Subscriber access provided by UNIV AUTONOMA DE COAHUILA UADEC
C: Surfaces, Interfaces, Porous Materials, and Catalysis
Surface-Catalyzed Oxygen Exchange during Mineral Carbonation in Nanoscale Water Films Quin R.S. Miller, David A Dixon, Sarah D. Burton, Eric D. Walter, David W. Hoyt, Ashley S. McNeill, Joshua D. Moon, Kanchana Sahan Thanthiriwatte, Eugene S. Ilton, Odeta Qafoku, Christopher J. Thompson, Herbert Todd Schaef, Kevin M. Rosso, and John S. Loring J. Phys. Chem. C, Just Accepted Manuscript • DOI: 10.1021/acs.jpcc.9b02215 • Publication Date (Web): 02 May 2019 Downloaded from http://pubs.acs.org on May 2, 2019
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Surface-Catalyzed Oxygen Exchange during Mineral Carbonation in Nanoscale Water Films
Quin R. S. Miller*1, David A. Dixon2, Sarah D. Burton3, Eric D. Walter3, David W. Hoyt3, Ashley S. McNeill2, Joshua D. Moon2, K. Sahan Thanthiriwatte2, Eugene S. Ilton1, Odeta Qafoku1, Christopher J. Thompson1, Herbert T. Schaef1, Kevin M. Rosso1, and John S. Loring*1
1Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
2Department
of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States 3William R. Wiley Environmental and Molecular Sciences Laboratory, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
Corresponding Authors *Quin R. S. Miller;
[email protected] *John S. Loring;
[email protected] 1 ACS Paragon Plus Environment
The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Abstract Properties of nanoconfined adsorbed H2O on mineral surfaces are distinct from those of bulk H2O, and this can lead to significant differences in reactivity. Here, we investigate how Oexchange between H2O and CO2 depends on the thickness of H2O films on the mineral forsterite (Mg2SiO4), which at sufficient adsorbed H2O is highly reactive towards carbonation. Rates of Oexchange measured using O-isotopic tracers and infrared spectroscopy increase with adsorbed H2O concentration and are two orders of magnitude faster than for inert substrates such as fumed silica (SiO2). Quantum chemical calculations demonstrate that O exchange can be catalyzed through interactions with active Mg2+ sites that lower the barrier for carbonic acid formation. These active metal centers exist as A ' 0.9999
1715
1615
C
.25
.20
Component #1
Component #2
.002
.02
B Absorbance
A
Relative Concentration
Figure 8
Absorbance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
The Journal of Physical Chemistry
1515
1415
1315 -1
Wavenumber (cm )
Component #2 Component #3 Component #4
.15 Estimated Uncertainty
.10
±0.006
.05
0.00 1715
1615
1515
1415
1315
-1
Wavenumber (cm )
0.0
.5
1.0
1.5
2.0
2.5
3.0
D2O Coverage (ML)
Figure 8. ATR-IR spectra (panel a) as a function of RH at an increment of ~5% from ~5% to ~85% RH from an IR titration of forsterite with D2O in scCO2 at 50 °C and 90 bar. Four-component MCR-ALS fits accounted for better than 99.99% of the variance, as demonstrated by the small residuals shown offset and below the measured spectra. The calculated spectral components are shown in panel b and are discussed in the main text. The relative concentrations of each of these components are shown in panel c as a function of ML coverage of D2O. We estimate an uncertainty in the predicted relative concentrations of ±0.006 units (see error bar).
35 ACS Paragon Plus Environment
The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Table 1. Predicted reaction free energies at 298 K in kcal/mol in aqueous solution.a Reaction NGCOSMO NGPCM NGSMD Separated Ions X Solvent Separated Ion Pair [Mg(H2O)6]2+ + [CO3(H2O)9]2- X -10.1 -22.8 -5.3 Mg(H2O)6·CO3(H2O)9 [Mg(H2O)6]2+ + [HCO3(H2O)7]-X -1.7 -11.1 0.4 [Mg(H2O)6·HCO3(H2O)7]+ Separated Ions X Contact Ion Pair [Mg(H2O)6]2+ + [CO3(H2O)9]2- X -21.0 -34.5 -16.2 Mg(H2O)6·CO3(H2O)9 (A) [Mg(H2O)6]2+ + [CO3(H2O)9]2- X -25.6 -37.8 -22.7 Mg(H2O)6·CO3(H2O)9 (B) [Mg(H2O)6]2+ + [HCO3(H2O)7]-X -11.9 -22.7 -7.7 + [Mg(H2O)6·HCO3(H2O)7] Contact Ion Pair X Solvent Separated Ion Pair Mg(H2O)6·CO3(H2O)9 10.9 11.1 10.9 + [Mg(H2O)6·HCO3(H2O)7] 10.2 11.5 8.1 a MP2/aD single point electronic energies at the B3LYP/ad optimized geometries with B3LYP/aD corrections.
36 ACS Paragon Plus Environment
Page 36 of 56
Page 37 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
The Journal of Physical Chemistry
Table 2. Relative Free Energies for Reactant and Product Complexes in kcal/mol at 298 K. Complex NMgas,B3LYP NMgas,MP2 NMaq,COSMOa NMaq,PCMa NMaq,SMDa
a
MgR3a
0.0
0.0
1.9
2.0
1.6
MgR3b
1.9
1.8
0.0
0.3
0.6
MgR3c
1.2
0.0
0.3
0.0
0.0
MgP3a
0.0
0.0
0.6
0.6
1.4
MgP3b
2.0
0.1
0.0
0.0
0.0
Aqueous free energies are calculated by combining solvation corrections calculated at the B3LYP/aD level with gas phase free
energy values calculated at the MP2/aD level.
37 ACS Paragon Plus Environment
The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Table 3. Aqueous free energy surface for the formation of H2CO3 from CO2 with 2 explicit H2O molecules and Mg(H2O)62+ at 298 K in kcal/mol at the MP2/aD level with solvation calculated at the COSMO, PCM, and SMD levels. Species MP2aD/ MP2/aD/ MP2/aD/ COSMO
PCM
SMD
MgR3b
0.0
0.0
0.0
MgTS3
30.2
34.5
23.2
MgP3a
12.1
13.9
8.5
MgR4
0.0
0.0
0.0
MgTS4
25.2
28.1
20.0
MgP4
19.7
19.5
20.0
R2
0.0
0.0
0.0
TS2
32.2
33.5
30.1
P2
10.3
11.2
8.3
R3-3
0.0
0.0
0.0
TS3-3-1
25.6
27.8
22.5
P3-3
9.7
11.1
7.3
38 ACS Paragon Plus Environment
Page 38 of 56
Page 39 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
References (1)
Zachara, J.; Brantley, S.; Chorover, J.; Ewing, R.; Kerisit, S.; Liu, C. X.; Perfect,
E.; Rother, G.; Stack, A. G. Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction, Environ. Sci. Technol. 2016, 50, 28112829. (2)
Plumper, O.; Botan, A.; Los, C.; Liu, Y.; Malthe-Sorenssen, A.; Jamtveit, B.
Fluid-Driven Metamorphism of the Continental Crust Governed by Nanoscale Fluid Flow, Nat. Geosci. 2017, 10, 685-690. (3)
Wang, Y. F.; Bryan, C.; Xu, H. F.; Gao, H. Z. Nanogeochemistry: Geochemical
Reactions and Mass Transfers in Nanopores, Geology 2003, 31, 387-390. (4)
Nelson, J.; Bargar, J. R.; Wasylenki, L.; Brown, G. E.; Maher, K. Effects of
Nano-Confinement on Zn(II) Adsorption to Nanoporous Silica, Geochim. Cosmochim. Acta 2018, 240, 80-97. (5)
Molina, M. J. Polar Ozone Depletion (Nobel Lecture), Angew. Chem. Int. Ed.
1996, 35, 1778-1785. (6)
Usher, C. R.; Michel, A. E.; Grassian, V. H. Reactions on Mineral Dust, Chem.
Rev. 2003, 103, 4883-4939. (7)
Musat, R.; Renault, J. P.; Candelaresi, M.; Palmer, D. J.; Le]Caër, S.; Righini, R.;
Pommeret, S. Finite Size Effects on Hydrogen Bonds in Confined Water, Angew. Chem. 2008, 120, 8153-8155. (8)
Le Caër, S.; Pin, S.; Esnouf, S.; Raffy, Q.; Renault, J. P.; Brubach, J. B.; Creff,
G.; Roy, P. A Trapped Water Network in Nanoporous Material: The Role of Interfaces, Phys. Chem. Chem. Phys. 2011, 13, 17658-17666. 39 ACS Paragon Plus Environment
The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(9)
Le Caër, S.; Palmer, D. J.; Lima, M.; Renault, J. P.; Vigneron, G.; Righini, R.;
Pommeret, S. Time-Resolved Studies of Water Dynamics and Proton Transfer at the .
_ (10)
Interface, J. Am. Chem. Soc. 2007, 129, 11720-11729. Teschke, O.; Ceotto, G.; de Souza, E. F. Interfacial Water Dielectric-Permittivity-
Profile Measurements Using Atomic Force Microscopy, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 2001, 64, 011605. (11)
Senapati, S.; Chandra, A. Dielectric Constant of Water Confined in a Nanocavity,
J. Phys. Chem. B 2001, 105, 5106-5109. (12)
Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan, A.;
Yang, Q.; Radha, B.; Taniguchi, T.; Watanabe, K.et al. Anomalously low dielectric constant of confined water, Science 2018, 360, 1339. (13)
Greathouse, J. A.; Cygan, R. T.; Fredrich, J. T.; Jerauld, G. R. Molecular
Dynamics Simulation of Diffusion and Electrical Conductivity in Montmorillonite Interlayers, J. Phys. Chem. C 2016, 120, 1640-1649. (14)
Tokunaga, T. K.; Finsterle, S.; Kim, Y.; Wan, J.; Lanzirotti, A.; Newville, M. Ion
Diffusion Within Water Films in Unsaturated Porous Media, Environ. Sci. Technol. 2017, 51, 4338-4346. (15)
Argyris, D.; Tummala, N. R.; Striolo, A.; Cole, D. R. Molecular Structure and
Dynamics in Thin Water Films at the Silica and Graphite Surfaces, J. Phys. Chem. C 2008, 112, 13587-13599. (16)
Bourg, I. C.; Steefel, C. I. Molecular Dynamics Simulations of Water Structure
and Diffusion in Silica Nanopores, J. Phys. Chem. C 2012, 116, 11556-11564.
40 ACS Paragon Plus Environment
Page 40 of 56
Page 41 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
(17)
Stumm, W. Chemistry of the Solid-Water Interface: Processes at the Mineral-
Water and Particle-Water Interface in Natural Systems; John Wiley & Son Inc., 1992. (18)
Matter, J. M.; Kelemen, P. B. Permanent storage of carbon dioxide in geological
reservoirs by mineral carbonation, Nat. Geosci. 2009, 2, 837-841. (19)
Tang, M. J.; Cziczo, D. J.; Grassian, V. H. Interactions of Water with Mineral
Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation, Chem. Rev. 2016, 116, 4205-4259. (20)
Miller, Q. R. S.; Ilton, E. S.; Qafoku, O.; Dixon, D. A.; Vasiliu, M.; Thompson,
C. J.; Schaef, H. T.; Rosso, K. M.; Loring, J. S. Water Structure Controls Carbonic Acid Formation in Adsorbed Water Films, J. Phys. Chem. Lett. 2018, 9, 4988-4994. (21)
Nguyen, M. T.; Matus, M. H.; Jackson, V. E.; Ngan, V. T.; Rustad, J. R.; Dixon,
D. A. Mechanism of the Hydration of Carbon Dioxide: Direct Participation of H2O versus Microsolvation, J. Phys. Chem. A 2008, 112, 10386-10398. (22)
Rosenbaum, J. M. Gaseous, Liquid, and Supercritical Fluid H2O and CO2:
Oxygen Isotope Fractionation Behavior, Geochim. Cosmochim. Acta 1997, 61, 4993-5003. (23)
Rosenbaum, J. M. Room-Temperature Oxygen-Isotope Exchange Between Liquid
CO2 and H2O, Geochim. Cosmochim. Acta 1993, 57, 3195-3198. (24)
Windisch, C. F. J.; Schaef, H. T.; Martin, P. F.; Owen, A. T.; McGrail, B. P.
Following 18O Uptake in scCO2-H2O Mixtures with Raman Spectroscopy, Spectrochim. Acta, Part A 2012, 94, 186-191. (25)
Baltrusaitis, J.; Jensen, J. H.; Grassian, V. H. FTIR Spectroscopy Combined with
Isotope Labeling and Quantum Chemical Calculations to Investigate Adsorbed Bicarbonate
41 ACS Paragon Plus Environment
The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Formation Following Reaction of Carbon Dioxide with Surface Hydroxyl Groups on Fe2O3 and Al2O3, J. Phys. Chem. B 2006, 110, 12005-12016. (26)
Baltrusaitis, J.; Grassian, V. H. Surface Reactions of Carbon Dioxide at the
Adsorbed Water-Iron Oxide Interface, J. Phys. Chem. B 2005, 109, 12227-12230. (27)
Baltrusaitis, J.; Schuttlefield, J. D.; Zeitler, E.; Jensen, J. H.; Grassian, V. H.
Surface Reactions of Carbon Dioxide at the Adsorbed Water-Oxide Interface, J. Phys. Chem. C 2007, 111, 14870-14880. (28)
Miller, Q. R. S.; Thompson, C. J.; Loring, J. S.; Windisch, C. F.; Bowden, M. E.;
Hoyt, D. W.; Hu, J. Z.; Arey, B. W.; Rosso, K. M.; Schaef, H. T. Insights Into Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids, Int. J. Greenhouse Gas Control 2013, 15, 104-118. (29)
Schaef, H. T.; Windisch, C. F., Jr.; McGrail, B. P.; Martin, P. F.; Rosso, K. M.
Brucite Mg(OH)2 carbonation in wet supercritical CO2: An in situ high pressure X-ray diffraction study, Geochim. Cosmochim. Acta 2011, 75, 7458-7471. (30)
Schaef, H. T.; McGrail, B. P.; Loring, J. L.; Bowden, M. E.; Arey, B. W.; Rosso,
K. M. Forsterite [Mg2SiO4] Carbonation in Wet Supercritical CO2: An In Situ High Pressure Xray Diffraction Study, Environ. Sci. Technol. 2013, 47, 174-181. (31)
Loring, J. S.; Thompson, C. J.; Wang, Z.; Joly, A. G.; Sklarew, D. S.; Schaef, H.
T.; Ilton, E. S.; Rosso, K. M.; Felmy, A. R. In Situ Infrared Spectroscopic Study of Forsterite Carbonation in Wet Supercritical CO2, Environ. Sci. Technol. 2011, 45, 6204-6210. (32)
Loring, J. S.; Chen, J.; Benezeth, P.; Qafoku, O.; Ilton, E. S.; Washton, N. M.;
Thompson, C. J.; Martin, P. F.; McGrail, B. P.; Rosso, K. M.et al. Evidence for Carbonate
42 ACS Paragon Plus Environment
Page 42 of 56
Page 43 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide, Langmuir 2015, 31, 7533-7543. (33)
Thompson, C. J.; Loring, J. S.; Rosso, K. M.; Wang, Z. Comparative Reactivity
Study of Forsterite and Antigorite in Wet Supercritical CO2 by In Situ Infrared Spectroscopy, Int. J. Greenhouse Gas Control 2013, 18, 246-255. (34)
Thompson, C. J.; Martin, P. F.; Chen, J.; Benezeth, P.; Schaef, H. T.; Rosso, K.
M.; Felmy, A. R.; Loring, J. S. Automated high-pressure titration system with in situ infrared spectroscopic detection, Rev. Sci. Instrum. 2014, 85. (35)
Miller, Q. R. S.; Kaszuba, J. P.; Schaef, H. T.; Bowden, M. E.; McGrail, B. P.
Impacts of Organic Ligands on Forsterite Reactivity in Supercritical CO2 Fluids, Environ. Sci. Technol. 2015, 49, 4724-4734. (36)
Miller, Q. R. S.; Schaef, H. T.; Kaszuba, J. P.; Qiu, L.; Bowden, M. E.; McGrail,
B. P. Tunable Manipulation of Mineral Carbonation Kinetics in Nanoscale Water Films via Citrate Additives, Environ. Sci. Technol. 2018, 52, 7138-7148. (37)
Qafoku, O.; Hu, J.; Hess, N. J.; Hu, M. Y.; Ilton, E. S.; Feng, J.; Arey, B. W.;
Felmy, A. R. Formation of Submicron Magnesite During Reaction of Natural Forsterite in H2OSaturated Supercritical CO2, Geochim. Cosmochim. Acta 2014, 134, 197-209. (38)
Felmy, A. R.; Qafoku, O.; Arey, B. W.; Hu, J. Z.; Hu, M.; Schaef, H. T.; Ilton, E.
S.; Hess, N. J.; Pearce, C. I.; Feng, J.et al. Reaction of Water-Saturated Supercritical CO2 with Forsterite: Evidence for Magnesite Formation at Low Temperatures, Geochim. Cosmochim. Acta 2012, 91, 271-282.
43 ACS Paragon Plus Environment
The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(39)
McGrail, B. P.; Schaef, H. T.; Spane, F. A.; Cliff, J. B.; Qafoku, O.; Horner, J. A.;
Thompson, C. J.; Owen, A. T.; Sullivan, C. E. Field Validation of Supercritical CO2 Reactivity with Basalts, Environ. Sci. Technol. Lett. 2017, 4, 6-10. (40)
Loring, J. S.; Miller, Q. R. S.; Schaef, H. T.; Thompson, C. J. In Science of
Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales; 1st ed.; Newell, P., Ilgen, A. G., Eds.; Elsevier: 2018. (41)
Giammar, D. E.; Bruant, R. G.; Peters, C. A. Forsterite Dissolution and Magnesite
Precipitation at Conditions Relevant for Deep Saline Aquifer Storage and Sequestration of Carbon Dioxide, Chem. Geol. 2005, 217, 257-276. (42)
Matter, J. M.; Stute, M.; Snaebjornsdottir, S. O.; Oelkers, E. H.; Gislason, S. R.;
Aradottir, E. S.; Sigfusson, B.; Gunnarsson, I.; Sigurdardottir, H.; Gunnlaugsson, E.et al. Rapid Carbon Mineralization for Permanent Disposal of Anthropogenic Carbon Dioxide Emissions, Science 2016, 352, 1312-1314. (43)
Schaef, H. T.; Miller, Q. R. S.; Thompson, C. J.; Loring, J. S.; Bowden, M. S.;
Arey, B. W.; McGrail, B. P.; Rosso, K. M. Silicate carbonation in supercritical CO2 containing dissolved H2O: An in situ high pressure X-ray diffraction and infrared spectroscopy study, Energy Procedia 2013, 37, 5892-5896. (44)
Miller, Q. R. S.; Kaszuba, J. P.; Schaef, H. T.; Thompson, C. J.; Qiu, L.; Bowden,
M. E.; Glezakou, V. A.; McGrail, B. P. Experimental study of organic ligand transport in supercritical CO2 fluids and impacts to silicate reactivity, Energy Procedia 2014, 63, 3225-3233. (45)
McGrail, B. P.; Schaef, H. T.; Glezakou, V. A.; Dang, L. X.; Owen, A. T. Water
Reactivity in the Liquid and Supercritical CO2 phase: Has Half the Story Been Neglected?, Energy Procedia 2009, 1, 3415-3419.
44 ACS Paragon Plus Environment
Page 44 of 56
Page 45 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
(46)
Kaszuba, J. P.; Williams, L. L.; Janecky, D. R.; Hollis, W. K.; Tsimpanogiannis,
I. N. Immiscible CO2-H2O Fluids in the Shallow Crust, Geochem. Geophys. Geosyst. 2006, 7(10). (47)
Kaszuba, J. P.; Janecky, D. R. In Carbon Sequestration and Its Role in the Global
Carbon Cycle; McPherson, B., Sundquist, E., Eds.; American Geophysical Union: Washington, DC, 2009; Vol. 183, p 239-247. (48)
Spycher, N.; Pruess, K.; Ennis-King, J. CO2-H2O Mixtures in the Geological
Sequestration of CO2. I. Assessment and Calculation of Mutual Solubilities from 12 to 100°C and Up to 600 bar, Geochim. Cosmochim. Acta 2003, 67, 3015-3031. (49)
Gaus, I. Role and Impact of CO2-Rock Interactions during CO2 Storage in
Sedimentary Rocks, Int. J. Greenhouse Gas Control 2010, 4, 73-89. (50)
Kaszuba, J. P.; Janecky, D. R.; Snow, M. G. Carbon Dioxide Reaction Processes
in a Model Brine Aquifer at 200 °C and 200 bars: Implications for Geologic Sequestration of Carbon, Appl. Geochem. 2003, 18, 1065–1080. (51)
Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of Gases in Multimolecular
Layers, J. Am. Chem. Soc. 1938, 60, 309-319. (52)
Qafoku, O.; Ilton, E. S.; Bowden, M. E.; Kovarik, L.; Zhang, X.; Kukkadapu, R.
K.; Engelhard, M. H.; Thompson, C. J.; Schaef, H. T.; McGrail, B. P.et al. Synthesis of Nanometer-Sized Fayalite and Magnesium-Iron(II) Mixture Olivines, J. Colloid Interface Sci. 2018, 515, 129-138. (53)
Becke, A. D. Density-Functional Thermochemistry .3. The Role of Exact
Exchange, J Chem Phys 1993, 98, 5648-5652.
45 ACS Paragon Plus Environment
The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(54)
Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti
Correlation-Energy Formula into a Functional of the Electron-Density, Phys. Rev. B: Condens. Matter 1988, 37, 785-789. (55)
Dunning, T. H. Gaussian-Basis Sets for Use in Correlated Molecular Calculations
.1. The Atoms Boron through Neon and Hydrogen, J Chem Phys 1989, 90, 1007-1023. (56)
Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Electron-Affinities of the 1st-Row
Atoms Revisited - Systematic Basis-Sets and Wave-Functions, J Chem Phys 1992, 96, 67966806. (57)
Prascher, B. P.; Woon, D. E.; Peterson, K. A.; Dunning, T. H.; Wilson, A. K.
Gaussian Basis Sets for Use in Correlated Molecular Calculations. VII. Valence, Core-Valence, and Scalar Relativistic Basis Sets for Li, Be, Na, and Mg, Theor Chem Acc 2011, 128, 69-82. (58)
Moller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-
Electron Systems, Phys Rev 1934, 46, 0618-0622. (59)
Pople, J. A.; Binkley, J. S.; Seeger, R. Theoretical Models Incorporating Electron
Correlation, Int J Quantum Chem 1976, 1-19. (60)
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.et al. Wallingford, CT, 2016. (61)
Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation
Models, Chem. Rev. 2005, 105, 2999-3093. (62)
Klamt, A. Quantum Chemistry to Fluid Phase Thermodynamics and Drug
Design; Elsevier: Amsterdam.
46 ACS Paragon Plus Environment
Page 46 of 56
Page 47 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
(63)
Klamt, A.; Schuurmann, G. Cosmo - a New Approach to Dielectric Screening in
Solvents with Explicit Expressions for the Screening Energy and Its Gradient, J Chem Soc Perk T 2 1993, 799-805. (64)
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based
on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, J. Phys. Chem. B 2009, 113, 6378-6396. (65)
Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic Interaction of a Solute with a
Continuum - a Direct Utilization of Abinitio Molecular Potentials for the Prevision of Solvent Effects, Chem Phys 1981, 55, 117-129. (66)
Pascual-Ahuir, J. L.; Silla, E.; Tunon, I. GEPOL: An Improved Description of
Molecular-Surfaces 3. A New Algorithm for the Computation of a Solvent-Excluding Surface, J. Comput. Chem. 1994, 15, 1127-1138. (67)
Scalmani, G.; Frisch, M. J. Continuous Surface Charge Polarizable Continuum
Models of Solvation. I. General Formalism, J Chem Phys 2010, 132. (68)
Schäfer, A.; Horn, H.; Ahlrichs, R. Fully Optimized Contracted Gaussian-Basis
Sets for Atoms Li to Kr, J Chem Phys 1992, 97, 2571-2577. (69)
Schäfer, A.; Huber, C.; Ahlrichs, R. Fully Optimized Contracted Gaussian-Basis
Sets of Triple Zeta Valence Quality for Atoms Li to Kr, J Chem Phys 1994, 100, 5829-5835. (70)
Loring, J. S.; Bacon, D. H.; Springer, R. D.; Anderko, A.; Gopinath, S.;
Yonkofski, C. M.; Thompson, C. J.; McGrail, B. P.; Rosso, K. M.; Schaef, H. T. Water Solubility at Saturation for CO2–CH4 Mixtures at 323.2 K and 9.000 MPa, J. Chem. Eng. Data 2017, 62, 1608-1614.
47 ACS Paragon Plus Environment
The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(71)
Bowers, G. M.; Schaef, H. T.; Loring, J. S.; Hoyt, D. W.; Burton, S. D.; Walter,
E. D.; Kirkpatrick, R. J. Role of Cations in CO2 Adsorption, Dynamics, and Hydration in Smectite Clays under in Situ Supercritical CO2 Conditions, J. Phys. Chem. C 2017, 121, 577592. (72)
Kerisit, S.; Weare, J. H.; Felmy, A. R. Structure and Dynamics of Forsterite-
scCO2/H2O Interfaces as a Function of Water Content, Geochim. Cosmochim. Acta 2012, 84, 137-151. (73)
Kerisit, S.; Bylaska, E. J.; Felmy, A. Water and Carbon Dioxide Adsorption at
Olivine Surfaces, Chem. Geol. 2013, 359, 81-89. (74)
Boulet-Audet, M.; Buffeteau, T.; Boudreault, S.; Daugey, N.; Pézolet, M.
Quantitative Determination of Band Distortions in Diamond Attenuated Total Reflectance Infrared Spectra, J. Phys. Chem. B 2010, 114, 8255-8261. (75)
Harrick, N. J. Internal Reflection Spectroscopy; John Wiley & Sons: New York,
(76)
Bertie, J. E.; Eysel, H. H. Infrared Intensities of Liquids I: Determination of
1967.
Infrared Optical and Dielectric Constants by FT-IR Using the CIRCLE ATR Cell, Appl. Spectrosc. 1985, 39, 392-401. (77)
Bertie, J. E.; Zhang, S. L.; Manji, R. Infrared Intensities of Liquids X: Accuracy
of Current Methods of Obtaining Optical Constants from Multiple Attenuated Total Reflection Measurements Using the CIRCLE Cell, Appl. Spectrosc. 1992, 46, 1660-1665. (78)
Ohta, K.; Ishida, H. Matrix Formalism for Calculation of Electric Field Intensity
of Light in Stratified Multilayered Films, Appl. Opt. 1990, 29, 1952-1959.
48 ACS Paragon Plus Environment
Page 48 of 56
Page 49 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
(79)
Loring, J. S.; Land, D. P. Theoretical Determination of Parameters for Optimum
Surface Specificity in Overlayer Attenuated-Total-Reflection Infrared Spectroscopy, Appl. Opt. 1998, 37, 3515-3526. (80)
Gorzsás, A. MCR-ALS GUI V4c, Open source MATLAB script from the
Vibrational Spectroscopy Core Facility, Umeå University, Umeå Sweden 2017, http://www.kbc.umu.se/english/visp/download-visp/. (81)
de Juan, A.; Tauler, R. Multivariate Curve Resolution (MCR) from 2000:
Progress in Concepts and Applications, Crit. Rev. Anal. Chem. 2006, 36, 163-176. (82)
J e / e M.; Boily, J.-F. Thin Ice Films at Mineral Surfaces, J. Phys. Chem. Lett.
2016, 7, 2849-2855. (83)
Walter, E. D.; Qi, L.; Chamas, A.; Mehta, H. S.; Sears, J. A.; Scott, S. L.; Hoyt,
D. W. Operando MAS NMR Reaction Studies at High Temperatures and Pressures, J. Phys. Chem. C 2018, 122, 8209-8215. (84)
Chamas, A.; Qi, L.; Mehta, H. S.; Sears, J. A.; Scott, S. L.; Walter, E. D.; Hoyt,
D. W. High Temperature/Pressure MAS-NMR for the Study of Dynamic Processes in Mixed Phase Systems, Magnetic Resonance Imaging 2018. (85)
Propp, W. A.; Carleson, T. E.; Wai, C. M.; Huang, S. Transport of Metal Sulfides
in Supercritical Carbon Dioxide, Idaho National Engineering Laboratory, 1996. (86)
Glezakou, V.-A.; Rousseau, R.; Dang, L. X.; McGrail, B. P. Structure, Dynamics
and Vibrational Spectrum of Supercritical CO2/H2O Mixtures from Ab Initio Molecular Dynamics as a Function of Water Cluster Formation, Phys. Chem. Chem. Phys. 2010, 12, 87598771.
49 ACS Paragon Plus Environment
The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(87)
Baltrusaitis, J.; Grassian, V. H. Carbonic Acid Formation from Reaction of
Carbon Dioxide and Water Coordinated to Al(OH)3: A Quantum Chemical Study, J. Phys. Chem. A 2010, 114, 2350-2356. (88)
Baltrusaitis, J.; Schuttlefield, J.; Zeitler, E.; Grassian, V. H. Carbon Dioxide
Adsorption on Oxide Nanoparticle Surfaces, Chem Eng J 2011, 170, 471-481. (89)
Jackson, V. E.; Felmy, A. R.; Dixon, D. A. Prediction of the pKa's of Aqueous
Metal Ion+2 Complexes, J. Phys. Chem. A 2015, 119, 2926-2939. (90)
Rustad, J. R.; Nelmes, S. L.; Jackson, V. E.; Dixon, D. A. Quantum-Chemical
Calculations of Carbon-Isotope Fractionation in CO2(g), Aqueous Carbonate Species, and Carbonate Minerals, J. Phys. Chem. A 2008, 112, 542-555. (91)
Busca, G.; Lorenzelli, V. Infrared Spectroscopic Identification of Species Arising
from Reactive Adsorption of Carbon Oxides on Metal-Oxide Surfaces, Mater Chem 1982, 7, 89126. (92)
Evans, J. V.; Whateley, T. L. Infra-Red Study of Adsorption of Carbon Dioxide
and Water on Magnesium Oxide, T Faraday Soc 1967, 63, 2769-&. (93)
Bian, S. W.; Baltrusaitis, J.; Galhotra, P.; Grassian, V. H. A Template-Free,
Thermal Decomposition Method to Synthesize Mesoporous MgO with a Nanocrystalline Framework and its Application in Carbon Dioxide Adsorption, J Mater Chem 2010, 20, 87058710. (94)
Felmy, A. R.; Kwak, J. H.; Hu, J. Z.; Rosso, K. M.; Wang, C.; Hoyt, D. W.; Ilton,
E. S.; Rustad, J. R.; Dixon, D. A. The Role of Intermediates during Metal Carbonation of Forsterite in Wet Supercritical CO2, Geochim. Cosmochim. Acta 2010, 74, A284-A284.
50 ACS Paragon Plus Environment
Page 50 of 56
Page 51 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
(95)
Kwak, J. H.; Hu, J. Z.; Hoyt, D. W.; Sears, J. A.; Wang, C. M.; Rosso, K. M.;
Felmy, A. R. Metal Carbonation of Forsterite in Supercritical CO2 and H2O Using Solid State 29Si, 13C
NMR Spectroscopy, J. Phys. Chem. C 2010, 114, 4126-4134.
(96)
Kwak, J. H.; Hu, J. Z.; Turcu, R. V. F.; Rosso, K. M.; Ilton, E. S.; Wang, C. M.;
Sears, J. A.; Engelhard, M. H.; Felmy, A. R.; Hoyt, D. W. The Role of H2O in the Carbonation of Forsterite in Supercritical CO2, Int. J. Greenhouse Gas Control 2011, 5, 1081-1092. (97)
Abbott, T. M.; Buchanan, G. W.; Kruus, P.; Lee, K. C. 13C Nuclear Magnetic-
Resonance and Raman Investigations of Aqueous Carbon-Dioxide Systems, Can J Chem 1982, 60, 1000-1006. (98)
Moore, J. K.; Surface, J. A.; Brenner, A.; Skemer, P.; Conradi, M. S.; Hayes, S. E.
Quantitative Identification of Metastable Magnesium Carbonate Minerals by Solid-State 13C NMR Spectroscopy, Environ. Sci. Technol. 2015, 49, 657-664. (99)
Bargar, J. R.; Kubicki, J. D.; Reitmeyer, R.; Davis, J. A. ATR-FTIR
Spectroscopic Characterization of Coexisting Carbonate Surface Complexes on Hematite, Geochim. Cosmochim. Acta 2005, 69, 1527-1542. (100) Adler, H. H.; Kerr, P. F. Infrared Absorption Frequency Trends for Anhydrous Normal Carbonates, Am. Mineral. 1963, 48, 124-137. (101) Adler, H. H.; Kerr, P. F. Infrared spectra, symmetry and sructure relations of some carbonate minerals, Am Mineral 1963, 48, 839-853. (102) Loring, J. S.; Thompson, C. J.; Zhang, C. Y.; Wang, Z. M.; Schaef, H. T.; Rosso, K. M. In Situ Infrared Spectroscopic Study of Brucite Carbonation in Dry to Water-Saturated Supercritical Carbon Dioxide, J. Phys. Chem. A 2012, 116, 4768-4777.
51 ACS Paragon Plus Environment
The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(103) White, C. E.; Henson, N. J.; Daemen, L. L.; Hartl, M.; Page, K. Uncovering the true atomic structure of disordered materials: The structure of a hydrated amorphous magnesium carbonate (MgCO3·3D2O), Chem. Mater. 2014, 26, 2693-2702. (104) Radha, A. V.; Fernandez-Martinez, A.; Hu, Y. D.; Jun, Y. S.; Waychunas, G. A.; Navrotsky, A. Energetic and structural studies of amorphous Ca1-xMgxCO3·nH2O (0 g x g 1), Geochim. Cosmochim. Acta 2012, 90, 83-95. (105) Montes-Hernandez, G.; Renard, F. Time-Resolved In Situ Raman Spectroscopy of the Nucleation and Growth of Siderite, Magnesite, and Calcite and their Precursors, Cryst. Growth Des. 2016, 16, 7218-7230. (106) Leuenberger, M.; Huber, C. On-Line Determination of Oxygen Isotope Ratios of Water or Ice by Mass Spectrometry, Anal. Chem. 2002, 74, 4611-4617. (107) Mills, G. A.; Urey, H. C. The Kinetics of Isotopic Exchange between Carbon Dioxide, Bicarbonate Ion, Carbonate Ion and Water, J. Am. Chem. Soc. 1940, 62, 1019-1026. (108) Kern, D. M. The Hydration of Carbon Dioxide, J. Chem. Educ. 1960, 37, 14. (109) Eigen, M.; Kustin, K.; Maass, G. Die Geschwindigkeit der Hydratation von SO2 in wäßriger Lösung, Z. Phys. Chem. 1961, 30, 130-136. (110) Smith, A.; Vincent, M. A.; Hillier, I. H. Mechanism of Acid Dissociation in Water , !
!Fj Electronic Structure Studies of (H2O)nHX (n = 4, 7; X = OH, F, HS, HSO3,
OOSO2H, OOH·SO2), J. Phys. Chem. A 1999, 103, 1132-1139. (111) Baer, M. D.; Tobias, D. J.; Mundy, C. J. Investigation of Interfacial and Bulk Dissociation of HBr, HCl, and HNO3 using Density Functional Theory-Based Molecular Dynamics Simulations, J. Phys. Chem. C 2014, 118, 29412-29420.
52 ACS Paragon Plus Environment
Page 52 of 56
Page 53 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
(112) Lewis, T.; Winter, B.; Stern, A. C.; Baer, M. D.; Mundy, C. J.; Tobias, D. J.; Hemminger, J. C. Does Nitric Acid Dissociate at the Aqueous Solution Surface?, J. Phys. Chem. C 2011, 115, 21183-21190. (113) Loerting, T.; Liedl, K. R. Water-Mediated Proton Transfer: A Mechanistic Investigation on the Example of the Hydration of Sulfur Oxides, J. Phys. Chem. A 2001, 105, 5137-5145. (114) Li, X. H.; Ren, S. J.; Wei, X. G.; Zeng, Y.; Gao, G. W.; Ren, Y.; Zhu, J.; Lau, K. C.; Li, W. K. Concerted or Stepwise Mechanism? New Insight into the Water-Mediated Neutral Hydrolysis of Carbonyl Sulfide, J. Phys. Chem. A 2014, 118, 3503-3513. (115) Fang, Y.; Tang, M. J.; Grassian, V. H. Competition between Displacement and Dissociation of a Strong Acid Compared to a Weak Acid Adsorbed on Silica Particle Surfaces: The Role of Adsorbed Water, J. Phys. Chem. A 2016, 120, 4016-4024. (116) Tang, M. J.; Larish, W. A.; Fang, Y.; Gankanda, A.; Grassian, V. H. Heterogeneous Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity, J. Phys. Chem. A 2016, 120, 5609-5616. (117) Cwiertny, D. M.; Young, M. A.; Grassian, V. H. Chemistry and Photochemistry of Mineral Dust Aerosol, Annu. Rev. Phys. Chem. 2008, 59, 27-51. (118) Prather, K. A.; Hatch, C. D.; Grassian, V. H. Analysis of Atmospheric Aerosols, Annu. Rev. Anal. Chem. 2008, 1, 485-514. (119) Donaldson, D. J.; Valsaraj, K. T. Adsorption and Reaction of Trace Gas-Phase Organic Compounds on Atmospheric Water Film Surfaces: A Critical Review, Environ. Sci. Technol. 2010, 44, 865-873.
53 ACS Paragon Plus Environment
The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(120) Bianco, R.; Wang, S.; Hynes, J. T. Theoretical Study of the Dissociation of Nitric Acid at a Model Aqueous Surface, J. Phys. Chem. A 2007, 111, 11033-11042. (121) Murdachaew, G.; Gaigeot, M.-P.; Halonen, L.; Gerber, R. B. First and Second Deprotonation of H2SO4 on Wet Hydroxylated (0001) k