s e e n i n t h y m i d y l a t e i s e x c e p t i o n a l ; most m e t h y l g r o u p s i n b i o l o g i c a l m o l e c u l e s a r i s e f r o m t h e S-methyl g r o u p o f m e t h i o n i n e . O u r n e x t g o a l was t o d e termine the s t e r i c c o u r s e o f the t r a n s f e r o f a methyl group from m e t h i o n i n e o r S - a d e n o s y l m e t h i o n i n e (AdoMet) t o v a r i o u s C-, N-, o r 0-atoms i n b i o l o g i c a l m o l e c u l e s c a t a l y z e d by m e t h y l t r a n s f e r a s e enzymes. P u r s u i t o f t h i s g o a l i n v o l v e d t h e f o l l o w i n g t a s k s : 1) S y n t h e s i s o f m e t h i o n i n e and AdoMet c a r r y i n g a c h i r a l m e t h y l g r o u p o f known c o n f i g u r a t i o n . 2) E n z y m a t i c t r a n s f e r o f t h e m e t h y l g r o u p t o t h e s u b s t r a t e . 3) D e g r a d a t i o n o f t h e p r o d u c t t o c a r v e o u t t h e c h i r a l methy l g r o u p and c o n v e r t i t i n t o a compound s u i t a b l e f o r c o n f i g u r a t i o n a l a n a l y s i s , u s i n g o n l y s t e r e o s p e c i f i c r e a c t i o n s o f known steric course. 4) C o n f i g u r a t i o n a l a n a l y s i s o f the methyl group. The s y n t h e s i s o f m e t h i o n i n e and AdoMet c a r r y i n g a c h i r a l m e t h y l g r o u p s t a r t e d f r o m c h i r a l a c e t a t e , w h i c h had been p r e p a r e d as shown i n Scheme IV ( 6 ) . T h e c o n v e r s i o n i n t o m e t h i o n i n e (Scheme V) i n v o l v e d a S c h m i d t r e a c t i o n , known t o p r o c e e d w i t h r e t e n t i o n o f c o n f i g u r a t i o n , t o g i v e methylamine, which, i n the f o r m o f i t s d i t o s y l i m i d e , was t h e n u s e d t o a l k y l a t e t h e S - a n i o n o f h o m o c y s t e i n e ( 6 ) . T h e l a t t e r r e a c t i o n was e x p e c t e d t o p r o c e e d w i t h i n v e r s i o n o f c o n f i g u r a t i o n o f the methyl group; the o n l y p l a u s i b l e a l t e r n a t i v e , r a c e m i z a t i o n due t o a n S*.l mechanism, i s r u l e d o u t b y t h e s u b s e q u e n t f i n d i n g t h a t t h e m e t h y l g r o u p was i n deed s t i l l c h i r a l . E n z y m a t i c a c t i v a t i o n o f t h e two samples o f m e t h i o n i n e ( 7 ) t h e n gave AdoMet. The f i r s t t r a n s m e t h y l a t i o n s t u d i e d was t h a t c a t a l y z e d b y c a t e c h o l - 0 - m e t h y l t r a n s f e r a s e (COMT) u s i n g e i t h e r e p i n e p h r i n e ( l a ) or 3,4-dihydroxybenzoic a c i d ( l b ) as s u b s t r a t e . The products,~~ m e t a n e p h r i n e ( 2 a ) a n d 4 - h y d r o x y - 3 - m e t h o x y b e n z o i c a c i d (2fe)> were d e g r a d e d b y t h e ~ s t e r e o s p e c i f i c r e a c t i o n s e q u e n c e shown i n Scheme VI t o g i v e a c e t i c a c i d c a r r y i n g t h e c h i r a l m e t h y l g r o u p . I t w i l l be n o t e d t h a t t h e d e g r a d a t i o n s e q u e n c e i n v o l v e s o n e i n v e r s i o n o f the c o n f i g u r a t i o n o f the methyl group i n the c y a n i d e d i s p l a c e m e n t step ( 8 ) . C o n f i g u r a t i o n a l a n a l y s i s o f t h e v a r i o u s a c e t i c a c i d samples showed t h a t AdoMet s y n t h e s i z e d f r o m a c e t a t e o f F=28 gave 2a and 2b w h i c h , upon d e g r a d a t i o n , p r o d u c e d a c e t a t e o f F=68 and 5 7 , r e s p e c t i v e l y . I n t h e o t h e r e n a n t i o m e r i c s e r i e s , t h e v a l u e s were

Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.



Λ

xX

Scheme IV.

1

M

E

R

E

2

2

© h

COOH

acetate.

2

Τ

3 |

COOH H(D)

.„ (H)D3

D(H)

\ HQI γ_|ΟΗ OH

N

C*

sN

Cr0 pyruvate (H)D kinose,excess 'OH H ® dehydro- H(D) Ilactate I U \ # I U I C uciiyuiw-

Q

,

Jgenose,H 0(D20)

Γ\/Ι_Ι\ D(H,

O

U

; —• phosphofructokinase, D 0(H 0)

S

U

Synthesis of chiral

X

COOH

(OH V T O H HO\_/ (DH

2

CH 0 ®

COOH phosphogly- ® 0 aldolase, \P*^ cerate mutaseJ triose phosphate (H)D enolose isomerase, glyceraldehyde Η 3- phosphate 0® dehydrogenase, orsenate

( O H VT.OH ΗΟγ_γ OH

UA

2

CH 0H

®0

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017

A S Y M M E T R I C REACTIONS A N D PROCESSES IN CHEMISTRY

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017

236

D

H,J

*"C

N0N3

R

COONo

H S0 2

Hj •

4

d)-S-CH CH CHC00H, I NH 2

\

NaOH

NH,

y \

NH-Ts

2

H

2

N

2+ ATP, Mg;

Νο,ΗΜΡΑ INVERSION

H N. 9

H Scheme

V.

COOH

Synthesis of chiral

H

(S)-adenosylmethionine

COOH from

chiral

acetate.

Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Ts

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017

17.

FLOSS

One-Carbon

Transfer

237

Reactions

°«Js "Γ

OH

S-Ad

OH

OH

COMT

H N2

H

COOH

I ^a:X=

-C0 H 2

Ce(NH ) (N0 )

= - CH O H - C H 2 N H C H 3

NaH /

(J

4

a

3

6

S-CI > 5 . OH

KCN/HMPA

1. HoOo/OH^ CN

Scheme VI.

2

H2O

— • 2. NaN0fc/H S0 2

4

Degradation of the products from the COMT chiral methyl group as acetic acid.

D///JS /^C0 H ?

reaction

to recover the

Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

ASYMMETRIC

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017

238

REACTIONS

AND

PROCESSES IN

CHEMISTRY

F=68 f o r t h e s t a r t i n g a c e t a t e , a n d F=39 and 44 f o r t h e a c e t a t e s a m p l e s f r o m t h e d e g r a d a t i o n o f £ a and £ b , r e s p e c t i v e l y . T h u s , t h e r e i s a n odd number o f i n v e r s i o n s i n g o i n g f r o m t h e s t a r t i n g a c e t a t e (Scheme V , u p p e r l e f t ) t o t h e f i n a l p r o d u c t (Scheme V , l o w e r r i g h t ) . S i n c e b o t h t h e s y n t h e s i s and t h e d e g r a d a t i o n e a c h i n v o l v e one i n v e r s i o n , i t f o l l o w s t h a t the enzymatic t r a n s f e r o f t h e m e t h y l g r o u p c a t a l y z e d b y COMT must have o c c u r r e d w i t h i n v e r sion o f configuration (8). The same s t e r e o c h e m i c a l c o u r s e was a l s o o b s e r v e d f o r a n o t h e r methyl t r a n s f e r t o oxygen, the m e t h y l a t i o n o f the p o l y g a l a c t u r o n i c a c i d c a r b o x y l g r o u p s o f p e c t i n c a t a l y z e d b y a n enzyme p r e p a r a t i o n f r o m mung bean s h o o t s . The m e t h y l g r o u p i n t h i s c a s e was r e c o v e r e d by d i r e c t c y a n o l y s i s o f t h e p e c t i n t o g i v e a c e t o n i t r i l e ( w i t h i n v e r s i o n ) , w h i c h was t h e n c o n v e r t e d t o a c e t a t e f o r a n a l y s i s . A g a i n , t h e s t a r t i n g and t h e f i n a l a c e t a t e s a m p l e s had o p p o s i t e c o n f i g u r a t i o n s (F=28 + F=62; F=68 -> F=32) ( 9 ) . In a m i c r o b i a l s y s t e m , S t r e p t o m y c e s g r i s e u s , we s t u d i e d s i m u l t a n e o u s l y two m e t h y l t r a n s f e r s , o n e t o c a r b o n and one t o n i t r o g e n , which are i n v o l v e d i n the b i o s y n t h e s i s o f the a n t i b i o t i c i n d o l m y c i n ( 1 0 ) . I n t h i s c a s e , c h i r a l m e t h i o n i n e was added d i r e c t l y t o t h e c u l t u r e s and t h e r e s u l t i n g i n d o l m y c i n and i n d o l m y c e n i c a c i d were d e g r a d e d a s shown i n Scheme V I I . T h e r e s u l t s again i n d i c a t e d enzymatic t r a n s f e r o f the methyl group, both t o c a r b o n and t o n i t r o g e n , w i t h i n v e r s i o n o f c o n f i g u r a t i o n ( 6 ) . E a r l i e r work f r o m o u r l a b o r a t o r y had shown t h a t , i n t h e C-methyl a t i o n r e a c t i o n l e a d i n g t o i n d o l m y c i n , a h y d r o g e n a t C-3 o f i n d o l e - p v r u v a t e i s r e p l a c e d by the methyl group i n a r e t e n t i o n mode ( 1 1 ) . Thus t h e s t e r e o c h e m i s t r y o f i n d o l m y c i n b i o s y n t h e s i s i n S t r e p t o m y c e s g r i s e u s can be summarized a s shown i n Scheme V I I I . In c o n c l u s i o n , a l l e n z y m a t i c m e t h y l t r a n s f e r r e a c t i o n s s t u d i e d s o f a r proceed with net i n v e r s i o n o f c o n f i g u r a t i o n o f the m e t h y l g r o u p . A l l t h e s e m e t h y l t r a n s f e r a s e s t h e r e f o r e i n v o l v e an uneven number o f t r a n s f e r s o f t h e m e t h y l g r o u p , most l i k e l y a s i n g l e , d i r e c t t r a n s f e r f r o m t h e s u l f u r o f AdoMet t o t h e a c c e p t o r atom i n a n S 2 - t y p e r e a c t i o n . P i n g - p o n g mechanisms i n w h i c h a g r o u p i n t h e enzyme a c t i v e s i t e i s t r a n s i e n t l y m e t h y l a t e d can be e x c l u d e d . T h e two s u b s t r a t e s must be o r i e n t e d i n t h e enzyme a c t i v e s i t e such t h a t i n the t r a n s i t i o n s t a t e the s u l f u r , the m e t h y l c a r b o n and t h e a c c e p t o r atom f o r m a l i n e a r a r r a y . Methyl t r a n s f e r a s e s are not o n l y important i n v a r i o u s metab o l i c p r o c e s s e s , b u t a l s o i n t h e p r o c e s s i n g o f i n f o r m a t i o n a l macr o m o l e c u l e s ; f o r e x a m p l e , DNA b y r e s t r i c t i o n m e t h y l a s e s . Aberrat i o n s i n t h i s p r o c e s s i n g , a s o c c u r i n t h e m e t h y l a t i o n by c a r c i n o gens l i k e d i m e t h y l n i t r o s a m i n e , a r e p r o b a b l y i n v o l v e d i n t h e t r a n s f o r m a t i o n o f t h e c e l l i n t o a tumor c e l l . T h i s p r o c e s s i n v o l v e s m e t a b o l i c a c t i v a t i o n o f d i m e t h y l n i t r o s a m i n e , i n t h e manner shown i n Scheme IX, t o g e n e r a t e t h e u l t i m a t e c a r c i n o g e n , a methyldiazoniurn i o n which then t r a n s f e r s i t s methyl group t o v a r i o u s n u c l e o p h i l i c s i t e s on DNA. T h i s l a t t e r p r o c e s s i s p r e sumably n o t e n z y m e - c o n t r o l l e d and s h o u l d t h e r e f o r e f o l l o w t h e same r u l e s a s t h e same p r o c e s s i n a n a b i o l o g i c a l s y s t e m . K e e p i n g N

Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017

17.

FLOSS

One-Carbon

Transfer

D NaOH

239

Reactions

D l)NoOH/TsCl%

H

""'c

w

*

\ 1

2)NaH/TsCI V MU.

c

\

I

/

ν

d

T

s

N

Ts

KCN/HMPA

Η

"r

\OOH

D

% D Scheme

VIL

ι

C=N

>

NaN0 ,

/NaOH

2

COOH

Z

*

Degradation of indolmycin and indolmycenic chiral methyl groups as acetic acid.

D

CONH

5

acid to recover

Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

the

ASYMMETRIC

REACTIONS

AND

PROCESSES IN

CHEMISTRY

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017

240

Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017

17.

FLOSS

One-Carbon

Transfer

241

Reactions

a l l o t h e r f a c t o r s c o n s t a n t , t h e s t e r e o c h e m i s t r y o f t h i s methyl t r a n s f e r should be s e n s i t i v e t o the p o l a r i t y o f the r e a c t i o n environment. T h e r e f o r e , a c o m p a r i s o n o f t h e i n v i t r o and t h e i n v i v o process s h o u l d enable us t o probe whether the r e a c t i o n i n the i n t a c t c e l l takes p l a c e i n a hydrophobic environment, l i k e t h e n u c l e a r membrane, o r i n an aqueous s u r r o u n d i n g . T o l a y t h e groundwork f o r e x p e r i m e n t s p r o b i n g t h i s q u e s t i o n , we s y n t h e s i z e d d i m e t h y l n i t r o s a m i n e c a r r y i n g a c h i r a l methyl group by the r e a c t i o n sequence shown i n Scheme X. Methods f o r t h e a l k y l a t i o n o f DNA and f o r t h e r e c o v e r y o f t h e methyl g r o u p f r o m t h e most p r o m i n e n t m o d i f i e d b a s e , 7 - m e t h y l g u a n i n e , have been worked o u t , b u t r e s u l t s f r o m t h e s t e r e o c h e m i c a l a n a l y s i s o f t h e s e samples a r e n o t y e t a v a i l a b l e . We h a v e , however, c o m p l e t e d t h e s t e r e o c h e m i c a l a n a l y s i s o f t h e a l k y l a t i o n o f a model n u c l e o p h i l e , 3,4d i c h l o r o t h i o p h e n o l , by d i m e t h y l n i t r o s a m i n e a c t i v a t e d w i t h r a t l i v e r m i c r o s o m e s ( 1 2 ) . The r e a c t i o n sequence i s shown i n Scheme X I . Based on t h e s t r u c t u r e o f t h e a l k y l group i n t h i s r e a c t i o n and t h e n a t u r e o f t h e n u c l e o p h i l e , we e x p e c t e d t o s s e t r a n s f e r o f t h e methyl g r o u p w i t h a h i g h d e g r e e o f i n v e r s i o n o f c o n f i g u r a t i o n . However, t h e f i r s t s e t o f a n a l y s e s o f t h e a c e t a t e samples f r o m t h e d e g r a d a t i o n o f t h e a l k y l a t e d m a t e r i a l shown i n T a b l e I s u g g e s t s t r a n s f e r o f t h e methyl g r o u p w i t h c o m p l e t e r e t e n t i o n o f c o n f i g u r a t i o n . T h i s s u r p r i s i n g r e s u l t may i n d i c a t e t h a t even i n t h i s i n v i t r o s y s t e m , t h e r e a c t i o n t a k e s p l a c e e n t i r e l y /in t h e l i p o p h i l i c m i c r o s o m e s and t h e r e f o r e p r o c e e d s e x c l u s i v e l y b y an i o n p a i r mechanism w i t h i n t e r n a l r e t u r n . A l t e r n a t i v e l y , t h e mechanism o f d i m e t h y l n i t r o s a m i n e a c t i v a t i o n and a l k y l t r a n s f e r may be more complex than i s c u r r e n t l y e n v i s i o n e d and may, f o r example, i n v o l v e a double displacement p r o c e s s . F u r t h e r e x p e r i ments a r e under way t o v e r i f y t h e i n i t i a l r e s u l t and t o s t u d y t h i s problem f u r t h e r . Table I.

S t e r e o c h e m i c a l a n a l y s i s o f t h e a l k y l a t i o n o f 3,4dichlorothiophenol by m e t a b o l i c a l l y a c t i v a t e d dimethylnitrosamine. F-VALUE

STARTING ACETATE

28

CONFIGURATION S

F-VALUE 68

CONFIGURATION R

DIMETHYLNITROSAMINE

S

R

3,4-DICHLOROTHIOPHENOL METHYL ETHER

S

R

ACETATE FROM DEGRADATION

R

33

Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

A S Y M M E T R I C REACTIONS A N D PROCESSES IN CHEMISTRY

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017

242

NaN /H S0 3

CHDT-COONa

2

4

• CHDT-NH

TsCI ^ CH I ^ » CHDT-NH-Ts 2.5 Ν Ν 2.5NNaOH Steam 3

2

g

ά

CHDT \ . N

T

s

CHDT V

3 I % H Ç ^

/

CHDT \

/

CH3

HOAc

CH3

Scheme X.

Synthesis

CN® HMPA Q Scheme XL

D

»

H

Alkylation

of dimethylnitrosamine

\

7

Ι)Η 0 /0Η 2

C

-

C

N

carrying

Θ

2

of 3 4-dichlorothiophenol f

D

2

2)HN0

CH3

»

H

a chiral

M

.

M

-

0

/

methyl

group.

\

7 /

C

"

C

by chiral

0

0

H

dimethylnitrosamine.

Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

17.

FLOSS

One-Carbon

Transfer

Reactions

243

Acknowledgements T h i s work was s u p p o r t e d b y t h e N a t i o n a l I n s t i t u t e s o f H e a l t h I wish t o acknowledge w i t h g r a t i t u d e the e n t h u s i a s t i c c o n t r i b u t i o n s o f numerous c o w o r k e r s and c o l l a b o r a t o r s whose names a p p e a r on t h e p u b l i c a t i o n s l i s t e d .

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 26, 2016 | http://pubs.acs.org Publication Date: April 28, 1982 | doi: 10.1021/bk-1982-0185.ch017

Literature Cited 1 Cornforth, J.W.; Redmond, J.W.; Eggerer, H.; Buckel, W.; Gutschow, C. Eur. J. Biochem., 1970, 14, 1. 2 Lüthy, J.; Rétey, J.; Arigoni, D. Nature (Lond.), 1969, 221, 1213. 3 For a review see: Floss, H.G.,; Tsai, M.D. Adv. Enzymol., 1979, 50, 243. 4 Tatum, C.M.; Benkovic, P.Α.; Benkovic, S.J.; Potts, R.; Schleicher, E.; Floss, H.G. Biochemistry, 1977, 16, 1093. 5 Tatum, C.; Vederas, J.; Schleicher, E.; Benkovic, S.J.; Floss, H.G. J. Chem. Soc. Chem. Commun., 1977, 218. 6 Woodard, R.W.; Mascaro, L . ; Hörhammer, R.; Ei,senstein, S.; Floss, H.G. J. Amer. Chem. Soc., 1980, 102, 6314. 7 Cantoni, G.L. Biochem. Prep., 1957, 5, 58. 8 Woodard, R.W.; Tsai, M.D.; Floss, H.G.; Crooks, P.Α.; Coward, J.K. J. Biol. Chem., 1980, 255, 9124. 9 Woodard, R.W.; Weaver, J.; Floss, H.G. Arch. Biochem. Biophys., 1981, 207, 51. 10 Hornemann, U.; Hurley, L.H.; Speedie, M.K.; Floss, H.G. J. Amer. Chem. Soc., 1971, 93, 3029. 11 Zee, L . ; Hornemann, U.; Floss, H.G. Biochem. Physiol. Pflanzen (Jena), 1975, 168, 19. 12 Shen, S.J.; Tsai, M.D.; Floss, H.G., unpublished results. RECEIVEDDecember 14, 1981.

Eliel and Otsuka; Asymmetric Reactions and Processes in Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1982.