Structural Study of Hexagonal Close-Packed Silica Mesoporous

Apr 27, 2013 - ... Alcohol in a Pt/SiO2 Coated Tube Reactor. Yang Bai , Nikolay Cherkasov , Steven Huband , David Walker , Richard Walton , Evgeny Reb...
1 downloads 0 Views 5MB Size
Subscriber access provided by Washington University | Libraries

Article

Structural Study of Hexagonal Close-packed Silica Mesopo-rous Crystal Yanhang Ma, Lu Han, Keiichi Miyasaka, Peter Oleynikov, Shunai Che, and Osamu Terasaki Chem. Mater., Just Accepted Manuscript • DOI: 10.1021/cm401294j • Publication Date (Web): 27 Apr 2013 Downloaded from http://pubs.acs.org on May 2, 2013

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Chemistry of Materials is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Structural Study of Hexagonal Close-packed Silica Mesoporous Crystal Yanhang  Ma,†,⊥  Lu  Han*,‡,⊥  Keiichi  Miyasaka,§  Peter  Oleynikov,†  Shunai  Che,*,‡     and  Osamu  Terasaki*,†,§     †

Department  of  Materials  and  Environmental  Chemistry,  Bezelii  Center  EXSELENT  on  Porous  Materials,  Stockholm   University,  S-­‐10691  Stockholm,  Sweden.   ‡

 School  of  Chemistry  and  Chemical  Engineering,  State  Key  Laboratory  of  Metal  Matrix  Composites,  Shanghai  Jiao   Tong  University,  800  Dongchuan  Road,  Shanghai  200240,  China.     §

Graduate  School  of  EEWS,  WCU,  KAIST,  335  Gwahangno  Yuseong-­‐Gu,  Daejeon  305-­‐701,  Republic  of  Korea.    

KEYWORDS:  Silica  mesoporous  crystals,  surfactant,  co-­‐structure  directing  agent,  hexagonal  close-­‐packing,  electron   microscopy   ABSTRACT:   Close-­‐packed   spheres   can   be   stacked   into   two   crystalline   structures:   cubic   close-­‐packed   (ccp)   and   hexagonal   close-­‐packed   (hcp).   Both   of   these   structures   were   found   in   silica   mesoporous   crystals   (SMCs).   Herein,   pure   hcp   mesostructure  with  P63/mmc  symmetry  of  silica  mesoporous  crystals  (SMCs)  has  been  obtained  in  the  synthetic  system   of   cationic   gemini   surfactant   as   template   and   the   N-­‐[(3-­‐trimethoxysilyl)propyl]ethylenediamine   triacetix   acid   trisodium   salt   (EDTA-­‐silyl)   as   the   co-­‐structure   directing   agent   (CSDA),   which   gives   rise   to   the   three-­‐dimensional   (3D)   hexagonal   structure  and  hexagonal  plate  morphology.  The  formation  of  the  pure  hcp  structure  was  controlled  by  organic/inorganic   interface   curvature   induced   by   charge   matching   between   carboxylate   groups   of   the   CSDA   and   quaternary   ammonium   head-­‐groups   of   surfactant.   Electrostatic   potential   distribution   3D   map   was   reconstructed   using   Fourier   analysis   of   HRTEM  images  based  on  electron  crystallography,  which  showed  characteristic  features  of  the  shape  and  connectivity  of   mesopores  in  the  hcp  structure.  Small  windows  for  connecting  cages  can  be  found  only  between  layers,  which  determine   the   symmetry   and   local   curvature   of   structures.   As   a   result,   the   point   group   symmetry   of   mesopores   becomes  6𝑚2,   in-­‐ stead  of  the  𝑚 3𝑚  symmetry  observed  for  perfect  spheres  in  the  ccp.  The  mechanism  of  stabilization  and  favorable  growth   of  the  pure  hcp  structure  in  meso-­‐scale  has  been  proposed  based  on  synthesis  strategy  and  symmetry  support.  This  work   provides   people   a   better   understanding   of   the   priority   of   two   sphere   close-­‐packed   forms   by   comparing   hcp   and   ccp   struc-­‐ tures.  

INTRODUCTION        2D-­‐triangular  lattice  with  lattice  constant  1/ 3  can  be   divided  into  three  equal  hexagonal  sublattices  A,  B  and  C   with   lattice   constant   1.   The   closest   packed   arrays   of   hard   spheres   with   diameter   1   on   a   plane   form   a   layer   with   a   hexagonal  sphere  arrangement.  The  layer  is  called  A  or  B   or   C,   as   the   centers   of   the   spheres   form   a   p6mm   lattice,   with   lattice   constant   1   corresponding   to   the   A   or   B   or   C   sublattice.   The   spheres   of   the   second   layer   on   the   first   layer,   A,   is   either   the   B   or   C   layer.   When   we   extend   the   idea  of  closely  packing  spheres  with  uniform  size  to  three   dimensions,  a  simple  structural  description  can  be  gener-­‐ ated   through  a   stacking   sequence   of   the   layers   perpendic-­‐ ular   to   the   plane   using   layers   A,   B   and   C.   The   resultant   three-­‐dimensional  lattices  can  be  described  by  a  stacking   sequence   of   layers,   such   as   ABABCB…   or   ABACBA…,   etc.   and  coordination  numbers  for  all  sequences  are  12,  i.e.,  6   in   the   plane,   3   above   the   plane   and   3   below   the   plane.   Two   extreme   cases   are   the   ABCABC…   and   ABABAB…   stacking   sequences.   The   point   group   symmetries   of   the   centers   of   the   spheres   in   the   ABCABC…   and   ABABAB…   stackings   are   m3m   and  6m2;   therefore,   the   stackings   are   called   cubic   close-­‐packed   (ccp)   and   hexagonal   close-­‐ packed   (hcp)   structures,   respectively.   Both   ccp   and   hcp   structures   have   identical   space   occupation,   coordination  

number   and   similar   energy,   and   they   show   very   similar   equations   of   state.1   A   planar   defect   in   ccp   such   as   …ABCABCBACBA…   is   called   a   twin   plane,   which   is   frequently  observed  in  the  ccp  structure.     As   early   as   the   year   1611,   hcp   and   ccp   structures   have   at-­‐ tracted   scientists’   interest;   Johannes   Kepler   asserted   that   no  arrangement  of  equally  sized  spheres  filling  space  had   a   greater   average   density   than   that   of   ccp   or   hcp.   This   is   known   as   Kepler’s   conjecture   and   has   been   recently   proved   by   Thomas   Hales   using   a   computer-­‐based   solu-­‐ tion.2   In   nature,   a   large   number   of   metals,   alloys   and   in-­‐ organic   compounds   take   a   close-­‐packed   structure   held   together  by  interatomic  forces.  Approximately  25%  of  the   elements  crystallize  in  the  ccp  structure,  and  20%  do  so  in   the   hcp   structure.1   This   brings   an   intense   interest   to   the   field   and   makes   it   attractive   to   discover   the   priority   of   each  structure  in  crystal  growth.  Many  studies  have  been   devoted  to  solving  this  straightforward  but  difficult  prob-­‐ lem.   Some   studies   have   employed   dynamics   methods3-­‐7   or   Monte   Carlo   simulations8,9   to   study   the   differences   in   stability   for   the   two   structures   by   comparing   entropies;   these  studies  have  concluded  that  ccp  is  more  stable  than   hcp.  Other   researchers  have   claimed  that  the  deformation   of   hard   sphere   crystals   or   the   motion   of   spheres   would  

ACS Paragon Plus Environment

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

make   hcp   more   stable.10,11   However,   there   is   a   lack   of   di-­‐ rect  experimental  proof  for  either  case.        Silica  mesoporous  crystals  (SMCs),  which  can  be  con-­‐ sidered   “cavity   crystals”,   were   discovered   in   the   early   1990s.12,13   Generally,   they   are   synthesized   with   surfactant   or   block   copolymers   as   templates   for   the   subsequent   and/or   simultaneous   condensation   of   inorganic  materials.   The   self-­‐assembly   of   micelles   and   charge   density   match-­‐ ing   between   surfactants   and   inorganic   precursors   are   essential   for   the   formation   of   various   mesostructures.12   SMCs   with   different   structures   (hereafter   mesostructures)   can   be   formed   according   to   the   packing   behavior   of   the   surfactants.   SMCs   can   be   considered   good   models   for   crystallographic   research   for   the   following   reasons:   (i)   various  micelle  types  and  shapes  can  be  easily  formed  by   amphiphilic   molecules   in   the   water;   (ii)   mesostructures   can   be   controlled   by   changing   synthetic   conditions;   (iii)   defects  and  intergrowth  are  commonly  observed  in  SMCs,   revealing   the   structural   relationship   and   the   crystal   growth;   and   (iv)   the   structure   can   be   kept   as   a   replica   after  removing  the  surfactant  for  further  observation  and   characterization.  Transmission  electron  microscopy  (TEM)   can   be   used   especially   to   observe   the   arrangement   of   mesopores  directly  through  electron  crystallography.          Generally,  micelle  types  can  be  described  by  a  surfac-­‐ tant   packing   parameter,   g   =   V/a0l,   where   V   refers   to   the   micelle   volume,   a0   represents   the   effective   hydropho-­‐ bic/hydrophilic   interfacial   area   and   l   is   the   length   of   chain.15  As  parameter  g  decreases,  a  mesostructure  can  be   formed   in   an   order   of   bilayer,   bi-­‐/tri-­‐continuous,   cylindri-­‐ cal  and  cage-­‐type  structures,  corresponding,  respectively,   to   the   g   values   1,   2/3,   1/2   and   1/3.   Cage-­‐type   mesostruc-­‐ tures   are   formed   by   the   regular/disordered   packing   of   spherical/ellipsoidal   micelles.   There   are   several   typical   cage-­‐type   structures   observed   in   SMCs,   including   Im3m   (SBA-­‐1616,17),   Fm 3 m   (SBA-­‐1217,   FDU-­‐118,19and   FDU-­‐1220),   P63/mmc   (SBA-­‐217,21   and   SBA-­‐1217,22-­‐25),   Pm3n   (SBA-­‐116,26   ,   SBA-­‐1117   and   SBA-­‐616,18),   Fd3m   (FDU-­‐227   and   AMS-­‐828,29),   P42/mnm   (AMS-­‐930),   Pmmm   (FDU-­‐1331),   and   P4/mmm   (FDU-­‐1131),   etc.   Among   these,   the   Fm3m   and   P63/mmc   structures  are  analogous  to  ccp  and  hcp,  respectively.  This   finding   provides   us   with   information   about   the   differ-­‐ ences   and   stabilities   between   the   two   structures   in   the   meso-­‐scale.   However,   the   intergrowth   of   ccp   with   hcp   is   normally  observed  in  SMCs  such  as  in  SBA-­‐217,21  and  SBA-­‐ 1217,22-­‐25.   In   a   few   cases,   pure   ccp   has   been   observed   in   some  SMCs,  and  its  structure  has  been  solved  using  high-­‐ resolution  TEM  (HRTEM).32,33  As  far  as  we  know,  there  is   no  report  on  the  structural  features  or  growth  mechanism   of  an  SMC  with  a  pure  hcp  structure,  neither  of  the  study   on  priority  of  two  close-­‐packed  structures  using  SMCs.      Herein,   we   present   a   successful   synthesis   of   SMCs   with   pure   three-­‐dimensional   hexagonal   (SP:   P63/mmc)   struc-­‐ ture   and   hexagonal   plate   morphology   using   a   gemini   cationic   surfactant   (C18-­‐3-­‐1)   in   the   presence   of   N-­‐[(3-­‐ trimethoxysilyl)propyl]   ethylenediamine   triacetix   acid  

Page 2 of 10

trisodium   salt   (EDTA-­‐silyl)   as   the   co-­‐structure   directing   agent  (CSDA).  The  structure  solution  was  determined  by   the   combination   of   powder   X-­‐ray   diffraction   pattern   and   EM  observations,  including  scanning  electron  microscopy   (SEM)  and  HRTEM.  3D  electrostatic  potential  distribution   map  was  reconstructed  to  elucidate  characteristic  features,   such   as   the   shape   and   connectivity   of   mesopores   in   the   hcp  structure.  The  stabilization  mechanism  and  favorable   growth  of  a  pure  hcp  structure  in  the  meso-­‐scale  has  been   discussed   from   the   viewpoint   of   organic/inorganic   inter-­‐ face   curvature   and   symmetry   support   as   well   as   through   a   comparison   with   the   ccp   structure.   This   research   will   provide   a   novel   idea   and   better   understanding   on   the   study   of   growth   mechanism   for   two   close-­‐packed   struc-­‐ tures.       EXPERIMENTAL  SECTION   1.  Chemical  Agents   All   materials,   including   tetraethyl   orthosilicate   (TEOS;   SCRC,   China),   N,N-­‐dimethyl-­‐n-­‐tetradecylamine   (TCI,   Japan),   (3-­‐bromopropyl)   trimethylammonium   bromide   (Aldrich,   USA),   and   N-­‐[(3-­‐ trimethoxysilyl)propyl]ethylenediamine   triacetix   acid   trisodium   salt   (EDTA-­‐silyl,   25%   water   solution;   Gelest,   UK),  were  used  as  purchased  without  further  purification.     2.  Surfactant  preparation   The   gemini   surfactant   C18-­‐3-­‐1   was   synthesized   according   to  reference  32.   3.  Synthesis  of  SMC  with  pure  P63/mmc  structure   SMCs   were   synthesized   with   C18-­‐3-­‐1   as   template.   EDTA-­‐ silyl   was   used   as   CSDA   and   TEOS   was   used   as   silica   source   under   various   conditions.   Typically,   C18-­‐3-­‐1   was   added  into  the  mixture  of  deionized  water  and  a   specific   amount  of  NaOH/HCl  (1  M)  at  80  °C.  After  the  surfactant   was  dissolved,  EDTA-­‐silyl  and  TEOS  were  added  together,   stirred  for  1  h  and  aged  for  2  days  at  80  °C.  The  resultant   white  precipitate  powder  was  filtered  and  dried  overnight.   Surfactant-­‐free   samples   for   HRTEM   analyses   and   gas   adsorption   were   obtained   by   calcination   at   550   °C   in   air   for  6  h.   4.  Characterization  of  materials      Powder   X-­‐ray   diffraction   (XRD)   patterns   were   col-­‐ lected   on   a   PANalytical   X’Pert   Pro   equipped   with   Cu   Kα   radiation   (45   kV,   40   mA),   fixed   divergence   slit   of   1/4o,   anti-­‐scattering  slit  of  1/8o,  a  program-­‐controlled  receiving   slit  (with  constant  irradiated  length  of  10  mm)  and  a  step   size   of   0.0042°   in   transmission   mode   to   reduce   errors   at   small   scattering   angles   in   the   Bragg-­‐Bretano   configura-­‐ tion.  Scanning  electron  microscope  images  were  obtained   using   a   JEOL   JSM-­‐7401F   and   a   JEOL   JSM-­‐7600F   under   different   equipment   conditions.   High-­‐resolution   trans-­‐ mission  electron  microscopy  was  performed  using  a  JEOL   JEM-­‐2100  microscope  that  was  equipped  with  a  LaB6  gun  

ACS Paragon Plus Environment

Page 3 of 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure  1.  Schematic  representation  for  the  synthesis  strategy  of  3D  hexagonal  SMCs.  

 

  operating   at   200   kV   (Cs   1.0   mm,   point   resolution   2.3   Å).   Images   were   recorded   using   a   KeenView   CCD   camera   (resolution   1376   ×   1032   pixels,   pixel   size   6.45   ×   6.45   μm)   at   50,000−120,000   times   magnification   under   low-­‐dose   con-­‐ ditions.  The  structure  factor  amplitudes  and  phases  were   extracted  from  Fourier  transforms  of  the  HRTEM  images   using   the   crystallographic   image   processing   software   Crisp34.   The   reconstructed   model   was   built   in   a   program   written   by   Mathematica   8.0   and   visualized   in   the   Vesta   software35.  TEM  image  simulations  of  the  idealized  meso-­‐ porous  structures  were  performed  using  MesoPoreImage36.   The   nitrogen   adsorption/desorption   isotherms   were   measured  at  77  K  with  Quantachrome  Nova  4200E.     RESULTS  AND  DISCUSSION      The  designation  of  this  synthetic  strategy  comes  from   the   co-­‐structure   directing   method   for   synthesizing   SMCs   proposed  by  Che   et   al.37  Structurally,  a  CSDA  contains  two   parts:   an   alkoxysilane   site   that   is   capable   of   condensing   with   the   silica   source   TEOS   and   an   organic   site   that   can   form   diverse   interactions   (e.g.,   electrostatic,   covalent,   hydrogen   bonding   or   π–π   interactions)   with   surfactant   head  groups  to  provide  the  driving  force  for  the  formation   of  highly  ordered  mesostructures.  The  mesostructure  can   be   well   controlled   by   tuning   the   curvature   of   the   organ-­‐ ic/inorganic  interface  through  the  ionization  of  either  the   surfactant  head  group  or  the  CSDA  part.      Herein,   the   SMC   was   synthesized   with   C18-­‐3-­‐1   as   tem-­‐ plate  and  EDTA-­‐silyl  as  CSDA  (Figure  1).  The  carboxylate   organic  site  of  EDTA-­‐silyl  is  co-­‐condensed  with  the  silica   source   TEOS   to   be   subsequently   assembled   to   form   the   silica   network   (Figure   1).   The   synthesis   was   performed   under   various   experimental   conditions   by   systematically   changing   concentration   (Figure   S1),   temperature   (Figure   S2),   amount   of   CSDA   (Figure   S3)   and   pH   values   (Figure   S4).   At   low   concentration,   preferred   growth   orientations   along   a   and   c   axes   were   observed.   Enough   amount   of   CSDAs   (>   1   CSDA/1C18-­‐3-­‐1)   and   high   temperature   (>50   oC)   were   necessary   to   form   well   crystallized   SMCs   with   hcp   structure.   The   change   of   pH   values   adjusted   the   ioniza-­‐

tion  of  CSDA  and  controlled  the  electrostatic  interactions   between  carboxylate  groups  of  EDTA-­‐silyl   and   quaternary   ammonium  groups  of  the  cationic  surfactant.  In  this  way,   with   the   addition   of   HCl,   the   phase   transformation   from   pure   hcp   to   hcp&ccp   occurs,   and   crystallinity   declines.   Typically,   an   extremely   low   surfactant   concentration   of   0.1~0.4   wt%   was   used   to   form   homogeneously   spherical   micelles  in  aqueous  solution  at  80  oC.  Molar  ratios  of  C18-­‐3-­‐1:   EDTA-­‐silyl:   TEOS:   H2O   =1:   1:   15:   30,000   were   verified   as   the  proper  choice  to  obtain  an  hcp  phase  with  or  without   the   addition   of   NaOH   (Figure   S4).   SMCs   with   pure   hcp   structure   and   uniformly   hexagonal   plate   shape   were   ob-­‐ tained   with   the   condition   in   Figure   S4b,   which   was   used   for  the  following  characterization  and  discussion.     Figure  2  shows  X-­‐ray  diffraction  profile  of  as-­‐made  and   calcined  samples,  both  of  which  reveal  six  clearly  distinc-­‐ tive  reflections  in  the  range  of  1-­‐4o.  Lattice  constants  and   peak   indexing   are   simultaneously   determined   to   explain   all   reflections   only   based   on   crystal   system,   in   this   case   hexagonal.   The   five   low-­‐angle   reflections   can   be   indexed   properly   as [1010] ,   [0002] ,   [1011] ,   [1120] ,   [1013]  and   [1122]  using   four   digital   Miller-­‐Bravais   indices   hkil   (h+k+i=0).  The  corresponding  unit  cell  parameters  for  as-­‐ made  SMCs  were  a  =  6.06  nm,  c  =  9.81  nm  and  c/a  ratio  of   1.62.   The   calcined   sample   also   gave   similar   results   of   a   =   5.58  nm,  c  =  9.12  nm  and  c/a  =  1.63.  The  calcined  sample   had   slightly   smaller   unit   cell   parameters   due   to   the   fur-­‐ ther   silica   condensation   and   lattice   contraction   after   cal-­‐ cinations.  The  theoretical  c/a  value  of  1.633  for  the  hexag-­‐ onal   spherical   close-­‐packed   model   is   slightly   larger   than   that  of  the  as-­‐made  SMC,  which  was  regarded  as  a  close-­‐ packed   mesocage.   The  small  contraction  along   the   c   axis   might  contribute  to  distinguish  hcp  from  ccp.  

ACS Paragon Plus Environment

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

growth  of  crystal  by  the  stacking  of  layers  along  the  c  axis.   The  side  surface  of  the  plates  also  shows  the  information   of  crystal  growth.  Figures  4c  and  4f  show  high  magnifica-­‐ tion   side   surfaces   of   the   as-­‐made   and   calcined   SMCs,   respectively,  where  slim  streaks  with  ~9  nm  width  can  be   clearly   observed,   corresponding   to   the   c  parameter  of  one   unit   cell   that   results   from   layer   packing.   The   dihedral   angle  of  90°  between  the  top/bottom  and  side  planes  and   the   indistinct   streaks   along  c   axis   are   prominent   signs   of   the   pure   hcp   structure.   Moreover,   in   crystallography,   the   morphology   of   a   crystal   is   normally   related   to   the   corre-­‐ sponding  point  group  symmetry  of  its  structure.  In  a  hex-­‐ agonal   crystal   system,   there   are   seven   possible   point   groups:   6,  6,   6/m,   622,   6mm,  62m   (or  6m2)   and   6/mmm.   The   characteristic   morphology   observed   is   consistent   with  the  point  group  6/mmm.  

  Figure   2.   Powder   XRD   pattern   of   the   (a)   as-­‐made   and   (b)   calcined   SMCs   collected   in   the   region   of   2θ   =   1-­‐7°.   The   chem-­‐ ical   molar   compositions   of   mixtures   are   as   follows:   C18-­‐3-­‐1:   EDTA-­‐silyl:  TEOS:  NaOH:  H2O=1:1:15:5:30,000.  

The   crystal   structure   was   further   characterized   using   TEM.   HRTEM   images   and   the   corresponding   Fourier   diffractograms   (FDs)   of   both   as-­‐made   and   calcined   sam-­‐ ples   were   taken   along   the   [0001],  [2113]  and   [1100]   di-­‐ rections  from  thin  areas,  as  shown  in  Figure  5.  Especially   in   the   image   along  [2113],   the   white   contrast   in   the   im-­‐ ages  corresponds  to  a  row  of  low  electron-­‐scattering  den-­‐ sity   formed   by   the   projection   of   the   mesocages.   Uniform   mesocages  were  arranged  in  a  plane  to  form  a  hexagonal   close-­‐packed  layer  (ab  plane,  hereafter  called  the  “layer”).   Notably,   the   zigzag   stacking   sequence   (i.e.,   ABAB…)   of   mesopores   was   observed,   indicating   a   pure   hcp   structure   in   the   crystal.   The   extinction   conditions   of   reflections   were  obtained  from  the  FDs  of  HRTEM  images,  which  are   summarized   as   {hh-­‐2hl:   l   =   2n;   000l:   l   =   2n}   (Figure   S5)   and   suggest   the   following   three   possible   space   groups:   P63mc,   P 6 2c   and   P63/mmc.   These   three   space   groups   correspond,  respectively,  to  different  point  groups:  6mm,   62m  and  6/mmm.  Moreover,  from  three  averaged  HRTEM   images   of   different   projections,   plane   group   of   p6mm,   p2gm   and   p2mm   along   three   zone   axis   was   assigned   and   verified   the   space   group   of   the   crystal   to   be   P63/mmc.   This  result  was  consistent  with  the  point  group  of  6/mmm   observed   in   the   SEM   images.   (See   also   Table   S1   for   the   plane  groups  projected  along  three  zone  axes  of  the  three   possible  space  groups)  

The   nitrogen   adsorption-­‐desorption   experiment   was   performed   to   study   properties   of   mesopores,   including   pore   volume,   surface   area   and   pore   size   distribution,   which   shows   a   typical   type   IV   isotherm   with   an   evident   H2   hysteresis   loop   in   the   range   of   P/P0   =   0.35–0.6,   indi-­‐ cating   a   cage-­‐type   mesopore   structure   (Figure   3).   The   total   mesopore   volume   was   calculated   to   be   0.657   cm3/g   using   the   t-­‐Plot   method,   surface   area   of   769   m2/g   in   the   Brunauer-­‐Emmett-­‐Teller   (BET)   method   and   the   average   pore   size   of   4.2   nm   was   determined   using   the   Barret-­‐ Joyner-­‐Halenda  (BJH)  method  with  adsorption  branch.    

  Figure   3.   N2   adsorption/desorption   isotherm   and   the   corre-­‐ sponding  pore  size  distribution  curve  of  calcined  sample.  

Figure   4   shows   the   SEM   images   of   both   the   as-­‐made   and  calcined  samples.  Most  of  the  crystals  display  a  char-­‐ acteristic   morphology   of   hexagonal   plates,   which   are   quite  uniform  in  size  and  shape,  with  approximately  2  μm   in   the   ab   plane   and   0.5   μm   along   the   c   axis.   This   result   indicates  that  crystal  grows  more  quickly  in  the  ab  plane   than   along   the   c   axis.   The   surface   growth   steps   of   layer   stacking  in  the   ab  plane  can  be  clearly  observed,  as  indi-­‐ cated   by   the   arrows   in   Figure   4b,   which   reveals   the  

Page 4 of 10

Fourier   analysis   of   HRTEM   images   was   performed   to   elucidate   the   structural   details   of   the   crystal   based   on   electron   crystallography.   Normalized   structure   factors   after   applying   symmetry   and   correcting   the   contrast   transfer  function  (CTF)  are  tabulated  in  Tables  S2  and  S3.   A  reconstruction  of  3D  structural  model  was  built  to  show   the  electrostatic  potential  distribution  v(x,y,z)  in  one  unit   cell.  The  threshold  value  of  the  isosurface  was  determined   to   be   0.48   for   calcined   SMC   and   0.37   for   as-­‐made   SMC.   These   values   were   determined   using   a   self-­‐consistent   structure   approach   in   which   the   curvature   elastic   energy   was  minimized  and  an  averaged  mean  curvature  was  thus   taken   as   a   spontaneous   curvature,   leading   to   a   constant   mean  curvature  scheme  (Figure  S6)33.  With  the  isosurface   to   be   the   mesopore/wall   boundary,   the   corresponding   porosities   are   42.3%   and   23.3%.   Except   for   in   a   self-­‐ consistent   method,   pore   fraction   can   also   be  

ACS Paragon Plus Environment

Page 5 of 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

  Figure  4.  SEM  images  of  (a-­‐c)  as-­‐made  and  (d-­‐f)  calcined  sample  taken  at  low  and  high  magnification  under  different  equipment   settings.  

  Figure  5.  HRTEM  images  of  as-­‐made  SMCs  along  the  a)  [0001],  b)  [2113]  and  c)  [1100]  directions,  and  calcined  SMCs  along  the   d)  [0001],  e)  [2113]  and  f)  [1100]  directions.  Inserts  depict  Fourier  diffractograms  (FDs).  Projected  potential  maps  obtained  by   33 crystallographic  image  processing  using  CRISP  were  also  inserted  in  the  HRTEM  images.  

ACS Paragon Plus Environment

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 10

  Figure  6.  3D  reconstruction  model  of  the  electrostatic  potential  distribution  of  (a-­‐c)  as-­‐made  and  (d-­‐f)  calcined  samples  along   different  directions  with  threshold  values  of  0.48  and  0.37,  respectively.  

calculated   by   analyzing   the   gas   adsorption/desorption   result.  This  calculation  is  only  feasible  for  calcined  mate-­‐ rials  that  lack  a  template.  Gas  adsorption  analysis  reveals   that  the  total  mesopore  volume  is  0.657  cm3/g.  Assuming   the   density   of   the   silica   wall   to   be   2.2   g/cm3,   the   pore   fraction  turns  out  to  be  59%.  From  the  plot  of  the  fraction   versus   threshold   value,   we   learned   that   59%   porosity   corresponds  to  a  threshold  value  of  ~0.57  (Figure  S7);  this   deviates   by   0.09   from   the   value   determined   using   a   self-­‐ consistent  method.  The  3D  model  with  a  threshold  value   equal   to   0.57   (Figure   S8)   presents   larger   open   windows   and  pore  volumes  in  comparison  to  the  model  in  Figure  6.   The   pore   volumes   determined   from   the   electron   potential   map   do   not   exactly   agree   with   the   corresponding   data   measured   from   gas   adsorption   isotherm.   This   incon-­‐ sistency   might   arise   from   the   existence   of   particle   aggre-­‐ gation   and   roughness   of   the   silica   wall.   Moreover,   the   curvature   energy   fluctuates   slightly,   with   threshold   values   in  the  range  of  0.43-­‐0.57,  making  it  difficult  to  determine   the  actual  value  based  on  a  reconstructed  3D  model  with   resolution  in  the  nanometer  scale.   Figure   6   shows   the   3D   model   of   as-­‐made   and   calcined   SMCs  with  v(x,y,z)  values  equal   to   0.48  and  0.37,  respec-­‐ tively.  The  model  was  viewed  from  different  directions  to   display   the   shape   and   connectivity   of   mesocages   within   the   crystal.   In   these   reconstructed   3D   maps,   the   yellow   surface   represents   the   boundary   between   the   silica   wall   and  the  mesopores,  and  it  defines  the  shape  and  connec-­‐ tions   of   the   pores   in   the   structure.   Unlike   perfectly   spher-­‐ ical   cages   in   mesoporous   silica   with  a   pure   ccp   structure31,   mesocages   in   this   crystal   are   aspherical   but   expand   or   compress   from   different   orientations.   Details   of   this   structure   can   be   observed   in   Figure   S9.   Typically,   the   mesocages   are   expanded   along   the   c   axis   and   are   not   connected   to   the   adjacent   ones   in   the   same   layer,   and   windows  can  be  only  observed  between  two  layers.  When  

we   consider   symmetry,   the   morphology   and   connectivity   of  cages  fits  the  requirements  of  the  hcp  structure.  Com-­‐ pared   with   the   infinite   symmetries   of   perfect   spheres,   mesocages  here  present  the  point  group  symmetry  of  6m2   (Wyckoff   2c   or   2d   site   of   P63/mmc).   However,   in   SMCs   with  ccp  structures,  close  packing  is  formed  in  four  equiv-­‐ alent  planes  of  {111},  and  the  point  symmetry  at  the  center   of   the   pore   is   m3m.   This   is   a   characteristic   structural   difference   between   the   features   of   SMCs   with   hcp   and   ccp   structures.  Furthermore,  the  comparison  of  reconstructed   models  between  as-­‐made  and  calcined  samples  shows  fine   changes   in   pores   through   calcination.   In   the   as-­‐made   material,  cages  are  close  to  spherical  shape,  and  the  pore-­‐ openings  are  smaller  than  those  observed  in  the  calcined   sample,  as  shown  in  Figure  6b.  This  result  agrees  with  the   change  in  porosity  after  removing  templates.   Very   rarely,   ABC   stacking   sequences   of   the   layers   were   observed  in  a  few  of  the  crystals.  A  very  small  amount  of   ccp   intergrowth   produced   streaks   parallel   to   the   c*   axis   in   the   FD,   as   shown   in   the   insets   of   Figure   7   (indicated   by   the  white  arrowheads).  Interestingly,  the  external  surfaces   of   the   crystal   were   also   observed   to   the   arrangement   of   the  cages,  which  kink  at  the  point  of  ccp  stacking,  which   is  shown  in  Figure  7  (black  arrowheads).   The  existence  of  even  a  very  thin  layer  (one  ABC  stack-­‐ ing   sequence)   can   complicate   the   contrast   of   HRTEM   image  along  [0001]  axes,  as  shown  in  Figure  8.  The  TEM   images   and   averaged   TEM   image   shows   very   different   contrast  from  the  image  taken  from  [0001]  of  hcp  (Figure   5d).    

ACS Paragon Plus Environment

Page 7 of 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials tration   condition   is   the   key   to   exhibiting   pure   ccp   struc-­‐ ture.  

  Figure  7.  HRTEM  image  and  FD  taken  from  the  [2113]  direc-­‐ tion  of  layer  stacking.  Defects  can  be  observed  in  the  sample.   Three  parts  (marked  by  black  squares)  are  magnified  to  show   stacking  sequences.  

  The   diffraction   intensities   also   changed   in   FD  1120  and   became   much   stronger   than   in   2020.   The   ED   patterns   and   TEM   images   of   the   hcp   structure   with   the   ccp   con-­‐ nection   and   the   pure   hcp   have   been   simulated   in   the   dedicated   software   MesoPoreImage36,   which   provides   images   calculated   from   a   3D   continuum   model   of   meso-­‐ porous  crystal  structures.  The  simulated  hcp-­‐ccp  connec-­‐ tion  structure  showed  a  similar  ED  pattern  and  TEM  im-­‐ ages   (Figure   8b)   as   the   experimental   results,   but   its   re-­‐ sults   differed   from   those   of   the   pure   hcp   structure   (Figure   8c).   Figures   8d   and   8e   show   the   structural   model   with   a   BABCB  stacking  sequence,  where  two  hcp  structures  have   been  connected  by  a  ccp  layer.  The  void  of  the  hcp  struc-­‐ ture   (C   site)   is   occupied   by   the   stacking   of   ccp   and   new   hcp   layers.   Additionally,   the   coexistence   of   pure   hcp   and   defects   can   make   very   complex   structures.   When   the   nucleation   and   growth   rates   are   comparable,   the   crystal   growth   occurs   at   many   different   places,   and   domain   structures   are   often   created.   Figure   S10   shows   a   TEM   image   taken   from   the  [0001]  axes,   suggesting   three   dif-­‐ ferent   domains   (divided   by   dotted   lines).   The   typical   contrast   from   both   pure   hcp   and   hcp   connected   by   ccp   can   be   observed,   suggesting   that   the   inhomogeneous   growth   of   the   crystal   occurs   with   layer-­‐by-­‐layer   stacking.   When   the   domains   did   not   fit   each   other   well,   some   de-­‐ fects  and  Morie  patterns  were  created.        In   our   previous   work32,   by   using   C18-­‐3-­‐1   as   template   and   carboxyethylsilanetriol   sodium   salt   (CES)   as   CSDA,   re-­‐ markably   pure   ccp   have   been   synthesized   with   an   ex-­‐ tremely  low  surfactant  concentration  of  0.1~0.4  wt%.  This   finding   agrees   with   another   report   that   the   SMC   with   pure  fcc  was  synthesized  also  by  C18-­‐3-­‐1  under  similarly  low   concentration   conditions   but   in   strong   acid   and   without   CSDA33.  These  data  indicate  that  a  low  synthesis  concen-­‐

  Figure  8.  (a)  HRTEM  image,  FD  and  simulated  image  along   the  [0001]  area  with  stacking  defects;  Electron  diffraction   (ED)  pattern  and  simulated  TEM  image  of  hcp;  (b)  hcp  with   ccp  connection;  (c)  pure  hcp  structure;  d,  e)  structure  model   of  BABCB  layer  stacking  sequence.  

The   3D   reconstruction   result   shows   that   the   mesocages   are   highly   spherical.   At   low   concentration,   spherical   mi-­‐ celles  can  be  formed  homogeneously  in  aqueous  solution,   and  the  kinetics  of  cage  growth  can  be  well  controlled.        The   structural   transformation   from   pure   ccp   to   the   mixture   of   ccp   and   hcp   structures   occurs   with   increasing   amounts  of  co-­‐structure  directing  agents  (CSDA  with  one   carboxylate  group)  and  lower  concentrations  of  surfactant;   both  of  these  factors  decrease  the  repulsion  of  surfactant   headgroups   and   the   interface   curvature   of   micelles.   These   results   imply   a   possible   requirement   of   micelles   with   larger  g  values  for  hcp  compared  to  ccp.   Moreover,   these   data   suggest   that   the   mesocages   in   the   hcp   structure   should  be  aspherical.  Miyata  reported  on  the  preparation   of   mesoporous   silica   films   with   3D   hexagonal   structures   by   inducing   a   gradual   phase   transition   of   aligned   tube-­‐ like  micelles  into  spherical  ones38.  However,  a  deviation  of   39.4%  from  the  3D  hexagonal  structure  was  also  reported   after   calcination,   which   seems   to   be   out   of   acceptable   error.   And   the   morphology   of   mesocages   was   strangely   considered  spherical  without  any  direct  evidence.      Herein,   SMCs   with   pure   hcp   structure   were   also   syn-­‐ thesized   with   extremely   low   concentrations   of   approxi-­‐ mately  0.1  wt%.  However,  in  the  presence  of  EDTA-­‐silyl  as   CSDA,  the  high  negative  charge  density  due  to  three  car-­‐ boxylate  groups  would  bind  strongly  with  the  quaternary   ammonium   groups   of   the   cationic   surfactants   through   electrostatic   interaction,   thus   decreasing   repulsion   be-­‐ tween   the   head   groups   of   C18-­‐3-­‐1.  The   increase   of   pH   values   also   furthered   the   increase   in   charge   density   of   CSDA,   resulting   in   a   decreased   repulsion   of   cationic   surfactant   head   groups.   In   other   words,   to   maintain   the   charge   matching   at   the   interface   between   surfactant   and   CSDA,  

ACS Paragon Plus Environment

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

the   head-­‐groups   of   surfactant   shortened   the   mutual   dis-­‐ tance   and   packed   to   form   a   structure   with   lower   curva-­‐ ture.  In  this  case,  micelles  prefer  to  stay  ellipsoid  and  are   easily   distorted.   Densely   packed   micelles   thus   form   a   different   packing   from   the   ccp   structure,   and   the   struc-­‐ tural   transformation   from   hcp&ccp   to   hcp   occurs   (Figure   S4).   In  this  case,  it  is  possible  to  distinguish  and  characteri-­‐ ze   the   hcp   and   ccp   structures   separately.   The   ccp   is   pre-­‐ ferred   in   the   stacking   of   spherical   cages,   while   hcp   be-­‐ comes   favorable   in   the   deformation   of   spheres   with   a   lower   curvature.   As   a   result,   hcp   and   ccp   give   different   structural  features.     CONCLUSIONS   Hexagonal   close-­‐packed   SMCs   with   3D   hexagonal   mesostructures   have   been   successfully   synthesized   using   a   special   CSDA   (EDTA-­‐silyl)   in   a   simple   way.   The   struc-­‐ ture   was   determined   to   be   P63/mmc   by   combination   of   powder   XRD,   SEM   and   HRTEM   images.   We   believe   that   this   is   the   first   report   to   obtain   pure   hcp   structure   in   a   large   mesoporous   crystal.   Furthermore,   the   3D   recon-­‐ struction  model  of  electrostatic  potential  distribution  was   built  using  Fourier  synthesis  of  crystal  potentials  obtained   from   HRTEM   images   to   illustrate   the   shape   and   connec-­‐ tion  of  mesopores.  The  mechanism  of  stability  in  the  hcp   structure  during  crystal  growth  is  discussed  in  considera-­‐ tion   of   layer   stacking   and   symmetry   support.   Occasional   stacking  defects  were  observed  in  a  few  crystals  and  stud-­‐ ied  by  TEM  image  and  simulation.  This  subject  will  be  of   interest  to  researchers  in  diverse  areas  of  chemistry,  par-­‐ ticularly  those  in  inorganic,  colloid,  physical,  and  materi-­‐ als  chemistry.    

ASSOCIATED CONTENT Supporting Information. Powder XRD patterns of SMCs synthesized and selected under different pH values, selected electron diffraction patterns along three zone axes and HRTEM images of three different domains were provided as images. These data were used to evaluate pore fraction versus threshold value, F/A versus the threshold value, several 2D EPM slices, 3D model with threshold value of 0.57. Tables of plane groups for different space groups and structure factors for as-made and calcined samples were tabulated. This material is available free of charge via the Internet at http://pubs.acs.org. AUTHOR INFORMATION Corresponding Author *  Email:  [email protected];  [email protected];luhan@  

Funding Sources This  work  is  supported  by  VR,  Knut  and  Alice  Wallenberg   Foundation,  Berzelii  EXSELENT  (Sweden),  WCU  (R-­‐31-­‐2008-­‐ 000-­‐10055-­‐0,  Korea)  and  the  National  Natural  Science  Foun-­‐ dation  of  China  (Grant  No.  21201120)  and  973  project  of  China   (2009CB930403,  2013CB934101)  and  Evonik  industry.  

Page 8 of 10

ABBREVIATIONS CCR2,  CC  chemokine  receptor  2;  CCL2,  CC  chemokine  ligand   2;  CCR5,  CC  chemokine  receptor  5;  TLC,  thin  layer  chroma-­‐ tography.  

REFERENCES (1)    Woodcock,  L.  V.  Nature  1997,  385,  141.   (2)  Hales,  T.  C.  Annals  of  Mathematics.   Second  Series  2005,  162,   1065.     (3)  Woodcock,  L.  V.  Nature  1997,  385,  141.   (4)  Bolhuis,  P.  G.;  Frenkel,  D.;  Muse,  S.-­‐C.;  Huse,  D.  A.  Nature   1997,  388,  236.   (5)  Bolhuis,  P.  G.  D.;  Frenkel,  Muse,  S.-­‐C.;  Huse,  D.  A.  Nature   1997,  388,  235.   (6)  Bruce,  A.  D.;  Wilding,  N.  B.;  Ackland,  G.  J.  Phys.  Rev.  Lett.   1997,  79,  3002.   (7)  Mau,  S.-­‐C.;  Huse,  D.  A.  Phys.  Rev.  E.  1999,  59,  4396.     (8)  Hoover,  W.  G.;  Ree,  F.  H.  J.  Chem.  Phys.  1968,  49,  3609.   (9)  Frenkel,  D.;  Ladd,  A.  J.  Chem.  Phys.  1984,  81,  3188.   (10)  Pronk,  S.;  Frenkel,  D.  Phys.  Rev.  Lett.  2003,  90,  255501.   (11)  Radin,  C.;  Sadun,  L.  Phys.  Rev.  Lett.    2005,  94,  015502.   (12)  Kresge,  C.  T.;  Leonowicz,  M.  E.;  Roth,  W.  J.;  Vartuli,  J.  C.;   Beck,  J.  S.  Nature  1992,  359,  710.   (13)   Beck,   J.   S.;   Vartuli,   J.   C.;   Roth,   W.   J.;   Leonowicz,   M.   E.;   Kresge,  C.  T.;  Schmitt,  K.  D.;  Chu,  C.  T.  W.;  Olson,  D.  H.;  Shep-­‐ pard,  E.  W.;  Mccullen,  S.  B.;  Higgins,  J.  B.;  Schlenker,  J.  L.  J.  Am.   Chem.  Soc.  1992,  114,  10834.   (14)  Huo,  Q.;  Margolese,  D.  I.;  Stucky,  G.  D.  Chem.   Mater.  1996,   8,  1147.   (15)  Israelachvili,  J.  N.;  Mitchell,  D.  J.;  Ninham,  B.  W.  J.  Chem.   Soc.,  Faraday  Trans.  2  1976,  72,  1525.   (16)  Sakamoto,  Y.;  Kaneda,  M.;  Terasaki,  O.;  Zhao,  D.  Y.;  Kim,  J.   M.;  Stucky,  G.  D.;  Shim,  H.  J.;  Ryoo,  R.  Nature  2000,  408,  449.   (17)  Zhao,  D.  Y.;  Huo,  Q.  S.;  Feng,  J.  L.;  Chmelka,  B.  F.;  Stucky.   G.  D.  J.  Am.  Chem.  Soc,  1998,  120,  6024.   (18)  Yu,  C.  Z.;  Yu,  Y.  H.;  Zhao.  D.  Y.  Chem.  Comm.  2000,  575.   (19)  Matos,  J.  R.;  Kruk,  M.;  Mercuri,  L.  P.;  Jaroniec,  M.;  Zhao,   L.;   Kamiyama,   T.;   Terasaki,   O.;   Pinnavaia,   T.   J.;   Liu,   Y.   J.   Am.   Chem.  Soc.  2003,  125,  821.     (20)  Fan,  J.;  Yu,  C.  Z.;  Gao,  T.;  Lei,  J.;  Tian,  B.  Z.;  Wang,  L.  M.;   Luo,  Q.  ;  Tu,  B.;  Zhou,  W.  Z.;  Zhao,  D.  Y.  Angew.   Chem.   Int.   Ed.   2003,  42,  3146.   (21)   Garcia-­‐Bennett,   A.   E.;   Williamson,   S.;   Wright,   P.   A.;   Shan-­‐ non,  I.  J.  Mater.  Chem.  2002,  12,  3533.   (22)  Huo,  Q.;  Leon,  R.;  Petroff,  P.  M.;  Stucky,  G.   Science,  1995,   268,  1334.   (23)  Sakamoto,  Y.;  Isabel,  D.;  Terasaki,  O.;  Zhao,  D.  Y.;  Perez-­‐ Pariente,  J.;  Kim,  J.  M.;  Stucky,  G.  D.  J.  Phys.  Chem.  B.  2002,  106,   3118.     (24)   Hunter,   H.   M.   A.;   Garcia-­‐Bennett,   A.   E.;   Shannon,   I.   J.;   Zhou,  W.;  Wright,  P.  A.  J.  Mater.  Chem.,  2002,  12,  20.   (25)  Kruk,  M.;  Jaronicc,  M.;  Ryoo,  R.;  Kim,  J.  M.  Chem.  Mater.,   1999,  11,  2568.    (26)  Huo,  Q.  S.;  Margolese,  D.  I.;  Ciesla,  U.;  Feng,  P.  Y.;  Gier,   T.  E.;  Sieger,  P.;  Leon,  R.;  Petroff,  P.  M.;  Schuth,  F.;  Stucky,  G.  D.   Nature,  1994,  368,  317.   (27)  Shen,  S.  D.;  Li,  Y.  Q.;  Zhang,  Z.  D.;  Fan,  J.;  Tu,  B.;  Zhou,  W.   Z.;  Zhao.  D.  Y.  Chem.  Comm.  2002,  2212.   (28)   Garcia-­‐Bennett,   A.   E.;   Terasaki,   O.;   Che,   S.;   Tatsumi,   T.   Chem.  Mater.  2004,  16,  813.   (29)  Garcia-­‐Bennett,  A.  E.;  Miyasaka,  K.;  Terasaki,  O.;  Che,  S.   Chem.  Mater.  2004,  16,  3597.   (30)   Garcia-­‐Bennett,   A.E.;   Kupferschmidt,   N.;   Sakamoto,   Y.;   Che,  S.;  Terasaki,  O.  Angew.  Chem.  Int.  Ed.  2005,  44,  5317.  

ACS Paragon Plus Environment

Page 9 of 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

(31)  Shen,  S.  D.;  Garcia-­‐Bennett,  A.  E.;  Liu,  Z.;  Lu,  Q.  Y.;  Shi,  Y.   F.;  Yan,  Y.;  Yu,  C.  Z.;  Liu,  W.  C.;  Cai,  Y.;  Terasaki,  O.;  Zhao,  D.  Y.  J.   Am.  Chem.  Soc.  2005,  127,  6780.   (32)  Han,  L.;  Sakamoto,  Y.;  Terasaki,  O.;  Li,  Y.  S.;  Che,  S.  J.   Ma-­‐ ter.  Chem.  2007,  17,  1216.    (33)  Miyasaka,  K.;  Han,  L.;  Che,  S.;  Terasaki,  O.  Angew.  Chem.   Int.  Ed.  2006,  45,  6516.   (34)  Hovmöller,  S.  Ultramicroscopy  1992,  41,  121.   (35)  Momma,  K.;  Izumi,  F.  J.  Appl.  Crystallogr.  2011,  44,  1272.    

(36)   Ohsuna,   T.;   Sakamoto,   Y.;   Terasaki   O.;   Kuroda,   K.   Solid   State  Sci.  2011,  13,  736.   (37)   Che,   S.;   Garcia-­‐Bennett,   A.   E.;   Yokoi,   T.;   Sakamoto,   K.;   Kunieda,  H.;  Terasaki,  O.;  Tatsumi,  T.  Nat.  Mater.  2003,  2,  801   (38)   Miyata,   H.;   Suzuki,   T.;   Fukuoka,   A.;   Sawada,   T.;   Wa-­‐ tanabe,   M.;   Noma,   T.;   Takada,   K.   Mukaide,   T.;   Kuroda,   K.   Nat.   Mater.  2004,  3,  651.  

 

 

ACS Paragon Plus Environment

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

SYNOPSIS  TOC    

  3D  electrostatic  potential  maps  depicting  a  hexagonal,  close-­‐packed  structure  in  silica  mesoporous  crystal.                                                      

ACS Paragon Plus Environment

Page 10 of 10