SYMPOSIUM ON SYNTHETIC RESINS AND PLASTICS Constitution

Note: In lieu of an abstract, this is the article's first page. Click to increase image size Free first page. View: PDF. Citing Articles; Related Cont...
1 downloads 0 Views 1006KB Size
(14) Ellis ( t o Ellis-Foster Co.), U. S. Patent 1,958,614 (May 15, 1934). (15) Ibid., 2,033,131 and 2,033,132 (March 10, 1936). (16) Fikentscher and Mark, Kautschuk, 6, 2 (1930). (17) Fischer, Emil, Ber., 39, 530 (1906) ; 46, 3253 (1913) ; 52, 809 (1919). (18) Fischer and Freudenberg, Ibid., 46, 1116, 3287 (1913). (19) Fischer and Tropsch, Brennstof-Chem., 8, 165 (1927). (20) Haworth, Ber., 65h, 43 (1932). (21) Haworth and Hirst, J. Chem. Soc., 119, 193 (1921). (22) Haworth and Machemer, Ibid., 1932, 2270. (23) Hess, Naturwissenschaften, 14, 435 (1926). (24) Hess and Trogus, Bw., 61, 1982 (1928). (25) Hinshelwood and Thompson, Proc. EO?,.S o t . , 118-4, 170 (1928); 119A, 591 (1928). (26) Hanel, Paint, Oil,Chem. Reu., 1931, 19. (27) Hopkins and McDermott (to E . I. du Pont de Nemours & Co.), U.S. Patent 1,974,472 (Sept. 25, 1934). (28) Houwink, Brit. Plastics, 6, 100 (1934). (29) Houwink, “Physikalische Eigenschaften und Feinbau von Natur- und Kunstharzen,” Leipaig, hkademische Verlagsgesellschaft m. h. H., 1934. (30) Houwink, Trans. Faraday Soc., 32, 131 (1936). (31) Houwink and Klaasens, Kolloid-Z., 70, 329 {1935). (32) I. G. Farbenindustrie, British Patent 401,297 (1933). (33) Ibid., 432,196 (1935). (34) Kappelmeier, Farben-Ztg., 38, 1018, 1077 (1933) ; Chem. Weekblad, 31, 423 (1934). (35) Karrer, Stoll, and Stevens, Helv. Chim.Acta, 14, 1194 (1931). (36) Katz, 2. physik. Chem., 125, 321 (1927). (37) Katz and Fuller, paper presented before Div. of Physical and Inorganic Chemistry a t 89th Meeting of A. C. S., New York, April 22 to 26, 1935. (38) Kienle (to General Electric Co.), U. S. Patent 1,893,873 (Jan. 10, 1933). (39) Kienle and Hovey, J.Am. Chem. SOC.,52, 3642 (1930). (40) Kirchhof, Kolloid-Z., 30, 176 (1922); Kautschuk, 6, 31 (1930~. (41) Maillard, Ann. chim.,1, 519 (1914); 2,210 (1914). (42) Megson, Trans. Faraday Soc., 32, 336 (1936). (43) Meyer, Ibid., 32, 148 (1936). (44) Meyer and Go, Helv. Chim. Acta, 17, 101 (1934). (45) Meyer and Mark, Ber., 61, 1944 (1928). (46) Meyer and AMark,“Der Aufbau der hochpolymeren organischen Naturstoff e,” Leipaig, Akademische Verlagsgesellschaft m. b. H., 1930. (47) Milliken, IND.ENG.CHEM., 22, 326 (1930). (48) Montgomery (to Imperial Chemical Industriesi, British Patent 433,313 (1934). (49) Nieuwland, IND.ESG.CHEM.,27,850 (1935). (50) Noviik and Cech, Ibid., 20, 796 (1928). (51) Parks and Spaght, Physics, 6, 69 (193.5). (52) Patrick, Trans. Faraday Soc., 32, 347 (1936). (53) Patrick, U. S. Patent 2,012,347 (Aug. 27, 1935). (54) Perkins, Dietsler, and Lunquist (to Dow Chemical C o . ) , Zhid., 1,972,599 (April 9, 1934). (55) Peterson, Littman, and Humphrey (to Hercules Powder C o . ) , Ibid., 1,993,025to 1,993,037,inclusive (March 5, 1935). (56) Pringsheim, Naturwissenschaften, 12, 360 (1924). (57) Ruzicka, Buijs, and Stoll, Helv. Chim.Acta, 15, 1220 (1932). (58) Shinkle, Brooks, and Cady, IND. ENG.CHEM., 28, 275 (1936). (59) Spanagel and Carothers, J. Am. Chem. Soc.. 57, 935 (1935). (60) Stamm, Ibid., 52, 3047 (1930). (61) Staudinger, Ber., 59, 3036 (1926). (62) Staudinger, “Die hochmolekularen organischen Verbindungen, Kautschuk und Cellulose,” Berlin, Julius Springer, 1932. (63) Staudinger, German Patent 629,453 (1936). (64) Staudinger, Naturwissenschaften, 22, 797, 813 (1934). (65) Staudinger and Bondy, Ann., 488, 153 (1933). (66) Staudinger and Heuer, Ber., 67, 1159, 1164 (1934); l’mns. Faraday SOC.,32, 323 (1936). (67) Staudinger and Leupold, Ber., 63, 730 (1930). 168) Ibid., 67, 304 (1934). (69) Tartakovski, Kozh. Obuvn. Prom. U.S. S. R.,12, 624 (1933). (70) Tomonari, CelluZosechem., 16, 49 11935). (71) Walter, Trans, Faraday Soc., 32, 377, 396 (1936); IND.ENQ. CHEM.,News Ed.. 13, 246 (1935). (72) Weber (to Ellis-Foster Co.), U. S. Patent 1,722,776 (July 30, 1929). (73) Weimarn, von, IND. EXG.CHEX.,19, 109 (1927). (74) Whitby, Tram. Inst. Rubber Ind., 5, 184 (1929); 6, 40 (1930). (75) Zechmeister and Tbth, Ber., 64, 854 (1931).

SYMPOSIUM (Pages 1144 t o 1176)

0

Constitution of Polysulfide Rubbers S. MANER MARTIN, JR.,AND J. C. PATRICK Thiokol Corporation, Yardville, N. J.

The reaction between organic dihalides having --CH2C1 terminals and inorganic polysulfides yields organic polysulfides of high molecular weight. Many of these polymers possess rubber-like characteristics. I t is thought that these compounds are long-chain polymers in which the organic radicals are connected through disulfide linkages R--S-S-R. The additional sulfur over and above that required to form a disulfide is thought to be attached as side groups to the sulfur comprising this disulfide linkage-for example, R-S-S-R.

II II

s s Experiments are described to support this formula. Data are cited to disprove the idea that sulfur chains of greater length than two units of sulfur exist in these compounds.

RECEIVEDJune 5 , 1936. [The trade name “Th/okol” used throughout this article is regie-9. Patent 0ffice.I tered in the

u.

1144

ON SYNTHETIC RESINS AND PLASTICS Presented before t h e Divisions of Colloid Chemiatry and of Organic Chemistry a t t h e 92nd Meeting of t h e -4merican Chemical Society, Pittsburgh, Pa., September 7 t o 11, 1936.

vv""'

part does a paper on synthetic rubber have in a symposium on synthetic. resins and plastics? The answer lies in a consideration of the chemistry of these products rather than in a comparison of their physical properties. I n both cases the object is the building up of large molecules, and the processes involved are somewhat similar, even though the final products may be a flexible eIastic body in the one case, and a hard brittle thermoplastic mass in the other. Patrick (3) showed that organic dihalides with -CH2CI terminals react readily with inorganic polysulfides t o form, in general, compounds of high molecular weight. The molecular growth of the molecules occurs through the elimination of sodium chloride and in this respect is analogous to the formation of polymers of high molecular weight by condensations between dibasic acids and dihydroxy alcohols to form polyesters, a reaction that has heen extensively studied by Carothers (1) and co-.cvorkers. Tn both rmes the reactions involve the interaction of bifunctional molecules t o

Q

Several examples of this reaction are BY f o l h w , CICHzCI + NaS,Pr'a = . . .CHzPZCHL3,CHzS,. . . ClC2H4Cl NaS,Na = . . . CzHaSZC~H8,CzH4S,.. .

+ +

CICsHloCl NaS,Na = , . , C~HIOS,CSH~~S~CSHI~S.. .. C1C2H40CzH4C1 NaS,Xa = . . .C Z H ~ O C Z H ~ S , C ~ H , O C ~ H I ~ , ClCzH4SCzHiCl NaSiNa = C,H,SC,H,S,~ZH,SC,H,S=~ . CICH?CH=CHCH?CI NaS,Na = CHzCH=CHCHzS,CH.CH=C HCH&

+ +

+

Properties of Polysulfide Rubbers These polymers for the most part are conipounds of high niolecular weight that possess, or can be made to assume, definitely rubber-like characteristics As first prepared, they are soft and plastic and in thia state can be worked on a rubber mill in the same manner that ruhber is masticated. By this operation it is possible to incorporate into the polymer reinforcing pigments and other modifying agent