Suppression and Reversion of Light-Induced Phase Separation in

Jul 31, 2019 - pdf. nz9b01383_si_001.pdf (604.53 kb) ... Physics, University of Science and Technology of China, Hefei, Anhui 230026, China...
1 downloads 0 Views 775KB Size
Subscriber access provided by BUFFALO STATE

Letter

Suppression and Reversion of Light-induced Phase Separation in Mixed-halide Perovskites by Oxygen Passivation Weisheng Fan, Yongliang Shi, Tongfei Shi, shenglong chu, Wenjing Chen, Kester Ighodalo, Jin Zhao, Xinhua Li, and Zhengguo Xiao ACS Energy Lett., Just Accepted Manuscript • DOI: 10.1021/acsenergylett.9b01383 • Publication Date (Web): 31 Jul 2019 Downloaded from pubs.acs.org on July 31, 2019

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Suppression and reversion of light-induced phase separation in mixed-halide perovskites by oxygen passivation Weisheng Fan,1,2,3,† Yongliang Shi,2,3,† Tongfei Shi,1 Shenglong Chu,1,2,3 Wenjing Chen,2,3 Kester O. Ighodalo,2,3 Jin Zhao,2,3,* Xinhua Li,1,* Zhengguo Xiao2,3,* 1Key

Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China

2Hefei

National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China

3Department

of Physics, CAS Key Laboratory of Strongly-coupled Quantum Matter

Physics, University of Science and Technology of China, Hefei, Anhui 230026, China Corresponding Authors *E-mail:

[email protected], [email protected], [email protected]

1 ACS Paragon Plus Environment

Page 2 of 23

Page 3 of 23

ABSTRACT: Mixed-halide perovskites (MHPs), such as methylammonium lead bromide-iodide, CH3NH3Pb(BrxI1-x)3 (0 Pb2+.33 This suggests that the most likely ion migration channels in MAPb(BrxI1-x)3 are those related to XV. The released energy for O atom filling the XV is relatively large, around 1.6 eV; O atom will therefore preferentially fill the XV. In addition, oxygen atom has tighter bonds with adjacent Pb atoms than Br and I atoms due to its larger electronegativity. Therefore, the halide ions have to overcome higher diffusion barriers, resulting in suppressed phase segregation. Base on the above results, we are able to explain the suppression and recovery of phase separation of MHP films in O2 under light illumination. As shown in Figure 7, under light illumination, the trapped charges cause band bending and the generated electric field cause halide, most likely iodide ions, drift to the crystal surface (Figure 7b). Oxygen can passivate the surface traps, so that the band bending near the surface can be reduced (Figure 7c). Therefore, the accumulated iodide ions are expected to diffusion back to the bulk due to the concentration gradient (Figure 7d), resulting in uniform MHP films under light illumination. We also examine the duration of O2 passivation effect in MAPb(Br0.4I0.6)3 film. The film was illuminated under one sun in O2 before measurement, and stored in N2 atmosphere in dark during the measurement. As shown in Figure S4, the PL peak position kept almost the same at around 660 nm for around 100 hours. The PL peak then red-shifted to 710 nm, indicating that the oxygen passivation is a reversible process. 9 ACS Paragon Plus Environment

Page 10 of 23

Page 11 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

We finally test the passivation effect of O2 in LEDs (Figure S5). It also should be noted that the LED performances using stoichiometric MAPb(BrxI1-x)3 (0≤x≤1) are usually very poor because of the low electron-hole capture rates. Incorporation of extra bulky organoammonium halide can dramatically improve the performance, but that will affect the study of phase separation in this work. Therefore, we continue to use stoichiometric MAPb(Br0.4I0.6)3 film in this work. The perovskite LED structure is ITO/poly-TPD (40 nm)/MAPb(Br0.4I0.6)3 (40 nm)/TPBi (40 nm)/LiF (1.2 nm)/Al (100 nm) (ITO: indium tin oxide; poly-TPD: poly[N,N'-bis(4-butylphenyl)-N,N'bis(phenyl)-benzidine];

TPBi:

2,2′,2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-

benzimidazole)). It should be noted that the electric field can also drive halide migration and phase separation.8 Figure S5 shows current density, external quantum efficiency and electroluminescence (EL) spectra of the LEDs. The LED shows a strong EL peak at 660 nm after O2 passivation initially, compared with 730 nm for control devices without passivation. This result further demonstrate the role of O2 passivation in suppressing light (or electric field) induced phase separation in MHPs. In summary, we have studied the O2 passivation effect and suppression of light induced phase separation in MHP films. Combining both experimental results and theoretical calculations, we demonstrate that oxygen molecule can suppress halide redistribution by passivating the traps and/or occupying halide vacancies. In addition, the phase separated films can be recovered to uniform state after O2 passivation. Our work provides a promising way to solve phase separation issue in MHPs. In addition, the switchable emission color in N2 and O2 may have potential application in light emitting field-effect transistors where the perovskite films expose to external environment.

10 ACS Paragon Plus Environment

ACS Energy Letters

FIGURES b

a x=0 x=0.2 x=0.4

40

1.0 Fresh

x=0.6 x=0.8 x=1

Normalized PL intensity (a.u.)

Fresh 40 20 N2 40 20 H2O 40

1.0 N 2 0.5 1.0 H O 2 0.5 1.0 O 2 0.5

20 0

x=0 x=0.2 x=0.4 x=0.6 x=0.8 x=1

0.5

20

Absorption (%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 12 of 23

O2 500

600 700 Wavelength (nm)

0.0

800

500

600 700 Wavelength (nm)

800

Figure 1. (a) Absorption and (b) normalized PL spectrum of MAPb(BrxI1-x)3 films before illumination and after illumination in a pure nitrogen, moisture (N2+H2O, ~35% relative humidity), and pure oxygen environment. The PL measurement was done with a continuous excitation with a wavelength of 350 nm and an intensity of 6 mW cm-2.

11 ACS Paragon Plus Environment

Page 13 of 23

Absorption (%)

a

MAPb(Br0.2I0.8)3

b

Illumination time 0 min 10 min 20 min 40 min

40

0

c

MAPb(Br0.4I0.6)3

g

f

e

Illumination time 0 min 10min 20min 40min 60min 80min

Illumination time 0 min 10 min 20 min 40 min

500

600 700 Wavelength (nm)

800

600 700 Wavelength (nm)

d

MAPb(Br0.6I0.4)3 Illumination time 0 min 10 min 20 min 40 min 60 min 80 min

Illumination time 0 min 10 min 20 min 40 min 60 min 80 min

20

PL intensity (a.u.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

Illumination time 0 min 10 min 20 min 40 min

h Illumination time 0 min 10 min 20 min 40 min

Illumination time 0 min 10 min 20 min 40 min 60 min 80 min

800

MAPb(Br0.8I0.2)3

600 700 Wavelength (nm)

800

600 700 Wavelength (nm)

800

Figure 2. Absorption and PL spectrum of MAPb(BrxI1-x)3 films with illumination time in an oxygen environment for (a, e) x=0.2, (b, f) x=0.4, (c, g) x=0.6 and (d, h) x=0.8. The PL measurement was done in a pure oxygen environment with a continuous excitation with a wavelength of 350 nm and an intensity of 6 mW cm-2.

12 ACS Paragon Plus Environment

ACS Energy Letters

20

50

Normalized PL intensity

d

0

30

60

Normalized PL intensity

0.5

0.0

60

Mixed-phase PL Iodide-phase PL

1.0

0.0

30 40 Time (min)

90 120 Time (min)

150

0

10

20

30 40 Time (min)

Mixed-phase PL

1.0

0.5

0.0

180

Mixed/Iodide-phase PL / 2.1 mW cm-2 / 3.8 mW cm-2 / 6.0 mW cm-2

0.5

50

60

Iodide-phase PL

Oxygen

10

1.0

Nitrogen

0

Darkness (20 min)

c

Mixed/Iodide-phase PL / 100:0 (VO2:VN2) / 70:30 (VO2:VN2) / 30:70 (VO2:VN2)

0.5

0.0

b

Excitation intensity: 10 mW cm-2

1.0

Illumination (10 min)

Normalized PL intensity

a

Normalized PL intensity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 14 of 23

0

20

40 60 Time (min)

80

100

Figure 3. Evolution of PL emission under (a) varying O2 partial pressures and (b) varying light intensities in pure O2. (c) Evolution of PL emission under light/dark circles and (d) O2/N2 circles. All measurements were performed on MAPb(Br0.4I0.6)3 films. The PL intensities of mixed-phase PL (660 nm) and Iodide-phase PL (720nm) are normalized to their maximum values respectively. The PL measurement was done with a continuous excitation with a wavelength of 350 nm and an intensity of 6.0 mW cm-2, unless otherwise stated.

13 ACS Paragon Plus Environment

Page 15 of 23

20

600 700 Wavelength (nm)

5h 6h 7h 8h

800

1.0

0.5

Heating time 0h 1h 2h 3h 4h 5h 6h 7h 8h

0.0 500

600 700 Wavelength (nm)

Absorption edge/ PL peak position (nm)

40

0 500

c

b Heating time 0h 1h 2h 3h 4h

Normalized PL intensity

a Absorption (%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

800

720 710 700 690 680 670 660 650

Absorption edge position PL peak position

0 1 2 3 4 5 6 7 8 Time (h)

Figure 4. (a) Absorption and (b) PL spectrum of MAPb(Br0.4I0.6)3 film with different heating time in an oxygen environment. The PL measurement was done in a pure oxygen environment with a continuous excitation with a wavelength of 350 nm and an intensity of 6 mW cm-2. (c) Plot of absorption edges and PL peak positions versus heating time.

14 ACS Paragon Plus Environment

ACS Energy Letters

a

Normalized XRD intensity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

13

b

Page 16 of 23

d

c

e

MAPb(Br0.2I0.8)3 MAPb(Br0.4I0.6)3 MAPb(Br0.6I0.4)3 MAPb(Br0.8I0.2)3 MAPbI3 Fresh Fresh Fresh Fresh Fresh

f

MAPbBr3 Fresh

N2

N2

N2

N2

N2

N2

H2O

H 2O

H 2O

H 2O

H 2O

H 2O

O2

O2

O2

O2

O2

O2

14 15 14 15 2 (degree) 2 (degree)

14 15 2 (degree)

14 15 2 (degree)

15 16 14 15 14 2 (degree) 2 (degree)

Figure 5. XRD characterization of MAPb(BrxI1-x)3 films for (a) x=0, (b) x=0.2, (c) x=0.4, (d) x=0.6, (e) x=0.8 and (f) x=1. Black, red, blue and pink line represent before illumination and after illumination in N2, H2O (N2+H2O, ~35% relative humidity) and O2 respectively (the fitted curves are indicated by the dashed lines).

15 ACS Paragon Plus Environment

Page 17 of 23

a

b Fresh O2

Pb 4f Intensity (a.u.)

4f7/2

134

Fresh O2

O 1s

4f5/2 Pb-O

136

c

138 140 142 144 Binding Energy (eV)

DOS (a.u.)

Pbi

146 526 528 530 532 534 536 538 Binding Energy (eV) d

Total Pbi

O passivated Pbi

Total Pbi O

O passivated Iv

Total O

Trap state

e

Total

Iv

DOS (a.u.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

f

Trap state -3

-2

-1

0

1

2

3 -3

-2

-1

Br

I

Pb

O

0

1

2

3

Energy (eV)

Energy (eV) MA

Figure 6. The XPS core level spectra for (a) Pb 4f and (b) O 1s of MAPb(Br0.4I0.6)3 film before and after illumination in oxygen. The PDOS of (c, d) Pbi and (e, f) IV before and after O2 passivation. The insets show the orbital distribution of the trap states.

16 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

a

Uniform state in dark

b

Br- I Br BrI- I- I- Br I- Br- I- I I-

I- - BrI- Br- I - BrI IBr- IBrI- I-

Page 18 of 23

Light induced phase separation I- Br - Br- I- Br -I I BrBr I Br I -I I I I I Brdrift I Br- Br- I- BrII I I I

eh+

Trap states

d

c

Uniform state under light I- - BrI- Br- I - BrI IBr- IBrI- I-

O2 O2 O2 O2

Br- I Br BrI I- I- Br I- Br- I- I I-

Halide diffusion after O2 passivation under light I- Br - Br- I- Br - I O2I BrBr I Br I I O 2 I I I I I BrO2 Br- diffusion Br- I- I- O2 I- Br II I

Figure 7. Schematics of the reversion of phase separation in MHPs due to O2 passivation. (a) Uniform state in dark, (b) light induced phase separation caused by the trapped charges at the surface, (c) iodide diffusion back to the bulk due to the concentration gradient, (d) uniform state under light.

17 ACS Paragon Plus Environment

Page 19 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

Table 1. Composition changes of MAPb(BrxI1-x)3 films before and after illumination in different environment. Samples Fresh

N2

H2O

x values for MAPb(BrxI1-x)3 films x=0.2

x=0.4

x=0.6

x=0.8

x=0.05

x=0.29

x=0.50

x=0.71

x=0.34

x=0.51

x=0.85

x=0.89

x=0.04

x=0.36

x=0.51

x=0.66

x=0.33

x=0.57

x=0.82

x=0.86

18 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ASSOCIATED CONTENT Supporting Information The Supporting Information is available free of charge on the ACS Publications website. Method section including mixed-halide perovskite film fabrication and characterizations, theoretical calculation, additional absorption and PL spectra. AUTHOR INFORMATION Corresponding Authors *E-mail:

[email protected], [email protected], [email protected].

Author Contributions †Weisheng

Fan and Yongliang Shi contributed equally. All authors have given approval to the final version of the manuscript. Notes The authors declare no competing financial interest. ACKNOWLEDGMENT This work was supported by National Natural Science Foundation of China (No. 51872274, 51472247, 51671182), the Joint Funds of the National Natural Science Foundation of China (No. U1632123). REFERENCES (1)

Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical

Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells. Nano Lett. 2013, 13, 1764-1769. (2)

Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.;

Snaith, H. J. Formamidinium Lead Trihalide: a Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells. Energy Environ. Sci. 2014, 7, 982-988.

19 ACS Paragon Plus Environment

Page 20 of 23

Page 21 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

(3)

Sutter-Fella, C. M.; Li, Y.; Amani, M.; Ager, J. W.; Toma, F. M.;

Yablonovitch, E.; Sharp, I. D.; Javey, A. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites. Nano Lett. 2016, 16, 800-806. (4)

Sadhanala, A.; et al. Blue-Green Color Tunable Solution Processable

Organolead Chloride-Bromide Mixed Halide Perovskites for Optoelectronic Applications. Nano Lett. 2015, 15, 6095-101. (5)

Pathak, S.; et al. Perovskite Crystals for Tunable White Light Emission. Chem.

Mater. 2015, 27, 8066-8075. (6)

Eperon, G. E.; et al. Perovskite-Perovskite Tandem Photovoltaics with

Optimized Bandgaps. Science 2016, 354, 861-865. (7)

McMeekin, D. P.; et al. A Mixed-Cation Lead Mixed-Halide Perovskite

Absorber for Tandem Solar Cells. Science 2016, 351, 151-155. (8)

Xiao, Z.; Zhao, L.; Tran, N. L.; Lin, Y. L.; Silver, S. H.; Kerner, R. A.; Yao,

N.; Kahn, A.; Scholes, G. D.; Rand, B. P. Mixed-Halide Perovskites with Stabilized Bandgaps. Nano Lett. 2017, 17, 6863-6869. (9)

Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H.

I.; McGehee, M. D. Reversible Photo-Induced Trap Formation in Mixed-Halide Hybrid Perovskites for Photovoltaics. Chem. Sci. 2015, 6, 613-617. (10) Bischak, C. G.; Hetherington, C. L.; Wu, H.; Aloni, S.; Ogletree, D. F.; Limmer, D. T.; Ginsberg, N. S. Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites. Nano Lett. 2017, 17, 1028-1033. (11) Slotcavage, D. J.; Karunadasa, H. I.; McGehee, M. D. Light-Induced Phase Segregation in Halide-Perovskite Absorbers. ACS Energy Lett. 2016, 1, 1199-1205.

20 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(12) Braly, I. L.; Stoddard, R. J.; Rajagopal, A.; Uhl, A. R.; Katahara, J. K.; Jen, A. K. Y.; Hillhouse, H. W. Current-Induced Phase Segregation in Mixed Halide Hybrid Perovskites and its Impact on Two-Terminal Tandem Solar Cell Design. ACS Energy Lett. 2017, 2, 1841-1847. (13) Brivio, F.; Caetano, C.; Walsh, A. Thermodynamic Origin of Photoinstability in the CH3NH3Pb(I1-xBrx)3 Hybrid Halide Perovskite Alloy. J. Phys. Chem. Lett. 2016, 7, 1083-1087. (14) Yang, X.; Yan, X.; Wang, W.; Zhu, X.; Li, H.; Ma, W.; Sheng, C. Light Induced Metastable Modification of Optical Properties in CH3NH3PbI3-xBrx Perovskite Films: Two-Step Mechanism. Org. Electron. 2016, 34, 79-83. (15) Samu, G. F.; Janáky, C.; Kamat, P. V. A Victim of Halide Ion Segregation. How Light Soaking Affects Solar Cell Performance of Mixed Halide Lead Perovskites. ACS Energy Lett. 2017, 2, 1860-1861. (16) Duong, T.; Mulmudi, H. K.; Wu, Y.; Fu, X.; Shen, H.; Peng, J.; Wu, N.; Nguyen, H. T.; Macdonald, D.; Lockrey, M. Light and Electrically Induced Phase Segregation and Its Impact on the Stability of Quadruple Cation High Bandgap Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 26859-26866. (17) Xiao, Z.; Yuan, Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. Giant Switchable Photovoltaic Effect in Organometal Trihalide Perovskite Devices. Nat. Mater. 2015, 14, 193-198. (18) Barker, A. J.; et al. Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films. ACS Energy Lett. 2017, 2, 1416-1424. (19) Yoon, S. J.; Kuno, M.; Kamat, P. V. Shift Happens. How Halide Ion Defects Influence Photoinduced Segregation in Mixed Halide Perovskites. ACS Energy Lett. 2017, 2, 1507-1514. 21 ACS Paragon Plus Environment

Page 22 of 23

Page 23 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

(20) Rehman, W.; McMeekin, D. P.; Patel, J. B.; Milot, R. L.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Photovoltaic Mixed-Cation Lead Mixed-Halide Perovskites: Links Between Crystallinity, Photo-stability and Electronic Properties. Energy Environ. Sci. 2017, 10, 361-369. (21) Tang, X.; van den Berg, M.; Gu, E.; Horneber, A.; Matt, G. J.; Osvet, A.; Meixner, A. J.; Zhang, D.; Brabec, C. J. Local Observation of Phase Segregation in Mixed-Halide Perovskite. Nano Lett. 2018, 18, 2172-2178. (22) Yun, J. S.; Seidel, J.; Kim, J.; Soufiani, A. M.; Huang, S.; Lau, J.; Jeon, N. J.; Seok, S. I.; Green, M. A.; Ho-Baillie, A. Critical Role of Grain Boundaries for Ion Migration in Formamidinium and Methylammonium Lead Halide Perovskite Solar Cells. Adv. Energy Mater. 2016, 6, 1600330. (23) Ruth, A.; Brennan, M. C.; Draguta, S.; Morozov, Y. V.; Zhukovskyi, M.; Janko, B.; Zapol, P.; Kuno, M. Vacancy-Mediated Anion Photosegregation Kinetics in Mixed Halide Hybrid Perovskites: Coupled Kinetic Monte Carlo and Optical Measurements. ACS Energy Lett. 2018, 3, 2321-2328. (24) Knight, A. J.; Wright, A. D.; Patel, J. B.; McMeekin, D. P.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Electronic Traps and Phase Segregation in Lead MixedHalide Perovskite. ACS Energy Lett. 2019, 4, 75-84 (25) Belisle, R. A.; Bush, K. A.; Bertoluzzi, L.; Gold-Parker, A.; Toney, M. F.; McGehee, M. D. Impact of Surfaces on Photoinduced Halide Segregation in MixedHalide Perovskites. ACS Energy Lett. 2018, 3, 2694-2700 (26) Jesper Jacobsson, T.; Correa-Baena, J.-P.; Pazoki, M.; Saliba, M.; Schenk, K.; Grätzel, M.; Hagfeldt, A. Exploration of The Compositional Space for Mixed Lead Halogen Perovskites for High Efficiency Solar Cells. Energy Environ. Sci. 2016, 9, 1706-1724. 22 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(27) Abdi-Jalebi, M.; et al. Maximizing and Stabilizing Luminescence from Halide Perovskites with Potassium Passivation. Nature 2018, 555, 497-501. (28) Balakrishna, R. G.; Kobosko, S. M.; Kamat, P. V. Mixed Halide Perovskite Solar Cells. Consequence of Iodide Treatment on Phase Segregation Recovery. ACS Energy Lett. 2018, 3, 2267-2272. (29) Hu, M.; Bi, C.; Yuan, Y.; Bai, Y.; Huang, J., Stabilized Wide Bandgap MAPbBrxI3-x Perovskite by Enhanced Grain Size and Improved Crystallinity. Adv. Sci. 2016, 3, 1500301. (30) Senocrate, A.; Acartürk, T.; Kim, G. Y.; Merkle, R.; Starke, U.; Grätzel, M.; Maier, J. Interaction of Oxygen with Halide Perovskites. J. Mater. Chem. A 2018, 6, 10847-10855. (31) Zatsepin, D. A.; Boukhvalov, D. W.; Gavrilov, N. V.; Zatsepin, A. F.; Shur, V. Y.; Esin, A. A.; Kim, S. S.; Kurmaev, E. Z. Soft Electronic Structure Modulation of Surface (Thin-film) and Bulk (Ceramics) Morphologies of TiO2-host by PbImplantation: XPS-and-DFT Characterization. Appl. Surf. Sci. 2017, 400, 110-117. (32) Ahmad, Z.; Najeeb, M. A.; Shakoor, R. A.; Alashraf, A.; Al-Muhtaseb, S. A.; Soliman, A.; Nazeeruddin, M. K. Instability in CH3NH3PbI3 Perovskite Solar Cells Due to Elemental Migration and Chemical Composition Changes. Sci. Rep. 2017, 7, 15406. (33) Brennan, M. C.; Draguta, S.; Kamat, P. V.; Kuno, M. Light-Induced Anion Phase Segregation in Mixed Halide Perovskites. ACS Energy Lett. 2018, 3, 204-213.

23 ACS Paragon Plus Environment

Page 24 of 23